
Lattice-Based FHE as Secure as PKE

Zvika Brakerski∗ Vinod Vaikuntanathan†

Abstract

We show that (leveled) fully homomorphic encryption (FHE) can be based on the hardness

of Õ(n1.5+ε)-approximation for lattice problems (such as GapSVP) under quantum reductions

for any ε > 0 (or Õ(n2+ε)-approximation under classical reductions). This matches the best
known hardness for “regular” (non-homomorphic) lattice based public-key encryption up to the
ε factor. A number of previous methods had hit a roadblock at quasipolynomial approximation.
(As usual, a circular security assumption can be used to achieve a non-leveled FHE scheme.)

Our approach consists of three main ideas: Noise-bounded sequential evaluation of high
fan-in operations; Circuit sequentialization using Barrington’s Theorem; and finally, successive
dimension-modulus reduction.

1 Introduction

Fully homomorphic encryption (FHE) allows us to convert an encryption of a message Enc(m) into
an encryption of a related message Enc(f(m)) for any efficient f , using only public information
and without revealing anything about m itself. FHE has numerous theoretical and practical ap-
plications, the canonical one being to the problem of outsourcing computation to a remote server
without compromising one’s privacy.

Until 2008, FHE was considered practically science fiction as no constructions or even viable
approaches were known. A breakthrough by Gentry [Gen09b, Gen10, Gen09a] presented the first
plausible candidate construction. The security of Gentry’s scheme relied on much stronger as-
sumptions than standard (non homomorphic) public-key encryption (PKE), namely the hardness
of problems on specially chosen ideal lattices as well as a new assumption called the sparse sub-
set sum assumption. This state of affairs coincided with many researchers’ intuition that FHE,
being much more versatile, should naturally be harder to achieve and should require stronger as-
sumptions than regular public-key encryption. Brakerski and Vaikuntanathan [BV11] subsequently
constructed an FHE scheme1 based on the worst-case hardness of approximating lattice problems
such as GapSVP (a promise version of the shortest vector problem on lattices) which have been
studied extensively and are by now considered standard cryptographic assumptions. However, they
required that the problem is hard to approximate to within a subexponential factor (in the dimen-
sion of the underlying lattice). This is in contrast to standard lattice-based public-key encryption

∗Stanford University, zvika@stanford.edu. Supported by a Simons Postdoctoral Fellowship and by DARPA.
†MIT and University of Toronto, vinodv@mit.edu. Supported by an NSERC Discovery Grant, DARPA Grant

number FA8750-11-2-0225, Connaught New Researcher Award and an Alfred P. Sloan Fellowship.
1Here, and in the rest of the introduction, when we say FHE, we mean a leveled FHE scheme that can evaluate

circuits of any a-priori bounded polynomial depth. The only known way to achieve non-leveled FHE schemes is to
make a circular security assumption, in addition.

1

which can be based on the hardness of approximating the problem to within polynomial factors
(explicitly Õ(n1.5) using quantum reductions [Reg05] or Õ(n2) using classical reductions [Pei09]).
Closing this gap has been a central goal in the study of FHE from both a theoretical and a practical
perspective (since relying on a weaker assumption allows us to use shorter parameters resulting in
better efficiency). Starting with [BGV12], several works using different approaches [Bra12, GSW13]
have reduced the required factor of approximation to nO(logn), which seemed to be a barrier for
known methods.

In this work, we match the best known approximation factors up to any ε > 0 and show that
“science fiction” FHE can be as secure as any other lattice-based public-key encryption scheme.
Furthermore, the keys and ciphertexts in our scheme (with the exception of the evaluation key
which is only used for homomorphic evaluation) are identical to Regev’s original lattice-based
PKE [Reg05], with parameters that are optimal up to a factor of 1 + ε.

Our results are summarized in the following theorem.

Theorem 1.1. For every ε > 0, there exists a leveled fully homomorphic encryption scheme based
on the DLWEn,q,α assumption (n-dimensional decisional LWE modulo q, with discrete Gaussian

noise with parameter α), where α = 1/Õ(nε ·
√
n log(q)).

Thus, the scheme is secure based on either the quantum worst-case hardness of GapSVP
Õ(n1.5+ε)

,

or the classical worst-case hardness of GapSVP
Õ(n2+ε)

.

High Level Overview. Our starting point is a new LWE-based FHE scheme by Gentry, Sahai
and Waters [GSW13]. They present an encryption scheme where the public key is identical to
Regev’s scheme, but the ciphertexts are square matrices rather than vectors. It was then possible
to add and multiply ciphertexts using (roughly) matrix addition and multiplication. As in previous
LWE-based FHE schemes, the ciphertext contains a “noise” element that grows with homomorphic
operations and must be kept under a certain threshold in order for the ciphertext to be decryptable.
The scheme is instantiated by a dimension n and modulus q, which correspond to the parameters
of the LWE problem. The initial noise level is poly(n) and the scheme is decryptable so long as
the noise remains under (say) q/8. In order to base the scheme on the hardness of polynomial
approximation to lattice problems, we would like to characterize the class of functions that can be
homomorphically evaluated using q = poly(n). The analysis of Gentry, Sahai and Waters [GSW13]
shows that the evaluation of each Boolean gate increases the noise by a poly(n) factor, and thus
the class of functions that can be evaluated setting q = poly(n) is NC0.

Our first observation is that the asymmetric (namely, non-commutative) nature of matrix mul-
tiplication gives rise to an interesting phenomenon in the GSW scheme: when multiplying two
ciphertexts with noise levels e1 and e2, the noise in the output turns out to be e1 + poly(n) · e2.
That is, the noise grows in an asymmetric manner. This means that if we want to multiply `
ciphertexts, for example, which all start with the same noise level, we can consecutively multiply
them one after the other, and the final noise will only grow by a ` · poly(n) factor. This is in
contrast to the conventional wisdom that favors the use of a multiplication tree, which in this case
would have resulted in a poly(n)log ` noise blowup. This observation already allows us to evaluate
AC0 circuits in a setting where the modulus q = poly(n). (Using an additional trick, this can be
extended to AC0[⊕], namely AC0 circuits augmented with XOR gates).

Our second idea is to push this technique forward by “sequentializing” larger circuit classes. A
particularly potent tool in this direction of thought is Barrington’s Theorem [Bar89] which allows
us to transform any NC1 circuit into a polynomial length, width-5 permutation branching program.

2

Homomorphic evaluation of a length-` branching program essentially requires homomorphically
multiplying ` 5-by-5 encrypted permutation matrices, in contrast to the simple product operation
on bits that we just accomplished. We show that this is in fact possible, namely a method of
homomorphically multiplying ` permutation matrices that only increases the noise by an ` ·poly(n)
factor. This gives us a way to evaluate any NC1 circuit in a setting where the modulus q =
poly(n). In a high level, our technique here is reminiscent of Ishai and Paskin’s method of evaluating
branching programs on encrypted data [IP07].

Evaluating NC1 circuits with low noise blowup is a highly sought-after goal in the study of FHE
schemes. The reason is Gentry’s bootstrapping theorem [Gen09b], which shows how to convert a
scheme with some homomorphic properties into a fully homomorphic one, assuming that it can
evaluate its own decryption circuit. Since the decryption circuit of the scheme in question lies
in NC1, we can apply the bootstrapping theorem and obtain and FHE scheme with q = poly(n),
thus basing its security on the worst-case hardness of approximating lattice problems to within a
(somewhat large) polynomial factor.

To obtain the optimal approximation factor (up to an arbitrarily small ε), we employ our third
idea, namely a variant of the dimension-modulus reduction technique, originating in [BV11]. Our
noise analysis of the NC1 scheme shows that in order to obtain parameters that are optimal up
to ε, the decryption circuit of our scheme must have depth at most ε · log(n)/2, which seems
unachievable. After all, an NC1 circuit with n inputs and depth less than log n cannot even look
at all the inputs! To solve this conundrum, we apply the dimension-modulus reduction technique,
which allows us to “shrink” the ciphertext into a “smaller copy” of the same scheme. We show that
by applying this method consecutively several times (as opposed to a single time as was done in
[BV11]), we can reduce the ciphertext to a small enough size that decrypting it becomes possible
in depth ε log(n)/2. This allows us to obtain an FHE scheme based on the worst-case hardness of
approximating GapSVP within a factor of Õ(n2+ε) by classical algorithms, or a factor of Õ(n1.5+ε)
by quantum algorithms.

Organization of the Paper. We start with some background and preliminaries: the reader
should consult section 2.1 for background on Gaussian distributions, section 2.2 for the learning
with error problem, and section 2.5 for homomorphic encryption. Our main result is described in
Section 3 where we construct a (leveled) FHE scheme secure under the polynomial LWE assumption.
We conclude in Section 4 by showing how to show how to reduce and optimize the assumption to
match the best known LWE assumption for lattice-based PKE.

2 Preliminaries

Matrices are denoted by bold-face capital letters, and vectors are denoted by bold-face small letters.
All logarithms are taken to base 2, unless otherwise specified. For an integer q, we define the set
Zq , (−q/2, q/2] ∩ Z. For any x ∈ Q, we let y = [x]q denote the unique value y ∈ (−q/2, q/2] such
that y = x (mod q) (i.e. y is congruent to x modulo q).

We let κ denote a security parameter. When we speak of a negligible function negl(κ), we
mean a function that grows slower than 1/κc for any constant c > 0 and sufficiently large values of
κ. When we say that an event happens with overwhelming probability, we mean that it happens
with probability at least 1− negl(κ) for some negligible function negl(κ). We denote y = Õκ(x) if
y = O(x ·polylog(κ)), and y = Õ(x) if y = Õx(x). The notation Θ̃κ(·), Ω̃κ(·) is defined analogously.

3

The security parameter underlies all of our constructions. The parameters n, k etc. should all
be considered to be a function of the security parameter κ, which is chosen according to the level of
confidence desired by the user of the scheme. (The dimension of the LWE problem, defined below,
should be considered to be polynomially related to the security parameter.)

2.1 Gaussians and Discrete Gaussians

In this work we will only consider one-dimensional Gaussians, and one-dimensional discrete Gaus-
sians over the integers.

For r > 0, the (one-dimensional) Gaussian function ρr : R→ (0, 1] is defined as

ρr(x) , exp(−π|x|2/r2).

The (spherical) continuous Gaussian distribution Dr is the distribution with density function pro-
portional to ρr. The (one-dimensional, integer-coset) discrete Gaussian DZ−c,r is the discrete
distribution supported on Z− c for c ∈ R, whose probability mass function is proportional to ρr.

Gaussian Rounding. To achieve the tightest results, we will need to use a simple Gaussian
rounding procedure. The following is an immediate corollary of [BLP+13, Lemma 2.3].

Corollary 2.1. There exists a randomized procedure b·eG such that given x ∈ R, it holds that
y←bxeG is such that y − x ∼ DZ−x,1.

In fact, a slightly smaller standard deviation is achievable, but we use 1 for the sake of simplicity.

Sum of Discrete Gaussians. We wish to bound the absolute value of a sum of discrete
Gaussians. The following are immediate corollaries from [Reg09, Corollary 3.10] and [GPV08,
Lemma 3.1].

Proposition 2.2. Let κ ∈ N be a security parameter. Then with all but negl(κ) probability, if
x ∼ Dr, then |x| ≤ r · ω(

√
log κ). Similarly, if x ∼ DZn−c,r then with all but negligible probability,

|x| ≤ max{r, ω(
√

log κ)} · ω(
√

log κ).

Proposition 2.3. Let κ ∈ N be a security parameter. Let n ∈ N, let z ∈ {0, 1}n and c ∈ Rn be
arbitrary, and let e ∼ DZn−c,r. Then with all but negligible probability

|〈z, e〉| ≤
√
n ·max{r, ω(

√
log κ)} · ω(

√
log κ) = Õκ(

√
n) · r .

Proposition 2.4. Let κ ∈ N be a security parameter. Let n ∈ N, let c ∈ Rn be arbitrary, let
e ∼ DZ−c,r, and let z ∈ {0, 1}n be possibly dependent on e. Then with all but negligible probability

|〈z, e〉| ≤ n ·max{r, ω(
√

log κ)} · ω(
√

log κ) = Õκ(n) · r .

2.2 Learning With Errors (LWE)

The LWE problem was introduced by Regev [Reg05] as a generalization of “learning parity with
noise”. For positive integers n and q ≥ 2, a vector s ∈ Znq , and a probability distribution χ on Z,

let As,χ be the distribution obtained by choosing a vector a
$← Znq uniformly at random and a

noise term e
$← χ, and outputting (a, [〈a, s〉+ e]q) ∈ Znq × Zq. Decisional LWE (DLWE) is defined

as follows.

4

Definition 2.5 (DLWE). For an integer q = q(n) and an error distribution χ = χ(n) over Z, the
(average-case) decision learning with errors problem, denoted DLWEn,m,q,χ, is to distinguish (with

non-negligible advantage) m samples chosen according to As,χ (for uniformly random s
$← Znq), from

m samples chosen according to the uniform distribution over Znq ×Zq. We denote by DLWEn,q,χ the
variant where the adversary gets oracle access to As,χ, and is not a-priori bounded in the number
of samples.

There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between
DLWEn,m,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be a discrete Gaussian distribution DZ,αq for some α < 1. We sometimes write DLWEn,m,q,α
(resp. DLWEn,q,α) to indicate this instantiation (it will be clear from the context when we use a
distribution χ and when a Gaussian parameter α). We now state a corollary of the results of [Reg05,
Pei09] (in conjunction with the search to decision reduction of Micciancio and Mol [MM11] and
Micciancio and Peikert [MP11]). These results also extend to additional forms of q (see [MM11,
MP11]).

Corollary 2.6 ([Reg05, Pei09, MM11, MP11]). Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let α ≥

√
n/q. If

there is an efficient algorithm that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n/α)

(and SIVP
Õ(n/α)

) on any

n-dimensional lattice.

• If in addition q ≥ Õ(2n/2), then there is an efficient classical algorithm for GapSVPÕ(n/α) on
any n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set
of “short” vectors. We refer the reader to [Reg05, Pei09] for more information.

The best known algorithms for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ) time.
In this work, we will only consider the case where q ≤ 2n. Furthermore, the underlying security

parameter κ is assumed to be polynomially related to the dimension n.

2.3 Vector Decomposition and Key Switching

We show how to decompose vectors in a way that makes their norm smaller, and yet preserves
certain inner products. Our notation is generally adopted from [BGV12].

Vector Decomposition. We often break vectors into their bit representations as defined below:

• BitDecompq(x): For x ∈ Zn, let wi,j ∈ {0, 1} be such that x[i] =
∑dlog qe−1

j=0 2j · wi,j (mod q).
Output the vector

(w1,dlog qe−1, . . . , w1,0, . . . , wn,dlog qe−1, . . . , wn,0) ∈ {0, 1}n·dlog qe .

• PowersOfTwoq(y): For y ∈ Zn, output[
(2dlog qe−1y[1], . . . , 2y[1],y[1], . . . , 2dlog qe−1 · y[n], . . . , 2y[n],y[n])

]
q
∈ Zn·dlog qe

q .

5

We will usually omit the subscript q when it is clear from the context.

Claim 2.7. For all q ∈ N and x,y ∈ Zn, it holds that

〈x,y〉 = 〈BitDecompq(x),PowersOfTwoq(y)〉 (mod q) .

Additionally, we define the procedure Flatten following [GSW13], along with the procedure
Combine. Let g = (2dlog(q)e−1, 2dlog(q)e−2 . . . , 4, 2, 1) ∈ Zdlog qe and let G := g ⊗ In ∈ Zn×(n·dlog qe)

denote the tensor product of g with the n-by-n identity matrix In.

• Combineq(z): For z ∈ Zn·dlog qe, output [G · z]q ∈ Znq .

• Flattenq(z): For z ∈ Zn·dlog qe, output BitDecompq(Combine(z)) ∈ {0, 1}n·dlog qe.

Claim 2.8. For all q ∈ N, and x, z ∈ Zn·dlog qe, it holds that

〈PowersOfTwo(x), z〉 = 〈PowersOfTwo(x),Flatten(z)〉 (mod q) .

2.4 Partial Randomization Using LWE

We describe a procedure that allows us to partially randomize vectors while preserving their inner
product with an LWE secret s. This procedure will be useful to us when trying to manipulate
ciphertexts that are a result of a homomorphic operation (and thus may have arbitrary dependence
on the public parameters).

Let n, q, α be parameters for the DLWE problem, let χ = DZ,αq. Let s ∈ Znq be some (arbitrary)
vector.

• RandParam(s): Let m , (n + 1) · (log q + O(1)). Sample A
$← Zm×nq and e

$← χm. Compute
b:= [A · s + e]q, and define

Prand:= [b‖ −A] ∈ Zm×(n+1)
q .

Output Prand.

We note that this is identical to the public key generation process in Regev’s encryption scheme.

• Rand(Prand, c): For c ∈ Zn+1
q , sample r

$← {0, 1}m, and compute

crand:=
[
c + rTPrand

]
q
.

Output crand.

The properties of this process are summarized below.
First, we state the security of our procedure, namely that Prand does not reveal information

about s. The proof is straightforward and omitted.

Lemma 2.9. If s is uniformly sampled and Prand←RandParam(s), then under the DLWEn,q,α as-
sumption, Prand is computationally indistinguishable from uniform.

Next, we state that the inner product of the randomized vector with (1, s) does not change by
much.

6

Lemma 2.10. Let s ∈ Znq be arbitrary, and let Prand←RandParam(s). Let c ∈ Zn+1
q be arbitrary,

and crand←Rand(Prand, c), then there exists δ such that

〈c, (1, s)〉 − 〈crand, (1, s)〉 = δ (mod q) ,

and |δ| ≤ Õκ(
√
n log(q)) · αq with all but negl(κ) probability.

Proof. We start by noting that

〈rTPrand, (1, s)〉 = 〈r, e〉 (mod q) ,

where e is the noise used to generate Prand. Using Proposition 2.3, the result follows.

Finally, we state the randomization property of our procedure.

Lemma 2.11. Let q ≤ 2n. Let s ∈ Znq be arbitrary, and let Prand←RandParam(s). Let f
$←

D
(n+1)·dlog(q)e
Z,t for some t, and let c ∈ Zn+1

q be arbitrary (possibly dependent on f). Finally, let
crand←Rand(Prand, c), then∣∣〈BitDecompq(crand), f〉

∣∣ ≤ Õκ(
√
n log(q)) · t ,

with all but negl(κ) probability.

Proof. By the leftover hash lemma, the last n coordinates of crand are distributed uniformly, and
independently of f , c. By Proposition 2.3, this part of crand contributes Õκ(

√
n log(q)) · t to the

inner product (with all but negligible probability).
The first coordinate of crand may have dependence on f , but it only decomposes to O(log q) bits,

and therefore by Proposition 2.4, its contribution to the inner product is at most Õκ(log(q)) · t with
all but negligible probability. Recalling that q ≤ 2n, this is at most Õκ(

√
n log(q)) · t.

The union bound completes the proof.

2.5 Homomorphic Encryption and Bootstrapping

We now define homomorphic encryption and introduce Gentry’s bootstrapping theorem. Our defi-
nitions are mostly taken from [BV11, BGV12].

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is
a quadruple of ppt algorithms as follows (κ is the security parameter):

• Key generation (pk, evk, sk)←HE.Keygen(1κ): Outputs a public encryption key pk, a public
evaluation key evk and a secret decryption key sk.2

• Encryption c←HE.Encpk(µ): Using the public key pk, encrypts a single bit message µ ∈
{0, 1} into a ciphertext c.

• Decryption µ←HE.Decsk(c): Using the secret key sk, decrypts a ciphertext c to recover the
message µ ∈ {0, 1}.

• Homomorphic evaluation cf←HE.Evalevk(f, c1, . . . , c`): Using the evaluation key evk, ap-
plies a function f : {0, 1}` → {0, 1} to c1, . . . , c`, and outputs a ciphertext cf .

2We adopt the terminology of [BV11] that treats the evaluation key as a separate entity from the public key.

7

A homomorphic encryption scheme is said to be secure if it is semantically secure (note that
the adversary is given both pk and evk).

Homomorphism w.r.t depth-bounded circuits and full homomorphism are defined next:

Definition 2.12 (compactness and full homomorphism). A homomorphic encryption scheme is
compact if its decryption circuit is independent of the evaluated function. A compact scheme is
(pure) fully homomorphic if it can evaluate any efficiently computable function. The scheme is
leveled fully homomorphic if it takes 1L as additional input in key generation, and can only evaluate
depth L Boolean circuits.

Gentry’s bootstrapping theorem shows how to go from limited amount of homomorphism to
full homomorphism. This method has to do with the augmented decryption circuit.

Definition 2.13. Consider a homomorphic encryption scheme HE. Let (sk, pk, evk) be properly
generated keys and let C be the set of properly decryptable ciphertexts. Then the set of augmented
decryption functions, {fc1,c2}c1,c2∈C is defined by fc1,c2(x) = HE.Decx(c1) ∧ HE.Decx(c2). Namely,
the function that uses its input as secret key, decrypts c1, c2 and returns the NAND of the results.

The bootstrapping theorem is thus as follows.

Theorem 2.14 (bootstrapping [Gen09b, Gen09a]). A scheme that can homomorphically evaluate
its family of augmented decryption circuits can be transformed into a leveled fully homomorphic
encryption scheme with the same decryption circuit, ciphertext space and public key.

Furthermore, if the aforementioned scheme is also weak circular secure (remains secure even
against an adversary who gets encryptions of the bits of the secret key), then it can be made into a
pure fully homomorphic encryption scheme.

3 Our FHE Scheme

In this section, we describe an FHE scheme secure under a polynomial LWE assumption which,
using known reductions [Reg05, Pei09], translates to the worst-case hardness of solving various
lattice problems to within polynomial approximation factors. We start with the basic encryption
scheme in Section 3.1, and describe “proto-homomorphic” addition and multiplication subroutines
in Section 3.2. Departing from the “conventional wisdom” in FHE, our circuit evaluation procedure
in Section 3.3 will not be a naive combination of these proto-homomorphic operations, but rather
a carefully designed procedure that manages the noise growth effectively.

Finally, in Section 3.4, we put this all together to get our FHE scheme under the decisional
LWE assumption DLWEn,q,α with α = n−c for some constant c > 0. This polynomial factor is
rather large: thus, in Section 4, we apply a carefully designed variant of the dimension-modulus
reduction procedure of [BV11] to obtain our final FHE scheme that is secure under the hardness of
DLWEn,q,α with α ≤ 1/Õκ(nε ·

√
n log(q)) which is weakest LWE hardness assumption that underlies

the (non-homomorphic) lattice-based PKE schemes [AD97, Reg04, Reg05, Pei09, BLP+13].

3.1 The Basic Encryption Scheme

Our basic encryption scheme closely follows the Gentry-Sahai-Waters FHE scheme [GSW13]. We
refer the reader to Section 2.3 for the description of the vector decomposition routines PowersOfTwo,
BitDecomp and Flatten used in the scheme below.

8

System Parameters. Let n be the LWE dimension and q be an LWE modulus. Define N :=
(n + 1) · dlog qe. Let d denote the maximal homomorphism depth that is allowed by the scheme.
Let χ be an error distribution over Z. Typically χ will be a discrete Gaussian DZ,αq for α =

1/Õκ(
√
n log(q) · 4d). Recall that we identify Zq with the set (−q/2, q/2] ∩ Z.

• NCCrypt.Keygen(1n, q, 4d): Sample a vector s
$← Znq . Let m , (n+ 1) · (log q+O(1)). Sample

A
$← Zm×nq and e

$← χm. Compute b:= [A · s + e]q, and define

P:= [b‖ −A] ∈ Zm×(n+1)
q .

Output sk = s and pk = evk = P.

We describe public-key as well as secret-key encryption algorithms. Looking ahead, we remark
that a secret-key encryption of µ is somewhat less “noisy” than a public-key encryption of µ.

• NCCrypt.PubEnc(pk, µ): To encrypt a bit µ ∈ {0, 1}, using the public key pk = P, we let

R
$← {0, 1}N×m, and output the ciphertext

C = Flatten (BitDecomp(R ·P) + µ · I) ∈ {0, 1}N×N .

• NCCrypt.SecEnc(sk, µ): A symmetric encryption of a bit µ ∈ {0, 1}, using the secret key

sk = s, is performed by sampling A
$← ZN×nq and e

$← χN , computing b:= [A · s + e]q, and
defining

C = Flatten (BitDecomp ([b‖ −A]) + µ · I) ∈ {0, 1}N×N .

• NCCrypt.Dec(sk,C): Let c be the second row of C. We use standard Regev decryption on c.

Namely, we output µ∗ = 0 if
∣∣∣[〈c,PowersOfTwo(1, s)〉]q

∣∣∣ < q/8, and µ∗ = 1 otherwise.

Correctness. In order to show correctness of this scheme, we analyze the noise magnitude of
ciphertexts produced by both the public-key and secret-key encryption algorithms. As we will
show shortly, for ciphertexts C produced by either encryption algorithm, we have

C · PowersOfTwo(1, s) = µ · PowersOfTwo(1, s) + e (mod q)

for a noise vector e of “small magnitude”. This motivates our definition of the noise in the ciphertext
C with respect to a secret key vector s and a message µ as follows.

Definition 3.1. For every C ∈ {0, 1}N×N , s ∈ Znq and µ ∈ Z, we define

noises,µ(C) , ‖(C− µI) · PowersOfTwo(1, s) (mod q)‖∞

The significance of this definition is captured by the following claims. The first claim shows
that any ciphertext with small noise is decrypted correctly.

Lemma 3.2. For every C ∈ {0, 1}N×N , s ∈ Znq and µ ∈ Z such that noises,µ(C) < q/8,

NCCrypt.Dec(s,C) = µ

9

Proof. Since noises,µ(C) < q/8, we have

C · PowersOfTwo(1, s) = η + µ · PowersOfTwo(1, s) (mod q)

where ‖η‖∞ < q/8. Thus, for the second row of C it holds that

〈c,PowersOfTwo(1, s)〉 = η + 2dlog(q)e−2 · µ (mod q)

where |η| < q/8. Thus, when µ = 0,∣∣∣[〈c,PowersOfTwo(1, s)〉]q
∣∣∣ = |η| < q/8

When µ = 1, ∣∣∣[〈c,PowersOfTwo(1, s)〉]q
∣∣∣ ≥ q/4− |η| ≥ q/8

since q/4 ≤ 2dlog(q)e−2 < q/2. This shows correctness of decryption for ciphertexts with small
noise.

The next claim demonstrates parameter settings for which the (public key and secret key)
encryption algorithms produce ciphertexts with small noise.

Lemma 3.3. Let n be the LWE dimension, q be the LWE modulus and χ = DZ,αq be the discrete
Gaussian distribution. Then, for every s ∈ Znq and µ ∈ {0, 1},

• for Cpub ← NCCrypt.PubEnc(pk, µ), we have noises,µ(Cpub) = Õκ(αq ·
√
m).

• for Csec ← NCCrypt.SecEnc(sk, µ), we have noises,µ(Csec) = Õκ(αq).

with all but negligible (in κ) probability over the coins of NCCrypt.Keygen.
In particular, we have correctness of decryption for the public key encryption for α < 1/Ω̃κ(

√
m),

and for the secret key encryption for α < 1/Ω̃κ(1).

Proof. We first show the analysis for the public-key encryption.

Cpub · PowersOfTwo(1, s) = Flatten

(
BitDecomp(R ·P) + µ · I

)
· PowersOfTwo(1, s)

=

(
BitDecomp(R ·P) + µ · I

)
· PowersOfTwo(1, s)

= R ·P · (1, s)T + µ · PowersOfTwo(1, s)

= R · e + µ · PowersOfTwo(1, s)

Thus, by Proposition 2.3,

noise(Cpub) = ‖R · e‖∞ = Õκ(
√
m · αq)

This is less than q/8 by the choice of α < 1/Ω̃κ(
√
m).

The analysis for the secret key encryption follows analogously, except that

Csec · PowersOfTwo(1, s) = e + µ · PowersOfTwo(1, s)

Thus,
noise(Csec) = ‖e‖∞ = Õκ(αq)

which is less than q/8 by the choice of α < 1/Ω̃κ(1).

10

Security. Semantic security of the scheme follows from the decisional LWE assumption DLWEn,q,α,
similarly to Regev’s encryption scheme (see [Reg05, BV11, GSW13] for similar arguments).

Complexity of Decryption. Our decryption algorithm is essentially the same as the decryption
algorithm in Regev’s encryption scheme, the complexity of which has been thoroughly studied in
the context of FHE. The following is an immediate corollary from [BV11, Lemma 4.1].

Proposition 3.4. There exists a constant cdec such that the decryption circuit of the scheme
NCCrypt, with parameters n, q, has depth at most cdec · log(n log q).

3.2 Proto-Homomorphic Operations

We now describe proto-homomorphic addition and multiplication algorithms which will be used
in Section 3.3 for homomorphic circuit evaluation. Departing from the “conventional wisdom” in
FHE, our circuit evaluation procedure will not be a naive combination of homomorphic addition
and multiplication, but a carefully designed procedure that manages the noise growth effectively.
To further stress the fact that we do not intend for these procedures to be used independently, we
call them proto-homomorphic operations.

Proto-Homomorphic Addition. This is a simple addition of the ciphertext matrices.

• NCCrypt.ProtoAdd(C1,C2): Output C+ := Flatten(C1 + C2).

Jumping ahead, we note that in our use of NCCrypt.ProtoAdd in Section 3.3, both C1 and C2

will be encryptions of bits, and at most one of them will be an encryption of 1. The following claim
analyzes the noise growth in homomorphic addition.

Claim 3.4.1 (Noise Growth in NCCrypt.ProtoAdd.). For every s ∈ Znq , µ1, µ2 ∈ Z and C1,C2 ∈
{0, 1}N×N , we have

noises,µ1+µ2(NCCrypt.ProtoAdd(C1,C2)) ≤ noises,µ1(C1) + noises,µ2(C2)

Proof. Let C+ ← NCCrypt.ProtoAdd(C1,C2). We note that

C+ · PowersOfTwo(1, s) = Flatten(C1 + C2) · PowersOfTwo(1, s)

= (C1 + C2) · PowersOfTwo(1, s)

= C1 · PowersOfTwo(1, s) + C2 · PowersOfTwo(1, s)

= (e1 + e2) + (µ1 + µ2) · I

Thus, by the definition of noises,µ1+µ2 , we have

noises,µ1+µ2(C+) ≤ noises,µ1(C1) + noises,µ2(C2)

11

Homomorphic Multiplication. This is essentially a multiplication of the ciphertext matrices,
except that we randomize the first ciphertext.

• NCCrypt.ProtoMult(evk,C1,C2):

– Randomize C1 ∈ {0, 1}N×N into a matrix C̃1 ∈ {0, 1}N×N by replacing each row c in
C1 by the row

c̃← BitDecomp(Rand(pk,Combine(c)))

where Rand is the LWE randomization procedure from Section 2.4.

– Output C× ← Flatten
(
C̃1 ·C2

)
.

Jumping ahead, we remark that when we use NCCrypt.ProtoMult in our homomorphic circuit
evaluation in Section 3.3, the first ciphertext will be an “evaluated ciphertext” (namely, a result
of previous homomorphic evaluations), whereas the second ciphertext will be a “fresh ciphertext”
(namely an output of the secret key encryption algorithm).

The first new idea in this work is that while the order of the arguments does not matter in
homomorphic addition, the homomorphic multiplication algorithm NCCrypt.ProtoMult is inherently
asymmetric, since it is essentially the (non-commutative) matrix multiplication operation. This
asymmetry turns out to be the key to achieving improved noise growth, as Claim 3.4.2 below will
demonstrate.

Claim 3.4.2 (Noise Growth in NCCrypt.ProtoMult.). For every s ∈ Znq , µ1, µ2 ∈ {0, 1} and C1 ∈
{0, 1}N×N and C2 ← NCCrypt.SecEnc(sk, µ2), we have

noises,µ1µ2(NCCrypt.ProtoMult(C1,C2)) ≤ |µ2| · noises,µ1(C1) + Õκ(αq ·
√
n log q)

with all but negligible probability over the randomness of NCCrypt.Keygen, NCCrypt.SecEnc and
NCCrypt.ProtoMult.

Remark. In words, Claim 3.4.2 says that if µ2 ∈ {0, 1} (as will be the case in our homomorphic
circuit evaluation in Section 3.3), the noise in C× is at most the noise in C1, plus a fixed additive
term. What’s more, if µ2 = 0, then the noise in C× is independent of that in C1! These two facts
are the key new ideas that enable our main result.

Proof. (of Claim 3.4.2.) Let C× ← NCCrypt.ProtoMult(evk,C1,C2). Note that

C× · PowersOfTwo(1, s) = Flatten(C̃1 ·C2) · PowersOfTwo(1, s)

= C̃1 · (C2 · PowersOfTwo(1, s))

= C̃1 · (e2 + µ2 · PowersOfTwo(1, s))

= C̃1 · e2 + µ2 · C̃1 · PowersOfTwo(1, s)

= C̃1 · e2 + µ2 · (ẽ1 + µ1 · PowersOfTwo(1, s))

= (C̃1 · e2 + µ2 · ẽ1) + µ1µ2 · PowersOfTwo(1, s) (1)

Since e2 ← DN
Z,αq and each row of C̃1 ∈ {0, 1}N×N is the result of Rand, by Lemma 2.11, we have∥∥∥C̃1 · e2

∥∥∥
∞
≤ Õκ(αq ·

√
n log q) (2)

12

with all but negligible probability.
Also, by lemma 2.10, we have

‖ẽ1‖∞ ≤ ‖e1‖∞ + Õκ(αq ·
√
n log q) (3)

with all but negligible probability.
Putting together Eq. (1),(2) and (3), we have

noises,µ1µ2(C×) ≤
∥∥∥C̃1 · e2

∥∥∥
∞

+ |µ2| · ‖ẽ1‖∞ ≤ |µ2| · noises,µ1(C1) + Õκ(αq ·
√
n log q)

which finishes the proof.

3.3 Homomorphic Evaluation of Circuits

We now describe how to homomorphically evaluate a Boolean circuit Ψ with two-input NAND gates
that takes ` inputs, and has depth d. In particular, our scheme will be able to evaluate circuits
of depth c · log n (for any constant c) under a polynomial LWE assumption, namely DLWEn,q,χ
where χ = DZ,α and α = 1/nΘ(c). Since the depth of the decryption circuit is cdec · log(n log(q)) ≤
2cdec · log(n) (for some constant cdec > 0), the scheme is bootstrappable, and by the bootstrapping
theorem (Theorem 2.14), we get a leveled FHE scheme under the same assumption.

To evaluate a circuit, our scheme first turns it into a width-5 permutation branching pro-
gram [BDFP86, Bar89], a model of computation that we describe below.

Width-5 Permutation Branching Programs. A permutation branching program Π of length
L with input space {0, 1}` is a sequence of L tuples of the form

(
var(t), σt,0, σt,1

)
where

• var : [L]→ [`] is a function that associates the t-th tuple with an input bit xvar(t).

• σj,0 and σj,1 are permutations on 5 elements. We will think of σj,0 and σj,1 as bijective
functions from the set {1, 2, 3, 4, 5} to itself.

The computation of the program Π on input x = (x1, . . . , x`) proceeds as follows. The state of
the computation at any point in time t is a number ζt ∈ {1, 2, 3, 4, 5}. Computation starts with the
initial state ζ0 = 1. The state ζt is computed recursively as

ζt = σt,var(t)(ζt−1)

Finally, after L steps, our state is ζL. The output of the computation is 1 if ζL = 1, and 0 otherwise.
To manage the growth of noise in homomorphic evaluation, we need to work with bits rather

than numbers. Thus, we prefer to represent the state ζt ∈ {1, 2, 3, 4, 5} by a 0-1 vector vt which is
the unit vector uζt in 5 dimensions.

The computation then proceeds as follows. The idea is that vt[i] = 1 if and only if σt,var(t)(ζt−1) =
i. Turning this around, vt[i] = 1 if and only if either:

• vt−1[σ−1
t,0 (i)] = 1 and xvar(t) = 0; or

• vt−1[σ−1
t,1 (i)] = 1 and xvar(t) = 1.

13

The following formula captures this condition. For t = 1, . . . , L, and i ∈ {1, 2, 3, 4, 5}, we have:

vt[i] := vt−1[σ−1
t,0 (i)] · (1− xvar(t)) + vt−1[σ−1

t,1 (i)] · xvar(t)
= vt−1[γt,i,0] · (1− xvar(t)) + vt−1[γt,i,1] · xvar(t) (4)

where γt,i,0 , σ−1
t,0 (i) and γt,i,1 , σ−1

t,1 (i) are constants that are publicly computable given the
description of the branching program. It is this form that we will work with in our homomorphic
evaluation.

The important property that we will use is that circuits of depth d can be simulated by branching
programs of depth L = 4d.

Theorem 3.5 (Barrington’s Theorem [Bar89]). Every Boolean NAND circuit Ψ that acts on `
inputs and has depth d can be computed by a width-5 permutation branching program Π of length
4d. Given the description of the circuit Ψ, the description of the branching program Π can be
computed in poly(`, 4d) time.

Homomorphic Evaluation NCCrypt.Eval(Ψ,C1, . . . ,C`). The homomorphic evaluation proce-
dure will first convert the depth-d circuit Ψ into a width-5 permutation branching program Π of
length L = 4d.

• [Initialization] We will maintain the encrypted state of the computation of the branching
program for every step t. We denote this by Vt = (Vt,1,Vt,2,Vt,3,Vt,4,Vt,5), where each
Vt[i] ∈ {0, 1}N×N will be an encryption of vt[i].

– We initialize the state as follows. Compute V0,i := v0[i] · I.

Note that V0,i is in fact a valid encryption of the bit v0[i] with zero noise.

– We also compute encryptions of the complements of the input bits, for convenience.
That is, set C̄k := I−Ck. Note that C̄k is an encryption of x̄k = 1− xk with the same
noise as Ck.

• [Evaluation] The evaluation proceeds iteratively for t = 1, . . . , L, where L is the length of
the branching program Π. Assuming that we have Vt−1 := (Vt−1,1,Vt−1,2, . . . ,Vt−1,5), the
encryption of the state of the branching program computation at time t − 1, we compute
Vt := (Vt,1,Vt,2, . . . ,Vt,5) by homomorphically evaluating Eq. (4) above.

That is, for i ∈ {1, 2, 3, 4, 5}, we compute

Vt,i := NCCrypt.ProtoAdd

(
NCCrypt.ProtoMult

(
Vt−1,γ0 ,C̄var(t)

)
, (5)

NCCrypt.ProtoMult
(
Vt−1,γ1 ,Cvar(t)

))
(6)

• [Output] Upon finishing the evaluation stage, we have VL := (VL,1,VL,2, . . . ,VL,5). Output
VL,1 as the result of the homomorphic evaluation.

We now show that the scheme correctly evaluates circuits.

14

Lemma 3.6 (Correctness of Homomorphic Evaluation). Let n be the LWE dimension, q the LWE
modulus, Ψ be any Boolean circuit of depth d, and

α ≤ 1/Θ̃κ(4d ·
√
n log q)

For every x1, . . . , x` ∈ {0, 1}, every Boolean circuit Ψ of depth at most d, and every secret key
sk, letting Ck ← NCCrypt.SecEnc(sk, xk) be the secret key encryptions of the inputs, and CΨ ←
NCCrypt.Eval(evk,Ψ,C1, . . . ,Ck) be the evaluated ciphertext, we have:

NCCrypt.Dec(sk,CΨ) = Ψ(x1, . . . , x`)

with overwhelming probability over the coin tosses of all the algorithms. NCCrypt.Eval runs in time
poly(4d, `, n, log q).

Note that we stated the correctness of homomorphic evaluation on ciphertexts produced by
the secret-key encryption algorithm NCCrypt.SecEnc. A similar lemma can be shown in the case
of public-key encryption, if α is smaller by a factor of

√
n log q. However, in our “optimal FHE”

scheme in Section 4, we will only need to invoke this lemma with secret-key encryption.

Proof. It is easy to see that each step of the homomorphic evaluation algorithm, given by Eq. (5),
simulates the execution of the branching program, given by Eq. (4). It remains to bound the noise
growth during NCCrypt.Eval. We show this by induction.

In the sequel, we will abbreviate the noise function noises,µ(C) to noise(C) since the secret key
is fixed throughout the evaluation, and the message µ is clear from the context.

Clearly, noise(V0,i) = 0, since they V0,i are just the messages, with no noise. Assume, as the
inductive hypothesis, that for all i ∈ {1, 2, 3, 4, 5},

noise(Vt−1,i) = (t− 1) · Õκ(αq ·
√
n log q)

We will now bound noise(Vt,i) for all i ∈ {1, 2, 3, 4, 5}. Note that

noise
(
Vt,i

)
≤ noise

(
NCCrypt.ProtoMult

(
Vt−1,γ0 , C̄var(t)

))
+ noise

(
NCCrypt.ProtoMult

(
Vt−1,γ1 ,Cvar(t)

))
≤ |1− xvar(t)| · noise(Vt−1,γ0) + |xvar(t)| · noise(Vt−1,γ1) + Õκ(αq ·

√
n log q)

where the second inequality holds by Claim 3.4.2 since all the ciphertexts encrypt bits, Cvar(t) is a
fresh secret-key encryption, and C̄var(t) contains exactly the same noise as Cvar(t).

Since exactly one of xvar(t) and 1− xvar(t) is non-zero, we have

noise
(
Vt,i

)
≤ max(noise(Vt−1,γ0), noise(Vt−1,γ1)) + Õκ(αq ·

√
n log q)

≤ t · Õκ(αq ·
√
n log q)

by the inductive hypothesis.
Thus, in particular,

noise(VΨ) = noise
(
VL,1

)
≤ 4d · Õκ(αq ·

√
n log q) < q/8

by our setting of the parameter α.

15

3.4 Achieving Fully Homomorphic Encryption

We know by Lemma 3.4 that the depth of the decryption circuit of NCCrypt is cdec · log(n log q) =
cdec logN for some constant cdec > 0. Setting the depth d = c logN for some constant c > cdec
in Lemma 3.6 and α ≤ 1/Θ̃κ(4d ·

√
n log q) gives us a bootstrappable encryption scheme. By the

bootstrapping theorem (Theorem 2.14), this can be turned into a leveled FHE scheme, without
additional assumptions. We state this theorem below:

Theorem 3.7. Let n be the LWE dimension, q be the LWE modulus, N := (n + 1) · dlog qe,
and let c > cdec be a large enough constant (where cdec is the decryption depth constant from
Proposition 3.4), and

α ≤ 1/Θ̃κ((n log q)2c+1/2)

Then, there is a leveled FHE scheme that is secure under the decisional LWE assumption DLWEn,q,α.

In the next section, we will use a variant of the dimension-modulus reduction of [BV11], the
effect of which will be to reduce the constant c above to a very small ε→ 0, thus achieving a value
of α that matches the best known lattice-based PKE schemes.

4 Successive Dimension-Modulus Reduction

In this section we revisit the dimension-modulus reduction technique from [BV11] and show that
by successive application of this technique, we can achieve comparable lattice approximation factor
to the best known factor for public key encryption.

We start by revisiting [BV11]’s dimension-modulus reduction in Section 4.1, and then proceed in
Section 4.2 to present a bootstrappable homomorphic encryption scheme that is based on Õ(n1+ε ·√
n log(q))-approximate GapSVP.

4.1 Dimension-Modulus Reduction (Revisited)

In the functions below, q is an integer and χ is a distribution over Z:

• SwitchKeyGenq:p,χ(s, t): For a “source” key s ∈ Zns and “target” key t ∈ Znt , we define a set of
parameters that allow to switch ciphertexts under s into ciphertexts under (1, t).

Let n̂s , ns · dlog qe be the dimension of PowersOfTwoq(s). Sample a uniform matrix As:t
$←

Zn̂s×ntp and a noise vector es:t
$← χn̂s . The function’s output is a matrix

Ps:t = [bs:t‖ −As:t] ∈ Zn̂s×(nt+1)
p ,

where
bs:t:=

[
As:t · t + es:t + b(p/q) · PowersOfTwoq(s)eG

]
p
∈ Zn̂sp .

Here, b·eG is the Gaussian rounding procedure from Corollary 2.1.

• SwitchKeyq(Ps:t, cs): To switch a source ciphertext cs ∈ Znsq from a secret key s to (1, t), output

ct:=
[
PT

s:t · BitDecompq(cs)
]
p
∈ Znt+1

p .

16

Lemma 4.1 (correctness). Let s ∈ Zn, t ∈ Zk be some vectors. Let χ be the discrete Gaussian
DZ,αp, and let Ps:t←SwitchKeyGenq:p,χ(s, t) and Prand←RandParamDZ,βq(s). Let cs ∈ Znq and let
c′s←Rand(Prand, cs). Finally, set ct←SwitchKey(Ps:t, c

′
s). Then there exists δ such that

(p/q) · 〈cs, s〉 − δ = 〈ct, (1, t)〉 (mod p) ,

and |δ| < Õκ(
√
n log(q)) ·αp with all but negl(κ) probability (over the coins in the experiment, and

regardless of the generation of s, t, cs).

Proof. We expand the expression for 〈ct, (1, t)〉:

〈ct, (1, t)〉 = 〈PT
s:t · BitDecompq(c

′
s), (1, t)〉

= 〈BitDecompq(c
′
s),Ps:t · (1, t)〉

= 〈BitDecompq(c
′
s), es:t + b(p/q) · PowersOfTwoq(s)eG〉 .

It follows that δ = δ1 + δ2 where

δ1 = 〈BitDecompq(c
′
s), es:t〉 ,

which, by Lemma 2.11, is bounded by |δ1| ≤ Õκ(
√
n log(q))αp with all but negl(κ) probability; and

δ2 =
〈
BitDecompq(c

′
s), b(p/q) · PowersOfTwoq(s)eG

〉
− (p/q) · 〈c′s, s〉

=
〈
BitDecompq(c

′
s), b(p/q) · PowersOfTwoq(s)eG − (p/q) · PowersOfTwoq(s)

〉
.

Applying Lemma 2.11, we get that |δ2| ≤ Õκ(
√
n log(q)) with all but negl(κ) probability.

Security follows in a straightforward manner, the proof is omitted.

Lemma 4.2 (security). Let s ∈ Zns be any vector. If we generate t
$← Zkp and P←SwitchKeyGenq:p,χ(s, t),

then P is computationally indistinguishable from uniform over Zn̂s×(nt+1)
p , assuming the decisional

LWE assumption DLWEk,p,χ.

4.2 A Bootstrappable Scheme

Let q : N → N be a monotone function such that q(n) ≤ 2n for all n, and α : N → R. Let χ(n)
denote the discrete Gaussian distribution DZ,α(n)q(n). Finally, let ε > 0.

The typical value of α(n) will be 1/Õκ(
√
n log(q) · nε), where κ is the security parameter. As

to the function q(n), we will be interested in two ranges of parameters: In the first we will set
q(n) such that α(n) · q(n) ≈

√
n (i.e. we set q such that q(n) = Õκ(n1+ε

√
log(q)). This is the

minimal q that allows to apply worst-case to average-case reductions for LWE. The second case is
where q(n) = 2n/2, which is the minimal q that allows to apply classical worst-case to average case
reductions to the GapSVP problem.

The scheme DimReduced is defined as follows.

17

• DimReduced.Keygen(1k): Define n , (k log(q(k)))2cdec/ε (namely, nε = 4cdec·log(k log(q(k)))), where

cdec is as in Proposition 3.4. Assume for convenience that n = k(1+ε)L for some L ∈ N (otherwise
round n to the next power up). Further define ki = k(1+ε)i , so k0 = k and kL = n, and define
qi = q(ki). For convenience we denote p , q0.

Let (ncsk, ncevk, ncpk)←NCCrypt.Keygen(1n, q(n), 4cdec·log(k log(q(k)))+1). Define sL , ncsk ∈ ZnLqL .

For all i = 0, . . . , L− 1, sample si
$← Zniqi .

Next, we generate dimension-modulus switching parameters (see Section 4.1), and randomization
parameters (see Section 2.4) for all i ∈ [L]:

Pi:(i−1)←SwitchKeyGenqi:qi−1
((1, si), si−1) ,

and
Prand,i←RandParamDZ,α(ki)qi

(si) .

Finally, output the keys sk , (s0, sL), pk , ncpk, evk , (ncevk, {Pi:(i−1)}i∈[L], {Prand,i}i∈[L]).

We note that as ε approaches 0, n = kΘ(1/ε) becomes larger. If k is proportional to the security
parameter, then ε must be bounded by a constant to keep n polynomially bounded. We further
note that L = Θ(log(1/ε)/ε).

• DimReduced.PubEncpk(µ) / DimReduced.SecEncsk(µ): The asymmetric and symmetric encryp-
tion procedures are identical to NCCrypt. Since DimReduced’s public key and secret key contain
those of NCCrypt, this can be done in a straightforward manner.

• DimReduced.Evalevk(f,C1, . . . ,Ct): To perform homomorphic evaluation, we first compute

Cf←NCCrypt.Evalncevk(f,C1, . . . ,Ct) .

We then consider cf ∈ {0, 1}ndlog(qL)e, which is the second row of Cf . We set cL:=CombineqL(cf).

We then compute, in order for i = L− 1, . . . , 0, the ciphertexts crand,i+1←Rand(Prand,i+1, ci+1),
and then ci←SwitchKey(P(i+1):i, crand,i+1). Finally, c0 ∈ Zkp is output as the final ciphertext.

• DimReduced.Decsk(c): We recall that c ∈ Zkp. We output µ∗ = 0 if
∣∣∣[〈c, (1, s0)〉]p

∣∣∣ < p/8, and

µ∗ = 1 otherwise.

Security is stated in the next lemma and follows immediately using a hybrid argument and using
the security properties of the scheme NCCrypt, the ciphertext randomization procedure (Lemma 2.9)
and the dimension-modulus reduction procedure (Lemma 4.2). The formal proof is omitted.

Lemma 4.3. The scheme DimReduced is secure under the DLWEk,q(k),α(k) assumption.

Correctness poses a more challenging task. We want to prove that DimReduced can homomorphi-
cally evaluate an augmented decryption circuit. Proving this when α(n) is small (e.g. α(n) = 1/n3)
is fairly easy. However, since we wish to achieve optimal parameters, the analysis is more involved
and appears in the following lemma.

We define τ , 2dlog(qL)e−2/qL and notice that τ ∈ (1/4, 1/2].

18

Lemma 4.4. Let α(n) = 1/Õκ(
√
n log(q) · nε), and let q(n) ≥ Õ(

√
n/α(n)). Consider a set

of keys generated by (sk, pk, evk)←DimReduced.Keygen(1k), and recall that sk = (s0, sL). Let
Ki←DimReduced.SecEncsk(BitDecomp(s0)[i]). Namely, Ki is the symmetric encryption of the ith
bit of s0.

Let f be an augmented decryption circuit as per Definition 2.13. Namely, let c, c′ ∈ Zkp and
µ, µ′ ∈ {0, 1} be such that

[〈c, s0〉]p = µ · τp+ e ,

where |e| < p/8, and similarly for c′. The function f is the function that on input x, treats x as a
secret key and decrypts c, c′, and outputs the NAND of their decryptions.

Let
c0←DimReduced.Evalevk(f,K1,K2, . . .) ,

and note that this is syntactically well defined since f can be represented as a Boolean circuit of
depth cdec · log(k log(q(k))) + 1.

Then with all but negl(κ) probability,

[〈c0, s0〉]p = µ∗ · τp+ ef ,

where µ∗ = (µ ∧ µ′), |ef | < p/8 are as above.

Proof. Consider the process of execution of DimReduced.Evalevk(f,K1,K2, . . .). It starts by gener-
ating cL, where we are guaranteed by the correctness of NCCrypt that

[〈cL, sL〉]qL = µ∗ · τqL + eL ,

where

|eL| /qL ≤ Õκ(
√
n log(qL) · 4cdec·log(k log(q(k)))+1)α(n) = Õκ(nε ·

√
n log(qL)) · α(n) ,

and we will set α(n) = 1/(
√
n log(q) · nεpolylog(κ)) with sufficiently large polylogarithmic factor

to offset the one coming from the noise so that

|eL| /qL ≤ 1/polylog(κ) .

We then commence with L = O(1) levels of randomization followed by modulus-dimension
reduction. Let us consider the effect of these operations at level i.

Lemma 2.10 guarantees that in the randomization step, the relative noise grows by an additive
factor of at most Õκ(

√
ki log(qi)) · α(ki) = k−εi · Õκ(1)/polylog(κ). Again, the idea is to define α

with sufficiently large polylogarithmic factor to offset those coming from Õκ(·).
Lemma 4.1 guarantees that in the key switching step, the relative noise grows by an additive

factor of Õκ(
√
ki log(qi)) · α(ki−1). We recall that ki = k1+ε

i−1 and that q(n) < 2n. Therefore√
ki log(qi) ≤

√
(ki−1 log(qi−1))1+ε ≤

√
(ki−1 log(qi−1)) · kεi−1 .

Therefore, setting the polylogarithmic factors right, we get an additive relative error of at most
1/polylog(κ).

Putting all of these together, we get that

|ef | ≤ L/polylog(κ)� p/8 ,

and the result follows.

19

Finally, we derive the worst-case lattice approximation factor based on Corollary 2.6. We recall
that a bootstrappable homomorphic encryption scheme implies a leveled FHE scheme under the
same assumptions, and a pure FHE scheme with an additional circular security assumption.

Corollary 4.5. For all ε > 0, there exist:

• A bootstrappable homomorphic encryption scheme based on the worst-case quantum hardness
of solving GapSVP

Õ(n1.5+ε) and SIVP
Õ(n1.5+ε).

• A bootstrappable homomorphic encryption scheme based on the worst-case classical hardness
of solving GapSVP

Õ(n2+ε).

The first (quantum) case is derived from Lemma 4.4 by setting q(n) =
√
n/α(n) = poly(n), and

the second (classical) case is derived by setting q(n) = 2n/2.

Improving Key and Ciphertext sizes. The scheme DimReduced uses a ladder of LWE in-
stances, ranging from short (k, p) to polynomially larger (n, q). In the description above, the public
key of the scheme is derived from that of NCCrypt, and therefore depends on n and not on k.
Likewise, the “input ciphertexts” (the ones before homomorphic evaluation) also depend on n.

We note here that this can be fixed in such a way that only the evk depends on n, and the rest
of the parameters are exactly the same as Regev’s scheme with parameters (k, p). This is done in
a standard way (used e.g. in [BV11]) as follows.

We will generate the public key as a standard Regev public key with parameters (k, p), and
in the evaluation key we will encrypt the bits of the respective secret key using NCCrypt. This
will allow to perform homomorphic operations by evaluating the augmented decryption circuit.
Namely, the ciphertexts visible to the user of the scheme will always be short, but in the process of
homomorphic evaluation, larger ciphertexts are used to accommodate the homomorphic operation,
and once it is done dimension-modulus reduction will be used to shrink the output ciphertext back
to the original size. Since this is standard practice, we omit the technical description.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In Frank Thomson Leighton and Peter W. Shor, editors, STOC, pages
284–293. ACM, 1997.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BDFP86] Allan Borodin, Danny Dolev, Faith E. Fich, and Wolfgang J. Paul. Bounds for width
two branching programs. SIAM J. Comput., 15(2):549–560, 1986.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS, pages 309–
325. ACM, 2012. Invited to ACM Transactions on Computation Theory.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. CoRR, abs/1306.0281, 2013. Preliminary
version in STOC 2013.

20

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume
7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.
Invited to SIAM Journal on Computing.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169–178, 2009.

[Gen10] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, pages 116–137, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206.
ACM, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. IACR
Cryptology ePrint Archive, 2013:340, 2013. Preliminary version in CRYPTO 2013.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted data. In
Salil P. Vadhan, editor, TCC, volume 4392 of Lecture Notes in Computer Science, pages
575–594. Springer, 2007.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complex-
ity of lwe search-to-decision reductions. In Phillip Rogaway, editor, CRYPTO, volume
6841 of Lecture Notes in Computer Science, pages 465–484. Springer, 2011.

[MP11] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. IACR Cryptology ePrint Archive, 2011:501, 2011. Extended abstract in Euro-
crypt 2012.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, STOC, pages 333–342. ACM, 2009.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005. Full
version in [Reg09].

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

21

http://crypto.stanford.edu/craig

	Introduction
	Preliminaries
	Gaussians and Discrete Gaussians
	Learning With Errors (LWE)
	Vector Decomposition and Key Switching
	Partial Randomization Using LWE
	Homomorphic Encryption and Bootstrapping

	Our FHE Scheme
	The Basic Encryption Scheme
	Proto-Homomorphic Operations
	Homomorphic Evaluation of Circuits
	Achieving Fully Homomorphic Encryption

	Successive Dimension-Modulus Reduction
	Dimension-Modulus Reduction (Revisited)
	A Bootstrappable Scheme

