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ABSTRACT
Latency insensitive communication offers many potential
benefits for FPGA designs, including easier timing closure
by enabling automatic pipelining, and easier interfacing with
embedded NoCs. However, it is important to understand the
costs and trade-offs associated with any new design style.
This paper presents optimized implementations of latency
insensitive communication building blocks, quantifies their
overheads in terms of area and frequency, and provides guid-
ance to designers on how to generate high-speed and area-
efficient latency insensitive systems.

Categories and Subject Descriptors
B.4.3 [Input/Output and Data Communications]: In-
terconnections (Subsystems); B.5.1 [Register-Transfer-
Level Implementation]: Design—Styles

General Terms
Design, Performance

Keywords
FPGA; Latency Insensitive; Pipelining

1. INTRODUCTION
Modern process technology scaling has introduced many

challenges related to the design and implementation of
FPGA systems. In particular, the different scaling char-
acteristics of devices, local interconnect, and global inter-
connect [10] are making it more difficult to achieve timing
closure in a predictable and timely manner.

The difference in scaling between local and global inter-
connect1 is illustrated for FPGA devices in Figure 1. This
shows that the speed of local communication within a rela-
tively small amount of logic (i.e. 40K LEs) has more than

1This is particularly important for FPGAs where intercon-
nect already contributes significantly to overall delay.
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Figure 1: Achievable register to register operating
frequency across regions containing an equivalent number

of Logic Elements (LEs) for Stratix devices; measured with
Altera’s Quartus II. Max LEs corresponds to the largest

device available each generation.

doubled over five generations. In contrast, the speed of
global communication across the full device (i.e. Max LEs)
has not improved. This growing mismatch between local
and global communication speed makes it difficult to close
timing on large designs.

One solution to the interconnect scaling problem is to in-
sert pipeline registers on communication links that traverse
large portions of the chip. This breaks the link into shorter
segments which can operate at higher speed, and allows mul-
tiple clock cycles for the signal to propagate.

The problem with this solution is that it modifies the la-
tency of the communication link. This changes the RTL
behaviour of the system, requiring the re-design and re-
verification of the system’s control logic. Furthermore, the
impact of these RTL changes are not known until after the
time consuming physical design flow (which may take mul-
tiple days [16]) has been completed, making this a slow and
iterative process.

Latency Insensitive Design (LID) [4] has been proposed
as a design methodology to avoid these issues by making
design components insensitive to the latency of the com-
munication between them. This enables the pipelining of
communication links while ensuring that the correctness of
the design does not change. As a result the insertion of



pipeline registers could potentially be pushed to later stages
in the design flow, since they no longer require the designer
to manually change the system’s RTL description. This fur-
ther abstracts the design from the implementation details
of the FPGA, potentially enhancing the timing portability
of designs when re-targeting larger or newer FPGAs. Ad-
ditionally, this also makes the process of inserting pipeline
registers much more amenable to design automation. Po-
tential CAD optimizations could include automatic pipeline
register insertion during early floorplanning, or pipeline reg-
ister insertion during routing. These capabilities could be
beneficial for architectures featuring pipeline registers em-
bedded in the routing fabric [18, 7].

However, the extra flexibility and abstraction provided
by LID will come at some cost. This has not been well
characterized, particularly for FPGAs. This paper aims to
quantify the costs of latency insensitive communication on
FPGAs and present design recommendations to help mini-
mize overhead. Our contributions include:

• Quantification of the area and frequency overhead of
LID on FPGAs

• Identification of potential frequency limitations in LI
systems and optimizations to improve operating fre-
quency

• A comparison of the efficiency of LI and non-LI pipelin-
ing

• Design guidelines for determining the LI communica-
tion granularity appropriate to produce area-efficient
systems

2. LATENCY INSENSITIVE MOTIVATION
Several different design methodologies have been proposed

to address the design issues outlined in the introduction.
This section compares these and further explains why this
paper focuses on latency insensitive design.

2.1 Limitations of Synchronous Design
Synchronous design is the dominant paradigm for digi-

tal design. This is largely due to its amenability to design
automation, simple conceptual model and flexibility. How-
ever, synchronous design is also restrictive, enforcing the
synchronous assumption – that all communication must oc-
cur within a single clock cycle. On modern devices where it
may take multiple clock cycles to traverse the chip this can
be too restrictive.

The work-around, adding pipeline registers, is time con-
suming and error prone. After compiling their system and
identifying timing issues, designers must manually insert
pipeline registers, modify their system’s control logic and
re-verify the overall system. They must then re-compile
their system (which could take days) before being able to
evaluate the impact of their changes. However, after this
process, the problem may not be solved. Timing paths may
have moved or new critical paths could have appeared, re-
quiring the whole process to be repeated with no guarantee
of convergence.

2.2 Why Not Wave-Pipelining?
In a conventional synchronous system each data bit trans-

mitted along a wire must be latched by a clocked storage

element before the following bit is launched. With wave-
pipelining, multiple data bits are allowed to be in flight along
the same wire. This allows the interconnect to behave as if
pipelined – with the wire itself storing the multiple data bits
in flight rather than registers. This saves the area, power and
timing overhead of using registers. It was shown in [20] that
wave-pipelined interconnect could be used in an FPGA.

Wire-pipelining however, does not avoid the problem of
re-designing a system’s control logic to account for the ad-
ditional communication latency, and also introduces further
design issues. Since no stable storage element is used to
separate the multiple bits transmitted along a wire, wave-
pipelining systems must be meticulously designed to ensure
correct operation and avoid interference between subsequent
bits. One challenge for these systems is that they can not be
run at lower speeds, which makes debugging difficult. This
undesirable behaviour is caused by tying the latency of a
wave-pipelined link to the (constant) delay of a wire, rather
than to the number of registers. As a result, the effective la-
tency of a wave-pipelined link changes with clock frequency.
Additionally, wave-pipelining systems must operate robustly
in the presence of die-to-die and on-chip variation, as well
as in the presence of crosstalk and power supply noise [20].
These non-idealities are expected to become more significant
in future process technologies, and the flexibility of FPGAs
would make verifying such systems difficult.

Wave-pipelining does not resolve the problem of re-
designing control logic, introduces additional limitations to
system behaviour, and increases design complexity. As a
result, wave-pipelining fails to be a practical solution.

2.3 Why Not Asynchronous Design?
Asynchronous design has long been touted as an alterna-

tive to synchronous design. Under this design methodology
no clock is used to enforce globally synchronized communi-
cation. Instead components of the design detect when their
inputs are valid and only then compute their results.

However, despite decades of research, asynchronous design
methodologies have seen limited adoption. The reasons for
this include a lack of CAD flows and tools to implement and
verify designs, the difficulty designers have reasoning about
the correctness of their systems, and the challenges of testing
asynchronous devices [9].

2.4 Why Not GALS?
Another alternative design methodology is Globally Asyn-

chronous Locally Synchronous (GALS). In this methodology
small sub-modules are designed synchronously, but global
communication between modules occurs asynchronously,
typically through a wrapper module. This allows timing
paths to be isolated within each sub-module easing timing
closure. Furthermore, since smaller more localized clocks
with lower skew are used, this may help to improve perfor-
mance and power.

One of the key challenges in any GALS design methodol-
ogy is avoiding metastability when transferring data between
sub-modules, since their clocks are no longer synchronous.
Several different GALS design styles have been proposed
to address this issue [19, 12]. One approach is based on
pausable clocks, where each sub-module has a locally gener-
ated clock which is paused before data arrives to ensure that
metastability is avoided. Alternately, GALS can be imple-
mented using asynchronous FIFOs to handle communication



between sub-modules. Additionally in some cases, where the
relationships between sub-module clocks are known, conven-
tional flip-flop based synchronizers can be used.

On current FPGAs, it is not possible to locally generate
clocks for sub-modules as would be done on an ASIC. As
a result these clocks would have to be centrally generated
(with a PLL/DLL) and distributed to the local sub-modules.
FPGAs typically contain a relatively small number of fixed
clock networks, consisting primarily of global, and large re-
gional/quadrant clock networks. Since these clock networks
are pre-fabricated, there is not much to gain (in terms of
skew and power) by using them to distribute small clocks.
This is different from an ASIC where custom smaller clock
trees can be designed. While FPGAs do also support some
smaller fixed clock networks, these are typically quite small
(limiting the size of sub-modules), restrict placement flexi-
bility, and may be difficult to reach from clock generators.
While it is possible to distribute clocks with the regular
inter-block routing, it is undesirable. The inter-block rout-
ing network is not designed for clock distribution, lacking
shielding (increasing jitter), and having unbalanced rise-fall
times which may distort the clock waveform. Such a clock
network would also consume more power and typically have
more skew than an equivalent fixed clock network.

GALS also faces problems similar to fully asynchronous
design for the asynchronous portions of the system, includ-
ing difficulty implementing, verifying and testing such sys-
tems. While CAD flows for GALS design are perhaps bet-
ter developed than for fully asynchronous design, they still
require substantial design knowledge and manual interven-
tion [23]. These challenges make adopting a GALS design
methodology for FPGAs quite disruptive.

2.5 Latency Insensitive Design
LID can be viewed as a middle ground between the syn-

chronous and asynchronous design methodologies. It breaks
the synchronous assumption, but does not go so far as to
totally remove global synchronization. Instead, LID allows
the latency of communication links to vary. This means that
while communication is still synchronized to a clock at the
physical level, it may take multiple clock cycles for commu-
nication to occur in the designer’s RTL description.

This yields additional flexibility during the design imple-
mentation process compared to synchronous design, but is
more tractable than asynchronous design. Keeping com-
munication synchronous at the physical level means con-
ventional synchronous CAD flows and tools can be used to
implement designs, and designers can still reason about the
correctness of their systems from the perspective of timing
constraints. Additionally, emerging FPGA communication
styles such as embedded NoCs [6, 1] result in variable la-
tency communication, essentially requiring designs to be la-
tency insensitive. LID also does not require modification of
existing FPGA architectures, as would be required to fully
support wave-pipelining [20], asynchronous, or GALS [17]
design styles.

Furthermore, the formal theory of latency insensitive de-
sign [4] shows that any conventional synchronous system,
typically called a pearl, can be transformed into a latency
insensitive system, provided it is stall-able2. This is ac-

2Informally, capable of maintaining its state independent
of its current inputs (i.e. no outputs combinationally con-
nected to inputs). See [4] for a formal definition.

complished by placing it in a special (but still synchronous)
wrapper module, typically called a shell. The theory fur-
ther shows that such wrapped modules can be composed
together, and the latency of communication links between
them varied, by inserting relay-stations (analogous to regis-
ters), without affecting the correctness of the overall system.

An example system is shown in Figure 2. The logical
system, as described by an RTL designer, is shown in Figure
2a. After implementation with a latency insensitive CAD
flow the design implementation may appear as in Figure 2b.

The scheme described above (and in additional detail in
Section 3) implements dynamically scheduled LID, where
the validity of a module’s inputs are determined dynami-
cally at run time by the shell logic. Statically scheduled
LID schemes have also been proposed [5], which determine
when inputs are valid at design time before implementation.
As a result, statically scheduled LID severely limits the flex-
ibility of the system implementation and significantly re-
stricts any potential CAD optimizations, such as automated
pipelining. It also precludes operation with variable latency
interconnect such as an NoC. Accordingly, we evaluate only
dynamically scheduled LID in this work.

An interesting question is what level of granularity is ap-
propriate for latency insensitive communication. While it is
possible to use latency insensitive communication at a very
fine level, this is not necessarily required. As shown in Fig-
ure 1 local communication can still occur at high speed, the
problem is with long distance (global) communication. As
a result it may make sense to implement latency insensitive
communication at a coarser level that captures primarily
global communication.

Some previous work has looked at latency insensitive com-
munication in FPGA-like contexts. In [8], explicit latency
insensitive communication was used to improve the design
and implementation of multi-FPGA prototyping systems.
The authors of [11] proposed an elastic CGRA architecture
exploiting latency insensitive communication to avoid static
scheduling, and to allow simpler translation of high level
languages (i.e. C) into circuits. For their system, which im-
plements latency insensitive communication for each ALU
element, they identify the area and delay overhead of their
elastic CGRA (compared to an inelastic CGRA) as 26%
and 8% respectively. The work presented in [3] describes
an FPGA overlay architecture that uses latency insensitive
communication. The authors report area overheads (com-
pared to a baseline system) of 3.4× and 10.6× for a floating
point and integer based overlay respectively. The high over-
heads can be attributed to the additional routing flexibility
required for the overlay and the use of fine-grained latency
insensitive communication.

This work differentiates itself from the above by focusing
on the overheads of using latency insensitive communica-
tion for RTL design targeting conventional FPGAs, rather
than as part of an overlay layer or hardened into a device
architecture.

3. LATENCY INSENSITIVE DESIGN IM-
PLEMENTATION

In order to quantify the costs of a LI design methodology
we have created a set of LI wrappers and relay stations based
on those presented in [14] and implemented them on Stratix
IV FPGAs. Example wrappers are shown in Figure 3.



Pearl B

Pearl C

Pearl A

(a) Logical system connectivity.

FPGA

RS

RS

Pearl B

Shell

Pearl C

ShellPearl A

Shell

RS

(b) Latency insensitive system implementation, showing shells and
inserted relay stations (RS).

Figure 2: Latency insensitive system example.

0

1

fire

deqenq

valid

clk

in_data
out_data

out_stop

out_valid

stop

in_valid

Pearl
FIFO

in_stop

Shell

e
m
p
ty

d
e
q

e
n
q

fu
ll

a
lm

s
t_
fu
ll

fi
re

ena

(a) Baseline latency insensitive wrapper (one input, one output).
Critical paths highlighted in red.
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Figure 3: Latency insensitive wrapper implementations.
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Figure 4: Latency insensitive relay station

One of the key differences between a LI and a traditional
synchronous system is the addition of stop and valid signals
on communication channels, forming a ‘bundled data’ proto-
col. The valid signal allows for data to be marked as invalid
and ignored by downstream modules. The wrapper is re-
sponsible for stalling the pearl (typically by clock gating) if
all of its inputs are not valid. To ensure that no information
is lost if valid inputs arrive at a stalled module, they are
queued in FIFOs. The stop signal provides back-pressure to
ensure the FIFOs do not overflow.

Relay stations (Figure 4) are used in place of conventional
registers to perform pipelining. Relay stations include addi-

tional logic to handle the valid and stop signals and must be
capable of storing two data words to account for the latency
of back-pressure communication.

3.1 Baseline Wrapper
The LI wrapper shown in Figure 3a consists of several

components. The pearl is the original synchronously de-
signed module which is to be made latency insensitive. This
is surrounded by a wrapper shell which stalls the pearl if one
or more inputs are not available, and queues incoming valid
data in FIFOs. In [14] stalling was performed by gating the
pearl’s clock. However, the granularity of clock gating avail-
able on FPGAs is very coarse. On some FPGAs the clock
is only gate-able at the root of the clock tree [2], requiring
a separate clock networks to be used for each gated clock.
On other FPGAs clock gating is enabled at lower levels of
the clock tree [22]. However, there are still a relatively small
number of gating points, and their fixed locations may over-
constrain the physical design tools. As a result clock gating
was not considered. Instead, the clock gating circuitry was
inferred as a clock enable signal sent to all flip-flops in the
pearl.

One of the limitations observed with the baseline wrap-
per was that it reduced the achievable operating frequency of
the pearl module (see Section 4.1). Since the motivation be-
hind latency insensitive design is to enable high speed long
distance communication, this was undesirable. The cause



was identified as long combinational paths leading from the
upstream module’s valid signal and from the downstream
module’s stop signal (highlighted in Figure 3a). As a result
the ‘fire’ logic, responsible for generating the pearl’s clock
enable signal, was subject to two competing timing paths.
This was further exacerbated by the high fan-out clock en-
able signal. For the relatively small modules presented in
Section 4.1, the clock enable fanned-out to nearly 1400 reg-
isters. This forced the CAD tool to produce a compromise
solution which decreased operating frequency.

One of the largest components of LI wrappers are the FI-
FOs. To avoid unnecessary stalls these FIFOs require single
cycle read/write capability, single cycle updates to full and
empty signals and ‘new data’ behaviour (i.e. the read re-
ceives the new data being written) when a write and read
occur at the same address. The ‘new data’ behaviour re-
quired additional logic to be inferred around the RAM ele-
ments since this mode of operation is not natively supported
by the Stratix IV RAM blocks. While it was possible to infer
the FIFOs into the MLAB/LUTRAM structures on Stratix
IV FPGAs, the choice was left to the CAD tool, which usu-
ally implemented them as M9K RAM blocks. Adding na-
tive support for ‘new data’ behaviour in future FPGA RAM
blocks would help reduce the overhead associated with these
FIFOs.

3.2 Optimized Wrapper
To improve the frequency limitations of the baseline wrap-

per, an improved wrapper was created by inserting an addi-
tional register after the fire logic as shown in Figure 3b. This
broke the combinational paths before they became high fan-
out and greatly improved achievable frequency. However
this required several changes to the wrapper architecture.
To ensure that all components remained correctly synchro-
nized with the clock enable signal, additional registers also
had to be inserted after the FIFO bypass mux and valid sig-
nal generation logic. Overall, this introduces one extra cycle
of round-trip communication latency between modules. To
handle the additional cycle of latency, the FIFO must reserve
an additional word to handle the possibility of an additional
data word in flight.

While further pipelining of the LI wrapper was attempted,
it resulted in only marginal improvement.

4. RESULTS
To evaluate the cost and overhead of LID, we created a

program to automatically generate LI wrappers based on
a Verilog module description3. This program was used to
generate wrappers for a design consisting of cascaded FIR
filters, and also to more generally investigate the scalability
of LI wrappers.

All area and frequency results were determined by im-
plementing the design with Altera’s Quartus II CAD tool
(version 12.1) targeting the fastest speed grade of Stratix
IV devices. To compare area between implementations that
make use of hardened blocks (e.g. DSPs and RAM blocks),
we calculated ‘equivalent Logic Array Blocks (LABs)’ based
on the normalized block sizes from [21]. Since Quartus II
may purposefully spread out the design soft logic and reg-

3The program, along with the LI wrappers and relay sta-
tions are available from: http://www.eecg.utoronto.ca/
~vaughn/software.html

isters for timing purposes (inflating the number of LABs
used), we calculated the required number of LABs by divid-
ing the number of required LUT+FF pairs by the number
of pairs per LAB.

4.1 FIR Design Overhead
FIR systems are simple to pipeline manually, because of

their limited control logic and strictly feed-forward commu-
nication. As a result they do not require LID to enable easy
pipelining. An FIR system is used here as a high speed4

design example, which allows us to quantify the impact of
LID while varying the level of pipelining in both the LI and
Non-LI implementations. A more general investigation of
LID overhead is presented in Sections 4.3 and 4.4.

The FIR filter design consists of 49 cascaded FIR filters as
shown in Figure 5. Each of the instances is a 51 tap symmet-
ric folded FIR filter with 16-bit data and coefficients, that
is deeply pipelined internally (11 stages) to achieve high op-
erating frequency. The structure of each FIR filter is shown
in Figure 6. Its characteristics are listed in Table 1.

FIR
REG REG

... FIR

In

Out

Optional Registers

...

Figure 5: System of 49 cascaded FIR filters with optional
registers inserted between instances.

Table 1: Cascaded FIR Design Characteristics

Resource Number EP4SGX230 Util.

ALUTs 23,084 13%
Registers 65,256 36%
LABs 4661 51%
M9K Blocks 1 <1%
M144K Blocks 0 0%
DSP Blocks 160 99%

Comparisons of the area and achieved frequency for the
LI and non-LI designs are shown in Table 2. In these re-
sults each instance of the FIR is made latency insensitive
by wrapping it (automatically) using one of the shells from
Figures 3a or 3b.

4This is important as it allows us to investigate whether the
LI wrappers and relay stations would limit such high speed
systems.
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Table 2: Post fit resource usage and operating frequency
for the cascaded FIR design using different communication
styles. Values normalized to non-LI system are shown in

parenthesis.

Resource Non-LI Base LI Opt. LI

LUT+FF Pairs 54,940 60,086 (1.09×) 60,299 (1.10×)
DSP Blocks 160 160 (1.00×) 160 (1.00×)

M9K 1 49 (49.00×) 49 (49.00×)
M144K 0 0 0

Equiv. LABs 4,654 5,049 (1.08×) 5,060 (1.09×)
Fmax [MHz] 377 253 (0.67×) 348 (0.92×)

It is interesting that despite implementing a fine grain la-
tency insensitivity system5, the area overhead is only 8% or
9%. This could be easily decreased further by implementing
latency insensitivity at a coarser level. When viewed from
the device level (since many FPGA designs do not fully uti-
lize the device resources) the area overhead amounts to less
than 3% of the device resources.

The 33% decrease in frequency, from 377 MHz to 253
MHz, observed when implementing the baseline wrapper
(Section 3.1) was both surprising and concerning. This mo-
tivated the development of the optimized wrapper (Section
3.2) which improved frequency to 348 MHZ, only 8% below
the latency-sensitive system. While this is still a notable im-
pact compared to the non-LI system, it is significantly lower
than the baseline wrapper, and comes at only a marginal
increase in area overhead.

It was also informative to compare what level of pipelin-
ing was required between filter instances when using the LI
wrappers to achieve an operating frequency comparable to
the non-LI system. As shown in Figure 5 additional pipeline
registers (or relay stations) are inserted between FIR filter

5Each FIR module is approximately 95 equivalent LABs in
area or 0.6% of the EP4SGX230 device.

instances. A summary of these results is shown in Figure 7
for various sizes of the cascaded FIR filter design.
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Figure 7: Measured operating frequency versus design size
for various communication implementations. The number
of registers (REG) or relay stations (RS) inserted between

FIR instances are shown in the legend.

The first thing to note is the downward trend in operating
frequency associated with increasing design size. This is an
artifact of the imperfect nature of the CAD tools used to
implement the design. The design is highly pipelined, with
no combinational paths between instances. Despite finding
a high speed (510 MHz) implementation with one instance
in the non-LI system (Non-LI 0 REG) the quality decreases
as the design size increases, resulting in a 26% drop in op-
erating frequency when scaling from one to 49 instances.
The magnitude of this effect also varies between implemen-
tations. For the baseline LI wrapper (LI 0 RS Base.) the fre-
quency dropped 42% across the same range. This disparity
is likely a result of the different difficulties these implementa-
tions present to the CAD tool, with the baseline LI wrapper
containing difficult to optimize timing paths (Section 3.1).

Studying the relative achieved frequency of the differ-
ent communication implementations, further insights can be
drawn. While the baseline wrapper operates at the lowest
frequency (LI 0 RS Base.), adding relay stations between
filter instances does improve performance (LI 3 RS Base.).
However, inserting more than 3 relay stations failed to im-
prove operating frequency. As a result the baseline wrapper
fails to match the operating frequency of the non-LI system.
The optimized wrapper (LI 0 RS Opt.) performs better than
the baseline wrapper, and by inserting only one relay station
(LI 1 RS Opt.) performs comparably to the non-LI system.
Additional pipelining between filter instances in the non-LI
system (Non-LI 3 REG) did not significantly improve op-
erating frequency over the un-pipelined version (Non-LI 0
REG).

4.2 Pipelining Efficiency
One of the interesting questions when comparing differ-

ent forms of pipelining, whether different latency insensitive
implementations or non-LI and LI pipelining, is how much
delay overhead is associated with inserting pipeline registers.
In the ideal case, on a wire delay dominated path, inserting



a pipeline stage would effectively double the operating fre-
quency. However this is not the reality. The setup and
clock-to-q times of registers and, in FPGAs, the cost of en-
tering and exiting a logic block to access registers, all reduce
the frequency improvement. In latency insensitive systems
there is additional overhead in the form of control logic used
to determine data validity and handle back pressure.

To evaluate this, a wire delay limited critical path was
created between two instances of the FIR filter from Section
4.1 by constraining the two filters to diagonally opposite
corners of the largest Stratix IV device (EP4SE820). The
impact of pipelining this long communication link is shown
in Figure 8.
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Figure 8: Operating frequency for various numbers of
inserted pipeline stages. Results are the average over five

placement seeds.

As expected, for an equivalent pipeline depth the non-LI
system operates at a higher frequency than the LI systems.
The non-LI system ultimately saturates after 5 stages of
pipelining. In contrast the baseline LI system saturates af-
ter only 3 stages of pipelining and does so at 25% lower
frequency. This early saturation is caused by the movement
of the critical path from the communication link to the high
fan-out clock enable signal internal to the wrappers. The
optimized wrapper was not affected by this. While the gap
between the optimized LI and non-LI systems grows in ab-
solute terms, the percentage frequency overhead stays fairly
constant, ranging from 14-17% for 1 to 5 pipeline stages.

4.3 Generalized Latency Insensitive Wrapper
Scaling

While the previous results on the FIR filter design show
the potential overheads are manageable, they represent only
a limited part of the design space. It is therefore interesting
to more generally explore the design space and investigate
how LI wrappers scale for different sets of design parameters.

The key design parameters for the LI wrapper are: the
number of input ports, the number of output ports, the port
widths, and the FIFO depths. While ideally we would in-
vestigate all of the interactions between these parameters,
this represents a large design space. To decrease the size of
this design space, but still gain useful insight into the scal-

ing characteristics of the LI wrappers these parameters were
swept individually over a wide range of values.

For the baseline parameters, two input and two output
ports were chosen to ensure reasonable control logic was gen-
erated, a low port width of 16 was selected to emphasize the
scaling impact of ports, and a FIFO depth of 4 (deeper than
the typical depth of 1 or 2 words) was used to ensure at least
2 words were available to both the baseline and optimized LI
wrappers. While the area results presented do not include
the area associated with the pearl used, it is not possible
to isolate the pearl’s frequency impact. For this reason we
chose a very small pearl designed to minimize any impact on
the system’s critical path. The results are shown in Figure
9. Several useful conclusions can be drawn from the scaling
results.

First, as seen in Figure 9a, FIFO depth can be increased
with minimal area overhead. This cost is low since the FI-
FOs are implemented in block RAMs. The large size of
these block RAMs means that at shallow depths, the block
RAMs are underutilized. As a result, the FIFO depth can
be increased at little to no additional cost. This is distinctly
different from an ASIC implementation (which would size
the FIFO exactly) and highlights the different trade-offs fac-
ing FPGA designers. The low incremental cost of increasing
FIFO depth may be beneficial for some latency insensitive
optimization schemes, which increase FIFO depth to im-
prove system throughput [15]. The frequency overhead of
increasing FIFO depth is moderate, staying above 300 MHz
until a depth of 16K words.

Second, increasing the width of ports (Figure 9b) or in-
creasing the number of input ports (Figure 9c) are fairly ex-
pensive, in terms of both area and frequency overhead. How-
ever it is interesting to contrast the relative costs of both.
Increasing port width results in a lower area overhead than
increasing the number of input ports for the same number
of overall module input bits. This is perhaps not surprising,
since increasing the port width improves the amortization
of the FIFO logic, and does not introduce additional control
logic (while adding input ports does). The results are similar
from a frequency perspective, with scaling input ports more
expensive than scaling port widths. The wrappers have no
problem operating above 300 MHz (using only two ports)
for port widths up to 2048 bits. In contrast, this speed is
only possible if fewer than 32 ports are used.

Finally, increasing the number of output ports (Figure 9d)
is less costly, since it adds only a small amount of control
logic to handle back-pressure and valid signals. It is however,
important to note from a system perspective that each out-
put port has an associated FIFO at the downstream input
port. Similarly to the area overhead, the frequency overhead
of increasing output ports is low, with 300 MHz operation
possible with up to 256 output ports.

4.4 Latency Insensitive Design Overhead
One of the challenges when designing a LI system is de-

termining the level of granularity at which to implement
latency insensitive communication. To get the most flexibil-
ity, a fine level of granularity may be desired, but this could
come at an unacceptably large area overhead.

To provide some guidance, a coarse estimate of the area
overhead associated with latency insensitive communication
for various module sizes was developed by combining the
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Figure 9: Latency insensitive wrapper scaling results.

results of Section 4.3 with Rent’s rule, which relates I/O
requirements to module size.

Rent’s rule [13], stated as:

P = KNR (1)

is an empirically observed relation between the average num-
ber of blocks in a module (N) and its average number of ex-
ternally connecting pins (P ), where K is the average num-
ber of pins per block and R is the design dependant Rent
parameter. The Rent parameter captures the complexity
of the interconnections between modules. A Rent parame-
ter of 0.0 corresponds to a linear chain of modules, such as
the FIR design presented in Section 4.1. A Rent parameter
of 1.0 corresponds to a clique where all modules communi-
cate with each other. Typical circuits have Rent parameters
ranging from 0.57 to 0.75 [13].

It was found for a modern FPGA benchmark set [16] that
K was 32.2 for Stratix IV LABs. Assuming the number of
pins predicted by Rent’s rule split evenly between inputs and
outputs, that each port is 64 bits wide, and FIFO depths of
4 are used, it is possible to estimate the area overhead of

a module’s latency insensitive wrapper based on the data
from Section 4.3.

The area overhead of LI communication compared to mod-
ule size is shown in Figure 10 for various Rent parameter
values. It is clear that modules with low to moderate Rent
parameters are amenable to the creation of area-efficient la-
tency insensitive systems. Circuits with good communica-
tion locality (0.5 ≤ R ≤ 0.6) can achieve low area overhead
(< 10%) when wrapping modules ranging in size from 50K
to 300K LEs. Circuits with moderate communication local-
ity (0.6 < R ≤ 0.7) can achieve moderate area overhead (<
20%) when wrapping modules from 160K to 700K LEs in
size. Circuits with poor communication locality (R > 0.7)
are problematic, and will likely result in latency insensitive
systems with high area overhead.

5. CONCLUSIONS
In conclusion, a quantitative analysis of the impact of la-

tency insensitive design methodologies on FPGAs has been
presented. We have shown that system level interconnect
speeds are not scaling, while local interconnect speeds con-
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tinue to improve. This mismatch, along with increasing de-
sign sizes, make LI techniques attractive to simplify timing
closure, since they allow pipelining decisions to be made
late in the design cycle; possibly even by new physical CAD
tools. An improved LI wrapper that addresses some of the
frequency limitations of conventional LI wrappers was pre-
sented, and was used to evaluate the area and frequency
overheads of LID. On an example system the area and fre-
quency overheads were found to be only 9% and 8% respec-
tively, with the frequency overhead reducible with further
pipelining. The pipelining efficiency of LID was also com-
pared to conventional non-LI pipelining and found to have
an overhead of 14-17%. Finally, a more general exploration
of the scalability of LI wrappers was conducted, and used to
provide guidelines to designers regarding the level of granu-
larity at which latency insensitive communication should be
implemented to maintain reasonable area overheads.

While this work shows that the frequency and area over-
head of LI systems can be manageable, it remains untenable
for some classes of designs, such as those with poorly local-
ized communication (R > 0.7) and those unwilling to accept
a 14-17% reduction in pipelining efficiency. Previous work
on statically scheduled LI systems [5] helps address this, but
does so by removing much of the flexibility at late stages of
the CAD flow that LID promises. Future work to develop
higher performing and lower area overhead LI systems would
be beneficial. One potential method to do so would be to
improve support for low cost FIFOs requiring ‘new data’
behaviour in future FPGA architectures.

It would also be useful to extend the overhead quantifica-
tion to include a power analysis of LID, particularly since
unlike ASICs, stalled modules on FPGAs do not have their
clocks gated. Similarly further work on evaluating the holis-
tic costs and benefits of LID on real world systems, and with
larger more complex benchmarks, would be of value.

While LID will have a cost in area and frequency com-
pared to a perfectly pipelined non-LI system, as design sizes
continue to grow and CAD run time for each design itera-
tion increases, the design costs of such systems become large

enough to make LID attractive at the system level to inter-
connect large modules. However, to fully exploit the promise
and benefits of LID it must be integrated into CAD flows
and exploited by CAD tools to improve designer productiv-
ity and design quality.
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