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Abstract

UNIX is one of the most widely used operating systems on current workstations. However, UNIX
was originally designed as a multitasking and time-sharing system with little concern for supporting
real-time applications. Recent versions of UNIX have incorporated real-time features and the
designers of these systems claim to provide better response times than the standard UNIX kernel.
In order to assess the benefits of these new features and verify these claims, this paper compares
the real-time performances of two popular versions of UNIX namely System V Release 4.0 and
System V Release 4.2 for the Intel platform.

1 Introduction

Various features have been included in the basic UNIX [8] kernel by various manufacturers in their
attempt to develop their own real-time version of UNIX [2][3]. Most of the features that have been
added required changes to the UNIX kernel including all or a subset of the following: fixed priority
process scheduling, fast process synchronisation, fast file system, real-time timers, asynchronous
I/0, resident program support, resource preallocation and others. All these new features give max-
imum preference to a real-time process which is ready to execute. However, there is another major
factor that real-time versions of UNIX have attempted to overcome: decreasing the amount of time
it takes by the operating system kernel to start executing a process that is supposed to respond
to some external event. That is, the aim is to provide deterministic response times to respond to
events fast enough in order satisfy some real-time requirement.

The main reason for choosing two UNIX System V versions for comparing real-time performances
of UNIX-like operating systems is because they have both evolved from the same standard UNIX
kernel. This allows better comparisons to be made in terms of the benefits of the improvements
made as opposed to other real-time versions of UNIX which are often hybrids of several other op-
erating systems (e.g. FlexOS [6] includes functions from UNIX, DOS, and VMS operating systems).

UNIX System V Release 4.0 (SVR4.0) was the first version that came out as a result of the rework
made to the basic kernel to add real-time enhancements. The two major modifications were: the
addition of a preemptible static priority scheduler to the existing round-robin scheduler and the
insertion of preemption points [5]. As the basic kernel is not preemptive, it can only be split into
processing steps that must run to completion without interruption. In between the processing
steps, “safe”! places known as preemption points have been identified where the kernel can safely

LA safe place is a region of code where all kernel data structures are either updated and consistent or locked via
some semaphore.
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interrupt its processing and schedule a new process.

SVR-.2, the successor to SVR4.0, was released in June 1992. The designers of SVR4.2 claim that
it provides better real-time performance than SVR4.0 because the 4.2 kernel has been made fully
preemptible and re-entrant [6]. In addition, SVR4.2 also supports multiprocessing.

2 Description of Terminologies

Important parameters commonly used in benchmarks when assessing the real-time performance of
operating system kernels include: interrupt latency, context switch time, kernel preemption latency,
and process dispatch latency. A pictorial description of these parameters is given in Figure 1 as
used in the context of this paper. The various parameters are described in detail below.

o Interrupt latency: this is the time between the generation of an interrupt signal and the
execution of the first instruction of an appropriate interrupt handler.

e Interrupt processing time: this is the time for which the interrupt handler runs. The kernel
blocks all interrupts at this and all lower interrupt priority levels during this period. The
timely response of the system depends on this interval being as short as possible; that is,
interrupt handlers should be efficient and perform minimum processing necessary in order to
allow the kernel to re-enable interrupts as quickly as possible.

e Ikernel preemption latency: traditional UNIX systems can preempt a process running in
user mode immediately. If, however, the current process is executing in kernel mode then it
cannot be preempted (except by external interrupts) but can only voluntarily and explicitly
give up the processor. Specifically, a process executing within the kernel relinquishes the
processor only when it calls the sleep() routine to suspend itself until a needed resource
becomes available, or after the completion of a system call when it is about to return to user
mode thereby allowing preemption to occur. Thus, the kernel can execute for a significant
amount of time before giving up the processor to another process. This period of time is
called the preemption latency. A user process executing a system call in kernel mode can be
preempted by an external interrupt. In this case, interrupt handler processes the interrupt
and then gives control back to the processor at the end of interrupt processing. In the case of
a standard UNIX kernel, execution of the system call continues until it finishes. This implies
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that even if a higher priority process has been made available as a result of the interrupt, it
cannot run and has to wait until the system call completes. However, new versions of UNIX
including System V Release 4 attempt to reduce preemption latency by inserting preemption
points in the kernel. With these preemption points, it is possible to switch to another higher
priority process immediately (i.e. at the next preemption point) without having to wait until
the end of system call execution. Thus, the preemption latency in systems with preemption
points is bounded by the maeximum interval between any two preemption points.

e Context switch time: this includes the time spent in saving the context? of a cnrrently running
process process, in locating another process ready to run, and in restoring the context of that
process. When the kernel preempts a process its context is saved. When the kernel schedules
it to run, its context is restored and it continues to execute again.

e Scheduling latency: this is the preemption latency plus the context switch time.

e Process dispatch latency: this is the total time from the occurrence of an external interrupt
to the beginning ol execution of the process assigned to respond to that interrupt.

3 Overview of Measurements

The objective is to evaluate the real-time performances of SVR:L.2 and SVR-1.0 principally on how
quickly each can preempt the kernel and dispatch a new process in order to respond to external
events. Thus, performance evaluations will focus on the various components of process dispatch
lateney and include: interrupt latency, context switch time, and preemption latency. Measurements
of interrupt processing time have not been taken since thev are likely to vary with the unplemen-
tation of interrupt handlers. Particular attention is also paid to worst-casc figures which are much
more important in real-time applications than typical-case figures. DELL UNIX (SVR4.0) and
Consensys UNIX (SVR.2) were chosen because of their reputation as well performing ports of the
System V Release 4 product to the Intel 80x86 architecture.

All timing measurements have been made using a microsecond transputer (T801) clock. A network
adapter with one megabyte of on-board static Random Access Memory (RAM) has been used. The
network adapter connects to the workstation EISA bus and its on-board shared memory is acces-
sible by both the host and the transputer. The clock is made available to both the transputer and
the UNIX host by using a common shared memory location on the network adapter. This location
is continually updated by the transputer one microsecond clock. A transputer program is used to
generate packets at certain user-defined intervals. All the experiments described in this paper use
an inter-packet transmission interval of 10 milliseconds and each test run was over a period of 10
seconds. A simple device driver (“tatm”) has been implemented to take timing measurements on
the UNIX host system. ‘

> . . . . . .

“The use of the word conlecrt here implies a snapshot of the process runtime environment. It consists of processor
registers in use (e.g. program counter, stack pointer). associated kernel data structures such as user and proc in the
case ol a UNIX process, and othier operating system variables that are used to manipulate the process at any given
time.
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In all tests performed, a user-level process (henceforth referred as the test process) is put to sleep in
the tatm driver by making a blocking read system call. The interrupt handler of the driver simply
does a wakeup of the sleeping process and returns. Two sets of experiments have been undertaken
on both SVR4.0 and SVR4.2. One set of experiments runs the test process in the “time-sharing”
class and the other runs the test process in the “real-time” class. Three scheduling classes (time-
sharing, system, and real-time) are supported in UNIX System V Release 4 [5]. Both system class
processes and real-time class processes use a fixed priority scheduling policy with real-time processes
being assigned higher priorities than system processes. The “system” scheduling class is intended
for standard system daemon processes such as the page stealer. Time-sharing processes have the
lowest priority levels. In addition, only real-time processes can make use of preemption points to
preempt the kernel.

The following procedures have been used to measure the following parameters:

e Interrupt latency: the transputer program copies the value of the clock into an array holding
timestamps in main (transputer) memory at a granularity of approximately four microseconds
at the time when cach interrupt is generated. An interrupt is generated by means of the
transputer program writing to a special memory location. The interrupt handler of the
UNIX host records the times (using the transputer clock via shared memory) at which it
begins execution for cacl interrupt in an array in local memory. At the end of a test run,
interrupt latency times are calculated by subtracting corresponding timestamps. The values
obtained give the interrupt latencies for the interrupts generated.

e Context switch time: in addition to the test process sleeping in the kernel, another user-level
“soak”™ program comprising a tight loop is run in user mode in the time-sharing class. The
“soak”™ program ensures that the processor is never idle and spends no time in the kernel. The
point of having a process always runnable is to be able to measure a full context switch. Thus.
when an external interrupt occurs, a hardware trap transfers control from the test process
to the interrupt handler of the tatm driver to service the interrupt. The interrupt processing
performed simply wakes up the sleeping test process. The test process is bound to be the next
one to run before any other user-level processes since in UNIX the priority level of a sleeping
process is always raised to be above that of compute-bound processes; this is to improve the
responsiveness of the svstem to externel events like key-presses and mouse-clicks. As a result,
a full context switch to the test process immediately takes place. The last instruction in the
interrupt handler reads the value of the transputer clock and it is read again as the first
instruction when the awoken process begins execution. The time difference gives the context
switch time. For cach test run, timestamps are recorded in two arrays by the tatm driver in
local memory. Context switch times are calculated by subtracting corresponding timestamps.

A possible weakness in the context switch measurement test is that it is difficult to mea-
sure strictly context switeh time for time-sharing processes. This is because the experiment
assumes that the awoken process is definitely going to be the one to run before any other
processes. While this is certainly true for a real-time process, it mayv not necessarily be the
case for a time-sharing process because a system process with a higher priority can execute
before it. For instance. it might be prevented from executing by higher priority processes such
as system processes responsible for OS activities (e.g. as locking pages in memory. swapping
processes out, manipulating timer queues). Thus, in this particular case, the measurement
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results give scheduling latencies rather than pure context switch times. Ideally, the best way
to measure context switch time for all processes is to take timing measurements at different
points in the kernel code. However, it was not possible to adopt this method because UNIX
source code was not available.

Scheduling latency: scheduling latency was measured in the same way (i.e. at the same places
in the tatm driver) as context switch time except that an additional “find™ program was run.
The *find” program was made to do a recursive search of a Networked File System (NFS)
over the I'thernet network. During the time the find program runs, it spends a considerable
proportion (over 95%) of its execution time in the kernel performing system calls. However,
the “find” program spends approximately 80% of the time sleeping waiting for [/O. The
rationale for choosing such a program was that at least part of the sample measurements
taken will reveal the cffect of system calls on scheduling latencies. Other operations such as
process creation (fork) or process overlay (exec) have been experimented with but could not
be used hecause theyv execute for such a short period of time that prevents measurements
to be taken over a long interval. Furthermore, the “find™ program causes interrupts to be
generated by the Ethernet adapter. The interrupt priority level of the Ethernet driver was
the same as that of the tatm driver.

Results

The experimental results for context switch time and interrupt latency on SVR4.2 and SVR4.0 are
summarised in Table 1 when the test process runs in real-time class.

There are several observations that can be made based on Table 1:

1.
2.

The average interrupt latency on the UNIX versions used is in the range 26-28 microseconds.

The interrupt latency of SVR4.2 has not improved over SVR4.0. In fact, interrupt latency has
become slightly worse. This confirms some of the views that, owing to neglect, performance
of this parameter is not getting any better [7].

The average context switch time is in the range 77-86 microseconds. There has been a slight
improvement of about 10.5% of SVR4.2 over SVR4.0.

Worst case context switch time is 3 times better (i.e. less)‘ for SVR4.2 than SVR4.0 which
should provide better response time.

A possible explanation for the improvement in context switch time for SVR4.2 is because the
compiler used with SVR1.2 gives better optimisations than the one used with SVR4.0.

For completeness, SVR4.0 and SVR4.2 have also been compared when running the test process in
the time-sharing class. Results are presented in Table 2. Two notable points worth making are:

1.

The results for the average values of interrupt latency are nearly the same as corresponding
ones in Table 1. However, maximum interrupt latency when the test process is run in the
time-sharing class is almost two times worse than when it runs in the real-time class on either
operating system. This result implies that the worst case time for which interrupts are locked
out has improved in both SVR4.2 and SVR4.0 for a real-time process.
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Minimum Median Maximum Mean Standard
Deviation
Interrupt latency (SVR4.0) .
23 27 100 26 7.85
{microseconds)
Interrupt latency {SVR4.2) 25 20 95 28 17.47
(microseconds}
Context switch time (SVR4.0) 80 84 8500 26 158.95
{microseconds)
Context switch time {SVR4.2) 72 76 2800 77 51.2
(microseconds)

Table 1: Test Process in Real-Time Class

Minimum Median Maximum Mean Standard
Deviation
Interrupt latency (SVR4.0)
24 27 275 27 7.46
(microseconds)
nt 4,
nterrupt latency (SVR4.2) 25 2 245 2 848
{microseconds)
Scheduling latency (SVRA4.0)
80 80 9600 89 191.23
(microseconds)
Scheduling latency (SVR4.2)
&8 72 9600 92 326.93
{microseconds)

Table 2: Test Process in Time-Sharing Class

2. The scheduling latency values for both operating systems are similar. This might indicate
that the code path in SVR4.0 is already optimised and there is not much scope for further
improvement in SVR.2.

Scheduling latency results for both SVR4.0 and SVR4.2 when using the test process in the real-time
class are given in Table 3. The results show that average scheduling latency for SVR4.2 is better
than SVR4.0 by about 18.8%. The other interesting result from Table 3 is the significant decrease
of about 41% in the worst case scheduling latency of SVR4.2 over SVR4.0. Both these improve-
ments mean that there is an amelioration in kernel preemption latency and determinism for SVR4.2.

A graphical representation is also presented in Figure 2. The presentation format used has been
devised by Faller [4]. The ordinate shows the times for scheduling latency. The abscissa shows the
percentage cummulative [requency of these times. The value on the ordinate corresponding to P%

Minimum Median Maximum Mean Standard
Deviation
Scheduling latency {SVR4.2)
72 76 3272 2 184.45
(microseconds}
Scheduling latency (SVR4.0) a6 80 5544 148 257.01
{microseconds)

Table 3: Scheduling Latency of SVR4.0 (real-time) versus SVR4.2 (real-time)
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Figure 3: Schednliﬁg Latency of SVR4.0 (time-sharing) versus SVR4.2 (real-time)

on the abscissa is called the Pth percentile of the distribution. For example, an 90th percentile of
L millisecond means that 90% of the scheduling lattency times were at or below 1 millisecond. An
exponential scale has been used on the abscissa in order to highlight the relatively small number
of readings of particular interest. Results have been plotted at 1% intervals on the abscissa. The
graphical results show that for the 20% of the sample measurements taken when find is executing
and therefore making svstem calls in the kernel, better scheduling latencies are obtained with
SVR:1.2 than SVR-1.0.

5 Performance Benefits of Preemption Points
In order to better understand the real performance impact that preemption points have on schedul-
ing latency, two experiments were conducted using SVR4.2. The first executed the test process

in the time-sharing class so that preemption points are not used (as if they were turned off).
The second used the test process in a real-time class which therefore allows preemption to take
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Minimum Median Maximum Mean Standard
Deviation

Scheduling fatency (SVRA4.2)

(microseconds) 72 78 3272 121 184.45
(with preemption points on}
Seheduling latency (SVR4.0)

(microseconds) 72 72 7424 123 2908.72
(with preemption points off)

Table 4: Preemption (real-time) versus Non-Preemption (time-sharing) in SVR-.2

place in the kernel. The results obtained are presented in Table 4. The main deduction that can be
made is that the use of precmption points improves worst. case scheduling latency by a factor of two.

Figure 3 illustrates the overall improvement in scheduling latency from SVR4.0 (running a the test
process in the time-sharing class) to SVR4.2 which runs the test process in the real-time class. The
conclusion from this result is that there has been a significant shift from non-deterministic response
a process experiences in the time-sharing class in SVR4.0 to a more deterministic behaviour for
a process in the real-time class as illustrated by the scheduling latency percentile distribution for

SVR4.2.

6 Improving Kernel Preemption

The major challenge for providing guaranteed deterministic response time is to make a kernel
100% preemptible. However. because most system calls used in monolithic kernels like UNIX tend
to modifv critical shared data structures such as process tables, semaphores and scheduling queues,
it is difficult to achieve 100% preemptibility.

One approach that has been investigated in this paper is the use of preemption points at non-critical
places in the kernel where preemption is possible.

Another method to achieve partial preemption is to assume that the kernel preemption is always
enabled and to disable preemption when executing a critical region by simply setting a flag and
clearing the flag to re-enable preemption after executing the critical code. The benefit of this
method relative to using preemption points is reduced preemption latency. The disadvantage how-
ever is the overhead incurred in the setting and clearing of flags which can be quite large if the
number of critical regions in the kernel is high.

An alternative approach to improving preemption in the kernel is the use of multiple semaphores
rather than a single one to protect global data structures. Having each semaphore controlling ac-
cess to an independently used data structure leaves other data structures free for access by other
processes. Furthermore, no other process will be able to access the data structure which the pre-
empted process is using as no other process has the required semaphore lock. Therefore, the kernel
can be preempted at any point in its execution. This approach does give fast preemption times.
However, its main disadvantage is that the entire kernel must be modified in order to assign various
semaphores to the data structures used by the kernel. This can be a rather tedious process and is
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likely to involve a large amount of work. The approach has frequently been used for multi-processor
systems [1].

Another approach is to provide for kernel services using a shared library of services accessed via
subroutine calls. Its main advantage over the traditional monolithic user-kernel interface is that it
is much faster to access kernel services using the shared library approach because all that needs to
be done is to link the operating services with the processes that use them. All that is needed is
a subroutine call and the setting of a flag to indicate that the called subroutine is being executed
in kernel mode. This compares to the trap interface where a trap instruction has to be executed
each time a system call is made and there has to he a context switch from user-level to kernel
mode. However, with the shared library approach, since the operating system and the application
processes share the same stack, it is necessary to enforce some protection and security on the library
code to avoid possible corruption of kernel code.

7 Conclusion

This paper has shown that interrupt latency has not improved in SVR4.2. Worst case interrupt
latencies are in the order of hundreds of microseconds. More attention is required to minimize
interrupt latency in future UNIX releases. Otherwise, the real-time responsiveness of the kernel
to external events will be poor. Clontext switching has improved in SVR-L.2 but is still quite high
with the worst case in the order of milliseconds. The results have shown that SVR4.2 is still only
partially preemptible. Preemption points give better scheduling latencies. However, they have a
serious limitation as thev cannot preempt interrupt processing. In order to achieve predictable,
deterministic response time. the process dispatch latency must be minimized. This requires over-
heads like interrupt latency. context switching, scheduling latency and interrupt processing to be
kept as low as possible.
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