
A n E v a l u a t i o n o f t h e R e a l - T i m e P e r f o r m a n c e s o f S V R 4 . 0 a n d S V R 4 . 2

Sherali Zeadally
Depar tment of Electrical Engineering

University of Southern California
University Park, DRB 116

Los Angeles, Ca.lifornia 90089
zea.dally~marco, usc.ed u

A b s t r a c t
UNIX is one of the most widely used operating systems on current workstations. However, UNIX
was originally designed as a multitasking and time-sharing system with little concern for support ing
real-time applications. Recent versions of UNIX have incorporated real-time features and the
designers of these systems claim to provide bet ter response times than the s tandard UNIX kernel.
In order to assess the benefits of these new features and verify these claims, this paper compares
the real-time performances of two popular versions of UNIX 'namely System V Release 4.0 and
System V Release 4.2 for the Intel platform.

1 I n t r o d u c t i o n

Various features have been included in the basic UNIX [8] kernel by various manufacturers ill their
a t t empt to develop their own real-time version of UNIX [2][3]. Most of the features tha t have been
added required changes to the UNIX kernel including all or a subset of the following: fixed priority
process scheduling, fast process synchronisation, fast file system, real-time timers, asynchronous
I /O, resident program support , resource prea.llocation and others. All these new features give max-
imum preference to a. real-time process which is ready to execute. However, there is another major
factor tha t real-time versions of UNIX have at te ,npted to overcome: decreasing the amount of time
it takes by the operating system kernel to s tar t executing a p:rocess that is supposed to respond
to some external event. That is, the aim is to provide deterministic response times to respond to
events fast enough in order satisfy some real-time requirement.

The main reason for choosing two UNIX System V versions for comparing real-time performances
of UNIX-like operating systems is because they have both evolved Dora the same s tandard UNIX
kernel. This allows bet ter comparisons to be made in terms of the benefits of the improvements
made as opposed to other tea.l-time versions of UNIX which are often hybrids of several other op-
erating systems (e.g. FlexOS [6] includes functions froln UNIX, DOS, and VMS operating systems).

UNIX System V Release 4.0 (SVR4.0) was tile first version that came out as a. result of tile rework
made to the basic kernel to add real-time enhancenmnts. Tile two major modifications were: the
addition of a preemptible static priority scheduler to the exisl~ing round-robin scheduler and the
insertion of preemption points [5]. As the basic kernel is not preemptive, it can only be split into
processing steps that must run to completion without interruption. In between the processing
steps, "safe"l places known as preemption points have been identified where the kernel can safely

1A safe place is a region of code where all kernel data structures are either updated and consistent or locked via
some semaphore.

28

http://crossmark.crossref.org/dialog/?doi=10.1145%2F254784.254797&domain=pdf&date_stamp=1997-01-01

Interrupt handler interrupt Handler
runs finishes

Scheduling Latency

l

Interrupt interrupt Preemption Context Switch [

t Latency Processing Time Latency Time

tnterrup~ New process
occurs runs

Process Oispmch Latency

} Time

Figure 1: Process Dispatch Latency

interrupt its I)rocessing and schedule a new process.

S\:R4.2, the successor to SVII4.0, was released in .]une 1992. The designers of SVR4.2 claim that
it provides bet ter rea.l-tinle performance than SVR4.0 because the 4.2 kernel has been made fully
preeml)tible and re-entrant [6]. In addition, SVR4.2 also supports multiprocessing.

2 Description of Terminologies

hnpor tan t parameters commouly used in benchmarks when assessing the reM-time performance of
oI)erating system kernels include: interrupt latency, context switch time, kernel preemption latency,
and process dispatch latency. A pictorial description of these l)a.rameters is given in Figure 1 as
used in the context of this paper. The various paralneters are described in detail below.

• lnterrul)t latency: this is tile time 1)etween the generation of an interrupt signal a.nd the
execution of the first, instruction of an appropriate interrupt handler.

Interrupt processing thne: this is the time for which the interrupt handler runs. The kernel
blocks all interrupts at this and all lower interrupt priority levels during this period. Tile
timely response of the system depends on this interval being as short as possible; tha t is,
interrupt handlers should be efl:icient and perform minimum processing necessary in order to
allow the kernel to re-enable interrupts as quickly as possible.

Kernel preemption latency: traditional UNIX systems can preempt a process running in
user mode immediately. If, however, tile current process is executing ill kernel mode then it
cannot be preempted (except by exterual interrupts) but can only voluntarily and explicitly
give up tile processor. Specifically, a process executing within the kernel relinquishes tile
processor only when it calls tile sleep() routine to suspend itself until a needed resource
becomes ava.ila.1)le, or after tile completion of a system call when it is about to return to user
mode thereby allowing preemption to occur. Thus, the kernel can execute for a significant
amount of time before giving up the processor to another process. This period of time is
called the preemptions, latency. A user process executing a system call in kernel mode can be
preempted by an external interrupt. In this case, interrupt handler processes the interrupt
and then gives control back to the processor at tile end of interrupt processing. In tile case of
a s tandard UNIX kernel, execution of the system call continues until it finishes. This implies

79

that even if a. higher priority process has been made ava.ila.ble a.s a result of the interrupt, it
ca.nllOt l'Iln a.nd has to wait until the system ca.ll completes. However, new versions of UNIX
including System V Ilelease 4 a.ttempt to reduce preemption latency I) 3' inserting preemption
points in the kernel. With these preemption points, it is possible to switch to another higher
priority process immedia.tely (i.e.a.t the next preemption point) without having to wait until
the end of system call execution. Thus, the preemption latency in systems with preemption
points is bounded by the maxim, i ra interva.1 between a.ny two preemption points.

Context switch time: lifts includes the time spent in sa.ving the co~tc.vt 2 o[' a. currently runnil!g
process process, in Iocaling a.nother process ready to run, a.nd in restoring the context of tha.t
process. When the kernel preelnpts a. process its context is sa.ved. When the kernel schedules
it to run, its context is restored and it. continues to execute aga.in.

Scheduling la.tencv: lhis is the preemption latency plus the context switch time.

Process dispa.tch la.tency: this is the tota.1 time from the occurrence of a.n externa.1 interrupt
to the beginning of execution of the process assigned to respond to that interrupt.

3 O v e r v i e w o f M e a s u r e m e n t s

The objective is to evaJuate the tea.l-time performa.nces of SVR4.2 and S\.'I:{.I.0 principa.lly on how
quickly each ca.n preempl lhe kernel a.nd dispa.tch a. new process in order to respond to externa.l
evenls. Thus, performalwe ex,a.lua.tions will focus on the various components of process dispatch
lalency a.nd include: interrupt latency, context switch time. and preemption la.tency. Mea.surements
of i,tl.errupt processing l.i,lle have not been taken sillce they are likely to va.rv with the implemen-
talion el' interrupt ha.ndlel's. Particula.r a.t.lention is a.lso l)a.id to .wor.~l-ca.~(. tigures which are much
more importa.nt in real-lime al)plica.tions than t!jpical-case figures. DELL UNIX (SVR4.0) a.nd
Consensys UNIX (SVR4.2) were chosen because of their reputation as well performing ports of the
Systenl V Release 4 product to the Intel 80xg6 a.rchitectul'e.

All timing measurements have been made using a. microsecond lra.l/sputer (T,~01) clock. A nelwork
ada.pter with one megabyte of on-board static Random Access Memory (RAM) ha.s been used. The
network a.dapter connects to the workstation EISA bus and its on-boa.rd sha.red memory is a.cces-
sible by both the host and the transputer. The clock is ma.de a.va.ila.ble to both the tra.nsputer a.nd
the UNIX host by using a common shared memory loca.tion on the network ada.pter. This loca.tion
is continua.llv updated by lhe t ransputer one microsecond clock. A t ransputer program is used to
genera.te pa.ckets a.t certain user-defined interva.ls. All the experiments described in this pa.per use
a.n inter-packet tra.nsmission interval of 10 milliseconds and ea.ch test run was over a. period of 10
seconds. A simple device driver (" t a t m ') ha.s been inlplemented to ta.ke timing measurements on
the UNIX host system.

2 T h e use o f t h e w o r d c o . h . r l he re imp l i e s ~ snapsho t , of t h e p r o c e s s r u u t h n e e n v h ' o n n w n t . It. c o n s i s t s of p r o c e s s o r

r e g i s t e r s in u s e (e.g. p rogr&n | counl, er, s t a c k po in t e r) , associat , ed ke rne l dat ,a st, ruct, u r e s s u c h ~ts u s e r ;.utd proc]11 t, he

(:ase o1' a U N I X p r o c e s s , a n d o t h e r opera t i l~g sysi, enl vm' iab les that, a re u s e d to m a n i p u l a t e t h e p r o c e s s a t a n y g iv en

t,ime.

80

In all tests performed, a, user-level process (henceforth referred as the t e s t process) is put to sleep in
the ta~m driver 1)3' making a. blocking read system call. The interrupt handler of the driver silnply
does a wakeup of the sleeping process and returns. Two sets of experiments have been undertaken
on both SVR4.0 and SVR4.2. One set of experiments runs the test. process ill the "time-sha.ring"
class and the other runs the test process in tile "rea.l-time" class. Three scheduling classes (time-
sharing, system, and rea.l-time) a.re supported in UNIX System V Release 4 [5]. Both system cla.ss
processes and rea.l-time class processes use a. fixed priority scheduling policy with reM-time processes
being assigned higher 1)riorities than system processes. The "system" scheduling class is intended
fbr standa.rd system daemon processes such as the page stealer. Time-sharing processes have the
lowest priority levels. In addition, only rea.l-time processes can make use of preemption points to
preempt tile kernel.

The fbllowing procedures have been used to measure the following parameters:

• Interrupt latency: the tra.nsputer program copies tile value of the clock into an a.rray holding

t imestamps in main (tra.nsputer) memory a.t a gra.nularity of approximately four microseconds
a.t the time when each illterrupt, is genera.ted. An interrupl is generated bv mea.ns of t.he
t ransputer program writing to a. special memory loca.tion. The interrul)t ha.ndler of the
UNIX host records lhe times (using the transl)nter clock via shared memory) a.t which it
begins execution for each interrupt in a.n array in local memory. At. the end of a. test run,
interrupt la.tency ti,nes are ca.lcula.ted 1)3: subtra.cting corresponding t.hnestamps. The vahles
obta.ined give the interrupt latencies for tim interrupts generated.

• ('.ontext switch time: in addition to the test process sleeping in the kernel, another user-level
"'soa.k" progra.m conll)rising a. tight loop is run in user mode in the t.ime-sllaring class. The
"'soak" progra.m ensu res tha.t the processor is never idle and spends no time in the kernel. The
point of having a. l)rocess alwa.ys runnable is to be able to measure a. full context switch. Thus.
when a.n external inlerrupt occurs, a.]la.rdware trap tra.nsfers control from the test process
to the interrul)t ha.ndler of the t a tm driver to service the interrupt. The interrupt i)rocessing

performed simply wal;es up the sleeping test process. The test process is bound to be the next
one to run before a.nv other user-level processes since in UNIX the priority level of a. sleel)ing
process is alwa.vs raise(I to be a.bove tha.t of COml)ute-bound processes: this is to improve the
responsiveness of tim system to externel evenis like key-presses and mouse-clicks. As a. result,
a. full context switch to the test process immediately takes place. The last instruction in the
interruI)t handler reads the va.lue of the tra.nsputer clock and it is read a.ga.h~ a.s the first,
instruction when the awoken process begins execution. The time difference gives the context
switch thne. For each test run, timesta.mps are recorded in two a.rra.ys I) 3 , the latin driver in
local memory. (7()tit exl switch times a.re calcula.ted I) 3, su I)tracting corresponding timeslaml)s.

A possible wea.kness in the context switch measurement tesl is tha.t il is dif[icult to nlea.-
sure .~lricll!l context switch time for time-sha.ring processes. This is beea.use the experiment
assumes tha t the a.wokell I)rocess is definitely going to be the one to run before a.ny other
I)rocesses. While this is certainly true ['or a real-time l)rocess, it ma.v not necessarily be the
case for a time-sha.ri~g process beca.use a. system process with a higher priority ca.n execute
I)efbre it. For instance, it. might be prevented from executing by higher priority processes such
a.s system processes responsible for OS activities (e.g. as locking pages in memory, swapping
processes out, manipula.ting timer queues). Thus, in this particula.r case, the measurement

81

results give scheduling latencies rather than p~re context switch times. Ideally, the best wav
to measure context swit.ch time for all processes is to take timing measurements a.t different
points in the kernel code. However, it was not possible to adoI)t this method because UNIX
source code was not available.

Scheduling la.tel~cy: scheduling latency was measured in the same way (i.e. at the same places
in the t a tm driver) as context switch time excel)l, that a.n additional "find" program was run.
The "find" program was made to do a recursive search of a Networked File System (NFS)
over the Ethernet network. During the time the find program runs, it spends a considerable
proportion (over .95~Z) of its execution time in the kernel 1)erfbrming system calls. However,
the "find" progra.m sl)en(Is apl)roximately 80% of the thne sleel)ing waiting for I /O. The
rationale for choosing such a. program was tha t at least part of the sample measurements
taken will reveal the effect of system calls on scheduling latencies. Other ol)era.tions sucll as
process creation (fork) or process overlay (exec) have been experimented with but could not
be used because they execute for such a. short period of time tha t prevents measurenmnts
to lye taken over a. long interval. Furthermore, the "'find" progranl causes interrupts to be
generated by the 1:2thernet adapter. The interrul)t priority level of' the Ethernet driver was
the same a.s tha t of' the ta'cm driver.

4 R e s u l t s

The experimental results fbr context switch time a.nd interrupt la.~ency on SVR4.2 and SVR4.0 are
sumn~arised in Table 1 when the test process runs in real-time class.

There are several observations tha t can be made ba.sed on Table 1:

1. The average interrupl, latency on the UNIX versions used is in the range 26-28 microseconds.

2. The interrupt latency of SVR4.2 has not improved over SVR4.0. In fact, interrupt latency has
become slightly worse. This confirms some of the views tha;t, owing to neglect, performance
of this parameter is not getting any better [7].

3. The average context switch time is in the range 77-86 micro'seconds. There has been a. slight

improvement of about 10.5% of SVR4.2 over SVR4.0.

4. W o r s t case context switch time is 3 times better (i.e. less) for S\-R4.2 than SVR4.0 which
should provide better response time.

A possible explanation [br the improvement in context switch time for SVR4.2 is because the
compiler used with SVR4.2 gives better optinfisations than the one used with SVR4.0.

For completeness, SVR4.0 and SVR4.2 have also been compared when running the test process in
the time-sharing class. Results are presented in Table 2. Two notable points worth making are:

1. The results for the average values of interrupt latency are nearly the same as corresponding
ones in Table 1. However, maximum interrupt latency when the test process is run in the
time-sharing class is ahnost two times worse than when it runs in the real-time class on either
operating system. This result implies tha t the worst case time for which interrupts are locked
out has improved in both SVR4.2 and SVR4.0 for a real-time process.

82

Minimum Median Maximum Mean Standard
Deviation

h~terrupt lalency(SVR4.0)
23 27 100 26 765 "

(microseconds)

Intmrupt latency(SVR4.2) 25 26 95 28 17.47

(microseconds}

Centext switchtime (SVR4.0)
80 84 8500 86 158.95

(microseconds)

Conte~ switchtime (SVR4.2) 72 76 2800 77 512

(microseconds)

'Fable 1: Test Process in Rea,l-Time Cla,ss

Interrupl lalency[SVR4.0)

(microseconds)

Interrupt latency(SVR4,2)

(microseconds)

Schedulinglatency(SVR4.0)

(m~roseconds)

Schedulinglalency(SVR4.2)

(microseconds)

Minimum Median Maximum Mean Slandard
)evialion

24 27 278 27 7.46

25 29 245 29 8.48

80 80 9600 89 ~91.23

68 72 9600 92 326.93

' fable 2: [est, Process in Time-Sha, ring Class

2. The scheduling latency vaJues for both opera.ring s3:nt, ems are simila, r. This might indicate
tha,t the code path in S\:R4.0 in a.lready optimised a, nd there is not nluch scope for further

improvement in S\:R4.2.

Scheduling la,tency results {'or both SVR4.0 a, nd SVR4.2 when using the test process in the real-time
cla.ns are given in Table 3. The results show tha,t a,verage scheduling]a,tency for SVR4.2 in bet ter
than SVR4.0 by a, bout 18.S%. The other interesting result fi'om Ta, ble 3 is the significa, nt decrea,se
of a,bout 41% in the worst ca,se scheduling latency of SVR4.2 over SVR4.0. Both these improve-
ments mea, n tha t there is an ameliora, tion in kernel preemption latency a, nd determinism for SVR4.2.

A gra, phical representa,tion is a,lso presented in Figure 2. The presentation format used has been
devised by Fa,ller [4]. The ordina,te shows the times for scheduling la,tency. The a, bscissa shows the
percentage cunlmulative frequency of these times. The vahm on the ordinate corresponding to P%

Minimum Median Maximum Mean Standard
Deviation

Schedulinglalency(SVR4.2)
72 76 3272 121 18445

(microseconds}

Schedulinglatency(SVR4.O) 80 80 8544 149 287.91

(microseconds)

Ta, ble 3: Scheduhng Latency of SVR4.0 (rea,l-time) versus S\ R4.2 0"ea,l-time)

83

~0000 , , , ,

Schedul ing latency for SVR4.0 (reaMime process - -
Schedul ing latency for S V R 4 . 2 (real-t ime ploCess)

900O

8000

7OO0

6000

0000
5

4oo0

2 0 0 0

IO00

0 ' ' - I L
. . . . ~o 2o ; i

Percentage cumulat ive f requency

Figure 2 :SVR4.0 (rea,l-time) versus SVR4.2 (rea, l-time)

~0000 , , , , , ,

9OO0

8OOO

7O00

6000

5000

4OO0

3000

2OO0

~000

I 0 20 30 40 50 60 70 80
Percentage cumulat ive f requency

Schedul ing la toncy fo r SVR4.0 (t ime-shanng process) - -
Schedul ing la tency lor SVR4.2 (real- t ime process)

i i i

9 0 9 5 g s g g

Figure 3: Scheduling Latency of SVR4.0 (time-sha,ring) versus SVR4.2 (real-time)

on the a.bscissa, is called the Pth t)ercentile of the distribution. For exa.ml)le, an 90th percentile of
1 millisecond means that 90% of tile scheduling la.ttency times were a.t o1" below 1 millisecond. An
exponential scale has been used on the abscissa, ill order to highlight tlle rela.tively sma.ll number
of readings of pa.rticula.r interest. Results llaa,e been plotted a.t 1% interva.ls on the a.bscissa.. The
gra.1)hical results show tha.t for the 20% of tile sa.mple measurements taken when lind is executing
a.nd t.herefore making s.vstem calls in the kernel, better scheduling la.tencies are obta.ined with
SVII.I.2 tha.n SVR.L0.

5 Performance Benefits of P r e e m p t i o n Points

Ill order to bet ter understand the rea.l I)erforma.nce impa.ct tha.t l)reeml)tion points have on schedul-
ing la.tency, two experiments were conducted using SVR4.2. The first executed the test process
in t.he t, ime-sha.ring class so tha.t preemption points a.re not used (a.s if they were turned off).
The second used the test, process in a. reM-time class which therefore allows preemption to take

8 4

Minimum Median Maximum Mean Standard
Deviation

Scheduling lalency (SVR4.2)

(microseconds) 72 76 3272 121 184 45
(with preemption points on}

Scheduling latency {SVR4.0)

(microseconds) 72 72 7424 123 298,72

(with preemption poinls off)

Ta.ble 4: Preemption (real-time) versus Non-Preemption (t ime-sharing)in S\"R4.2

place in the kernel. Tile results ol)ta.ined a.re presented in Table 4. The ma.in deduction tha.t ca.n be
made is that the use of' i)roOill i)tion l)oints iulproves worst case scheduling latency by a factor of' two.

Figure 3 illustra.tes the overall iml)rovemellt in scheduling latency from SVR4.0 (running a. the test
1)rocess in the time-sha.riug class) to SV114.2 which runs the test process in the real-time cla.ss. The
conclusion from this result is tha.t there has been a. significa.nt shift from non-deterministic resl)onse
a process experiences in the time-sharing class in SVR4.0 to a. more deterministic beha.viour for
a. process in the reaJ-time class a.s illustra.ted by the scheduling latency percentile distribution for
SVP,4.2.

6 Improving Kernel Preemption

The ma.jor cha.llenge for providing guara.nteed deterministic response time is to ma.ke a kernel
100% preemptible. However. beca.use most system ca.lls used ill monolithic kernels like UNIX tend
to ,no(lily critica.I shared data. s tructures such a.s process tables, semal)hores a.nd scheduling queues,
it. is difficult to a.chieve 10()(/, preeml)tibility.

One a.pproa.ch that ha.s been investiga.ted ill l.his pa.per is the use of preemption points at non-critica.1
places ill the kernel where preemption is possible.

Another method to achieve partia,1 preemption is to assume tha,t tile kernel preeml)tion is always
ena,bled a,nd t,o disa,ble I)reelnption when executing a critical region by simply setting a, flag a.nd
clea.ring the flag to re-enable preemption a,fter executing the critical code. Tlle benefit of this
method rela,tive to using preemption points is reduced preemption latency. The disadva, nta,ge how-
ever is the overhead incurred in the setting a, ud clea, ring of fl~gs which ca, n be quite la, rge if the
number of critica.l regions in tile kernel is high.

All alterna.tive approach to improving preemption ill tile kernel is the use of multiple semaphores
ra.ther than a. single one to protect globa.l da.ta structures. Ha.ving each sema.phore controlling a,c-

c e s s to a.n independently used da.ta, s tructure leaves other da.ta structures free for access by other
processes. Furthermore, no other process will be able to a.ccess the da.ta, s t ructure which the pre-
eml)ted process is using a.s no other process ha.s the required semaphore lock. Therefore, the kernel
ca.n be preempted a.t any point in its execution. This a.pproa.ch does give fast preemption times.
However, its main disa.dvanla.ge is t, ha.t the entire kernel must be modified in order to a.ssign various
semaphores to the da.ta, s tructures used by the kernel. This ca.n be a. ra.ther tedious process and is

8 5

likely to involve a large amount of work. The approach has frequently been used fbr multi-processor
sysl~ems [1].

Another at)t)roach is to l)rovide for kernel services using a shared library of services accessed via
subroutine calls. Its lna.in adva.ntage over the traditional monolithic user-kernel interface is tha t it
is much fa.ster to access kernel services using the shared library approach because all tha.t needs to
be done is to link the operating services with the processes tha.t use them. All tha t is needed is
a subroutine call and the setting of a flag to indicate that the ca.lled subroutine is being executed
in kernel mode. This compares to the t rap interface where a. tra.p instruction has to be executed
each time a system ca.ll is made and there has to be a context switch from user-level to kernel
mode. However, with the shared library approach, since the operating system and the a.pplication
processes share the same stack, it is necessary to enforce some protection a.nd security on the libra.ry
code to a.void possible corruption of kernel code.

7 C o n c l u s i o n

This paper has shown that interrupt latency has not improved in SVR4.2. Worst case interrupt
latencies are in the order of hundreds of microseconds. More attention is required to minimize
interrupt latency in future UNIX releases. Otherwise, the real-time responsiveness of the kernel
to external events will be poor. Context switching has ilnproved in SVR4.2 but is still quite high
with the worst case in t.h(, order of milliseconds. The results have shown tha.t SVR4.2 is still only
partia.lly preemptible. Preeml)tion points give better scheduling la.tencies. However, they have a.
serious lilnita.tiou as they caanot preempt interruI)t processing, In order to achieve predicte~ble,
deterministic response time. the process dispatch la.tency must be minimized. This requires over-
heads like interrupt la.tency, context switching, scheduling la.tency a.nd interruI)t processing to be
kept as low as possible.

8 A c k n o w l e d g e m e n t s

The a.uthor would like to thank Steve Ra.go of Prologic for his va.luable discussions and his encour-
agement to write this pal)er. The a.uthor also thanks Brenda.n MurI)hy of Cambridge University
C.oml)uter Laboratory, UK for his hell) and support on many a.spects of this work.

R e f e r e n c e s

[1] M. J. Ba.ch and S. J. Buroff. Multiproces.~or UNIX Operating Syste'ms. AT~'KT Bell Laboratory
Technical Journal, 63(,~):1733-1749, October t984.

[2] P. G. 13ond. Priority al~d Deadline ,5'ch.cduli~g on Real-Timc UNIX. In Proceedings of EUUG
Conference. pages 201-208, October 1988.

[3] S. M. Doughty, S. F. Kary, S. R. Kusrner, and D. V. Larson. UNIX Jbr RcaI-Time. In Pro-
ceedings of UlfiForum (:onference, pages 222-230, 1987.

86

[4] N. Failer. Measuri~zg the' Latency Time of Real-Time UNIX-like Opemtin, g Systems. Depart-
ment of Information Computer Sciences Institute, University of Ca.lifornia. at Berkeley, 1992.
Techlfica.1 Report No. 37.

[5] B. Goodheart and 3. Cox. The Magic (;'arden E:rplai~ed: Th.e Inter~als of UNL¥ Syste'm 1/
Rele'ase ~. Prentice Hall, 1994.

[6] IC Ma.rrin. M ultithre'aded Real-Time Operating Systems. Computer Design, pages 77-88, March
1993.

[7] S. Rago. February 199,4. Private communica.tion.

[8] I{. Thompson and D. M. Ritchie. The UNIX Time-,S'ha'ring System. CACM, 17(7):365-375,
July 1974.

87

