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Abstract

We study mechanism design problems in tiidinal settingwherein the preferences of agents are
described by orderings over outcomes, as opposed to spegifierical values associated with them.
This setting is relevant when agents can compare outcoraearén’t able to evaluate precise utilities
for them. Such a situation arises in diverse contexts inetpdoting and matching markets.

Our paper addresses two issues that arise in ordinal mesrhatésign. To design social welfare
maximizing mechanisms, one needs to be able to quantitatheasure the welfare of an outcome which
is not clear in the ordinal setting. Second, since the impdig results of Gibbard and Satterthwaite,

25] force one to move to randomized mechanisms, one needs anmaneed notion of truthfulness.

We proposeank approximatioras a metric for measuring the quality of an outcome, whicivadlus
to evaluate mechanisms based on worst-case performarnidexaruthfulnesss a notion of truthfulness
for randomized ordinal mechanisms. Lex-truthfulnessngmgfer than notions studied in the literature,
and yet flexible enough to admit a rich class of mechansmemventing classical impossibility results
We demonstrate the usefulness of the above notions by dg¥ési-truthful mechanisms achieving good
rank-approximation factors, both in the general ordin#iirsg, as well as structured settings such as
(one-sided) matching marketnd its generalizationmatroidandschedulingnarkets.

1 Introduction

A central problem in social choice theory and mechanismgtes that of choosing a “good” outcome
by aggregating individuals’ private preferences over omiies, where individuals are rational agents. A
mechanisnimplementing aocial choice functio§SCF) needs to elicit the preferences of agents in a truthful
fashion, that is, in a way such that no agent may benefit byemisting his preferences.

In this paper, we study mechanism-design problemerdinal settings, wherein the preferences are
described by orderings over the set of outcomes. This ismtrast with thecardinal setting, wherein an
agent specifies galueto each outcome (which determines his preferences). Qrdéatiangs reduce the
“informational burden” on an agent in the sense that he oabds to be able to compare outcomes rather
than assign values to outcomes justifying his preferentesnot hard to imagine settings where the former
comparison task is easier, and more aptly describes thatisitt examples span the spectrum between
electoral settings and the setting of allocating dormitagyms to students.

Two immediate issues arise in ordinal mechanism design.pidéy mechanism-design goal is to max-
imize social welfare but in order to approach this goal in ordinal settings, oaeds to first be able to
guantitativelymeasure the social-welfare value of an outcome. Seconce sie Gibbard-Satterthwaite
(GS) impossibility result15, 25] precludes non-trivial deterministic truthful mechangnone is forced to
move torandomized mechanism@ which one needs a more nuanced notion of truthfulness.
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1.1 Our contributions

We propose a novel framework for welfare-maximization amthfulness for randomized ordinal mecha-

nisms, and devise various near-optimal mechanisms inrdnisdwork. Our contributions are threefold.

1) We introduce a metric callechnk approximationfor measuring the quality of an outcome, which in
turn allows us to evaluate mechanisms in terms of their weaase performance. We show that rank
approximation is a robust notion that is appealing, and eamébtivated, from various perspectives.

2) We propose a truthfulness notion callled-truthfulnessfor randomized ordinal mechanisms. This is
stronger than a notion studied in the literature, and yeilflexenough that it admits a rich class of mech-
anismsbypassing classical impossibility resuli#/e provide a characterization result for lex-truthfulies
which we leverage to obtain lex-truthful mechanisms foia@s ordinal settings. We believe that this
characterization will find application beyond the specipplecations that we consider in this paper.

3) We demonstrate the usefulness of the above two notiongvigidg lex-truthful mechanisms achieving
good rank-approximation factors both in the general oldiatting, as well as structured settings such as
(one-sided) matching marketnd its generalizationspatroid andschedulingmarkets.

We now elaborate on our contributions. keindm denote the number of agents and number of outcomes

respectively, and-; denote agent’s ordering over outcomes, which we assume is strict and tefi.e.,

for any two outcomes, o/, eithero >; o’ or vice versa).

Rank approximation (Section 3.3 We say that an outcomehasrank approximationx for preference
profile >, if for everypositionr, the number of agents havirgas one of their top-outcomes is at least
1. maxrank, (>), wheremaxrank, (>) denotesmax,(number of agents having as one of their top-
outcomes). Amx-rank-approximation mechanisia one that always returns anrank-approximate out-
come. While the requirement of simultaneously approxingatiaxrank, (>) for all » seems too stringent,
and even thexistenceof an a-rank-approximate outcome for non-trivial o, seems doubtful, promisingly
(as we elaborate later), we can achiev@-r@ank-approximation for matching and matroid markets, and
randomized) (log n)-rank-approximation for general ordinal settings.

Rank approximation is a natural, purely ordinal notion wiltious desirable properties. Consider any
cardinal-utility profilel/ = (U1, ..., U,), where eacl; is consistent with-;, that is,U; (o) > U; (o) iff
o =; o'. Call such a utility profilehomogeneoysf for all » = 1,...,m, all U;s assign the same value
to their r-th ranked outcome. An-rank-approximation outcome for > is such that forany consistent
homogeneous utility profilé7’ , Its social Welfarezg.‘:1 Uj(o), for U is at least aalz—fraction of the optimum

social welfare fot/. Thus, am-rank-approximation mechanissimultaneously yields am-approximation
to the optimum social-welfare for all consistent homogessaatility profiles(Theorem3.2).

Consistent homogeneous utilities are also knowscasing ruleq31] (also sometimes called positional
scoring roles). A scoring rule assigns a score to each posiind returns the outcome with highest total
score; a prominent example is tBerda rule which gives a score ofi — k to thek-th position. An outcome
is a-approximate with respect to a scoring rule, if its scoret ieast aé—fraction of the score of any other
outcome. Translated to this setting, we obtain thahamank-approximation mechanissimultaneously
achieves anm-approximation to all scoring rulesln other words, given an-rank-approximation mecha-
nism M, one need not be overly concerned about which scoring ruteoist suited to the problem, since
M guarantees an-approximation to all scoring rules!

To place these simultaneous-approximation bounds in petigp, it is useful to consider an even
stronger notion: say that a mechanism has “strong welfar@rfac, if for every consistent (even non-
homogeneous) cardinal-utility profi[é, the mechanism returns anapproximation to the optimum social
welfare forl/. Not surprisingly, this notion is too strong: it is easy t@atthat no mechanism (deterministic
or randomized) can have any non-trivial strong welfaredia@ven for matching markets.



Lex-truthfulness (Section 3.2 The classic impossibility results of}, 25 show that the space of deter-
ministic truthful mechanisms in general ordinal settingi@xtremely limited, forcing the move to random-
ized mechanisms. When seeking to define a notion of trutbéslifior ordinal randomized mechanisms, one
immediately encounters the following issugw should one extend an agent’s preferences over outcomes
to preferences over distributions of outcomé&d®e usual approach in the economics literature is to use the
stochastic dominanceelation. Since this does not induce a total order overidigions, one obtains two
notions of truthfulness: (i¥trong truthfulnes$14], where the truth-telling distribution stochasticallyrde
inates any distribution obtained via a misreport; andwigak truthfulnes$21, 7], where the truth-telling
distribution is not stochastically dominated by any digition obtained via a misreport. Gibbart¥] gen-
eralized [L5, 25| to show that the space of strongly-truthful mechanismsenggal ordinal settings is also
limited, leaving weak-truthfulness as the only viable aotof truthfulness for randomized mechanisms.

We propose a new notion of truthfulness sandwiched (styitiétween the above two notions. A dis-
tribution p lex-dominates a distribution with respect to ordering-, if, when considering outcomes in
decreasing order of their ranking #n, at the first outcome wherep andq differ, p assigns a higher proba-
bility to o thanq. Note that lex-dominance inducesadal orderon distributions. We say that a mechanism
is lex-truthful (LT) if no distribution obtained by a misreport lex-domieatthe truth-telling distributioh.

We show that lex-truthfulness provides us with ample flditybin mechanism design and allows us to
circumvent Gibbard’s impossibility theorer@all a social choice function (SCF)fully lex-truthfully (LT)
implementablef for all € > 0, there exists a lex-truthful mechanism that agrees wittith probability at
least(1 — ) on every preference profile. We isolate a property of an S@wwe callpseudomonotonicity
thatcompletely characterizdsT-implementability of the SCF (Theoref6). Roughly speaking, an SCF is
pseudomonotone if for any preference profile, if an agercttanges his ordering without altering his tep
choices, then the new outcome cannot both be a better outmiend a toptk + 1) outcome forj (see
Definition 3.5).

This characterization turns out to be instrumental in mgkéx-truthfulness an amenable notion to work
with, and opens up a host of SCFs to full LT-implementatione $kow that various rank-approximation
SCFs that we devise for matching, matroid, and schedulindegts—including the 2-rank-approximation
mechanism for matching markets mentioned earlier—aredmseanotone. For general ordinal settings, we
identify a rich class of pseudomonotone SCFs which includeplurality scoring rule Thus,all of these
SCFs are fully LT-implementable. We view the characteirabf lex-truthfulness via pseudomonotonicity
as one of our main contributions, which we believe will findtlfer applications.

Matching, matroid, and scheduling markets Sections 4and 5) In addition to general ordinal mechanism-
design settings, we also consider various structurechgsitand obtain lex-truthful mechanisms with good
rank-approximation factors.

Our most-compelling results are fonatching marketg¢Section 4, which are one of the most well-
studied ordinal settings (see, e.g., the survégs 1]). Here, we haver agents andn items, and outcomes
are matchings of agents to items. Each agent has a striereneke over items, which induces preferences
over matchings based on the item the agent is assigned inchimgit Observe that agents are indifferent
over outcomes that give them the same item. The room allotatioblem is an instance of this market.

We devise a simple deterministic 2-rank-approximationudsenonotone algorithnaxMatch (The-
orem4.1), which is therefore fully LT-implementable. In contraste show inAppendix Bthat various
common algorithms proposed for matching markets, sucheasofhittrading-cycle algorithm, randomized
serial dictatorship, probabilistic seriall have rank approximation at lea$t(,/n). We prove a matching
lower bound of 2 on the rank-approximation factor of deteiistic SCFs (Theorem.2), and obtain super-
constant lower bounds on the rank-approximation factore@eble by deterministic truthful mechanisms.

"We have recently learned that this notion was independentiposed by Chol[0], who called it DL-strategyproofness.



The 2-rank-approximation for matching markets extendsatroid marketgTheoren¥.6), which is the
generalization where we have a matroid on the agent-sevéy &em, and the (possibly multiple) agents
assigned to an item are required to form an independent skairitem’s matroid. Besides the increased
modeling power of matroids, this turns out to be a key compbagtour algorithms for scheduling markets.

In Section 5 we consider scheduling markets. Here the agents are jebséed to be assigned to
machines. Each job hagavate ordering over the machines, and a public processing tim&oin machine,
and there is makespan boufitthat limits the amount of time available on each machine. Attame is
a partial assignment of some jobs to machines satisfyingrtakespan bound. This can be viewed as
the matching problem with knapsack constraintFor parallel machines, we obtain an LT-mechanism that
always returns a®(log n)-rank-approximation schedule wiéh(7") makespan, and we show that this bound
is tight (Theorems.2 and5.3). We also obtain a®(log n)-rank approximation for unrelated machines
(Theoremb.4), albeit not via an LT mechanism.

1.2 Other related work

The conundrum of social welfare in ordinal mechanisms, wigimbably has its origins in the Condorcet
paradox 11] that states that it may so happen that a majority of agertfepoutcome: to b, outcomeb to

¢, and outcome: to a, was cemented by Arrow’s impossibility theoredj.[ Subsequent to Arrow’s result,

much of the work in social choice theory has focused on Pagtinality as the sole notion of efficiency
for ordinal mechanisms.

Recent work, mostly in the CS literature, has led to a moreoe@ notion of efficiency. Procaccia and
Rosenchein43] studied the strong welfare factor notion (that they cadtaiition), and noticed that deter-
ministic mechanisms have unbounded distortion. Boutdieal. [8] proposed randomized mechanisms and
showed that the strong welfare factor is at mos$t/m log™ m), if the consistent cardinal-utility profile is
normalized. In contrast, our rank approximation resultplynO (log n)-approximate outcomes, but under
a stronger restriction on the consistent cardinal utditi€he notion of approximations to scoring rules was
studied by Procacci&P] where he described strongly truthful mechanisms whiepproximate Borda, but
O(y/m)-approximate the plurality rule. In contrast, our (norttful) mechanisnO(log n)-rank approxi-
matesany scoring rule, and plurality can be arbitrarily well appmoeted by a lex-truthful mechanism.

Another notion of social welfare in ordinal mechanisms|exhbrdinal welfare factor (OWF), was re-
cently proposed by Bhalgat et &@][ A mechanism has OWB < [0, 1] if for any outcomeo, at leastsn
agents prefer the outcome returned by the mechanism fbhis is in fact aquantificationof the notion
of popular outcomes; an outcome is popular if a majority prefer it to ather fixed outcome. Note that
popular outcomes have OWF of at le@st. A popular outcome may not exist, but a popular distribution
over outcomes always does. Popular outcomes were studiecbimpmists in the matching settintg], and
asstrict maximal lotteriesn the general settinglP, 18]; subsequently, a large body of literature has been
developed by computer scientists on popular matchiBigé7, 16, 19]. The notions of rank approximation
and OWF (and therefore the notion of popularity) are incaorable. That is, there are outcomes with “good”
OWF and “bad” rank approximation, and vice-versa.

Subsequent to the Gibbard-Satterthwaite result, researdbcused on design of randomized mecha-
nisms. As mentioned above, this led to differing notionsrofifulness. Strong truthfulness was proposed
by Gibbard [L4]. Postlewaite and Schmeidle2]] proposed weak truthfulness and proved that no weakly
truthful mechanism od or more outcomes, can be (ex ante) Pareto optimal if ageetallawed to have
priors on their (own) preferences. Subsequently, Aziz ¢blalemoved the prior condition, but prove im-
possibility of only certainkinds of mechanism. We remark that our lex-truthful mechanismisickvare
also weakly truthful, do not contradict these results, siaar mechanisms are not Pareto optimal. How-
ever, our mechanisms atdmplementations of Pareto-optimal SCFs, so they satiafg#® optimality with
probability at least — . Thus, we bypass the above impossibility results whileieiclg a modicum of



Pareto-optimality.

Matching markets are one of the most widely studied exampfiélse ordinal setting. There is a vast
amount of literature, and we point to excellent surve34; B0, 1]. In Appendix B we describe three well
known mechanisms in this setting. These are the random deiatorship, Gale’s top trading cycle algo-
rithm [27], and the probabilistic serial (PS) mechanisrh [The first two mechanisms are at least strongly
truthful. PS is weakly truthful, and we show that it is lemttrful as well; this was also independently
shown by [LO, 29]. However, we show that all these three mechanisms haveappfoximation as bad
as(y/n). In contrast, we obtain a fully LT-implementable 2-ranipegximation mechanism using our
pseudomonotone 2-rank-approximation algorititaxMatch.

2 Preliminaries

In the generabrdinal mechanism desigsetting, we have a sé{ of n agents, and a sél of m outcomes
(or alternatives). We use the terms agent and player iraegdably. Each agent € N has aprivate
complete preference list or orderiixgy over outcomes, that is, =; o’ or o’ >=; o for everyo, o’ € O. This
is typically referred to asrdinal utilities/preferences, to distinguish them frarardinal utilities wherein
the utility function assigns a value to each outcome. XLetdenote the publicly-known set of allowed
preference lists for agent andX: := ]_[;?:1 ¥;. A preference profile is a combination= (>1,...,>,)
of agents’ preference lists. Fére Z., we uselk] to denote the seftl, ..., k}. A preference list is called
strict, and denoted-, if there are no indifferences: exactly onewf o' ando’ = o holds for every two
distinct outcome®, o’ € O. Given a strict preference, we will sometimes say = o to denote that
o > o oro = o. Given a preference list, letalt(~,r) € O denote the-th ranked outcome %, and
pos(>-,0) € [m] denote the rank of outcomein . For a tuplex = (z1,...,z,), we usex_; to denote
(1, Tj1,Zj41,...,2y). Similarly, let¥_; = Hk# Sk

In addition to the general setting mentioned above, we denghree specific mechanism-design set-
tings in this paper: one-sidedatching marketswhich have been studied extensively in the literature, (see
e.g., BO, 1]) and two generalizations of theseatroid market@ndscheduling marketshat we introduce.

Matching markets (Section 4 We naven agents andn items. Each agent has a strict preference;
over them items. The outcomes are matchings of agents to items. Wehaawath outcomé/ assigns an
agentj the “null” item () to denote that he is not assigned an itemddnwe seti -; () for every itemi. An
agent is indifferent between matchingg and A/’ if they allot him the same item (countirfgas an item),
and otherwise, prefer®! to M’ if he prefers the item allotted to him W to the item allotted to him id/’.

Matroid markets (Section 4.) We again have: agents who have a strict preference oveitems. We
also have a matroid/; = (N,Z;) on the setV of agents, for each iteie [m]. An outcome is an allocation
that assigns at most one item to each agesuch that, for each iter) the set of agents allotted iteinis an
independent set af/;. Note that multiple agents may be allocated the same iterragint's ordering over
outcomes is induced by his ordering of the items as in thengedf matching-markets. It is easy to see that
a matching market is the special case whfieencodes that at most one agent may be assigned ta.item

Scheduling markets Section § The agents are jobs that need to be scheduled@ammachines, where
the machines are in genenafrelated Each job;j possesses jarivate strict complete preference order;
over the machines, and hapuablicly-knownprocessing time;; on machine. Furthermore, there is a bound
T on the maximum load allowed on any machine (i.e., makespam)outcome is an (partial) assignment
of some jobs to machines that respects the makespan bouadrdéring over outcomes is induced by the



ordering over machines as in the above two cases. The parathines setting is the case whefe = p;
for every machine and jobj.

Note that in the above three markets, agents’ preferena@ootcomes areot strict; however, for each
agentj, the outcome-set may be partitioned imdifference classesuch thatj is indifferent between the
outcomes in an indifference class, and has a strict ordenieg the indifference classes. Our framework
and results apply to such settings with cosmetic notatiohahges (se8ection 3.3, but we stick for the
most part to the setting of strict preferences for notatiease.

A social choice functiofSCF) is a functionf : 3 — O. In settings with no monetary transfers, there is
no formal distinction between an SCF andeterministicalgorithm ordirect-revelationmechanism, which
maps the preference profile given by the agents’ reportefgnarece lists to an outcome. An SGHs said
to beimplementableor truthful if for every player;, every-;, >;e ¥;, and every~_;c X_;, we have
f(=j4.=—5) =5 f(=,=—;); thatis, no agent benefits by misreporting his prefererste li

A randomized mechanisim allowed to output a distribution (also calledidtery) over outcomes. Let
L(0) denote the collection of distributions over the outcomieéseA randomized mechanism is formally
then a function mapping preference profiles to distribionZ(O). We sometimes refer to a mechanism
that works with ordinal preferences as an ordinal mechanism

Definition 2.1. A randomized mechanist is said toe-implementan SCFf (or thatf is e-implementable
by M), if Pr[M(>~) = f(>)] > 1 — ¢ for all =€ X, where the probability is over the random choices of
M. We say that a family{ M} of mechanismdully implementsf if for all £ > 0, M® e-implementsf.
(This is in the same spirit as the notion of virtual implenaioin in Nash equilibriumZ0, 3].)

Truthfulness for randomized mechanisms may be defined iiousmways. The strongest notion is
universal truthfulnesswherein a randomized truthful mechanism is a randomiagio mixture) over de-
terministic truthful mechanisms, where the mixture wesgate input-independent. A somewhat weaker
notion is obtained by considering the stochastic dominaetsion. Given an ordering- over O, and
two lotteriesp,q € £(O), we say thatp (first-order) stochastically dominateq with respect tos-, if
Yo Plt(=,0)) > >, q(alt(=,¢)) foralli = 1,...,m. Since stochastic dominance does not induce
a total ordering orC(0O), this yields two notions of truthfulness that have beenistiich the literature.

Definition 2.2. A randomized mechanisov is said to be:
e strongly truthful[14]: if M (>;,>_;) stochastically dominateM(%», >_;) with respect to-;, for
all j, all =5, =€ %j, and all~_;e ¥_;.
o weakly truthfull21, 7]: if M (>, >_;) is not stochastically dominatehyM(%, >_;) with respect
to 5, for all j, all =5, ~€ ¥;, and all~_;€ ¥_;.

A universally truthful mechanism is also strongly truthfahd in fact, this inclusion is strict (Theo-
rem 3.4). Gibbard [L4] extended the impossibility result o}, 25] to show that the space of strongly
truthful mechanisms is also rather limited. A determigistiechanism is: (idictatorial if there exists
j € N such that the mechanism’s output is alwgisstop choice; and (iidupleif the mechanism’s range
f(X) consists of at most two outcomes. A (deterministic or ranided) mechanism ignilateral if there
exists some fixed € N such that the mechanism’s output depends only'® reported) preference list.

Theorem 2.3. (Gibbard-Satterthwaite and Gibbard impossibility resjli) If m > 3 and f(X) = O, then
£ is truthful iff it is dictatorial. (ii) Any strongly truthfumechanism is a mixture of truthful unilateral and
deterministic truthful duple mechanisms with input-ingleglent mixture weights.

Theorem?2.3leaves weak truthfulness as the only notion that poteptalbws for some sophisticated
mechanisms. IrSection 3.2 we propose a stronger notion of truthfulness and show thatis flexible
enough that one casypass Gibbard’s impossibility reswihd obtain various interesting mechanisms includ-
ing, in particular, mechanisms that yield “good” social f&et under the metric we introduce $ection 3.1
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3 Rank approximation and Lex-truthfulness

3.1 Welfare in ordinal settings: rank approximation

We introduce a notion of social welfare that we calhk approximation Given a preference profile= (>~
>~n), thei-rank of an outcome € O in >, denotedrank;(o; >-), is the number of agents havimgn
their topi choicesirank;(o; =) = |{j : pos(>j,0) < i}|. Definemaxrank;(>) := max,co rank;(o; >).

Definition 3.1. A randomized mechanisoM is ana-rank-approximationrmechanism, if for every prefer-
ence profile-, we haveE [rank; (M (>); >)] > maxrank;(>~)/a forall i = 1,...,m, where the expecta-
tion is taken over the random choices/of. We say thaty is the rank-approximation factor g#1.

As mentioned in the Introduction, rank approximation is @pealingly robust notion from various
perspectives. A utility functiorl/ is consistent with a preference orderirgif U(o) > U(0') whenever
o > o. A collection of cardinal utility functiongUq,...,U,) consistent with a preference profile is
calledhomogeneout for all © € [m], the value that an agent assigns todHis choice is the same across all
agents, that id/;(alt(>;, 7)) = Uj(alt(>;,)) foralli € [m], j,j’ € N.

An a-rank-approximation mechanism yields @aapproximation to social welfare fanyhomogeneous
cardinal-utility profile consistent with the agents’ pnefieces.

Theorem 3.2. Let M be ana-rank-approximation randomized mechanism. Then, foryepeeference
profile -, we haveE[Y ;. v U;(M(>-))] > + - max,e0 Yy Uj(0) for any homogeneous utility profile
(Uy,...,U,) consistent with-.

Proof. Letp = M(>). LetU(i) be the common value df;(alt(>;,4)). Definerankg(o; =) = 0 for all
o€ O,andU(m + 1) = 0. Leto” = argmax,cp Y ey Uj(0). ThenE[ZjeN U;(M(-))] is

Z p(0) Z (rank;(o; =) — rank;_1(0; ) Z p(o Zranki(o; =)(U(i) —U(i + 1))

o€0 i=1 ocO i=1
Z U(i + 1)) E[rank;(M(>-); -)] > é : Z(U(Z) — U(i+ 1)) rank( Z U;(
i=1 =1 JEN

Consistent homogeneous utilities may be equivalently @tws ascoring rule Viewed from this
perspective, Theorer®.2 shows that am-rank-approximation mechanisgimultaneously achieves an
approximation to all scoring rules

In fact, rank approximation satisfies an even more genetalstoess property. Associate with each
outcomeo an m-vector called itshistogram given byhist(o; =) = {rank;(o; >)}Ze[m] Then the rank-
approximation factor of an outcomeis g(hist(o ~); ) whereg(x; =) = min;epy m It is
not hard to see that is a concave function af and non-decreasing in each coordinate. A deterministic
a-rank-approximation mechanism outputs an outceméhoseg- value,g(hlst(q =); >), is at Ieast; for
every input-.

Now supposé(z; ) is anyconcave non-decreasing function and we measure the vatuemftcome
by  h(hist(o;>);>). This yields a natural SCF f", ~ where fh(~) is
argmax, o h(hist(o’; =); =). Note that scoring rules correspond to the special caseewtey is lin-
ear with all coefficients non-negative. Analogous:toank-approximation, we can define an SE€Ro be
ana-approximation forf" if (h-value of f/(>)) > 1 - (h-value of f"()) for all >

An deterministica-rank-approximation mechanissimultaneoushachieves am-approximation mech-
anism forall such histogram-based concave SCFso i§ the outcome returned, we hau&t(o; ~) >
é - hist(o’; =) coordinate-wise for any’ € O. Sinceh is non-decreasing and concave, this implies that
h(hist(o;>=); =) > 1 - maxyeo h(hist(o;=); =) = L - fh(-).



3.2 Truthfulness for randomized ordinal mechanisms: lex-tuthfulness

We propose a new notion for truthfulness relying on lexiepdiic ordering. Given an ordering over O,
and two lotteriep # q € L£(O), p lexicographically dominateq with respect to-, if there exists € [m]
such thatp(alt(>-,7)) > q(alt(>,4)) andp(alt(-, ¢)) = p(alt(>~,¢)) forall ¢ = 1,...,7 — 1. Note that
lex-dominance imposestatal orderon £(O). This motivates the following definition of truthfulness.

Definition 3.3. Arandomized mechanisii is calledlex-truthful (LT) if for all j € NV, all >, >;.e ¥, and
all -_;, we have that eitheM (~;, = _;) = M(~},>_;), or M(~;,~_;) lexicographically dominates
M=, =—;) with respect to-.

Observe that ip stochastically dominates, thenp lex-dominatesy as well. Since lex-dominance is a
total order, this implies that ip lex-dominatesy, thenq cannot stochastically dominage We obtain the
following hierarchy between the various notions of truth&ss for randomized ordinal mechanisms.

Theorem 3.4. Let UnivT, StrongT, WeakT, LexT denote the classes of universally-, strongly-, weakly-,
and lex- truthful mechanisms respectively. ThieivT C StrongT C LexT C WeakT.

We defer the proof of Theoref4to Appendix A We shorten “implementable by a lex-truthful mech-
anism” to “lex-truthfully (LT) implementable” in the sequeWe show that lex-truthful implementability
is equivalent to a property of the social-choice functioattive callpseudomonotonicity This character-
ization immediately opens up a host of SCFs that are fullyrhptementable. We heavily exploit this in
Sections 4and 5 to show that the rank-approximation SCFs that we deviseddopus problems are fully
LT-implementable. Iri5ection 6 we leverage this to show that an interesting class of SCgsneral ordinal
settings are fully LT-implementable.

Definition 3.5. A social choice functiory is pseudomonotongr satisfiegpseudomonotonici}yif the fol-
lowing holds. Consider any playgy ~_;€ ¥_;, and>-;, ~’€ X;. Leto = f(~) ando’ = f(>~'). Then,
either ()o =; o', or (ii) there is an outcome”’ such thab” - ; o’ andpos (-, 0”) < pos(>=7,0").

A useful way to view pseudomonotonicity is as follows: if ayér's deviation leaves his firgtprefer-
ences unaltered, then the deviation cannot both yield hiettetoutcomenda top{k + 1) outcome.

Theorem 3.6. (i) Let f be a pseudomonotone SCF. Theis e-implementable by a lex-truthful mechanism
for anye > 0; that is, f is fully lex-truthfully implementable.
(ii) Conversely, iff is e-LT implementable for some< % then f is pseudomonotone.

Proof. First consider part (i). Givea > 0, one can find; > €3 > --- > ¢, > O such thaty ", &; = e.
Consider the randomized mechanigvt that on input-, returnsf () with probability (1 — ¢), and with
probability ¢ it chooses a random agentind returns hig-th preference with probability; /<.

It is clear by definition thatM e-implementsf. To prove lex-truthfulness, fix an ageptind consider
any~'= (=}, ~_;), where~"##~;. Leto = f(~) and leto’ = f(~'). Also letp = M(>~), q = M(~').
Let1(A) be 1if A is true, and 0 otherwise. For any outcomeave have

p(@) - q(é) = % (gpos(>j,6) - 6pos(>—},6)) + 1(6 = 0) ’ (1 - 5) - 1(6 = 0,) ’ (1 - 5)'

Considering outcomes in the preference order-¢f let o be the first outcome such thabs(>;,0") #
pos(~},0"). Thenpos(~;,0") < pos(~,0"). By pseudomonotonicity of, we know thato =; o' or

0" »; o. In the latter case, we haygo) — q(6) > 0 for all 6 =; o” andp(o”) — q(0”) > 0, so we are
done. In the former case, if = o’ or o” =, o, then the same argument holds. So suppose o” and

o >; o'. Thenp(o) —q(6) > 0 forall 6 =; o andp(o) — q(o) > 0, so again we are done. (Note that



mechanismM maps distinct inputs to distinct lotteries, and therefommtisfies a slightly stronger version
of lex-truthfulness: the truth-telling lottery lex-donaites (i.e., istrictly superior to) a lottery obtained via
a misreport.)

We now prove part (ii). LetM be an LT mechanism thatLT implementsf, wheree < % Suppose
for a contradiction, there is some aggnand~= (~;, ~_;) and~'= (=, ~_;) such thab = f(~) and
o' = f(>') violate the conditions for pseudomonotonicity. That is,vageo’ -; o and for every outcome
o = o, we havepos(-;,0") > pos(/, 0"). This means thaios (>, 0") = pos(~},0") forall o” ~; o.
Letp = M(>) andq = M(>).

SinceM e-LT implementsf, we havep(o’) < e andq(o’) > 1 — ¢, sop(d’) < q(¢'). Letoy,..., 0,
be the outcome®” such thato” >~; o’ listed in decreasing preference order according-to Since
pos(~j,0") = pos(=’,0") for all o" =; o', we haveo, -’ o for all £ € [r], and the ordering of the
os is the same in-; and-’;. We claim thatp(o,) = q(og) for all £ = 1,...,r, which contradicts the fact
that M is lex-truthful.

We prove the claim by induction ofi Considering>-; to be j's true preference list, we must have
p(o1) > q(o1), and considering-; to bej's true preference list, we must haago;) > p(o1). Suppose
thatp(o;) = q(ox) for k = 1,...,¢ — 1. Again considering- and>; be j's true preference lists in turn,
we obtain thap(o;) = q(oy). [ |

3.3 Settings with indifferences

As noted earlier, many of the settings we consider involve-stoict preferences. In these settings, the out-
come set is partitioned infadifference classe®7, ..., Ofnj for each agenf. Agentj is indifferent between
any two outcomes in the same indifference class, and hagcaimplete ordering over his indifference
classes that specifies his ordering between two outcomeafferedt classes. Formally, given;c ¥;, we
definepos(=;,0) = r € [m;] if o lies in the indifference class gfrankedr under-;, andalt(>;,r) C O

is now the indifference class gfrankedr under-; (that is,{o : pos(>=, 0) = r}). The preferences induced
over outcomes are thew: =; o' iff pos(=;,0) < pos(=;,0'), ando >; o iff pos(>=;,0) < pos(=;,0).
Say thato ~; ¢’ if 0 ando’ belong to the same indifference classjof

One requires mostly notational changes to extend our frarlesnd results to this more-general setting.
With the above notation in place, the definitionsrefik;(o; =) (as|{j : pos(>=;,0) < i}|, maxrank;(>),
rank-approximation (DefinitioB.1) and pseudomonotonicity (Definitidh5) remain unchanged.

We extend lex-dominance and lex-truthfulness as followsceéplayers have indifference classes it
is not meaningful to consider probabilities assigned taviddal outcomes. Instead, we aggregate the
probability assigned to an indifference class and definalteminance and lex-truthfulness by considering
these aggregate probability vectors. Given a lotierg £(O) andS C O, definep(S) := > g p(0).
and letp’ be the aggregated probability vecigy'(j, r) := p(Ofﬁ))jere[mﬂ. Given ;€ ¥;, and lotteries
p # q € L£(0), we say thatp lex-dominatesq with respect to-; if there existsr € [m;]| such that
p'(4,7) > d'(j,r) andp’(j,¢) = q'(j,¢) forall ¢ = 1,...,r — 1. Then, as in Definitior8.3, a mechanism
Mis lex-truthful if for all =, all j € N and all=’;€ X, either the aggregated probability vectorsieff(-)
and M (=}, = ;) are equal, oM (~) lex-dominatesM (=%, = _;) with respect to-;.

We can now mimic the proof of Theoref6 to prove the following analogue for the above setting,
showing that pseudomonotonicity is necessary and suffitoefull LT-implementability. The proof appears
in Appendix A

Theorem 3.7. (i) Let f be a pseudomonotone SCF. Theis fully lex-truthfully implementable.
(ii) Conversely, iff is e-lex-truthfully implementable for some< % thenf is pseudomonotone.



4 Matching markets

Recall that in a matching market there aragents anan items, and outcomes are matchings of agents to
items. Each agent has a strict total ordering over items, which induces hisgpemces over outcomes:
prefers outcome to o' if he prefers his allotted item into the one ino’.

We show inAppendix Bthat various common mechanisms proposed in the literatunmétching mar-
kets all have bad rank approximation. In contrast, we dexisenple deterministic algorithnilaxMatch,
that is a pseudomonotong;rank-approximation algorithm, and hence, yields an LT na@ism (Theo-
rem4.1). We complement this by showing two lower bounds. Theo#deZshows that is the best rank
approximation achievable nydeterministic algorithm, proving the tightness of our figsiresult. Next,
Theoremst.3 and 4.4 demonstrate limitations afeterministictruthful mechanisms for matching markets
by showing that such mechanisms cannot achieve any comatdnapproximation.

Algorithm MaxMatch Fix a tie-breaking rule over agents. On inpuf MaxMatch allocates items to
agents inm stages. In stage, we consider the bipartite gragh, with agents and items as vertices, and
an edge from agentto itemy, if 7 is a top+ item of agentj. Note thatmaxrank, (>) is precisely the size
of the maximum matching id,.. Let M denote the current matching of agents to items (whidhvigen

r = 1), which is a matching iii7,.. We maintain that at the beginning of stage\/ is amaximal matching
in G,_1; observe this is true when= 1. SinceM is amaximal matchingn G,_1, an agent has an edge to
at most one item i6x,. \ M, whereG, \ M is the graph obtained fror@, by deleting the nodes matched
by M. For every unmatched iteirthat has non-zero degreed#) \ M (i.e., is an unmatched item that is a
top+ item of some unmatched agent) we use our tie-breaking rypekoan ageny € G, \ M; we assign
item< to j and updatéV/. Thus,M is updated to a maximal matching .. We output the matching at the
end ofm stages.

Theorem 4.1. MaxMatch a pseudomonoton@;rank approximation algorithm for matching markets, and
hence is fully LT-implementable.

Proof. The 2-rank-approximation guaranteeMdixMatch follows immediately from the fact thétlaxMatch
maintains a maximal matching in the “tefi-graph G, for all r, and the size of any maximal matching is at
least half the size of a maximum matching, and thus at leastank, () /2.

Fix an ageny. Suppose that deviates from- to >; without altering his top-=items and their ordering,
that is,alt(~;,£) = alt(~},¢) forall £ = 1,...,r, andpos(>~},i) > r + 1 fori = alt(~;,7 + 1). Let
== (=j,>-;) and='= (=}, ~_;). Since the other agents’ inputs have not chanégkMatch(>~) and
MaxMatch (") proceed identically up to the end of stage So if j has been assigned an item by this
time (which happens in both runs) we are done. Otherwis&]arMatch(>'), all of j's top+ items are
unavailable, and sincedemotes in >/, edge(j, ) does not belong to the gragh.,; constructed in stage
r + 1; soj does not obtain or a top+ item under input-". This proves pseudomonotonicity. |

Theorem 4.2. For everye > 0, there is a matching market on which every deterministio®tigm has
rank-approximation factor at leagt — e.

Proof. Let K > 1 be an integer such thg{—~ < 71-. We create an instance with= 2K — 1 players and
items. We specify the firsk preferences of the players; the remaining preferences magtarbitrarily.
Let > denote the resulting input (with arbitrary remaining prefees). Since this is the only input we
consider, we drop the in rank, (o; =) andmaxrank, (>) in the sequel.

r X if ] =,
— Forr =2,..., K — 1, ther-th preference of a playerisitem: { K +r—1; ifj=r—1,
r—1 ; otherwise.

— The first preference of a playgiis: item 1 if j = 1, and itemn otherwise.
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— TheK-th preference of a playeris: item K if j = K — 1, and itemK — 1 otherwise.

First, we claim thatnaxrank, > 2r for all » € [K — 1]. Forr = 1, this is achieved by matching player
1 to item 1, and an arbitrary other player to itemForr = 2,..., K — 1, this is achieved by matching
playerr to itemr, each playey € [r — 1] to item K + j, matching one player froffr 4+ 1,...,n} to item
n andr — 1 other arbitrary players frorfr + 1,...,n} arbitrarily to items in» — 1]. Note that each player
is matched to a top-item in this matching. Alsomaxrankyx = n. This is achieved by matching player
K — 1toitem K, each playey € [K — 2| to item K + j, matching one player frofiX, ... ,n} to itemn,
and the remainind< — 1 players from{ K, ... n} arbitrarily to items in[K — 1].

Now fix a matchingo. We show that ifrank, (o) > maxrank, /2 forr =1,..., K — 1, then we must
haverankx (0) < K < maxrankg /(2 — €). Thus, we cannot havemnk, (o) > maxrank, /(2 — ¢) for all
r € [K].

We show by induction om that if rank,(0) > maxrank, /2 for all ¢ € [r], wherer < K, theno must
match player to item ¢ for all ¢ € [r]. For the base case,ifink; (o) > maxrank; /2 > 1, theno must
match player 1 to item 1 since all other players have iteas their top item. For the induction step, suppose
thatrank,(o) > maxrank, /2 for all ¢ € [r], wherel < r < K. Then, by the induction hypothesis, we
know thato matches playef to item ¢ for all ¢ € [r — 1]. We require thatank, (o) > r + 1. Examining
the preferences of the players{in ..., n}, we see that for player, itemsr andn are the only unmatched
items in his topr list, and for a playey € {r + 1,...,n}, itemn is the only unmatched item ifis top-r
list. Thereforerank, (o) > r 4 1 is only possible ifo matches player to itemr.

Given the above claim, for playejs= K, ..., n, itemn is the only unmatched item in their tag-list,
sorankg (o) < K. [

We now show that randomization is necessary to achieve gogddapproximation via truthful mecha-
nisms. As a warm up, we first prove a lower bounchof 1 on the rank-approximation factor achievable
by truthful no-bossymechanismsZ5]. A no-bossy mechanisfar matching markets is one where no agent
can change his preference and modify the outcome withootnadslifying his own allocation.

Suppose there areitems. Let>-*:= (1,2,...,n) denote the ordering where iteims thei-th ranked
item, for alli € [n]. Let=* o(k — 1, 1), denote the preference list that is identicak-tb except that items
(k — 1) and1 are swapped. That ik — 1) is the top-item,1 is the kth-choice, and itemi is thei-th
choice for alli # 1,k — 1. Givenn agents and any sétC {2,3,...,n}, let = be the preference profile
where each agerit € S has preference-* o(k — 1,1), while eachk ¢ S has preference-*. Thus, >’
is the preference profile where every agent has the samegmeéeorder-* over items. For notational
convenience, we think of a player who is not assigned an itebeing assigned item+ 1, which is lower
ranked than any (true) item [n).

Theorem 4.3.No deterministic truthful no-bossy mechanism for matchmagkets can have rank-approximation
smaller than(n — 1).

Proof. We consider a matching market with(agents and) items. Le¥! be any deterministic truthful no-
bossy mechanism. Suppose tmﬂ(J) assigns items t@/ players. By renaming players if necessary, we
may assume tha’t/l(>@) assigns item to player: for all : € [N], and itemn + 1 to the remaining players.

Consider the input-{¥}. We claim thatM (~{¥}) = M(~?). Due to no-bossinesit suffices to show
that agent’s allocation is the same iM (>~ {*}) and M (=?). Suppose ageritobtains itemi in M (=},
Invoking truthfulness wheh'’s true preference list is-* (and the other players’ preference lists arg, we
obtain thatc =* ¢, that is,k < i. Similarly, if £'s true preference list were* o(k — 1, 1), then truthfulness
dictates that < k. Hence, we have = k.

The above argument can be generalized to show that foSanyn|, we haveM (=5) = M (=5\F) =
M(=?) forall k € S. In particular, M (>~ {2-"}) assigns item to player: for all i € [\/] and leaves the
other players unassigned. So under the preference prdfile-™}, at most one agent, agehtgets his top
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choice; however, assigning every player 1 item j — 1 yields an outcome whene — 1 agents get their
top choice. |

While no-bossiness was crucial above, we show via a morastagatied argument that no deterministic
truthful mechanism can obtain constant rank approximation

Theorem 4.4. Every deterministic truthful mechanism has rank approximeﬂ(blgolg(f%).

Proof. Letn be large enough so thaf := L&%J — 2 > 1. We show that on instances with(agents
and) items, no deterministic truthful mechanism can ham& egproximation better thaii'.

As before, if/\/l(>@) assigns items t@dv players, we may assume that it matches ageatitem for
i € [N], and the remaining players are unassigned (i.e., assigg@dci+ 1). Given agentay,...,a;}
and integers-,...,r, > 1, we let>(a1.71):.(a272).-(ak.7k) denote the preference profile where all agents
other than these,’s have preference order*, while eachu, has preference order* o(ry, 1)). Thatis,a,’s
top choice is itenr,, hisry-th choice is iteml, and hisi-th choice is item for all i = 1 T‘g We show that
there exist agents,, . .., ax anddistinctintegersr, ..., rx € [K], such that, inM(>(a171)(axrx)),
every agent., ..., ax gets an item whose index is larger th&n Since all other agents have the same top
item, the number of agents getting their top item is at mogdthis proves that the rank approximation is at
leastK, since assigning itemy to agenta, for all ¢ € [K], yields an outcome wher& agents obtain their
top-choice item.

To find theseK agents, we proceed iR stages. In stagé we will have a subse$, of agents with
|S¢| > ¢ having the following property. For any< ¢, anyt agents{as,...,a;} C Sy, and for anyt distinct
integersry, ...,r; € [K], M(>(@vr)--(@aem)) gllocates all agents ifi, an item indexed larger thaki.

Note that if we reach stagk’, then we are done due to the following reason. Considerfamagents
ai,...,ax € Sk and anyK distinct integersry,...,rx € [K]. Consider any indeX € [K]|. Let
== (1m0 me) (@t ren)y(@x—1mK-1) gnd == (@) (@) We know thatM (=) allocates
all agents inSx an item indexed larger thaR. This also implies thab := M (-) allocatesa, an item
indexed larger thaik’, otherwise given the preference profité, player/ has an incentive to deviate from
his preference list-* and report-* o(r,, 1). Since this holds for al, it follows thato allocates every agent
ai,--..,ax anitem indexed larger thafi.

We now show how to obtain th&, sets. For < K, the setS, will satisfy the stronger property that
‘Sg‘“% > 2K (the reason for this will become clear later). The base aSe & {K + 1,...,n}, which
satisfies the stated property. Given aSeéat the end of stagé < K we now show how to construct the set
Ser1 € Sy. We construct the following hypergraphi,. The vertices are the agentsSp. The hyperedges

are subsets of vertices of size at m@st 1) constructed as follows. For evefysize subsefay, ..., as} of
Sy, and everya € Sy (which could be the same as one of ths), we add the hyperedde, ..., as, a} if
there exist distinct integers-y, . .., r, € [K] such thatM (>(@1.71).(ae:70)) allocates agent an item with

index at most. Note that the number of hyperedges is at msgt - K**! since there argS,| choices for
eacha;, and K choices for eacl, and once these are fixed, there at migsthoices fora.

Call a subseU C S, independentf no hyperedge is completely contained in it. Observe fas a
valid input to stage/? + 1) if [U| > ¢ + 1: consider any < ¢ + 1 agentsay,...,a; € U and any distinct
integersr,...,r, € [K]. Suppose that(>(@1.m)-(ae11)) gllocates some ageat € U an item with
index at mostK'. Then we must have = ¢, otherwise this would contradict the property assumed,of
and then{aq, ..., as,a} would be a hyperedge, contradicting independendé.of

L L
7+ ‘ 7+

Lemma4.5shows that there is an mdependenthertl C Sy such thatSpyq| > 'S” —-1> 15| P41
where the last inequality follows S|n¢SW+1 > 2K. Slnce]St\tH > 2K forallt < E, we have

2K ’

1

Seal = 18071 /2K > |87 /K > (2) 7 j) > (2)™ faryst
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: 1 i a1
Moreover, ift + 1 < K, then|Sey|72 > (2) @' /(2K)" > (2) % /(2K)K 2. ForK < blg(%% -2,

we have(%)%/(21()1’(‘1 > 2K. Hence|Spy1] > 2K, andif(+1 < K, we haqugHyu% > 2K. Thus,
we obtain thatSk| > 2K. [
1

Lemma 4.5. There exists an independent 8t ; C S, of size|S;1| > 'S‘ZL{m -1

Proof. Let N = |S,|. Recall the number of hyperedges is at migtK ‘!, We first argue that all hyper-
edges are of sizé+ 1. Every hyperedge is of size at ledstA size< hyperedg€a, ..., as} can only arise,
if there are/ distinct integers-, ..., r, € [K] and some € {aq,...,as}, Saya, for notational convenience
such thatM (- (a171)--(a70)) allots ¢ an item indexed less thafi. But the definition ofS, implies that
M(=(a2:72).-(aem0)) gllots a; an item with index larger thai . This violates truthfulness, since agent
has an incentive to misrepo#t* o(r1, 1) when his true preference jis* and obtain a better item.

Consider sampling each vertex Hj with probabilityp = K ! -N_(Hil) to get a random subséf. If
X contains a hyperedge, then we remove all its vertices fkarithe probability that a hyperedge is present
in X is at mostp’*!, since all hyperedges are of si¢e- 1. Therefore, in expectation, the size Xfafter

. 1/6+1
removal is at leagt\" — p/ T IACRHL = N n

4.1 A generalization: matroid markets

In this generalization of matching markets, there is a nidtdd; = (N, Z;) on the agent-selV for each
item 4, and multiple agents may be assigned to itepnovided they form an independent setidf. Here
Z; is a collection of subsets df with the following properties: (iY) € Z;; forall A, B C N (ii)if A€ Z;
andB C A, thenB € Z;; (iii) if A,B € 7, and|A| > |B], then there exists somge A\ B such
that B U {j} € Z;. Clearly, the lower bounds obtained for matching markess &lold in this setting.
Complementing this, we exterfdaxMatch to obtain a pseudomonotone 2-rank-approximation alguorith
for matroid markets. LeL be the set of all items.

Theorem 4.6. There is a pseudomonotor®erank approximation algorithm for matroid markets, and a
mechanism that fully LT-implements it.

Proof. The algorithm is similar tdVlaxMatch. Again fix an agent-ordering and an item-ordering. Consider
some input-.

We again proceed im stages. In stage we consider the “top® graphG, = (N UL, E,), where each
agentj has edges to his topitems. Note that every outcome induces a feasible solutidhdamatroid-
intersectionproblem defined by the following two matroids on the univefse One isM 4, which is the
direct sum of thel/; matroids for ali € L, i.e., asetl C E, isindependentifj : (j,i) € I} € Z, for all
i € L. The second is the partition matraldz () encoding that at most one edgef is incident to each
agentj. Then every outcome induces a set that is independent ingtiand M (r), andmaxrank, ()
is the size of the largest common independent set.

Let M consist of the edges denoting the current (i.e., at theaftathger) assignment of items to agents.
Our algorithm will maintain the invariant that at the end tager, M is amaximalset that is independent in
both M 4 andMp(r). The rank-approximation factor of 2 follows then from thelikaown fact that every
maximal common independent set of two matroids has sizeaat half the size of maximum-cardinality
common independent set; Clai#i/ gives a self-contained proof.

LetI'"(u) denote the neighbors of noden G, andl,(u) := {v : (u,v) € M}. Note thatifM is a
maximal common independent setGf) 1, then for every agenjithat is not assigned an item i, among
j's top+ items hisr-th ranked item is th@nly item to whichj can be possible assigned while preserving
independence in the item’s matroid.
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We consider each iterhand augment™;; (i), the current set of agents assigned to iteto a maximal
subsetJ; C I' (i) that is independent id/;: we initialize J; to I'},(¢). Next, we consider agents in
I'"(4) \ I'};(7) according to the fixed agent-ordering and add agieatJ; if this maintains independence in
M;. Maximality of .J; follows from the matroid property. (In fack; is a maximum-size independent subset
of I'"(4).) Finally, we update\/ to reflect the new assignments in stage

The fact that) is a maximal common independent set\df, and M (r) is immediate: if some edge
(j,1) can be added td/ while preserving independence M4 and Mp(r), thenj was unassigned at the
start of stage: and when we considered iteinj could (and would) have been addedtan the iteration
whenj; was considered.

We have already argued that the above algorithm is a 2-rapteaimation. Pseudomonotonicity of the
above algorithm follows from exactly the same arguments d$heoremd. 1 |

Claim 4.7. Let M1 (U, 7, ), Ma = (U, Z,) be two matroids. Le§ C U be an inclusion-wise maximal set
that is independent in both/; and 5. Let A be a maximum-cardinality set that is independent in bigth
and M. Then|S| > |A]/2

Proof. SupposdS| < |A|/2. LetT), = {e € A: SU{e} € Z;}. SinceA € Z;, by the matroid exchange
property, we havély| > |A| — |S| > |A|/2. Similarly, if T, = {e € A: SU {e} € I,}, then we have
|T>| > |A]/2. But sinceTy, T; C A, this means thdf; N7y # (), and so ife € T} N T3, thene can be added
to S while maintaining independence in baily, and M». This contradicts the maximality of. |

5 Scheduling markets

Recall that here the agents argobs that need to be assigned:-@machines. Each jolphas a private strict
total ordering over the machines, and a publicly-known essing timep;; on machine. An outcome is a
partial assignment of jobs to machines, also called a sébethat has makespan at most a given value
An agent prefers outcometo outcomey’ if he prefers his assigned machinevito that ino’.

We obtain nearly tight results for scheduling markets. $ay &n algorithm is af, 3)-approximation
if it always returns a schedule with rank-approximationtdae: and makespan at mogt’. For parallel
machines j§;; = p; for all 7, j), we give an(O(log n), O(1))-approximation, fully lex-truthfully (LT) im-
plementable algorithm (Theorem?2). We show that this bound i#ght by proving analgorithmic lower
boundshowing that everyo, §)-approximation algorithm for parallel machines must have
a = Q(max{log m,logn}/3) (Theorem5.3). For the setting of general unrelated machines, we devise a
(O(log n), O(l))-approximation algorithm (Theorem4), however we do not know how to achieve this via
a fully LT-implementable algorithm. We leave this as aniguimg open question.

Let N denote the set of jobs. F& C N, let =g denote the restriction of to jobs in S, and
maxrank, (>g) denote the maximum number of jobs frashthat can be assigned to one of their top-
machines with makespan at m@stObserve thatnaxrank, (>-sur) < maxrank, (>g) + maxrank, (>7).

Parallel machines Our results rely on a bucketing argument coupled with Theofe6 for matroid-
markets and some insights from the matroid-intersectiablpm. We divide the seW of jobs intok =
O(logn) disjoint classesVy, Nq,. .., N; such that jobs in each class have roughly the same processing
time. SetNy := {j : p; < I}, andN, == {j : 271 - L < p; <20 Dhforv = 1,... k == [logyn].

Note that ifj ¢ U]E:o Ny, thenp; > T, soj cannot be assigned to any machine in any outcome and is not
counted inmaxrank, (>) for any positionr. We assume for notational convenience tNatloes not contain

any such job in the sequel. It will be convenient to ensuré [tNg) > 1. So we remove some fixed jab

from the IV, set containing it and add it ty.
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Obtaining a good rank-approximation for a claég where? > 1, with makesparO(7') amounts to a
matroid-market problem (in fact, iamatchingproblem) since the makespan bound can be encoded by the
constraint that at mosf*; jobs are assigned to each machine. Any feasible schedulé fgields a feasible
allocation for the corresponding matroid-market probl&ua.Theorent.6yields a pseudomonotorie, 2)-
approximation algorithny, for classN,, and a mechanism\7 thate-implements it, for ale > 0.

Theorem 5.1. One can obtain a deterministic fully LT-implementat#(1), O(log n))-approximation al-
gorithm for parallel-machine markets.

Proof. On input>, we output the schedule obtained by concatenating the stehedhere all jobs inV, are
assigned to their top machine, and all thé>y,) schedules. Note that th¥;-schedule has makespan at
most27. The resulting schedule, denotg@-), has makespa® (7 log n) and rank-approximation factor
2 (sincemaxrank, (>y) < Z’,}ZO maxrank, (>y,)). Fixe > 0. The jobs inN, clearly have no incentive
to lie. It is easy to see then thdtis e-LT implemented by the mechanism that outputs Mgschedule
concatenated with the (random) schedules output by\ttjemechanisms, where we couple the random
choices of all theMj; mechanisms (i.e., their decisions are based on the outcofrtee same random
coins) so thaPr(3 ¢ : Mj(>-n,) # fi(>n,)] < €. [ ]

Theorem 5.2. There is a randomized fully LT—impIementatQ[é(log n), O(l))—approximation algorithm
for parallel-machine markets, where the rank-approximatand makespan bounds hold with probability 1.

Proof. Consider an input-. As before, we assign all jobs iV, to their top machine. Note that simply
picking a classV, with probability% and outputting the concatenation of thig-schedule and; (>, ) is
not enough since this only yield3(%) rank approximation in expectation. Instead, we build ugenebove
ideas and leverage some results about the matroid-intensgmoblem.

Consider the following bipartite graph representing theaatenatiornr of all the f,(>-,) schedules.
We have a node for every machine, and every job ndYjnand an edgéi, j) if j is assigned to machine
i in scheduleo. Now setz;; = % for every edgeg(i, j). DefineA;, := [ﬁ] for all 7,/ and B, :=
| rank, (03 = n\ v, ) /| for all . Consider the following polytope:

P = {y e RIMX(N\No) . Z vij < Aie Vi€ ml, L€ [k]
JEN,

Z Yij = By Vr € [m], 0<y;<1 We[m]>j§éN0}-
Jpos(=5,0(j))<r

We claim thatP has integral extreme points. Any extreme pointfofs defined by a linearly independent
system of tight constraints comprising soﬁ%em yij = A; ¢ equalities whose supports are disjoint, and
somezjzpos(hﬂ(j))gr vij = Br, yi; = 1 equalities whose supports form a laminar family. The camnstr
matrix of such a system thus corresponds to equations cdmungtwo laminar set systems; such a matrix
is known to be totally unimodular (TU) (see, e.@6]), and hence a solution to this system is integral.

Note thatr € P, so it can be expressed as a convex combination of some expremts ofP. Equiva-
lently,  yields a distribution over partial schedules féA\ Vy. LetY be a random schedule, or equivalently
vector inRM*(N\No) " sampled from this distribution. Note thRr[j is assigned irY’] = x;; = + for
j ¢ Np. The makespan of” is at most67" with probability 1. This is becausgj p;Yij < Z? 1(1 +

T lk) 2t . T < kL. + 2T < 6T. Letll be the (random) schedule obtained by concatenating the
Np- -schedule withy’. ThenlI has makespan at mast’ with probability 1. Alsorank, (IT; =) > |No| + B,
with probability 1. NowB, > |maxrank, (> y\n,)/2k]. Finally,

(1)

maxrank, (=) < [No| + maxrank, (= n\ n)
< |No| + max{2k, 4k | maxrank, (> n\n, /2k) ]}
< 4k‘i(|]\70| + B?")v
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where the latter inequality follows sind&/y| > 1. Thus, the randomized algorithgh that outputs the
random schedul#l is an (O(log n), O(l))—approximation with probability 1.

We now proceed as in the proof of Theoref$ and 3.7 to devise a mechanisiM that fully LT-
implementsf. Fixe > 0, ande; > ... > &, such thaty " | ¢, = . Consider input-. LetY” be the
random schedule faN \ NN, for input -y, as obtained above. Mechaniski always assigns jobs iy
to their top machines. For jobs iN \ Ny, it returns schedul®~ with probability 1 — . For eachy ¢ Ny
andr € [m], with probability ==, it returns the schedule wheyeis assigned to its-th ranked machine
alt(>;,), and all other jobs are unassigned. Cleafly(-) = f(>-) with probability at least — «.

Jobs inN, do not benefit by lying. Consider a jgbe N;, where/ > 1. Let >~'= (>;,>_;), where
~iF =i Letx; = xi;(=) andxy; = z;;(=') denote the probabilities thgtis assigned ta under the
random scheduleE = Y~ andY’ = Y~ respectively. Then,

A;; = Pr[j assigned ta in M(>)] — Pr[j assigned ta in M ()]

1
= (1 - E)('xij - w;j) + E : (Epos(>]‘,i) - Epos(>—3,i))'

Considering machines irl the prefererlce order-of let 7 be the fi[st machine such thpbs(h-,j) #*
pos(>~; ,1). Thenpos(>-;,i) < pos(>~4,1). If z; = 0foralli =; 4, thenA;; > 0 forall i =; ¢, and
Az > O, so we are done. Otherwisﬁis assigned to some machiife-; 2in fe(=Y,)- Since all machines
i > i' havepos(-;, i) = pos(=’,4) and f, is pseudomonotone, it must be thas assigned ta” >~ i’ in
Je(-n,)- So% = x;;, and henceAw =0, foralli >; ¢". If i" # ', thenA;; > 0, other\leeA] =0
forall i = i andA;; > 0. Thus, M is lex-truthful. u

Theorem 5.3. There exists an instance of a parallel-machine market whryeschedule wit37 makespan
has rank-approximation factdR(max{log m,logn}/3).

Proof. We create an instance with= O(mInm) jobs as follows. We create a sét") of m jobs of size

(i.e.,p;) T partitioned intoAgl), e ,Afﬁb), where each4§1) consists of a single job whose first preference
is machinei. We create a set(?) of 2(m — 1) jobs of sizeZ partitioned intoA§2), e ,A%), all of which

have machine 1 as their first preference. Eachfé@t has two jobs, both having machimeas their 2nd
preference. In general far< k, we have a setl() of 21 (m — i + 1) jobs of size;L+ partitioned into

AZ(.”, ..., A% all of which have machine as theirr-th preference for = 1,....i — 1. Each setﬁlé’) has
2i—1 jobs all of which have machinéas theiri-th preference. Finally, we have a s&) of 2¥m jobs of
S|ze - partitioned mtoA§C ), . ,Aﬁffb), all having machine as theirr-th preference for = 1,...,k — 1.

Each setAg ) has at leasp* jobs, all of which have machiné as theirk-th preference. The remaining
preferences of the jobs play no role, and may be set arltytraet >~ be the resulting preference profile.
Forr € [k], we havemaxrank, (=) > 2"~'(m —r + 1) + 2¥(r — 1) > 2"~!m obtained by assigning
all jobs inAé’") to machine/ for £ = r,...,m, and any2*(r — 1) jobs fromA%) to machined, ..., r — 1.
Suppose we have a schedualeiith makespamT that achieves: rank approximation. Themank, (o; ) >
el - 2 m for gl = 1,..., k. Lets, be the number of jobs assigned to theth ranked machine i, andt,. be
the number ijObS of size at Ieazsﬂ1 assigned to their-th ranked machine ia. Observe that, > s,— /2"
since the jobs counted # but not in¢, lie in U?:r—i—l A®) | all of which have machine as theirr-th ranked
machine; at mosf2* such jobs can be accommodated within makesiﬁnNow ﬁmT is at least the total
size of all jobs scheduled by, which is at leasp_"_, (s, — 52*) - T > S s st — B2MIT. So




Takingk = log, m, this gives3pmT > L soq > % = Q(logm/B). Also, the number of jobs is at
mostk - 2¥ = O(mlogm), so« is aISOQ(log n/B). [

Unrelated machines We obtain an(O(log n), O(l)) approximation for the general setting of unrelated
machines.

Theorem 5.4. There is a deterministiaéO(log n), 0(1)) approximation algorithm for scheduling markets.

Proof. We will need Lemm&.5stated below. Fix an input. We use a different kind of bucketing argument
where we group ranks that have roughly the same valueagfank, (>). Forr € [m], leto” be the schedule
given by Lemmaéb.5that yields a 2-approximation teaxrank, (>), N, be the set of jobs assigned by,
andn, = |N,|. We may assume that < ns < ...n,,. Defineny = 0. If n,,, = 0, thenmaxrank, (>) =0
for all » € [m], and we return the null assignment. So assume otherwise isetijuel.

Definerg == 0 < r <1y < ... < 1 < rgy1 = m + 1 as follows: r, is the smallest such
thatn, > 4n,,  for{ =1,... k, andn,, < 4n,,. Thus,k < [log,n| andn,, < n, < 4n,, for all
r € [rg,req1) and alld =0,..., k. For? € [k], defineS,, :== N,, \ (UZ I'N, ,): hote thatlS,., | > 2"”

If n,, < 2k forall r, we simply return the assignmesit'. Clearly, thls y|elds &k rank apprOX|mat|on.
Otherwise, lety be the smallest indek such thatn,, > 2k. LetS = U’;:q Sr,. Leto be the schedule
for S, where each joly € S,, is assigned to the maching*(j), for ¢ = q,..., k. LetL; := |{j :
o(j) = i}|. Consider the following bipartite graph, which is similarthe bipartite graph constructed in

the GAP-rounding algorithm2@]. We have a node for every job ifi, and a nod€s, c) for every machine
iande = 1,..., h_f“—qﬂl We sort the jobs assigned toan o in non-increasing,;; order (breaking ties
arbitrarily), and create an edgéi, c), j) if o(j) = i and its position in this ordering lies if{c — 1)(k — ¢+
1)+1,...,¢(k—q+1)}. Let E be the edge-set of this bipartite graph. Consider the fatigyolytope:

0={yeR”: 3 yuos<1 Viemle=1..|ghs],
j:((i,¢),5)EE

|Srf| -
2 Yiehi = h’fq:—l Vi=q,....k,  0<yuag;<1 Y((i0)7)€ E}
((Lc)vj)EE:jEST-Z

(2)

As with the polytopeP (see ()), the constraint-matrix defining an extreme point@fcorresponds to
equations coming from two Iaminar systems, which is TU,&das integral extreme points. Setting
Tlio) = T=erd q+1 for every edge((i, ), j), note thatz € Q. So we can find an integral € Q, which
we interchangeably view as a partial assignmerﬁ.oWe return the schedute obtained by concatenating
o™ with this assignmeny.

The schedule™ has makespan at mdékt By the standard GAP-rounding proof igg], the makespan
of y is at most

k
Thrgm 2 pi=Them- ), D, py<?T
J:0(g

()=t t=q jeSr 0t (j)=i

Sor has makespan at mo3i’. Fix some rank-. If » < r;, thenmaxrank,(>) = 0. If r; < r < 7y,

we haverank,(m;>) > n,, > 1 > n,/2k > maxrank, (> )/4k‘ Otherwise, suppose € [ry,7o41),

where/ > ¢. Thenrank,(m;>) > VS,C—”J > rgng > Sk , where the last inequality follows since

o > maxrank, (=) Sogr hasO(k) rank approximation. [ |

’"Z
re > M, > 2k, and > 157 = 51k

Lemma 5.5. For any preference-profile-, any setS C N, and any rank-, one can efficiently compute a
2-approximation tanaxrank, (>g).
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Proof. Shmoys and Tardo2§] proved the following result about GAP. Lét;; } be “assignment costs” for
assigning jobs to machineshich could also be negativeConsider the following LP, whergindexes the
machines and indexes the jobs.

min Z cijwij (P)
0,
Z tijwij < Li W)
J

zij >0 Vi, j
Tij = 0 VZ,] S.t. tij > L.

[28] showed that a fractional solutianto (P) can be rounded to an integer solutidof cost at most the cost
of z such that the total Ianj ti;Z;; on each machingis at mosL;. Examining their rounding algorithm
more closely, one can infer that the total load on each machinderz is at mostL; if Zj z;; < 1,and at
mostL; + max;.,, ;>0 ti; otherwise.

We apply this result to our problem of approximatingxrank, (>-g) as follows. The set of jobs iS.
Our problem is a prize-collecting problem, which we can cedto GAP by creating a “machind’; for
every jobj € S and setting;,;, = 0 if £ = j andoo otherwise. There is no makespan bound for thgse
machines. For every (regular) machinend jobj, we sett;; = p;; if pos(>;,i) < r andoo otherwise; the
makespan bound faris T'. Finally, our objective is to maximize the number of jobsigised to the regular
machines (with;; < o). In terms of the LPR), constraint 8) now readsy , x;; + z; = 1 for everyj € S,
wherez; indicates ifj is assigned td;;, and the objective function is to maximi2€, >, ¢ zi;.

Applying the GAP-rounding algorithm, we obtain an assigniiewith makespan at mo&il’ such that
rank,(Z; >g) = maxrank,(>g). To turn this into a feasible schedule with makesfigrwe leverage the
stronger property of the rounding algorithm mentioned abdithe load on machingunderz is more than
T, then we know that has at least two jobs assigned to it, and there is a job askitgrienhose removal
decreases the load arto at mostT". We simply remove this job from every overloaded machin@his
reduces the number of jobs assigned to an overloaded maidbyreefactor of at most 2 (sincEj Zij > 2),
SO now we obtain a schedule with makesfamvhere the number of jobs assigned (to one of theirrtop-
machines) is at leashaxrank, (>g)/2. |

6 Mechanisms for general ordinal settings

In this section, we evaluate the strength and flexibilityvymted by the notions of rank approximation and
lex-truthfulness in general ordinal settings. We devis®dglog n)-rank-approximation randomized mech-
anism, and show that this guarantee is tight for randomizedhanisms (Theoren&2 and6.3). We also
observe that deterministic mechanisms cannot in genené\acgood rank approximation. Next, we con-
sider lex-truthfulness and justify our earlier remark tleattruthfulness allows one to circumvent Gibbard’s
impossibility result. We describe a rich class of pseudootame SCFs calletbp-choice SCFswhich thus
lead to (non-unilateral, non-duple) LT mechanisms.

Rank approximation It is easy to see that any deterministic dictatorial SCF hak approximation (at
most)n. Also, theplurality scoring rule ', which returns the outcome that maximizes the number of
agents who have it as their top choice, hask; (fP'(>); =) > -, so its rank-approximation factor is at
mostm. It is not hard to prove a matching lower bound for deterntimisiechanisms.

18



Theorem 6.1. No deterministic mechanism can have rank approximatioteb&ictor thanmin{n, m — 1}
in general ordinal settings.

Proof. Consider a preference profile withagents ana. + 1 outcomes, where the top choices of all agents
are the distinct outcomed,, ..., n}, while the second choice of all agentuis- 1. n

Randomization leads to an exponential improvement (but oke)nbut we do not know how to achieve
this in a lex-truthful manner.

Theorem 6.2. There is a randomize@ (log n)-rank approximation mechanism for general ordinal setsing

Proof. We first describe the mechanism, and then analyze its ranfoxipmation. Fix a preference profile
. For brevity, letn, = maxrank, (>). Leto’ be an outcome withank, (o}; >-) = n,. We use a bucketing
argument where we group ranks that have roughly the sam@lue. Definer; =1 <ry < ... <71 <
rp+1 = m + 1 be such thak,, < n, < 2n,, Vr € [ry,re41) NZ, forall ¢ = 1,...,k Observe that
k < [logy n]. The mechanism chooses an index [£] uniformly at random, and outputs, .

To argue about the rank approximation, consider any raffuppose: € [ry, r¢11). If we choose index
¢, which happens with probability/ &, then at leastank, (o;,; =) > rank;,(o;,; =) = n,, > % agents are
allotted a topr item. SoE[rank, (M (>);>)] > &r. [ |

Theorem 6.3. Every randomized mechanism has rank-approximation fdetbsg n).

Proof. Fix a parametek. We construct an instance with= 25! —2 agents aneh = (k—1)-(2¥+1 —2)+k
outcomes. The agents are divided ihtgroupsAs, . . ., Ay, where|A,| = 2¢. There aré: special outcomes
{o1,...,0x}. The remainingn — k outcomes are partitioned intogroupsOy, . .., O,, each having: — 1
outcomes. We now describe the preference lists. For evamtagn group Ay, outcomeoy is their ¢-th
ranked outcome, and the outcomeginoccupy the other positions j&] \ {¢}; the exact positions of these
outcomes are irrelevant. The outcomes in positiopsk + 1 are also immaterial. Thus, the tépsutcome
sets of agentg andj’ are: disjoint if they are from different groups, and haveatlyaone outcomeg,, in
common, at thé-th position, if they both belong to grouf,. Let > denote this input.

Observe thatnaxrank,(>) = 2" for all » € [k], and the outcome achieving thisds. Furthermore,
rank,.(0) is 2¢ if 0 = o, for £ € [r], and is at most 1 otherwise.

Now consider a randomized mechanism that attains rank gippation o.. Let p, be the probability
with which it returns the outcomey. Let g be the probability with which it returns an outcome{ﬁz1 0;.

Then, by the definition of rank approximation we have >, p, + >y, ¢ - 26 > -2 forallr € [K].
Dividing this inequality by2” and summing over alt = 1,...,k, we obtain thaka < ¢- >F_ (&) +

k ¢ k
D=1 D (Zrd 3+ Y g—) <q- 1+ pe-3<3. Hencepq < 3. m

Lex-truthful mechanisms  Consider any SCF of the forfi(>-) = g({alt(>;, 1) ?:1),Whereg 0" — 0
has the following property: for all

o_j = (01,...,0j-1,0j41,...,0,) € O" 1t and allo € O, if g(o,0_;) = o theng(d’,0_;) = o. We
call such an SCF #op-choice SCFsince it only looks at the top choices of the players. It is imatd to
see that the plurality scoring rul”’ mentioned earlier (with a fixed tie-breaking rule for out@shis an
example of such an SCF. We show thaty top-choice SCF is pseudomonotone, and so by The&éris
fully LT-implementable.

Theorem 6.4. Every top-choice SCF is pseudomonotone, and hence is flHijmplementable.

Proof. Let f be a top-choice SCF defined by O™ — O having the required property. Consider an agent
jrand== (=j,=—;), ='= (=}, =—;). Leto = alt(>;,1). If f(>=) = oor f(>) =f(~'), then we are
done. Otherwise, sincg(>-) # o, we also have (-') # o due to the property of, and alsmos(>;-, 0) >1
(otherwisef (=) = f(>')), and so the pseudomonotonicity condition (DefinitB) is satisfied. |
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A Proofs omitted from Section 3

Proof of Theoren8.4. ClearlyUnivT C StrongT. If p stochastically dominates, thenp lex-dominates;,
soStrongT C LexT. If p lex-dominatesy, thenq cannot stochastically dominate soLexT C WeakT.
We now prove that the various inclusions are strict.

UnivT C StrongT. Fix a playerj. Consider the unilateral mechanistt that returns one of the top
2 outcomes ofj, each with probability%. M is clearly strongly truthful. But it is not universally ttful.
Consider some input= (>;,>_;). If M is a mixture of deterministic truthful mechanisms, thers thi
mixture must assign a probability mass exaétly) deterministic truthful mechanisrist; satisfyingM; (>~
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) = o = alt(>},1); call these type-1 mechanisms. Similarly, it must assigibability mass exactlg to
deterministic truthful mechanismt, satisfyingMs () = o' = alt(>;, 2); call these type-2 mechanisms.

For any preference list, a type-2 mechanism cannot returander the inpu(>;, >_;) due to truth-
fulness, otherwise on inpu#, j has an incentive to lie in the type-2 mechanism and repprtHence, for
any preference Iisat»;, whereo is one of the top two outcomesyerytype-1 mechanism must retusnon
input (-7, ~_;). A symmetric argument shows that for any preferenceHi;Sthereo’ is one of the top
two outcomes, every type-2 mechanism must reton input (-7, - _;).

Now consider some-’;, where the top two outcomes a§ 6 ¢ {o,0'}. Applying the arguments above
we obtain that there are type-3 and type-4 deterministihfiii mechanisms, both of which are assigned
probability mas% (in the mixture yieldingM): the type-3 mechanisms which always retufnwhenever
j’s preference list hag” as one of the top two outcomes, and the type-4 mechanismysakgturno
whenever;’s preference list has as one of the top two outcomes.

Now some mechanismM’ in the mixture yieldingM, must be of multiple types, say type-1 and type-3
for illustration. Then, if~" haso ando” as the top two outcomes gf M’ must return bottv ando” on
input (-, = _;), which cannot happen.

StrongT C LexT. Consider a setting with one player and three outcomes$; c¢. Consider the top-
choice SCFf defined by the following functiony(a) = a, ¢g(b) = g(c) = ¢, which satisfies the property
required forf to be a top-choice SCF. By Theordi, f is pseudomonotone. Le¥ be the LT mechanism
that%-implementsf. Let-= (b, a, c) denoting thab is top-outcome, ang’= (a, b, ). Letp = M(>) and
q = M(>'). Thenp(b) + p(a) < 1 sincef (=) = g(b) = ¢, butq(b) +q(a) > 2 sincef(~') = g(a) = a.
Thus, M is not strongly truthful.

LexT C WeakT. Consider a setting with one player and four outcome$; ¢, d. Let =*= (a,b, ¢, d),
denoting that: is the top outcome. Define the following randomized mechmanig: M (>=*) returnsa with
probability% andb, ¢, d with probability%; on every other input-, M returns one of the top three outcomes
of > with probability%. M is weakly truthful, because ¥ =£>* then M assigns total probability 1 to the
top three outcomes of. If ==>*, then M assigns probabilit)é to the top outcome under>*, whereas
for every other inpuiM assigns probability at mo%tto a.

But M is not lex-truthful: if == (a,b,d, ¢), then by reportinga, b, ¢, d), the player can increase the
probability of his top-outcome from £ to 1. [ |

Proof of Theoren8.7. We mimic the proof of Theoreri.6. For all j, and allr € [m;], fix some outcome
o) € O! form the indifference clas®? of agent;.

We prove part (i) first. Our randomized mechanigvh does the following. On inpuk, it returns
f(>) with probability (1 — ¢); with probability ¢, it picks a random agent and returns outcome? with
probabilitye? /e, wheree} > --- > ¢ > 0 are such thap " < = .

r=

Clearly, M e-implementsf. To prove lex-truthfulness, fix an agehaind consider any'= (=%, =_;),
where-'’#~;. Leto = f(=) andlet’ = f(>='). LetO{1 andO{2 be the indifference classes pfontaining
outcomes ando’ respectively. Also, lep = M(>=), q = M(=').

Considering indifference classes in the preference ortler ;0 let O,Z be the first indifference class
such thatpos(>=;, 0l) < pos(=},01). Leto” = of.. By pseudomonotonicity of, we know that > o’ or
o' ;0. Inthe latter case, we haygO} ) —q(O}) > 0for all ¢ such thav] =, o, andp(07)—q(0?) > 0,
so we are done.

If o =; o, andO], = O], oro” = o, then the above argument still holds. So suppese; o’ and
0 =; . Thenp(O]) — q(0}) > 0 for all ¢ such thaw] =; o andp(O},) — q(0},) > 0, so again we are
done.

Now consider part (ii). LetM be an LT mechanism thatLT implementsf, wherees < % Suppose
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for a contradiction, there is some aggnand~= (=;, =—;) and='= (-, =_;) such thab = f(~) and
o = f(> ) violate the conditions for pseudomonoton|C|ty Then Weerta(v>j o and for every outcome
o' =; o, we havepos(~;,0") = pos(~},0"). Let OJ andOJ be the indifference classes ptontaining
outcomes ando’ respectively. Lep = ( ) andq = M(= ) ' '
SinceM &-LT implementsf, we havep(0y,) < € andq(07,) > q(o') > 1 — ¢, sop(07,) < q(OY,).
Let O,Zl, . 707]7 be the indifference classes pthat are ranked higher thzmz2 under>;, ordered so that
0y =j Oy =i+ = ol,. Sincepos(;,0") = pos(-},0") for all o =; o, Of,,..., 0}, are also the
indifference class of that are ranked higher tha, under~’, and we have?, - o, R ol,. As
in the proof of Theorens.6, this implies thap(07,) = q(OZ,) forall t = 1, ..., ¢, which contradicts the
fact that M is lex-truthful. |

B Quality of known mechanisms for matching markets

In this section, we investigate the rank approximation anettuthfulness of three extensively studied mech-
anisms for matching markets. These emedom serial dictatorshipnechanism (RSD), Galetep-trading-
cycle algorithm(TTCA), and theprobabilistic serialmechanism (PS).

Random Serial Dictatorship Initially all items are marked unallocated. A random peratigh of agents
is sampled and the agents are considered according to tlds &ach agent is allocated his best item among
the unallocated items. This item henceforth is marked atkxt

Top Trading Cycle This appears in a paper by Shapley and Shubif \vho attributed it to David Gale
and is applicable when the number of items equals the nunilzgyemts.

The algorithm starts with an arbitrary assignmemdf agents to items. This assignment, which is called
the initial endowment of agents, is independent of the peefee orders of the agents. Subsequently, the
agents willtradeamong themselves to return the final allocation.

The algorithm then proceeds in rounds. Initially all agests marked active. In each round, one
constructs a directed graph with the active agents as noHeste is an arc from agentto agenty’, if
the itema(5’) is the top choice of agent among the items owned by the active agents, that is, the set
{o(j) : j active}. Note that each agent has out-degree exdctbelf loops are allowed and counted as both
out and in degree). Therefore, there exists at least onetedeycle in the graph. A cycle (self loops are
also cycles) is picked arbitrarily. For each djic;’) in the cycle, we allocate agenfghe itemo(j'). We
mark all agents in this cycle inactive and proceed to the rexid. The algorithm stops when all agents are
marked inactive.

Probabilistic Serial This algorithm is due to Bogomolnaia and Moulif].] We describe the algorithm
when the number of agents, equals the number of items;.

The algorithm first finds dractional matching that is, z;;s for items: and agentg such that each
zij = 0andy ;. @; = 1forall agentsj, and}_ . x; = 1 for all itemsi. By the Birkhoff-von
Neumann theorem, we can find a distribution on matchlngs theththe probability agent is allocated
item: is exactlyz;;. This is the distribution returned by the algorithm.

The algorithm proceeds in rounds. Initially al);’s are0. For any itemi, we denote its capacity as
> jeln] Lij- Any item with capacity strictly less thahis called unallocated. In each round, every agent
points to the best item among the unallocated items. For eaahocated item we simultaneously raise
x;; for all agentsj that point to itemi at thesamerate. This continues till some unallocated item’s capacity
becomesl. At this point we end the round and proceed to the next rour algorithm terminates when
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all items are allocated. Since the procedure maintainthh@Fm] z;; is the same for all agents at the end
we end up with a fractional matching.

A lot of literature exists on all three mechanisms; we pdire teader to survey8(, 1] for a detailed
reference. Before stating the rank approximations andrigkfulness, let us mention some relevant known
facts. RSD is strongly truthful (in fact, it is universallguthful). TTCA is the only deterministic algorithm
among the three. It is known that fanyinitial endowment, the algorithm is truthfuf]. PS is known to
be weakly truthful and not strongly truthfuf], Bhalgat et al §] proved that the ordinal welfare factor (cf.
Section 1.2 of RS and PSD aré/2, which is the best possible. The OWF of TTCAlign, as can be seen
by considering the input where all agents have the samerprefe list.

Rank Approximations of RSD, TTCA, and PS We show that all three mechanisms have ‘bad’ rank
approximation. Rank approximation of TTCA is at leést-1), while RSD and PS have rank approximation
of Q(y/n). Recall thatMaxMatch has rank approximatio®.

We know that TTCA is deterministic and truthful. Itis alsambossy; if an agent changes his preference
but still gets the same item, it implies that in the round whemets allocated an item, the cycle is the same
as before, since no other changes preferences. TherefoneTineorermt.3, we get the rank approximation
is at leastn — 1).

Consider an instance with n agents and: items with preference lists as follows. Let= [\/n].
Agentsl < i < k have itemi as their top choice. Agenis+ 1 < i < n have itemn as their top choice.
These agents are now grouped iktgroupsGh, . . . , G, each group containing/k — 1 agents. Agents in
group G, have item{ as their second choice. All the other choices of all ageniisisaterial and can be
assumed to be arbitrary. Observe thatxrank; (>) = k + 1.

Let’s first take RSD and calculate the expected number oftagemo get their top choice. With— k/n
probability, an agent+1 < j < n shows up as the first agent; he picks iteniNo other agent+1 < j <n
gets his top choice. Henceforth, for ahy< ¢ < k, the probability that a guy i, shows up before agefit
is at leastl — % If that occurs, then ageiitdoesn’t get his top choice. Therefore, the expected nuntber o
agents getting their top choice is at mbst2k? /n+o(n). Thus, setting: = ©(/n), the rank approximation
is Q(y/n).

In PS, the calculation is easier. Fbr< ¢ < k, we getzy = 1 + £ (1 - L) = k=1 For agent

n—k
k+1</{¢<n,weqgetr,, = ﬁ Therefore, the expected number of agents getting theichojce in PS
is preciselyl + @ Settingk = ©(y/n), we get that the rank approximation{i/n).

We do not know if the rank approximation for RSD and P®{s/n) or not.

Lex-Truthfulness of RSD, TTCA, and PS TTCA is truthful and RSD is universally truthful. Therefore
they are lex-truthful as well. PS was shown to be weakly fulithy [7]. We show that in fact PS is lex-
truthful as well. The proof below is akin to the proof of wealdathfulness in ] mentioned above; we
include it for completeness.

Theorem B.1. PS is lex-truthful.

Proof. Consider any preference profite. By renaming items we may assume= (1,2,...,n) for some
agentj. Suppose agentmisreports his preference a§7é>j, and let~":= (%, >~_;). Letk be the first
position at which>; and -, differ. That is, forr < k, alt(~},7) = alt(~;,7) = r. Note thatj has
‘demoted’ & in the misreported preference, that;i:m(%, k) > k. Letp andq be the distributions over
items thatj obtains on reporting-; and>;- respectively. Letr andx’ be the respective fractional matchings.

Observe that since PS has a notion of time (singts are incremented at a certain rate), we can define
x(t) as the assignment at time Sox(0) = 0. Lett, > 0 be the time till which we have (ty) = 2/(to).
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If to is ill defined, thenr = 2’ and sop = q and there’s nothing to prove. We must have that till titpe
agent; points to the same items in both runs, and right after thaaimisageny points to different items in
the two runs. Say at, agent;j pointed to itemk in the original run, and’ in the new run. Observe that alll
itemsr < k have been completely allocated in both runs sijcepointing tok in the original run. Thus,
p(r) = q(r) for r < k sincex(ty) = «'(to).

We claimp(k) > q(k). This will showp lexicographically dominateg. To do so, we need to introduce
some notation. Let* andt’ be the times at whiclk is completely allocated in the original and new run
respectively. Let; be the time at which points tok in the new run. Observig < t; < t’. Also observe
thatxjk =t*—ty andw;k =t — t1.

Now, if ¢ < t*, we getzj;, > x;k and we are done. So we may assuthe- t*. Fort > tg, let
S(t, k) andS’(t, k) be the set of agents pointing to itetrat timet. Observe that PS satisfies the following
monotonicity condition: if an agent points to an item at timéhen he continues to do so till the item is
fully allocated. Using this, one can prove the followingigiawe defer the proof to the end.

Claim B.2. Forall tg <t < t1, |S'(t, k)| > |S(t, k)| — 1, fort; <t < t*, |S'(¢, k)| > |S(¢t, k)|, and for
t* <t <t |9 k)| > |S(t k)|

Using the claim, we now show;;, > w;k Let C denote the capacity of itemat timety. We know that
C < 1. Now, from the run of PS we get

/ﬁw@wmu — (-0 :/WW%JNﬁ @)

to to

Using the claim above and rearranging, we get

t/
m—ng—/\ﬂﬂmw
t*

Now supposdS(t*, k)| = 1, that is, in the original run only one guy points to itédm This must be
agentj. This implies|S(¢, k)| = 0 for t < ty, the time at whichy points tok. In particular, we ge€ = 0,
and thusr;;, = 1. We know thatz’;,, > 0 sincej points tok’ # k in the new run. Therefore;’;, < 1 since
> ker Tjk = 1. Thus, we may assum@(t*, k)| > 1, which implies that, — t; < —(t' —t*). Thus,

ah =t =ty <t"—to = wjp [ |

Proof of ClaimB.2. In fact, we claim that for every item= k, the subseb(¢,i) C S’(¢,4) fortg <t < t'.
This can be proved by induction. Suppose the claim is truermestime; it is true at timey. The next
interesting time is when some item isis completely allocated in one of the runs. By our assumptias
time ¢ occurs in the new run sinc® (¢,7) > S(t,4) for i # k. Atthis point the agents pointing tgpoint to
different items increasing their correspondifif¢, -)s. The same occurs in the original run albeit at a later
time sayt”; however, by monotonicity property’(t”,i) 2 S’(t,4), and thereforéS’(t",i)| > |S(t",7)|.

For the itemk, note that the above argument impli&s(¢, i) \ k| > |S(¢,4) \ k|, and then aftet;, j enters
S'(t, k) as well. [ ]
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