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Welfare Maximization and Truthfulness in Mechanism Designwith
Ordinal Preferences∗

Deeparnab Chakrabarty† Chaitanya Swamy‡

Abstract

We study mechanism design problems in theordinal settingwherein the preferences of agents are
described by orderings over outcomes, as opposed to specificnumerical values associated with them.
This setting is relevant when agents can compare outcomes, but aren’t able to evaluate precise utilities
for them. Such a situation arises in diverse contexts including voting and matching markets.

Our paper addresses two issues that arise in ordinal mechanism design. To design social welfare
maximizing mechanisms, one needs to be able to quantitatively measure the welfare of an outcome which
is not clear in the ordinal setting. Second, since the impossibility results of Gibbard and Satterthwaite [15,
25] force one to move to randomized mechanisms, one needs a morenuanced notion of truthfulness.

We proposerank approximationas a metric for measuring the quality of an outcome, which allows us
to evaluate mechanisms based on worst-case performance, and lex-truthfulnessas a notion of truthfulness
for randomized ordinal mechanisms. Lex-truthfulness is stronger than notions studied in the literature,
and yet flexible enough to admit a rich class of mechanismscircumventing classical impossibility results.
We demonstrate the usefulness of the above notions by devising lex-truthful mechanisms achieving good
rank-approximation factors, both in the general ordinal setting, as well as structured settings such as
(one-sided) matching markets, and its generalizations,matroidandschedulingmarkets.

1 Introduction

A central problem in social choice theory and mechanism design is that of choosing a “good” outcome
by aggregating individuals’ private preferences over outcomes, where individuals are rational agents. A
mechanismimplementing asocial choice function(SCF) needs to elicit the preferences of agents in a truthful
fashion, that is, in a way such that no agent may benefit by misreporting his preferences.

In this paper, we study mechanism-design problems inordinal settings, wherein the preferences are
described by orderings over the set of outcomes. This is in contrast with thecardinal setting, wherein an
agent specifies avalue to each outcome (which determines his preferences). Ordinal settings reduce the
“informational burden” on an agent in the sense that he only needs to be able to compare outcomes rather
than assign values to outcomes justifying his preferences.It is not hard to imagine settings where the former
comparison task is easier, and more aptly describes the situation: examples span the spectrum between
electoral settings and the setting of allocating dormitoryrooms to students.

Two immediate issues arise in ordinal mechanism design. A typical mechanism-design goal is to max-
imize social welfare, but in order to approach this goal in ordinal settings, one needs to first be able to
quantitativelymeasure the social-welfare value of an outcome. Second, since the Gibbard-Satterthwaite
(GS) impossibility result [15, 25] precludes non-trivial deterministic truthful mechanisms, one is forced to
move torandomized mechanismsfor which one needs a more nuanced notion of truthfulness.
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1.1 Our contributions

We propose a novel framework for welfare-maximization and truthfulness for randomized ordinal mecha-
nisms, and devise various near-optimal mechanisms in this framework. Our contributions are threefold.
1) We introduce a metric calledrank approximationfor measuring the quality of an outcome, which in

turn allows us to evaluate mechanisms in terms of their worst-case performance. We show that rank
approximation is a robust notion that is appealing, and can be motivated, from various perspectives.

2) We propose a truthfulness notion calledlex-truthfulnessfor randomized ordinal mechanisms. This is
stronger than a notion studied in the literature, and yet flexible enough that it admits a rich class of mech-
anismsbypassing classical impossibility results. We provide a characterization result for lex-truthfulness,
which we leverage to obtain lex-truthful mechanisms for various ordinal settings. We believe that this
characterization will find application beyond the specific applications that we consider in this paper.

3) We demonstrate the usefulness of the above two notions by devising lex-truthful mechanisms achieving
good rank-approximation factors both in the general ordinal setting, as well as structured settings such as
(one-sided) matching markets, and its generalizations,matroidandschedulingmarkets.

We now elaborate on our contributions. Letn andm denote the number of agents and number of outcomes
respectively, and≻j denote agentj’s ordering over outcomes, which we assume is strict and complete (i.e.,
for any two outcomeso, o′, eithero ≻j o

′ or vice versa).

Rank approximation (Section 3.1) We say that an outcomeo hasrank approximationα for preference
profile ≻, if for everypositionr, the number of agents havingo as one of their top-r outcomes is at least
1
α
· maxrankr(≻), wheremaxrankr(≻) denotesmaxô(number of agents havinĝo as one of their top-r

outcomes). Anα-rank-approximation mechanismis one that always returns anα-rank-approximate out-
come. While the requirement of simultaneously approximatingmaxrankr(≻) for all r seems too stringent,
and even theexistenceof anα-rank-approximate outcomeo, for non-trivialα, seems doubtful, promisingly
(as we elaborate later), we can achieve a2-rank-approximation for matching and matroid markets, anda
randomizedO(log n)-rank-approximation for general ordinal settings.

Rank approximation is a natural, purely ordinal notion withvarious desirable properties. Consider any
cardinal-utility profile~U = (U1, . . . , Un), where eachUj is consistent with≻j, that is,Uj(o) > Uj(o

′) iff
o ≻j o′. Call such a utility profilehomogeneous, if for all r = 1, . . . ,m, all Ujs assign the same value
to their r-th ranked outcome. Anα-rank-approximation outcomeo for ≻ is such that forany consistent
homogeneous utility profile~U , its social welfare,

∑n
j=1 Uj(o), for ~U is at least a1

α
-fraction of the optimum

social welfare for~U . Thus, anα-rank-approximation mechanismsimultaneously yields anα-approximation
to the optimum social-welfare for all consistent homogeneous utility profiles(Theorem3.2).

Consistent homogeneous utilities are also known asscoring rules[31] (also sometimes called positional
scoring roles). A scoring rule assigns a score to each position and returns the outcome with highest total
score; a prominent example is theBorda rule, which gives a score ofm−k to thek-th position. An outcome
is α-approximate with respect to a scoring rule, if its score is at least a1

α
-fraction of the score of any other

outcome. Translated to this setting, we obtain that anα-rank-approximation mechanismsimultaneously
achieves anα-approximation to all scoring rules. In other words, given anα-rank-approximation mecha-
nismM, one need not be overly concerned about which scoring rule ismost suited to the problem, since
M guarantees anα-approximation to all scoring rules!

To place these simultaneous-approximation bounds in perspective, it is useful to consider an even
stronger notion: say that a mechanism has “strong welfare factor” α, if for every consistent (even non-
homogeneous) cardinal-utility profile~U , the mechanism returns anα-approximation to the optimum social
welfare for~U . Not surprisingly, this notion is too strong: it is easy to show that no mechanism (deterministic
or randomized) can have any non-trivial strong welfare factor, even for matching markets.
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Lex-truthfulness (Section 3.2) The classic impossibility results of [15, 25] show that the space of deter-
ministic truthful mechanisms in general ordinal settings is extremely limited, forcing the move to random-
ized mechanisms. When seeking to define a notion of truthfulness for ordinal randomized mechanisms, one
immediately encounters the following issue:how should one extend an agent’s preferences over outcomes
to preferences over distributions of outcomes?The usual approach in the economics literature is to use the
stochastic dominancerelation. Since this does not induce a total order over distributions, one obtains two
notions of truthfulness: (i)strong truthfulness[14], where the truth-telling distribution stochastically dom-
inates any distribution obtained via a misreport; and (ii)weak truthfulness[21, 7], where the truth-telling
distribution is not stochastically dominated by any distribution obtained via a misreport. Gibbard [14] gen-
eralized [15, 25] to show that the space of strongly-truthful mechanisms in general ordinal settings is also
limited, leaving weak-truthfulness as the only viable notion of truthfulness for randomized mechanisms.

We propose a new notion of truthfulness sandwiched (strictly) between the above two notions. A dis-
tribution p lex-dominates a distributionq with respect to ordering≻, if, when considering outcomes in
decreasing order of their ranking in≻, at the first outcomeo wherep andq differ, p assigns a higher proba-
bility to o thanq. Note that lex-dominance induces atotal orderon distributions. We say that a mechanism
is lex-truthful (LT) if no distribution obtained by a misreport lex-dominates the truth-telling distribution.1

We show that lex-truthfulness provides us with ample flexibility in mechanism design and allows us to
circumvent Gibbard’s impossibility theorem. Call a social choice function (SCF)f fully lex-truthfully (LT)
implementableif for all ε > 0, there exists a lex-truthful mechanism that agrees withf with probability at
least(1− ε) on every preference profile. We isolate a property of an SCF, that we callpseudomonotonicity,
thatcompletely characterizesLT-implementability of the SCF (Theorem3.6). Roughly speaking, an SCF is
pseudomonotone if for any preference profile, if an agentj changes his ordering without altering his topk
choices, then the new outcome cannot both be a better outcomefor j and a top-(k + 1) outcome forj (see
Definition 3.5).

This characterization turns out to be instrumental in making lex-truthfulness an amenable notion to work
with, and opens up a host of SCFs to full LT-implementation. We show that various rank-approximation
SCFs that we devise for matching, matroid, and scheduling markets—including the 2-rank-approximation
mechanism for matching markets mentioned earlier—are pseudomonotone. For general ordinal settings, we
identify a rich class of pseudomonotone SCFs which includestheplurality scoring rule. Thus,all of these
SCFs are fully LT-implementable. We view the characterization of lex-truthfulness via pseudomonotonicity
as one of our main contributions, which we believe will find further applications.

Matching, matroid, and scheduling markets (Sections 4and 5) In addition to general ordinal mechanism-
design settings, we also consider various structured settings, and obtain lex-truthful mechanisms with good
rank-approximation factors.

Our most-compelling results are formatching markets(Section 4), which are one of the most well-
studied ordinal settings (see, e.g., the surveys [30, 1]). Here, we haven agents andm items, and outcomes
are matchings of agents to items. Each agent has a strict preference over items, which induces preferences
over matchings based on the item the agent is assigned in a matching. Observe that agents are indifferent
over outcomes that give them the same item. The room allocation problem is an instance of this market.

We devise a simple deterministic 2-rank-approximation pseudomonotone algorithmMaxMatch (The-
orem 4.1), which is therefore fully LT-implementable. In contrast,we show inAppendix B that various
common algorithms proposed for matching markets, such as the top-trading-cycle algorithm, randomized
serial dictatorship, probabilistic serial,all have rank approximation at leastΩ(

√
n). We prove a matching

lower bound of 2 on the rank-approximation factor of deterministic SCFs (Theorem4.2), and obtain super-
constant lower bounds on the rank-approximation factor achievable by deterministic truthful mechanisms.

1We have recently learned that this notion was independentlyproposed by Cho [10], who called it DL-strategyproofness.
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The 2-rank-approximation for matching markets extends tomatroid markets(Theorem4.6), which is the
generalization where we have a matroid on the agent-set for every item, and the (possibly multiple) agents
assigned to an item are required to form an independent set inthat item’s matroid. Besides the increased
modeling power of matroids, this turns out to be a key component of our algorithms for scheduling markets.

In Section 5, we consider scheduling markets. Here the agents are jobs that need to be assigned to
machines. Each job has aprivateordering over the machines, and a public processing time on each machine,
and there is makespan boundT that limits the amount of time available on each machine. An outcome is
a partial assignment of some jobs to machines satisfying themakespan bound. This can be viewed as
the matching problem with aknapsack constraint. For parallel machines, we obtain an LT-mechanism that
always returns anO(log n)-rank-approximation schedule withO(T ) makespan, and we show that this bound
is tight (Theorems5.2 and5.3). We also obtain anO(log n)-rank approximation for unrelated machines
(Theorem5.4), albeit not via an LT mechanism.

1.2 Other related work

The conundrum of social welfare in ordinal mechanisms, which probably has its origins in the Condorcet
paradox [11] that states that it may so happen that a majority of agents prefer outcomea to b, outcomeb to
c, and outcomec to a, was cemented by Arrow’s impossibility theorem [4]. Subsequent to Arrow’s result,
much of the work in social choice theory has focused on Paretooptimality as the sole notion of efficiency
for ordinal mechanisms.

Recent work, mostly in the CS literature, has led to a more nuanced notion of efficiency. Procaccia and
Rosenchein [23] studied the strong welfare factor notion (that they call distortion), and noticed that deter-
ministic mechanisms have unbounded distortion. Boutilieret al. [8] proposed randomized mechanisms and
showed that the strong welfare factor is at mostO(

√
m log∗ m), if the consistent cardinal-utility profile is

normalized. In contrast, our rank approximation results imply O(log n)-approximate outcomes, but under
a stronger restriction on the consistent cardinal utilities. The notion of approximations to scoring rules was
studied by Procaccia [22] where he described strongly truthful mechanisms which2-approximate Borda, but
O(

√
m)-approximate the plurality rule. In contrast, our (non-truthful) mechanismO(log n)-rank approxi-

matesanyscoring rule, and plurality can be arbitrarily well approximated by a lex-truthful mechanism.
Another notion of social welfare in ordinal mechanisms, called ordinal welfare factor (OWF), was re-

cently proposed by Bhalgat et al [6]. A mechanism has OWFβ ∈ [0, 1] if for any outcomeo, at leastβn
agents prefer the outcome returned by the mechanism too. This is in fact aquantificationof the notion
of popular outcomes; an outcome is popular if a majority prefer it to anyother fixed outcome. Note that
popular outcomes have OWF of at least0.5. A popular outcome may not exist, but a popular distribution
over outcomes always does. Popular outcomes were studied byeconomists in the matching setting [13], and
asstrict maximal lotteriesin the general setting [12, 18]; subsequently, a large body of literature has been
developed by computer scientists on popular matchings [2, 17, 16, 19]. The notions of rank approximation
and OWF (and therefore the notion of popularity) are incomparable. That is, there are outcomes with “good”
OWF and “bad” rank approximation, and vice-versa.

Subsequent to the Gibbard-Satterthwaite result, researchers focused on design of randomized mecha-
nisms. As mentioned above, this led to differing notions of truthfulness. Strong truthfulness was proposed
by Gibbard [14]. Postlewaite and Schmeidler [21] proposed weak truthfulness and proved that no weakly
truthful mechanism on4 or more outcomes, can be (ex ante) Pareto optimal if agents are allowed to have
priors on their (own) preferences. Subsequently, Aziz et al[5] removed the prior condition, but prove im-
possibility of only certainkinds of mechanism. We remark that our lex-truthful mechanisms, which are
also weakly truthful, do not contradict these results, since our mechanisms are not Pareto optimal. How-
ever, our mechanisms areε-implementations of Pareto-optimal SCFs, so they satisfy Pareto optimality with
probability at least1 − ε. Thus, we bypass the above impossibility results while sacrificing a modicum of
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Pareto-optimality.
Matching markets are one of the most widely studied examplesof the ordinal setting. There is a vast

amount of literature, and we point to excellent surveys [24, 30, 1]. In Appendix B, we describe three well
known mechanisms in this setting. These are the random serial dictatorship, Gale’s top trading cycle algo-
rithm [27], and the probabilistic serial (PS) mechanism [7]. The first two mechanisms are at least strongly
truthful. PS is weakly truthful, and we show that it is lex-truthful as well; this was also independently
shown by [10, 29]. However, we show that all these three mechanisms have rankapproximation as bad
asΩ(

√
n). In contrast, we obtain a fully LT-implementable 2-rank-approximation mechanism using our

pseudomonotone 2-rank-approximation algorithmMaxMatch.

2 Preliminaries

In the generalordinal mechanism designsetting, we have a setN of n agents, and a setO of m outcomes
(or alternatives). We use the terms agent and player interchangeably. Each agentj ∈ N has aprivate
complete preference list or ordering�j over outcomes, that is,o �j o

′ or o′ �j o for everyo, o′ ∈ O. This
is typically referred to asordinal utilities/preferences, to distinguish them fromcardinal utilities wherein
the utility function assigns a value to each outcome. LetΣj denote the publicly-known set of allowed
preference lists for agentj, andΣ :=

∏n
j=1Σj . A preference profile is a combination�= (�1, . . . ,�n)

of agents’ preference lists. Fork ∈ Z+, we use[k] to denote the set{1, . . . , k}. A preference list is called
strict, and denoted≻, if there are no indifferences: exactly one ofo ≻ o′ ando′ ≻ o holds for every two
distinct outcomeso, o′ ∈ O. Given a strict preference≻, we will sometimes sayo � o′ to denote that
o ≻ o′ or o = o′. Given a preference list≻, let alt(≻, r) ∈ O denote ther-th ranked outcome in≻, and
pos(≻, o) ∈ [m] denote the rank of outcomeo in ≻. For a tuplex = (x1, . . . , xn), we usex−j to denote
(x1, . . . , xj−1, xj+1, . . . , xn). Similarly, letΣ−j :=

∏

k 6=j Σk.
In addition to the general setting mentioned above, we consider three specific mechanism-design set-

tings in this paper: one-sidedmatching markets, which have been studied extensively in the literature (see,
e.g., [30, 1]) and two generalizations of these,matroid marketsandscheduling markets, that we introduce.

Matching markets (Section 4) We naven agents andm items. Each agentj has a strict preference≻j

over them items. The outcomes are matchings of agents to items. We say that an outcomeM assigns an
agentj the “null” item ∅ to denote that he is not assigned an item inM ; we seti ≻j ∅ for every itemi. An
agent is indifferent between matchingsM andM ′ if they allot him the same item (counting∅ as an item),
and otherwise, prefersM toM ′ if he prefers the item allotted to him inM to the item allotted to him inM ′.

Matroid markets ( Section 4.1) We again haven agents who have a strict preference overm items. We
also have a matroidMi = (N,Ii) on the setN of agents, for each itemi ∈ [m]. An outcome is an allocation
that assigns at most one item to each agentj such that, for each itemi, the set of agents allotted itemi is an
independent set ofMi. Note that multiple agents may be allocated the same item. Anagent’s ordering over
outcomes is induced by his ordering of the items as in the setting of matching-markets. It is easy to see that
a matching market is the special case whereMi encodes that at most one agent may be assigned to itemi.

Scheduling markets (Section 5) The agents aren jobs that need to be scheduled onm machines, where
the machines are in generalunrelated. Each jobj possesses aprivate strict complete preference order≻j

over the machines, and has apublicly-knownprocessing timepij on machinei. Furthermore, there is a bound
T on the maximum load allowed on any machine (i.e., makespan).An outcome is an (partial) assignment
of some jobs to machines that respects the makespan bound. The ordering over outcomes is induced by the
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ordering over machines as in the above two cases. The parallel machines setting is the case wherepij = pj
for every machinei and jobj.

Note that in the above three markets, agents’ preferences over outcomes arenotstrict; however, for each
agentj, the outcome-set may be partitioned intoindifference classessuch thatj is indifferent between the
outcomes in an indifference class, and has a strict orderingover the indifference classes. Our framework
and results apply to such settings with cosmetic notationalchanges (seeSection 3.3), but we stick for the
most part to the setting of strict preferences for notational ease.

A social choice function(SCF) is a functionf : Σ 7→ O. In settings with no monetary transfers, there is
no formal distinction between an SCF and adeterministicalgorithm ordirect-revelationmechanism, which
maps the preference profile given by the agents’ reported preference lists to an outcome. An SCFf is said
to be implementableor truthful if for every playerj, every≻j ,≻′

j∈ Σj, and every≻−j∈ Σ−j, we have
f(≻j,≻−j) �j f(≻′

j,≻−j); that is, no agent benefits by misreporting his preference list.
A randomized mechanismis allowed to output a distribution (also called alottery) over outcomes. Let

L(O) denote the collection of distributions over the outcome-set O. A randomized mechanism is formally
then a function mapping preference profiles to distributions inL(O). We sometimes refer to a mechanism
that works with ordinal preferences as an ordinal mechanism.

Definition 2.1. A randomized mechanismM is said toε-implementan SCFf (or thatf is ε-implementable
by M), if Pr[M(≻) = f(≻)] ≥ 1 − ε for all ≻∈ Σ, where the probability is over the random choices of
M. We say that a family{Mε} of mechanismsfully implementsf if for all ε > 0, Mε ε-implementsf .
(This is in the same spirit as the notion of virtual implementation in Nash equilibrium [20, 3].)

Truthfulness for randomized mechanisms may be defined in various ways. The strongest notion is
universal truthfulness, wherein a randomized truthful mechanism is a randomization (or mixture) over de-
terministic truthful mechanisms, where the mixture weights are input-independent. A somewhat weaker
notion is obtained by considering the stochastic dominancerelation. Given an ordering≻ over O, and
two lotteriesp,q ∈ L(O), we say thatp (first-order)stochastically dominatesq with respect to≻, if
∑

ℓ≤i p(alt(≻, ℓ)) ≥ ∑

ℓ≤i q(alt(≻, ℓ)) for all i = 1, . . . ,m. Since stochastic dominance does not induce
a total ordering onL(O), this yields two notions of truthfulness that have been studied in the literature.

Definition 2.2. A randomized mechanismM is said to be:

• strongly truthful[14]: if M(≻j,≻−j) stochastically dominatesM(≻′
j,≻−j) with respect to≻j, for

all j, all ≻j,≻′
j∈ Σj , and all≻−j∈ Σ−j.

• weakly truthful[21, 7]: if M(≻j ,≻−j) is not stochastically dominatedbyM(≻′
j ,≻−j) with respect

to ≻j, for all j, all ≻j ,≻′
j∈ Σj, and all≻−j∈ Σ−j .

A universally truthful mechanism is also strongly truthful, and in fact, this inclusion is strict (Theo-
rem 3.4). Gibbard [14] extended the impossibility result of [15, 25] to show that the space of strongly
truthful mechanisms is also rather limited. A deterministic mechanism is: (i)dictatorial if there exists
j ∈ N such that the mechanism’s output is alwaysj’s top choice; and (ii)duple if the mechanism’s range
f(Σ) consists of at most two outcomes. A (deterministic or randomized) mechanism isunilateral if there
exists some fixedj ∈ N such that the mechanism’s output depends only onj’s (reported) preference list.

Theorem 2.3. (Gibbard-Satterthwaite and Gibbard impossibility results) (i) If m ≥ 3 andf(Σ) = O, then
f is truthful iff it is dictatorial. (ii) Any strongly truthful mechanism is a mixture of truthful unilateral and
deterministic truthful duple mechanisms with input-independent mixture weights.

Theorem2.3 leaves weak truthfulness as the only notion that potentially allows for some sophisticated
mechanisms. InSection 3.2, we propose a stronger notion of truthfulness and show that this is flexible
enough that one canbypass Gibbard’s impossibility resultand obtain various interesting mechanisms includ-
ing, in particular, mechanisms that yield “good” social welfare under the metric we introduce inSection 3.1.
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3 Rank approximation and Lex-truthfulness

3.1 Welfare in ordinal settings: rank approximation

We introduce a notion of social welfare that we callrank approximation. Given a preference profile≻= (≻1

, . . . ,≻n), thei-rank of an outcomeo ∈ O in ≻, denotedranki(o;≻), is the number of agents havingo in
their topi choices:ranki(o;≻) =

∣

∣{j : pos(≻j, o) ≤ i}
∣

∣. Definemaxranki(≻) := maxo∈O ranki(o;≻).

Definition 3.1. A randomized mechanismM is anα-rank-approximationmechanism, if for every prefer-
ence profile≻, we haveE

[

ranki(M(≻);≻)
]

≥ maxranki(≻)/α for all i = 1, . . . ,m, where the expecta-
tion is taken over the random choices ofM. We say thatα is the rank-approximation factor ofM.

As mentioned in the Introduction, rank approximation is an appealingly robust notion from various
perspectives. A utility functionU is consistent with a preference ordering≻ if U(o) > U(o′) whenever
o ≻ o′. A collection of cardinal utility functions(U1, . . . , Un) consistent with a preference profile≻ is
calledhomogeneousif for all i ∈ [m], the value that an agent assigns to hisi-th choice is the same across all
agents, that is,Uj(alt(≻j, i)) = Uj′(alt(≻j′ , i)) for all i ∈ [m], j, j′ ∈ N .

An α-rank-approximation mechanism yields anα approximation to social welfare foranyhomogeneous
cardinal-utility profile consistent with the agents’ preferences.

Theorem 3.2. Let M be anα-rank-approximation randomized mechanism. Then, for every preference
profile≻, we haveE

[
∑

j∈N Uj

(

M(≻)
)]

≥ 1
α
·maxo∈O

∑

j∈N Uj(o) for any homogeneous utility profile
(U1, . . . , Un) consistent with≻.

Proof. Let p = M(≻). Let U(i) be the common value ofUj(alt(≻j , i)). Definerank0(o;≻) = 0 for all
o ∈ O, andU(m+ 1) = 0. Let o∗ = argmaxo∈O

∑

j∈N Uj(o). ThenE
[
∑

j∈N Uj

(

M(≻)
)]

is

∑

o∈O

p(o)

m
∑

i=1

(

ranki(o;≻)− ranki−1(o;≻)
)

U(i) =
∑

o∈O

p(o)

m
∑

i=1

ranki(o;≻)
(

U(i)− U(i+ 1)
)

=

m
∑

i=1

(

U(i)− U(i+ 1)
)

E
[

ranki(M(≻);≻)
]

≥ 1

α
·

m
∑

i=1

(

U(i)− U(i+ 1)
)

ranki(o
∗;≻) =

1

α
·
∑

j∈N

Uj(o
∗).

�

Consistent homogeneous utilities may be equivalently viewed as ascoring rule; Viewed from this
perspective, Theorem3.2 shows that anα-rank-approximation mechanismsimultaneously achieves anα-
approximation to all scoring rules.

In fact, rank approximation satisfies an even more general robustness property. Associate with each
outcomeo anm-vector called itshistogram, given byhist(o;≻) = {ranki(o;≻)}i∈[m]. Then the rank-
approximation factor of an outcomeo is g

(

hist(o;≻);≻
)

, whereg(x;≻) := mini∈[m]
xi

maxranki(≻) . It is
not hard to see thatg is a concave function ofx and non-decreasing in each coordinate. A deterministic
α-rank-approximation mechanism outputs an outcomeo whoseg-value,g

(

hist(o;≻);≻
)

, is at least1
α

for
every input≻.

Now supposeh(x;≻) is anyconcave non-decreasing function and we measure the value ofan outcomeo
by h

(

hist(o;≻);≻
)

. This yields a natural SCF fh, where fh(≻) is
argmaxo′∈O h

(

hist(o′;≻);≻
)

. Note that scoring rules correspond to the special case where h(·) is lin-
ear with all coefficients non-negative. Analogous toα-rank-approximation, we can define an SCFf ′ to be
anα-approximation forfh if (h-value off ′(≻)) ≥ 1

α
· (h-value offh(≻)) for all ≻.

An deterministicα-rank-approximation mechanismsimultaneouslyachieves anα-approximation mech-
anism forall such histogram-based concave SCFs: ifo is the outcome returned, we havehist(o;≻) ≥
1
α
· hist(o′;≻) coordinate-wise for anyo′ ∈ O. Sinceh is non-decreasing and concave, this implies that

h
(

hist(o;≻);≻
)

≥ 1
α
·maxo′∈O h

(

hist(o′;≻);≻
)

= 1
α
· fh(≻).
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3.2 Truthfulness for randomized ordinal mechanisms: lex-truthfulness

We propose a new notion for truthfulness relying on lexicographic ordering. Given an ordering≻ overO,
and two lotteriesp 6= q ∈ L(O), p lexicographically dominatesq with respect to≻, if there existsi ∈ [m]
such thatp(alt(≻, i)) > q(alt(≻, i)) andp(alt(≻, ℓ)) = p(alt(≻, ℓ)) for all ℓ = 1, . . . , i − 1. Note that
lex-dominance imposes atotal orderonL(O). This motivates the following definition of truthfulness.

Definition 3.3. A randomized mechanismM is calledlex-truthful(LT) if for all j ∈ N , all≻j,≻′
j∈ Σj, and

all ≻−j, we have that eitherM(≻j ,≻−j) = M(≻′
j ,≻−j), or M(≻j ,≻−j) lexicographically dominates

M(≻′
j ,≻−j) with respect to≻j .

Observe that ifp stochastically dominatesq, thenp lex-dominatesq as well. Since lex-dominance is a
total order, this implies that ifp lex-dominatesq, thenq cannot stochastically dominatep. We obtain the
following hierarchy between the various notions of truthfulness for randomized ordinal mechanisms.

Theorem 3.4. LetUnivT, StrongT, WeakT, LexT denote the classes of universally-, strongly-, weakly-,
and lex- truthful mechanisms respectively. ThenUnivT ( StrongT ( LexT ( WeakT.

We defer the proof of Theorem3.4to Appendix A. We shorten “implementable by a lex-truthful mech-
anism” to “lex-truthfully (LT) implementable” in the sequel. We show that lex-truthful implementability
is equivalent to a property of the social-choice function that we callpseudomonotonicity. This character-
ization immediately opens up a host of SCFs that are fully LT-implementable. We heavily exploit this in
Sections 4and 5 to show that the rank-approximation SCFs that we devise for various problems are fully
LT-implementable. InSection 6, we leverage this to show that an interesting class of SCFs ingeneral ordinal
settings are fully LT-implementable.

Definition 3.5. A social choice functionf is pseudomonotone(or satisfiespseudomonotonicity) if the fol-
lowing holds. Consider any playerj, ≻−j∈ Σ−j, and≻j,≻′

j∈ Σj. Let o = f(≻) ando′ = f(≻′). Then,
either (i)o �j o

′, or (ii) there is an outcomeo′′ such thato′′ ≻j o
′ andpos(≻j, o

′′) < pos(≻′
j , o

′′).

A useful way to view pseudomonotonicity is as follows: if a player’s deviation leaves his firstk prefer-
ences unaltered, then the deviation cannot both yield him a better outcomeanda top-(k + 1) outcome.

Theorem 3.6. (i) Let f be a pseudomonotone SCF. Thenf is ε-implementable by a lex-truthful mechanism
for anyε > 0; that is,f is fully lex-truthfully implementable.
(ii) Conversely, iff is ε-LT implementable for someε < 1

2 , thenf is pseudomonotone.

Proof. First consider part (i). Givenε > 0, one can findε1 > ε2 > · · · > εm > 0 such that
∑

i εi = ε.
Consider the randomized mechanismM that on input≻, returnsf(≻) with probability (1 − ε), and with
probabilityε it chooses a random agenta and returns hisi-th preference with probabilityεi/ε.

It is clear by definition thatM ε-implementsf . To prove lex-truthfulness, fix an agentj and consider
any≻′= (≻′

j,≻−j), where≻′
j 6=≻j. Let o = f(≻) and leto′ = f(≻′). Also letp = M(≻), q = M(≻′).

Let 1(A) be 1 ifA is true, and 0 otherwise. For any outcomeô, we have

p(ô)− q(ô) =
1

n

(

εpos(≻j ,ô) − εpos(≻′
j ,ô)

)

+ 1(ô = o) · (1− ε)− 1(ô = o′) · (1− ε).

Considering outcomes in the preference order of≻j, let o′′ be the first outcome such thatpos(≻j, o
′′) 6=

pos(≻′
j , o

′′). Thenpos(≻j, o
′′) < pos(≻′

j, o
′′). By pseudomonotonicity off , we know thato �j o′ or

o′′ ≻j o′. In the latter case, we havep(ô) − q(ô) ≥ 0 for all ô �j o′′ andp(o′′) − q(o′′) > 0, so we are
done. In the former case, ifo = o′ or o′′ �j o, then the same argument holds. So supposeo ≻j o′′ and
o ≻j o′. Thenp(ô) − q(ô) ≥ 0 for all ô �j o andp(o) − q(o) > 0, so again we are done. (Note that
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mechanismM maps distinct inputs to distinct lotteries, and therefore it satisfies a slightly stronger version
of lex-truthfulness: the truth-telling lottery lex-dominates (i.e., isstrictly superior to) a lottery obtained via
a misreport.)

We now prove part (ii). LetM be an LT mechanism thatε-LT implementsf , whereε < 1
2 . Suppose

for a contradiction, there is some agentj, and≻= (≻j,≻−j) and≻′= (≻′
j ,≻−j) such thato = f(≻) and

o′ = f(≻′) violate the conditions for pseudomonotonicity. That is, wehaveo′ ≻j o and for every outcome
o′′ ≻j o

′, we havepos(≻j, o
′′) ≥ pos(≻′

j , o
′′). This means thatpos(≻j, o

′′) = pos(≻′
j , o

′′) for all o′′ ≻j o
′.

Let p = M(≻) andq = M(≻′).
SinceM ε-LT implementsf , we havep(o′) ≤ ε andq(o′) ≥ 1 − ε, sop(o′) < q(o′). Let o1, . . . , or

be the outcomeso′′ such thato′′ ≻j o′ listed in decreasing preference order according to≻j . Since
pos(≻j , o

′′) = pos(≻′
j , o

′′) for all o′′ ≻j o′, we haveoℓ ≻′
j o′ for all ℓ ∈ [r], and the ordering of the

oℓs is the same in≻j and≻′
j. We claim thatp(oℓ) = q(oℓ) for all ℓ = 1, . . . , r, which contradicts the fact

thatM is lex-truthful.
We prove the claim by induction onℓ. Considering≻j to be j’s true preference list, we must have

p(o1) ≥ q(o1), and considering≻′
j to bej’s true preference list, we must haveq(o1) ≥ p(o1). Suppose

thatp(ok) = q(ok) for k = 1, . . . , ℓ− 1. Again considering≻j and≻′
j bej’s true preference lists in turn,

we obtain thatp(oℓ) = q(oℓ). �

3.3 Settings with indifferences

As noted earlier, many of the settings we consider involve non-strict preferences. In these settings, the out-
come set is partitioned intoindifference classesOj

1, . . . , O
j
mj for each agentj. Agentj is indifferent between

any two outcomes in the same indifference class, and has a strict complete ordering over his indifference
classes that specifies his ordering between two outcomes in different classes. Formally, given�j∈ Σj, we
definepos(�j, o) = r ∈ [mj ] if o lies in the indifference class ofj rankedr under�j, andalt(�j, r) ⊆ O
is now the indifference class ofj rankedr under�j (that is,{o : pos(�, o) = r}). The preferences induced
over outcomes are then:o �j o′ iff pos(�j, o) ≤ pos(�j , o

′), ando ≻j o′ iff pos(�j , o) < pos(�j, o
′).

Say thato ∼j o
′ if o ando′ belong to the same indifference class ofj.

One requires mostly notational changes to extend our framework and results to this more-general setting.
With the above notation in place, the definitions ofranki(o;�) (as|{j : pos(�j, o) ≤ i}|, maxranki(≻),
rank-approximation (Definition3.1) and pseudomonotonicity (Definition3.5) remain unchanged.

We extend lex-dominance and lex-truthfulness as follows. Since players have indifference classes it
is not meaningful to consider probabilities assigned to individual outcomes. Instead, we aggregate the
probability assigned to an indifference class and define lex-dominance and lex-truthfulness by considering
these aggregate probability vectors. Given a lotteryp ∈ L(O) andS ⊆ O, definep(S) :=

∑

o∈S p(o).

and letp′ be the aggregated probability vector
(

p′(j, r) := p(Oj
r)
)

j∈N,r∈[mj ]
. Given�j∈ Σj, and lotteries

p 6= q ∈ L(O), we say thatp lex-dominatesq with respect to�j if there existsr ∈ [mj ] such that
p′(j, r) > q′(j, r) andp′(j, ℓ) = q′(j, ℓ) for all ℓ = 1, . . . , r − 1. Then, as in Definition3.3, a mechanism
M is lex-truthful if for all�, all j ∈ N and all�′

j∈ Σj, either the aggregated probability vectors ofM(≻)
andM(�′

j ,�−j) are equal, orM(≻) lex-dominatesM(�′
j,�−j) with respect to�j.

We can now mimic the proof of Theorem3.6 to prove the following analogue for the above setting,
showing that pseudomonotonicity is necessary and sufficient for full LT-implementability. The proof appears
in Appendix A.

Theorem 3.7. (i) Let f be a pseudomonotone SCF. Thenf is fully lex-truthfully implementable.
(ii) Conversely, iff is ε-lex-truthfully implementable for someε < 1

2 , thenf is pseudomonotone.
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4 Matching markets

Recall that in a matching market there aren agents andm items, and outcomes are matchings of agents to
items. Each agentj has a strict total ordering over items, which induces his preferences over outcomes:j
prefers outcomeo to o′ if he prefers his allotted item ino to the one ino′.

We show inAppendix Bthat various common mechanisms proposed in the literature for matching mar-
kets all have bad rank approximation. In contrast, we devisea simple deterministic algorithm,MaxMatch,
that is a pseudomonotone,2-rank-approximation algorithm, and hence, yields an LT mechanism (Theo-
rem 4.1). We complement this by showing two lower bounds. Theorem4.2 shows that2 is the best rank
approximation achievable byanydeterministic algorithm, proving the tightness of our positive result. Next,
Theorems4.3 and4.4 demonstrate limitations ofdeterministictruthful mechanisms for matching markets
by showing that such mechanisms cannot achieve any constantrank approximation.

Algorithm MaxMatch Fix a tie-breaking rule over agents. On input≻, MaxMatch allocates items to
agents inm stages. In stager, we consider the bipartite graphGr with agents and items as vertices, and
an edge from agentj to item i, if i is a top-r item of agentj. Note thatmaxrankr(≻) is precisely the size
of the maximum matching inGr. Let M denote the current matching of agents to items (which is∅ when
r = 1), which is a matching inGr. We maintain that at the beginning of stager, M is amaximal matching
in Gr−1; observe this is true whenr = 1. SinceM is amaximal matchingin Gr−1, an agent has an edge to
at most one item inGr \M , whereGr \M is the graph obtained fromGr by deleting the nodes matched
byM . For every unmatched itemi that has non-zero degree inGr \M (i.e., i is an unmatched item that is a
top-r item of some unmatched agent) we use our tie-breaking rule topick an agentj ∈ Gr \M ; we assign
item i to j and updateM . Thus,M is updated to a maximal matching inGr. We output the matching at the
end ofm stages.

Theorem 4.1. MaxMatch a pseudomonotone,2-rank approximation algorithm for matching markets, and
hence is fully LT-implementable.

Proof. The 2-rank-approximation guarantee ofMaxMatch follows immediately from the fact thatMaxMatch

maintains a maximal matching in the “top-r” graphGr for all r, and the size of any maximal matching is at
least half the size of a maximum matching, and thus at leastmaxrankr(≻)/2.

Fix an agentj. Suppose thatj deviates from≻j to≻′
j without altering his top-r items and their ordering,

that is,alt(≻j , ℓ) = alt(≻′
j, ℓ) for all ℓ = 1, . . . , r, andpos(≻′

j , i) > r + 1 for i = alt(≻j, r + 1). Let
≻= (≻j ,≻−j) and≻′= (≻′

j ,≻−j). Since the other agents’ inputs have not changed,MaxMatch(≻) and
MaxMatch(≻′) proceed identically up to the end of stager. So if j has been assigned an item by this
time (which happens in both runs) we are done. Otherwise, inMaxMatch(≻′), all of j’s top-r items are
unavailable, and sincej demotesi in ≻′, edge(j, i) does not belong to the graphGr+1 constructed in stage
r + 1; soj does not obtaini or a top-r item under input≻′. This proves pseudomonotonicity. �

Theorem 4.2. For everyǫ > 0, there is a matching market on which every deterministic algorithm has
rank-approximation factor at least2− ǫ.

Proof. LetK ≥ 1 be an integer such thatK2K−1 ≤ 1
2−ǫ

. We create an instance withn = 2K−1 players and
items. We specify the firstK preferences of the players; the remaining preferences may be set arbitrarily.
Let ≻ denote the resulting input (with arbitrary remaining preferences). Since this is the only input we
consider, we drop the≻ in rankr(o;≻) andmaxrankr(≻) in the sequel.

– Forr = 2, . . . ,K − 1, ther-th preference of a playerj is item:







r ; if j = r,
K + r − 1 ; if j = r − 1,
r − 1 ; otherwise.

– The first preference of a playerj is: item 1 if j = 1, and itemn otherwise.
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– TheK-th preference of a playerj is: itemK if j = K − 1, and itemK − 1 otherwise.

First, we claim thatmaxrankr ≥ 2r for all r ∈ [K − 1]. Forr = 1, this is achieved by matching player
1 to item 1, and an arbitrary other player to itemn. For r = 2, . . . ,K − 1, this is achieved by matching
playerr to itemr, each playerj ∈ [r − 1] to itemK + j, matching one player from{r + 1, . . . , n} to item
n andr− 1 other arbitrary players from{r+1, . . . , n} arbitrarily to items in[r− 1]. Note that each player
is matched to a top-r item in this matching. Also,maxrankK = n. This is achieved by matching player
K − 1 to itemK, each playerj ∈ [K − 2] to itemK + j, matching one player from{K, . . . , n} to itemn,
and the remainingK − 1 players from{K, . . . , n} arbitrarily to items in[K − 1].

Now fix a matchingo. We show that ifrankr(o) > maxrankr /2 for r = 1, . . . ,K − 1, then we must
haverankK(o) ≤ K ≤ maxrankK /(2 − ǫ). Thus, we cannot haverankr(o) > maxrankr /(2 − ǫ) for all
r ∈ [K].

We show by induction onr that if rankℓ(o) > maxrankℓ /2 for all ℓ ∈ [r], wherer < K, theno must
match playerℓ to item ℓ for all ℓ ∈ [r]. For the base case, ifrank1(o) > maxrank1 /2 ≥ 1, theno must
match player 1 to item 1 since all other players have itemn as their top item. For the induction step, suppose
that rankℓ(o) > maxrankℓ /2 for all ℓ ∈ [r], where1 < r < K. Then, by the induction hypothesis, we
know thato matches playerℓ to item ℓ for all ℓ ∈ [r − 1]. We require thatrankr(o) ≥ r + 1. Examining
the preferences of the players in{r, . . . , n}, we see that for playerr, itemsr andn are the only unmatched
items in his top-r list, and for a playerj ∈ {r + 1, . . . , n}, itemn is the only unmatched item inj’s top-r
list. Therefore,rankr(o) ≥ r + 1 is only possible ifo matches playerr to itemr.

Given the above claim, for playersj = K, . . . , n, itemn is the only unmatched item in their top-K list,
sorankK(o) ≤ K. �

We now show that randomization is necessary to achieve good rank approximation via truthful mecha-
nisms. As a warm up, we first prove a lower bound ofn − 1 on the rank-approximation factor achievable
by truthful no-bossymechanisms [25]. A no-bossy mechanismfor matching markets is one where no agent
can change his preference and modify the outcome without also modifying his own allocation.

Suppose there aren items. Let≻∗:= (1, 2, . . . , n) denote the ordering where itemi is thei-th ranked
item, for all i ∈ [n]. Let ≻∗ ◦(k − 1, 1), denote the preference list that is identical to≻∗ except that items
(k − 1) and1 are swapped. That is,(k − 1) is the top-item,1 is thekth-choice, and itemi is the i-th
choice for alli 6= 1, k − 1. Givenn agents and any setS ⊆ {2, 3, . . . , n}, let ≻S be the preference profile
where each agentk ∈ S has preference≻∗ ◦(k − 1, 1), while eachk /∈ S has preference≻∗. Thus,≻∅

is the preference profile where every agent has the same preference order≻∗ over items. For notational
convenience, we think of a player who is not assigned an item as being assigned itemn+ 1, which is lower
ranked than any (true) item in[n].

Theorem 4.3.No deterministic truthful no-bossy mechanism for matchingmarkets can have rank-approximation
smaller than(n− 1).

Proof. We consider a matching market withn (agents and) items. LetM be any deterministic truthful no-
bossy mechanism. Suppose thatM(≻∅) assigns items toN players. By renaming players if necessary, we
may assume thatM(≻∅) assigns itemi to playeri for all i ∈ [N ], and itemn+ 1 to the remaining players.

Consider the input≻{k}. We claim thatM(≻{k}) = M(≻∅). Due to no-bossiness, it suffices to show
that agentk’s allocation is the same inM(≻{k}) andM(≻∅). Suppose agentk obtains itemi in M(≻{k}).
Invoking truthfulness whenk’s true preference list is≻∗ (and the other players’ preference lists are≻∗), we
obtain thatk �∗ i, that is,k ≤ i. Similarly, if k’s true preference list were≻∗ ◦(k − 1, 1), then truthfulness
dictates thati ≤ k. Hence, we havei = k.

The above argument can be generalized to show that for anyS ⊆ [n], we haveM(≻S) = M(≻S\k) =
M(≻∅) for all k ∈ S. In particular,M(≻{2,...,n}) assigns itemi to playeri for all i ∈ [N ] and leaves the
other players unassigned. So under the preference profile≻{2,...,n}, at most one agent, agent1, gets his top
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choice; however, assigning every playerj > 1 item j − 1 yields an outcome wheren − 1 agents get their
top choice. �

While no-bossiness was crucial above, we show via a more sophisticated argument that no deterministic
truthful mechanism can obtain constant rank approximation.

Theorem 4.4. Every deterministic truthful mechanism has rank approximation Ω
( log logn
log log logn

)

.

Proof. Letn be large enough so thatK :=
⌊

log logn
log log logn

⌋

− 2 ≥ 1. We show that on instances withn (agents

and) items, no deterministic truthful mechanism can have rank approximation better thanK.
As before, ifM(≻∅) assigns items toN players, we may assume that it matches agenti to item i for

i ∈ [N ], and the remaining players are unassigned (i.e., assigned itemn + 1). Given agents{a1, . . . , ak}
and integersr1, . . . , rk ≥ 1, we let≻(a1,r1),(a2,r2),...,(ak ,rk) denote the preference profile where all agents
other than theseaℓ’s have preference order≻∗, while eachaℓ has preference order≻∗ ◦(rℓ, 1)). That is,aℓ’s
top choice is itemrℓ, hisrℓ-th choice is item1, and hisi-th choice is itemi for all i 6= 1, rℓ. We show that
there exist agentsa1, . . . , aK anddistinct integersr1, . . . , rK ∈ [K], such that, inM(≻(a1,r1),...,(aK ,rK)),
every agenta1, . . . , aK gets an item whose index is larger thanK. Since all other agents have the same top
item, the number of agents getting their top item is at most1. This proves that the rank approximation is at
leastK, since assigning itemrℓ to agentaℓ for all ℓ ∈ [K], yields an outcome whereK agents obtain their
top-choice item.

To find theseK agents, we proceed inK stages. In stageℓ, we will have a subsetSℓ of agents with
|Sℓ| ≥ ℓ having the following property. For anyt < ℓ, anyt agents{a1, . . . , at} ⊆ Sℓ, and for anyt distinct
integersr1, . . . , rt ∈ [K], M(≻(a1,r1),...,(at,rt)) allocates all agents inSℓ an item indexed larger thanK.

Note that if we reach stageK, then we are done due to the following reason. Consider anyK agents
a1, . . . , aK ∈ SK and anyK distinct integersr1, . . . , rK ∈ [K]. Consider any indexℓ ∈ [K]. Let
≻′=≻(a1,r1),...,(aℓ−1,rℓ−1),(aℓ+1,rℓ+1),(aK−1,rK−1) and≻=≻(a1,r1),...,(aK ,rK). We know thatM(≻′) allocates
all agents inSK an item indexed larger thanK. This also implies thato := M(≻) allocatesaℓ an item
indexed larger thanK, otherwise given the preference profile≻′, playerℓ has an incentive to deviate from
his preference list≻∗ and report≻∗ ◦(rℓ, 1). Since this holds for allℓ, it follows thato allocates every agent
a1, . . . , aK an item indexed larger thanK.

We now show how to obtain theSℓ sets. Forℓ < K, the setSℓ will satisfy the stronger property that

|Sℓ|
1

ℓ+1 ≥ 2K (the reason for this will become clear later). The base case isS1 = {K + 1, . . . , n}, which
satisfies the stated property. Given a setSℓ at the end of stageℓ < K we now show how to construct the set
Sℓ+1 ⊆ Sℓ. We construct the following hypergraphHℓ. The vertices are the agents inSℓ. The hyperedges
are subsets of vertices of size at most(ℓ+1) constructed as follows. For everyℓ-size subset{a1, . . . , aℓ} of
Sℓ, and everya ∈ Sℓ (which could be the same as one of theats), we add the hyperedge{a1, . . . , aℓ, a} if
there existℓ distinct integersr1, . . . , rℓ ∈ [K] such thatM(≻(a1,r1),...,(aℓ,rℓ)) allocates agenta an item with
index at mostK. Note that the number of hyperedges is at most|Sℓ|ℓ ·Kℓ+1 since there are|Sℓ| choices for
eachat, andK choices for eachrt, and once these are fixed, there at mostK choices fora.

Call a subsetU ⊆ Sℓ independentif no hyperedge is completely contained in it. Observe thatU is a
valid input to stage(ℓ + 1) if |U | ≥ ℓ+ 1: consider anyt < ℓ + 1 agentsa1, . . . , at ∈ U and any distinct
integersr1, . . . , rt ∈ [K]. Suppose thatM(≻(a1,r1),...,(at,rt)) allocates some agenta ∈ U an item with
index at mostK. Then we must havet = ℓ, otherwise this would contradict the property assumed ofSℓ,
and then{a1, . . . , at, a} would be a hyperedge, contradicting independence ofU .

Lemma4.5shows that there is an independent setSℓ+1 ⊆ Sℓ such that|Sℓ+1| ≥ |Sℓ|
1

ℓ+1

K
− 1 ≥ |Sℓ|

1
ℓ+1

2K ,

where the last inequality follows since|Sℓ|
1

ℓ+1 ≥ 2K. Since|St|
1

t+1 ≥ 2K for all t ≤ ℓ, we have

|Sℓ+1| ≥ |Sℓ|
1

ℓ+1/2K ≥ |S1|
1

(ℓ+1)! /(2K)ℓ ≥
(n

2

)
1

(ℓ+1)!
/(2K)ℓ ≥

(n

2

)
1
K!
/(2K)K−1.
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Moreover, ifℓ+1 < K, then|Sℓ+1|
1

ℓ+2 ≥
(

n
2

)
1

(ℓ+2)!/(2K)ℓ ≥
(

n
2

)
1
K! /(2K)K−2. ForK ≤ log logn

log log logn − 2,

we have
(

n
2

)
1
K! /(2K)K−1 ≥ 2K. Hence,|Sℓ+1| ≥ 2K, and ifℓ+1 < K, we have|Sℓ+1|

1
ℓ+2 ≥ 2K. Thus,

we obtain that|SK | ≥ 2K. �

Lemma 4.5. There exists an independent setSℓ+1 ⊆ Sℓ of size|Sℓ+1| ≥ |Sℓ|
1

ℓ+1

K
− 1.

Proof. Let N = |Sℓ|. Recall the number of hyperedges is at mostN ℓKℓ+1. We first argue that all hyper-
edges are of sizeℓ+1. Every hyperedge is of size at leastℓ. A size-ℓ hyperedge{a1, . . . , aℓ} can only arise,
if there areℓ distinct integersr1, . . . , rℓ ∈ [K] and somea ∈ {a1, . . . , aℓ}, saya1 for notational convenience
such thatM(≻(a1,r1),...,(aℓ,rℓ)) allots a an item indexed less thanK. But the definition ofSℓ implies that
M(≻(a2,r2),...,(aℓ,rℓ)) allotsa1 an item with index larger thanK. This violates truthfulness, since agenta1
has an incentive to misreport≻∗ ◦(r1, 1) when his true preference is≻∗ and obtain a better item.

Consider sampling each vertex ofHℓ with probabilityp = K−1 · N−( ℓ
ℓ+1) to get a random subsetX. If

X contains a hyperedge, then we remove all its vertices fromX. The probability that a hyperedge is present
in X is at mostpℓ+1, since all hyperedges are of sizeℓ + 1. Therefore, in expectation, the size ofX after
removal is at leastpN − pℓ+1N ℓKℓ+1 = N 1/ℓ+1

K
− 1. �

4.1 A generalization: matroid markets

In this generalization of matching markets, there is a matroid Mi = (N,Ii) on the agent-setN for each
item i, and multiple agents may be assigned to itemi provided they form an independent set ofMi. Here
Ii is a collection of subsets ofN with the following properties: (i)∅ ∈ Ii; for all A,B ⊆ N (ii) if A ∈ Ii
andB ⊆ A, thenB ∈ Ii; (iii) if A,B ∈ Ii and |A| > |B|, then there exists somej ∈ A \ B such
that B ∪ {j} ∈ Ii. Clearly, the lower bounds obtained for matching markets also hold in this setting.
Complementing this, we extendMaxMatch to obtain a pseudomonotone 2-rank-approximation algorithm
for matroid markets. LetL be the set of all items.

Theorem 4.6. There is a pseudomonotone2-rank approximation algorithm for matroid markets, and a
mechanism that fully LT-implements it.

Proof. The algorithm is similar toMaxMatch. Again fix an agent-ordering and an item-ordering. Consider
some input≻.

We again proceed inm stages. In stager, we consider the “top-r” graphGr = (N ∪L,Er), where each
agentj has edges to his top-r items. Note that every outcome induces a feasible solution to thematroid-
intersectionproblem defined by the following two matroids on the universeEr. One isMA, which is the
direct sum of theMi matroids for alli ∈ L, i.e., a setI ⊆ Er is independent if{j : (j, i) ∈ I} ∈ Ii for all
i ∈ L. The second is the partition matroidMB(r) encoding that at most one edge ofEr is incident to each
agentj. Then every outcome induces a set that is independent in bothMA andMB(r), andmaxrankr(≻)
is the size of the largest common independent set.

LetM consist of the edges denoting the current (i.e., at the startof stager) assignment of items to agents.
Our algorithm will maintain the invariant that at the end of stager,M is amaximalset that is independent in
bothMA andMB(r). The rank-approximation factor of 2 follows then from the well-known fact that every
maximal common independent set of two matroids has size at least half the size of maximum-cardinality
common independent set; Claim4.7gives a self-contained proof.

Let Γr(u) denote the neighbors of nodeu in Gr, andΓr
M (u) := {v : (u, v) ∈ M}. Note that ifM is a

maximal common independent set inGr−1, then for every agentj that is not assigned an item inM , among
j’s top-r items hisr-th ranked item is theonly item to whichj can be possible assigned while preserving
independence in the item’s matroid.
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We consider each itemi and augmentΓr
M(i), the current set of agents assigned to itemi, to a maximal

subsetJi ⊆ Γr(i) that is independent inMi: we initialize Ji to Γr
M (i). Next, we consider agents in

Γr(i) \ Γr
M (i) according to the fixed agent-ordering and add agentj to Ji if this maintains independence in

Mi. Maximality of Ji follows from the matroid property. (In factJi is a maximum-size independent subset
of Γr(i).) Finally, we updateM to reflect the new assignments in stager.

The fact thatM is a maximal common independent set ofMA andMB(r) is immediate: if some edge
(j, i) can be added toM while preserving independence inMA andMB(r), thenj was unassigned at the
start of stager and when we considered itemi, j could (and would) have been added toJi in the iteration
whenj was considered.

We have already argued that the above algorithm is a 2-rank-approximation. Pseudomonotonicity of the
above algorithm follows from exactly the same arguments as in Theorem4.1. �

Claim 4.7. LetM1(U,I1), M2 = (U,I2) be two matroids. LetS ⊆ U be an inclusion-wise maximal set
that is independent in bothM1 andM2. LetA be a maximum-cardinality set that is independent in bothM1

andM2. Then|S| ≥ |A|/2

Proof. Suppose|S| < |A|/2. Let T1 = {e ∈ A : S ∪ {e} ∈ I1}. SinceA ∈ I1, by the matroid exchange
property, we have|T1| ≥ |A| − |S| > |A|/2. Similarly, if T2 = {e ∈ A : S ∪ {e} ∈ I2}, then we have
|T2| > |A|/2. But sinceT1, T2 ⊆ A, this means thatT1∩T2 6= ∅, and so ife ∈ T1∩T2, thene can be added
to S while maintaining independence in bothM1 andM2. This contradicts the maximality ofS. �

5 Scheduling markets

Recall that here the agents aren jobs that need to be assigned onm machines. Each jobj has a private strict
total ordering over the machines, and a publicly-known processing timepij on machinei. An outcome is a
partial assignment of jobs to machines, also called a schedule, that has makespan at most a given valueT .
An agent prefers outcomeo to outcomeo′ if he prefers his assigned machine ino to that ino′.

We obtain nearly tight results for scheduling markets. Say that an algorithm is an(α, β)-approximation
if it always returns a schedule with rank-approximation factor α and makespan at mostβT . For parallel
machines (pij = pj for all i, j), we give an

(

O(log n), O(1)
)

-approximation, fully lex-truthfully (LT) im-
plementable algorithm (Theorem5.2). We show that this bound istight by proving analgorithmic lower
boundshowing that every(α, β)-approximation algorithm for parallel machines must have
α = Ω(max{logm, log n}/β) (Theorem5.3). For the setting of general unrelated machines, we devise an
(

O(log n), O(1)
)

-approximation algorithm (Theorem5.4), however we do not know how to achieve this via
a fully LT-implementable algorithm. We leave this as an intriguing open question.

Let N denote the set of jobs. ForS ⊆ N , let ≻S denote the restriction of≻ to jobs in S, and
maxrankr(≻S) denote the maximum number of jobs fromS that can be assigned to one of their top-r
machines with makespan at mostT . Observe thatmaxrankr(≻S∪T ) ≤ maxrankr(≻S)+maxrankr(≻T ).

Parallel machines Our results rely on a bucketing argument coupled with Theorem 4.6 for matroid-
markets and some insights from the matroid-intersection problem. We divide the setN of jobs intok =
O(log n) disjoint classesN0, N1, . . . , Nk such that jobs in each class have roughly the same processing
time. SetN0 := {j : pj ≤ T

n
}, andNℓ := {j : 2ℓ−1 · T

n
< pj ≤ 2ℓ · T

n
} for ℓ = 1, . . . , k := ⌈log2 n⌉.

Note that ifj /∈ ⋃k
ℓ=0Nℓ, thenpj > T , soj cannot be assigned to any machine in any outcome and is not

counted inmaxrankr(≻) for any positionr. We assume for notational convenience thatN does not contain
any such job in the sequel. It will be convenient to ensure that |N0| ≥ 1. So we remove some fixed joba
from theNℓ set containing it and add it toN0.
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Obtaining a good rank-approximation for a classNℓ, whereℓ ≥ 1, with makespanO(T ) amounts to a
matroid-market problem (in fact, ab-matchingproblem) since the makespan bound can be encoded by the
constraint that at mostn

2ℓ−1 jobs are assigned to each machine. Any feasible schedule forNℓ yields a feasible
allocation for the corresponding matroid-market problem.So Theorem4.6yields a pseudomonotone(2, 2)-
approximation algorithmfℓ for classNℓ, and a mechanismMε

ℓ thatε-implements it, for allε > 0.

Theorem 5.1. One can obtain a deterministic fully LT-implementable
(

O(1), O(log n)
)

-approximation al-
gorithm for parallel-machine markets.

Proof. On input≻, we output the schedule obtained by concatenating the schedule where all jobs inN0 are
assigned to their top machine, and all thefℓ(≻Nℓ

) schedules. Note that theN0-schedule has makespan at
most2T . The resulting schedule, denotedf(≻), has makespanO(T log n) and rank-approximation factor
2 (sincemaxrankr(≻N ) ≤ ∑k

ℓ=0maxrankr(≻Nℓ
)). Fix ε > 0. The jobs inN0 clearly have no incentive

to lie. It is easy to see then thatf is ε-LT implemented by the mechanism that outputs theN0-schedule
concatenated with the (random) schedules output by theMε

ℓ mechanisms, where we couple the random
choices of all theMε

ℓ mechanisms (i.e., their decisions are based on the outcomesof the same random
coins) so thatPr[∃ ℓ : Mε

ℓ(≻Nℓ
) 6= fℓ(≻Nℓ

)] ≤ ε. �

Theorem 5.2. There is a randomized fully LT-implementable
(

O(log n), O(1)
)

-approximation algorithm
for parallel-machine markets, where the rank-approximation and makespan bounds hold with probability 1.

Proof. Consider an input≻. As before, we assign all jobs inN0 to their top machine. Note that simply
picking a classNℓ with probability 1

k
and outputting the concatenation of theN0-schedule andfℓ(≻Nℓ

) is
not enough since this only yieldsO(k) rank approximation in expectation. Instead, we build upon the above
ideas and leverage some results about the matroid-intersection problem.

Consider the following bipartite graph representing the concatenationσ of all the fℓ(≻Nℓ
) schedules.

We have a node for every machine, and every job not inN0, and an edge(i, j) if j is assigned to machine
i in scheduleσ. Now setxij = 1

k
for every edge(i, j). DefineAi,ℓ :=

⌈

n
2ℓ−1k

⌉

for all i, ℓ andBr :=
⌊

rankr(σ;≻N\N0
)/k

⌋

for all r. Consider the following polytope:

P :=
{

y ∈ R[m]×(N\N0) :
∑

j∈Nℓ

yij ≤ Ai,ℓ ∀i ∈ [m], ℓ ∈ [k],

∑

j:pos(≻j ,σ(j))≤r

yij ≥ Br ∀r ∈ [m], 0 ≤ yij ≤ 1 ∀i ∈ [m], j /∈ N0

}

.
(1)

We claim thatP has integral extreme points. Any extreme point ofP is defined by a linearly independent
system of tight constraints comprising some

∑

j∈Nℓ
yij = Ai,ℓ equalities whose supports are disjoint, and

some
∑

j:pos(≻j ,σ(j))≤r yij = Br, yij = 1 equalities whose supports form a laminar family. The constraint
matrix of such a system thus corresponds to equations comingfrom two laminar set systems; such a matrix
is known to be totally unimodular (TU) (see, e.g., [26]), and hence a solution to this system is integral.

Note thatx ∈ P, so it can be expressed as a convex combination of some extreme points ofP. Equiva-
lently, x yields a distribution over partial schedules forN \N0. LetY be a random schedule, or equivalently
vector inR[m]×(N\N0), sampled from this distribution. Note thatPr[j is assigned inY ] = xij = 1

k
for

j /∈ N0. The makespan ofY is at most6T with probability 1. This is because
∑

j pjYij ≤ ∑k
ℓ=1

(

1 +
n

2ℓ−1k

)

· 2ℓ · T
n

≤ 2k+1 · T
n
+ 2T ≤ 6T . Let Π be the (random) schedule obtained by concatenating the

N0-schedule withY . ThenΠ has makespan at most8T with probability 1. Also,rankr(Π;≻) ≥ |N0|+Br

with probability 1. NowBr ≥
⌊

maxrankr(≻N\N0
)/2k

⌋

. Finally,

maxrankr(≻) ≤ |N0|+maxrankr(≻N\N0
)

≤ |N0|+max{2k, 4k
⌊

maxrankr(≻N\N0
/2k)

⌋

}
≤ 4k(|N0|+Br),
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where the latter inequality follows since|N0| ≥ 1. Thus, the randomized algorithmf that outputs the
random scheduleΠ is an

(

O(log n), O(1)
)

-approximation with probability 1.

We now proceed as in the proof of Theorems3.6 and 3.7 to devise a mechanismM that fully LT-
implementsf . Fix ε > 0, andε1 > . . . > εm such that

∑m
r=1 εr = ε. Consider input≻. Let Y ≻ be the

random schedule forN \N0 for input≻N\N0
as obtained above. MechanismM always assigns jobs inN0

to their top machines. For jobs inN \N0, it returns scheduleY ≻ with probability1 − ε. For eachj /∈ N0

andr ∈ [m], with probability εr
n

, it returns the schedule wherej is assigned to itsr-th ranked machine
alt(≻j , r), and all other jobs are unassigned. Clearly,M(≻) = f(≻) with probability at least1− ε.

Jobs inN0 do not benefit by lying. Consider a jobj ∈ Nℓ, whereℓ ≥ 1. Let ≻′= (≻j ,≻−j), where
≻′

j 6=≻j. Let xij = xij(≻) andx′ij = xij(≻′) denote the probabilities thatj is assigned toi under the

random schedulesY = Y ≻ andY ′ = Y ≻′
respectively. Then,

∆ij := Pr[j assigned toi in M(≻)]−Pr[j assigned toi in M(≻′)]

= (1− ε)(xij − x′ij) +
1

n
·
(

εpos(≻j ,i) − εpos(≻′
j ,i)

)

.

Considering machines in the preference order of≻j , let î be the first machine such thatpos(≻j , î) 6=
pos(≻′

j , î). Thenpos(≻j, î) < pos(≻′
j , î). If x′ij = 0 for all i �j î, then∆ij ≥ 0 for all i �j î, and

∆îj > 0, so we are done. Otherwise,j is assigned to some machinei′ �j î in fℓ(≻′
Nℓ

). Since all machines
i ≻j i

′ havepos(≻j, i) = pos(≻′
j, i) andfℓ is pseudomonotone, it must be thatj is assigned toi′′ �j i

′ in
fℓ(≻Nℓ

). Soxij = x′ij, and hence,∆ij = 0, for all i ≻j i
′′. If i′′ 6= i′, then∆i′′j > 0, otherwise∆ij = 0

for all i ≻j î and∆îj > 0. Thus,M is lex-truthful. �

Theorem 5.3.There exists an instance of a parallel-machine market whereany schedule withβT makespan
has rank-approximation factorΩ(max{logm, log n}/β).
Proof. We create an instance withn = O(m lnm) jobs as follows. We create a setA(1) of m jobs of size

(i.e., pj) T partitioned intoA(1)
1 , . . . , A

(1)
m , where eachA(1)

i consists of a single job whose first preference

is machinei. We create a setA(2) of 2(m − 1) jobs of sizeT
2 partitioned intoA(2)

2 , . . . , A
(2)
m , all of which

have machine 1 as their first preference. Each setA
(2)
i has two jobs, both having machinei as their 2nd

preference. In general fori < k, we have a setA(i) of 2i−1(m − i + 1) jobs of size T
2i−1 partitioned into

A
(i)
i , . . . , A

(i)
m , all of which have machiner as theirr-th preference forr = 1, . . . , i − 1. Each setA(i)

ℓ has
2i−1 jobs, all of which have machineℓ as theiri-th preference. Finally, we have a setA(k) of 2km jobs of
size T

2k
partitioned intoA(k)

k , . . . , A
(k)
m , all having machiner as theirr-th preference forr = 1, . . . , k − 1.

Each setA(k)
ℓ has at least2k jobs, all of which have machineℓ as theirk-th preference. The remaining

preferences of the jobs play no role, and may be set arbitrarily. Let ≻ be the resulting preference profile.
For r ∈ [k], we havemaxrankr(≻) ≥ 2r−1(m − r + 1) + 2k(r − 1) ≥ 2r−1m obtained by assigning

all jobs inA(r)
ℓ to machineℓ for ℓ = r, . . . ,m, and any2k(r − 1) jobs fromA(k) to machines1, . . . , r − 1.

Suppose we have a scheduleσ with makespanβT that achievesα rank approximation. Then,rankr(σ;≻) ≥
2r−1m

α
for all r = 1, . . . , k. Letsr be the number of jobs assigned to theirr-th ranked machine inσ, andtr be

the number of jobs of size at leastT
2r−1 assigned to theirr-th ranked machine inσ. Observe thattr ≥ sr−β2k

since the jobs counted insr but not intr lie in
⋃k

ℓ=r+1A
(ℓ), all of which have machiner as theirr-th ranked

machine; at mostβ2k such jobs can be accommodated within makespanβT . NowβmT is at least the total
size of all jobs scheduled byσ, which is at least

∑k
r=1(sr − β2k) · T

2r−1 ≥ ∑k
r=1 sr · T

2r−1 − β2k+1T . So

β(mT+2k+1T ) ≥ 1

2

k
∑

r=1

sr

k
∑

ℓ=r

T

2ℓ−1
=

1

2

k
∑

ℓ=1

T

2ℓ−1

ℓ
∑

r=1

sr =
1

2

k
∑

ℓ=1

T

2ℓ−1
·rankℓ(σ;≻) ≥ 1

2

k
∑

ℓ=1

T

2ℓ−1
·2

ℓ−1m

α
.
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Takingk = log2m, this gives3βmT ≥ kmT
2α , soα ≥ k

6β = Ω(logm/β). Also, the number of jobs is at

mostk · 2k = O(m logm), soα is alsoΩ(log n/β). �

Unrelated machines We obtain an
(

O(log n), O(1)
)

approximation for the general setting of unrelated
machines.

Theorem 5.4. There is a deterministic
(

O(log n), O(1)
)

approximation algorithm for scheduling markets.

Proof. We will need Lemma5.5stated below. Fix an input≻. We use a different kind of bucketing argument
where we group ranks that have roughly the same value ofmaxrankr(≻). Forr ∈ [m], letσr be the schedule
given by Lemma5.5 that yields a 2-approximation tomaxrankr(≻), Nr be the set of jobs assigned byσr,
andnr = |Nr|. We may assume thatn1 ≤ n2 ≤ . . . nm. Definen0 = 0. If nm = 0, thenmaxrankr(≻) = 0
for all r ∈ [m], and we return the null assignment. So assume otherwise in the sequel.

Define r0 := 0 < r1 < r2 < . . . < rk < rk+1 = m + 1 as follows: rℓ is the smallestr such
thatnr > 4nrℓ−1

for ℓ = 1, . . . , k, andnm ≤ 4nrk . Thus,k ≤ ⌈log4 n⌉ andnrℓ ≤ nr ≤ 4nrℓ for all

r ∈ [rℓ, rℓ+1) and allℓ = 0, . . . , k. Forℓ ∈ [k], defineSrℓ := Nrℓ \ (
⋃ℓ−1

q=1Nrq); note that|Srℓ | ≥
2nrℓ
3 .

If nrk < 2k for all r, we simply return the assignmentσr1 . Clearly, this yields a2k rank approximation.
Otherwise, letq be the smallest indexℓ such thatnrℓ ≥ 2k. Let S =

⋃k
ℓ=q Srℓ. Let σ be the schedule

for S, where each jobj ∈ Srℓ is assigned to the machineσrℓ(j), for ℓ = q, . . . , k. Let Li := |{j :
σ(j) = i}|. Consider the following bipartite graph, which is similar to the bipartite graph constructed in
the GAP-rounding algorithm [28]. We have a node for every job inS, and a node(i, c) for every machine

i andc = 1, . . . ,
⌈

Li
k−q+1

⌉

. We sort the jobs assigned toi in σ in non-increasingpij order (breaking ties

arbitrarily), and create an edge
(

(i, c), j
)

if σ(j) = i and its position in this ordering lies in{(c−1)(k− q+
1) + 1, . . . , c(k − q + 1)}. LetE be the edge-set of this bipartite graph. Consider the following polytope:

Q :=
{

y ∈ RE :
∑

j:((i,c),j)∈E

y(i,c),j ≤ 1 ∀i ∈ [m], c = 1, . . . ,
⌈

Li
k−q+1

⌉

,

∑

((i,c),j)∈E:j∈Srℓ

y(i,c),j ≥
⌊ |Srℓ |
k − q + 1

⌋

∀ℓ = q, . . . , k, 0 ≤ y(i,c),j ≤ 1 ∀
(

(i, c), j
)

∈ E
}

.
(2)

As with the polytopeP (see (1)), the constraint-matrix defining an extreme point ofQ corresponds to
equations coming from two laminar systems, which is TU, soQ has integral extreme points. Setting
x(i,c),j = 1

k−q+1 for every edge
(

(i, c), j
)

, note thatx ∈ Q. So we can find an integraly ∈ Q, which
we interchangeably view as a partial assignment ofS. We return the scheduleπ obtained by concatenating
σr1 with this assignmenty.

The scheduleσr1 has makespan at mostT . By the standard GAP-rounding proof in [28], the makespan
of y is at most

T + 1
k−q+1 ·

∑

j:σ(j)=i

pij = T + 1
k−q+1 ·

k
∑

ℓ=q

∑

j∈Srℓ
:σrℓ(j)=i

pij ≤ 2T.

Soπ has makespan at most3T . Fix some rankr. If r < r1, thenmaxrankr(≻) = 0. If r1 ≤ r < rq,
we haverankr(π;≻) ≥ nr1 ≥ 1 > nr/2k ≥ maxrankr(≻)/4k. Otherwise, supposer ∈ [rℓ, rℓ+1),

whereℓ ≥ q. Thenrankr(π;≻) ≥
⌊

|Srℓ
|

k

⌋

≥
⌊

2nrℓ
3k

⌋

≥ nrℓ
3k , where the last inequality follows since

nrℓ ≥ nrq ≥ 2k, and
nrℓ
3k ≥ nr

12k ≥ maxrankr(≻)
24k . Soπ hasO(k) rank approximation. �

Lemma 5.5. For any preference-profile≻, any setS ⊆ N , and any rankr, one can efficiently compute a
2-approximation tomaxrankr(≻S).
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Proof. Shmoys and Tardos [28] proved the following result about GAP. Let{cij} be “assignment costs” for
assigning jobs to machines,which could also be negative. Consider the following LP, wherei indexes the
machines andj indexes the jobs.

min
∑

i,j

cijxij (P)

s.t.
∑

i

xij = 1 ∀j (3)

∑

j

tijxij ≤ Li ∀i

xij ≥ 0 ∀i, j
xij = 0 ∀i, j s.t. tij > Li.

[28] showed that a fractional solutionx to (P) can be rounded to an integer solutionx̃ of cost at most the cost
of x such that the total load

∑

j tij x̃ij on each machinei is at most2Li. Examining their rounding algorithm
more closely, one can infer that the total load on each machine i underx̃ is at mostLi if

∑

j xij ≤ 1, and at
mostLi +maxj:xij>0 tij otherwise.

We apply this result to our problem of approximatingmaxrankr(≻S) as follows. The set of jobs isS.
Our problem is a prize-collecting problem, which we can reduce to GAP by creating a “machine”Ij for
every jobj ∈ S and settingtIjk = 0 if k = j and∞ otherwise. There is no makespan bound for theseIj
machines. For every (regular) machinei and jobj, we settij = pij if pos(≻j, i) ≤ r and∞ otherwise; the
makespan bound fori is T . Finally, our objective is to maximize the number of jobs assigned to the regular
machines (withtij < ∞). In terms of the LP (P), constraint (3) now reads

∑

i xij + zj = 1 for everyj ∈ S,
wherezj indicates ifj is assigned toIj, and the objective function is to maximize

∑

i

∑

j∈S xij .
Applying the GAP-rounding algorithm, we obtain an assignment x̃ with makespan at most2T such that

rankr(x̃;≻S) = maxrankr(≻S). To turn this into a feasible schedule with makespanT , we leverage the
stronger property of the rounding algorithm mentioned above. If the load on machinei underx̃ is more than
T , then we know thati has at least two jobs assigned to it, and there is a job assigned to i whose removal
decreases the load oni to at mostT . We simply remove this job from every overloaded machinei. This
reduces the number of jobs assigned to an overloaded machinei by a factor of at most 2 (since

∑

j x̃ij ≥ 2),
so now we obtain a schedule with makespanT where the number of jobs assigned (to one of their top-r
machines) is at leastmaxrankr(≻S)/2. �

6 Mechanisms for general ordinal settings

In this section, we evaluate the strength and flexibility provided by the notions of rank approximation and
lex-truthfulness in general ordinal settings. We devise anO(log n)-rank-approximation randomized mech-
anism, and show that this guarantee is tight for randomized mechanisms (Theorems6.2 and6.3). We also
observe that deterministic mechanisms cannot in general achieve good rank approximation. Next, we con-
sider lex-truthfulness and justify our earlier remark thatlex-truthfulness allows one to circumvent Gibbard’s
impossibility result. We describe a rich class of pseudomonotone SCFs calledtop-choice SCFs, which thus
lead to (non-unilateral, non-duple) LT mechanisms.

Rank approximation It is easy to see that any deterministic dictatorial SCF has rank approximation (at
most)n. Also, theplurality scoring rulefPl, which returns the outcome that maximizes the number of
agents who have it as their top choice, hasrank1

(

fPl(≻);≻) ≥ n
m

, so its rank-approximation factor is at
mostm. It is not hard to prove a matching lower bound for deterministic mechanisms.
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Theorem 6.1. No deterministic mechanism can have rank approximation better factor thanmin{n,m− 1}
in general ordinal settings.

Proof. Consider a preference profile withn agents andn+ 1 outcomes, where the top choices of all agents
are the distinct outcomes{1, . . . , n}, while the second choice of all agents isn+ 1. �

Randomization leads to an exponential improvement (but no more), but we do not know how to achieve
this in a lex-truthful manner.

Theorem 6.2. There is a randomizedO(log n)-rank approximation mechanism for general ordinal settings.

Proof. We first describe the mechanism, and then analyze its rank approximation. Fix a preference profile
≻. For brevity, letnr = maxrankr(≻). Let o∗r be an outcome withrankr(o∗r ;≻) = nr. We use a bucketing
argument where we group ranks that have roughly the samenr value. Definer1 := 1 < r2 < . . . < rk <
rk+1 := m + 1 be such thatnrℓ ≤ nr ≤ 2nrℓ ∀r ∈ [rℓ, rℓ+1) ∩ Z, for all ℓ = 1, . . . , k Observe that
k ≤ ⌈log2 n⌉. The mechanism chooses an indexℓ ∈ [k] uniformly at random, and outputso∗rℓ .

To argue about the rank approximation, consider any rankr. Supposer ∈ [rℓ, rℓ+1). If we choose index
ℓ, which happens with probability1/k, then at leastrankr(o∗rℓ ;≻) ≥ rankrℓ(o

∗
rℓ
;≻) = nrℓ ≥ nr

2 agents are
allotted a top-r item. SoE[rankr(M(≻);≻)] ≥ nr

2k . �

Theorem 6.3. Every randomized mechanism has rank-approximation factorΩ(log n).

Proof. Fix a parameterk. We construct an instance withn = 2k+1−2 agents andm = (k−1)·(2k+1−2)+k
outcomes. The agents are divided intok groupsA1, . . . , Ak, where|Aℓ| = 2ℓ. There arek special outcomes
{o1, . . . , ok}. The remainingm− k outcomes are partitioned inton groupsO1, . . . , On, each havingk − 1
outcomes. We now describe the preference lists. For every agent j in groupAℓ, outcomeoℓ is their ℓ-th
ranked outcome, and the outcomes inOj occupy the other positions in[k] \ {ℓ}; the exact positions of these
outcomes are irrelevant. The outcomes in positionsr ≥ k+1 are also immaterial. Thus, the top-k outcome
sets of agentsj andj′ are: disjoint if they are from different groups, and have exactly one outcome,oℓ, in
common, at theℓ-th position, if they both belong to groupAℓ. Let≻ denote this input.

Observe thatmaxrankr(≻) = 2r for all r ∈ [k], and the outcome achieving this isor. Furthermore,
rankr(o) is 2ℓ if o = oℓ for ℓ ∈ [r], and is at most 1 otherwise.

Now consider a randomized mechanism that attains rank approximation α. Let pℓ be the probability
with which it returns the outcomeoℓ. Let q be the probability with which it returns an outcome in

⋃n
j=1Oj .

Then, by the definition of rank approximation we haveq +
∑

ℓ>r pr +
∑

ℓ≤r pℓ · 2ℓ ≥ α · 2r for all r ∈ [k].

Dividing this inequality by2r and summing over allr = 1, . . . , k, we obtain thatkα ≤ q · ∑k
r=1

(

1
2r

)

+
∑k

ℓ=1 pℓ ·
(

∑

r<ℓ
1
2r +

∑

r≥ℓ
2ℓ

2r

)

≤ q · 1 +∑k
ℓ=1 pℓ · 3 ≤ 3. Hence,α ≤ 3

k
. �

Lex-truthful mechanisms Consider any SCF of the formf(≻) = g
(

{alt(≻j, 1)}nj=1

)

, whereg : On 7→ O
has the following property: for all
o−j = (o1, . . . , oj−1, oj+1, . . . , on) ∈ On−1 and allo ∈ O, if g(o, o−j) = o′ theng(o′, o−j) = o′. We
call such an SCF atop-choice SCFsince it only looks at the top choices of the players. It is nothard to
see that the plurality scoring rulefPl mentioned earlier (with a fixed tie-breaking rule for outcomes) is an
example of such an SCF. We show thatany top-choice SCF is pseudomonotone, and so by Theorem3.6 is
fully LT-implementable.

Theorem 6.4. Every top-choice SCF is pseudomonotone, and hence is fully LT-implementable.

Proof. Let f be a top-choice SCF defined byg : On 7→ O having the required property. Consider an agent
j, and≻= (≻j,≻−j), ≻′= (≻′

j,≻−j). Let o = alt(≻j , 1). If f(≻) = o or f(≻) =f(≻′), then we are
done. Otherwise, sincef(≻) 6= o, we also havef(≻′) 6= o due to the property ofg, and alsopos(≻′

j , o) > 1
(otherwisef(≻) = f(≻′)), and so the pseudomonotonicity condition (Definition3.5) is satisfied. �
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A Proofs omitted from Section 3

Proof of Theorem3.4. ClearlyUnivT ⊆ StrongT. If p stochastically dominatesq, thenp lex-dominatesq,
soStrongT ⊆ LexT. If p lex-dominatesq, thenq cannot stochastically dominatep, soLexT ⊆ WeakT.
We now prove that the various inclusions are strict.

UnivT ( StrongT. Fix a playerj. Consider the unilateral mechanismM that returns one of the top
2 outcomes ofj, each with probability12 . M is clearly strongly truthful. But it is not universally truthful.
Consider some input≻= (≻j,≻−j). If M is a mixture of deterministic truthful mechanisms, then this
mixture must assign a probability mass exactly1

2 to deterministic truthful mechanismsM1 satisfyingM1(≻
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) = o = alt(≻j , 1); call these type-1 mechanisms. Similarly, it must assign probability mass exactly12 to
deterministic truthful mechanismsM2 satisfyingM2(≻) = o′ = alt(≻j , 2); call these type-2 mechanisms.

For any preference list≻∗
j , a type-2 mechanism cannot returno under the input(≻∗

j ,≻−j) due to truth-
fulness, otherwise on input≻, j has an incentive to lie in the type-2 mechanism and report≻∗

j . Hence, for
any preference list≻∗

j , whereo is one of the top two outcomes,everytype-1 mechanism must returno on
input (≻∗

j ,≻−j). A symmetric argument shows that for any preference list≻∗
j whereo′ is one of the top

two outcomes, every type-2 mechanism must returno′ on input(≻∗
j ,≻−j).

Now consider some≻′
j, where the top two outcomes areo′′, ô /∈ {o, o′}. Applying the arguments above

we obtain that there are type-3 and type-4 deterministic truthful mechanisms, both of which are assigned
probability mass12 (in the mixture yieldingM): the type-3 mechanisms which always returno′′ whenever
j’s preference list haso′′ as one of the top two outcomes, and the type-4 mechanisms always return ô
wheneverj’s preference list haŝo as one of the top two outcomes.

Now some mechanismM′ in the mixture yieldingM, must be of multiple types, say type-1 and type-3
for illustration. Then, if≻′′

j haso ando′′ as the top two outcomes ofj, M′ must return botho ando′′ on
input (≻′′

j ,≻−j), which cannot happen.

StrongT ( LexT. Consider a setting with one player and three outcomes:a, b, c. Consider the top-
choice SCFf defined by the following function:g(a) = a, g(b) = g(c) = c, which satisfies the property
required forf to be a top-choice SCF. By Theorem6.4, f is pseudomonotone. LetM be the LT mechanism
that 13 -implementsf . Let≻= (b, a, c) denoting thatb is top-outcome, and≻′= (a, b, c). Letp = M(≻) and
q = M(≻′). Thenp(b)+p(a) ≤ 1

3 sincef(≻) = g(b) = c, butq(b)+q(a) ≥ 2
3 sincef(≻′) = g(a) = a.

Thus,M is not strongly truthful.

LexT ( WeakT. Consider a setting with one player and four outcomes:a, b, c, d. Let≻∗= (a, b, c, d),
denoting thata is the top outcome. Define the following randomized mechanismM: M(≻∗) returnsa with
probability 1

2 andb, c, d with probability 1
6 ; on every other input≻, M returns one of the top three outcomes

of ≻ with probability 1
3 . M is weakly truthful, because if≻6=≻∗ thenM assigns total probability 1 to the

top three outcomes of≻. If ≻=≻∗, thenM assigns probability12 to the top outcomea under≻∗, whereas
for every other inputM assigns probability at most13 to a.

But M is not lex-truthful: if≻= (a, b, d, c), then by reporting(a, b, c, d), the player can increase the
probability of his top-outcomea from 1

3 to 1
2 . �

Proof of Theorem3.7. We mimic the proof of Theorem3.6. For all j, and allr ∈ [mj], fix some outcome
ojr ∈ Oj

r form the indifference classOj
r of agentj.

We prove part (i) first. Our randomized mechanismM does the following. On input�, it returns
f(�) with probability (1 − ε); with probability ε, it picks a random agenta and returns outcomeoar with
probabilityεar/ε, whereεa1 > · · · > εama

> 0 are such that
∑ma

r=1 ε
a
r = ε.

Clearly,M ε-implementsf . To prove lex-truthfulness, fix an agentj and consider any�′= (�′
j,�−j),

where�′
j 6=�j. Leto = f(�) and leto′ = f(�′). LetOj

t1
andOj

t2
be the indifference classes ofj containing

outcomeso ando′ respectively. Also, letp = M(�), q = M(�′).
Considering indifference classes in the preference order of �j, let Oj

r be the first indifference class
such thatpos(�j, o

j
r) < pos(�′

j, o
j
r). Let o′′ = ojr. By pseudomonotonicity off , we know thato �j o

′ or

o′′ ≻j o
′. In the latter case, we havep(Oj

t )−q(Oj
t ) ≥ 0 for all t such thatojt �j o

′′, andp(Oj
r)−q(Oj

r) > 0,
so we are done.

If o �j o′, andOj
t1

= Oj
t2

or o′′ �j o, then the above argument still holds. So supposeo ≻j o′ and

o ≻j o
′′. Thenp(Oj

t ) − q(Oj
t ) ≥ 0 for all t such thatojt �j o andp(Oj

t1
) − q(Oj

t1
) > 0, so again we are

done.

Now consider part (ii). LetM be an LT mechanism thatε-LT implementsf , whereε < 1
2 . Suppose
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for a contradiction, there is some agentj, and�= (�j,�−j) and�′= (≻′
j ,�−j) such thato = f(≻) and

o′ = f(≻′) violate the conditions for pseudomonotonicity. Then we have o′ ≻j o and for every outcome
o′′ ≻j o

′, we havepos(≻j , o
′′) = pos(≻′

j , o
′′). LetOj

t1
andOj

t2
be the indifference classes ofj containing

outcomeso ando′ respectively. Letp = M(�) andq = M(�′).
SinceM ε-LT implementsf , we havep(Oj

t2
) ≤ ε andq(Oj

t2
) ≥ q(o′) ≥ 1 − ε, sop(Oj

t2
) < q(Oj

t2
).

Let Oj
r1 , . . . , O

j
rℓ be the indifference classes ofj that are ranked higher thanOj

t2
under�j, ordered so that

ojr1 ≻j ojr2 ≻j · · · ≻j ojrℓ . Sincepos(≻j, o
′′) = pos(≻′

j , o
′′) for all o′′ ≻j o′, Oj

r1 , . . . , O
j
rℓ are also the

indifference class ofj that are ranked higher thanOj
t2

under�′
j, and we haveojr1 ≻′

j o
j
r2 ≻′

j · · · ≻′
j o

j
rℓ . As

in the proof of Theorem3.6, this implies thatp(Oj
rt) = q(Oj

rt) for all t = 1, . . . , ℓ, which contradicts the
fact thatM is lex-truthful. �

B Quality of known mechanisms for matching markets

In this section, we investigate the rank approximation and lex-truthfulness of three extensively studied mech-
anisms for matching markets. These arerandom serial dictatorshipmechanism (RSD), Gale’stop-trading-
cycle algorithm(TTCA), and theprobabilistic serialmechanism (PS).

Random Serial Dictatorship Initially all items are marked unallocated. A random permutation of agents
is sampled and the agents are considered according to this order. Each agent is allocated his best item among
the unallocated items. This item henceforth is marked allocated.

Top Trading Cycle This appears in a paper by Shapley and Shubik [27] who attributed it to David Gale
and is applicable when the number of items equals the number of agents.

The algorithm starts with an arbitrary assignmentσ of agents to items. This assignment, which is called
the initial endowment of agents, is independent of the preference orders of the agents. Subsequently, the
agents willtradeamong themselves to return the final allocation.

The algorithm then proceeds in rounds. Initially all agentsare marked active. In each round, one
constructs a directed graph with the active agents as nodes.There is an arc from agentj to agentj′, if
the itemσ(j′) is the top choice of agentj among the items owned by the active agents, that is, the set
{σ(j) : j active}. Note that each agent has out-degree exactly1 (self loops are allowed and counted as both
out and in degree). Therefore, there exists at least one directed cycle in the graph. A cycle (self loops are
also cycles) is picked arbitrarily. For each arc(j, j′) in the cycle, we allocate agentsj the itemσ(j′). We
mark all agents in this cycle inactive and proceed to the nextround. The algorithm stops when all agents are
marked inactive.

Probabilistic Serial This algorithm is due to Bogomolnaia and Moulin [7]. We describe the algorithm
when the number of agents,n, equals the number of items,m.

The algorithm first finds afractional matching, that is,xijs for itemsi and agentsj such that each
xij ≥ 0 and

∑

i∈[m] xij = 1 for all agentsj, and
∑

j∈[n] xij = 1 for all items i. By the Birkhoff-von
Neumann theorem, we can find a distribution on matchings suchthat the probability agentj is allocated
item i is exactlyxij. This is the distribution returned by the algorithm.

The algorithm proceeds in rounds. Initially allxij ’s are0. For any itemi, we denote its capacity as
∑

j∈[n] xij. Any item with capacity strictly less than1 is called unallocated. In each round, every agent
points to the best item among the unallocated items. For eachunallocated itemi we simultaneously raise
xij for all agentsj that point to itemi at thesamerate. This continues till some unallocated item’s capacity
becomes1. At this point we end the round and proceed to the next round. The algorithm terminates when
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all items are allocated. Since the procedure maintains that
∑

i∈[m] xij is the same for all agentsj, at the end
we end up with a fractional matching.

A lot of literature exists on all three mechanisms; we point the reader to surveys [30, 1] for a detailed
reference. Before stating the rank approximations and lex truthfulness, let us mention some relevant known
facts. RSD is strongly truthful (in fact, it is universally truthful). TTCA is the only deterministic algorithm
among the three. It is known that forany initial endowment, the algorithm is truthful [27]. PS is known to
be weakly truthful and not strongly truthful [7]. Bhalgat et al [6] proved that the ordinal welfare factor (cf.
Section 1.2) of RS and PSD are1/2, which is the best possible. The OWF of TTCA is1/n, as can be seen
by considering the input where all agents have the same preference list.

Rank Approximations of RSD, TTCA, and PS We show that all three mechanisms have ‘bad’ rank
approximation. Rank approximation of TTCA is at least(n−1), while RSD and PS have rank approximation
of Ω(

√
n). Recall thatMaxMatch has rank approximation2.

We know that TTCA is deterministic and truthful. It is also non-bossy; if an agent changes his preference
but still gets the same item, it implies that in the round whenhe gets allocated an item, the cycle is the same
as before, since no other changes preferences. Therefore from Theorem4.3, we get the rank approximation
is at least(n− 1).

Consider an instance≻ with n agents andn items with preference lists as follows. Letk = ⌈√n⌉.
Agents1 ≤ i ≤ k have itemi as their top choice. Agentsk + 1 ≤ i ≤ n have itemn as their top choice.
These agents are now grouped intok groupsG1, . . . , Gk, each group containingn/k − 1 agents. Agents in
groupGℓ have itemℓ as their second choice. All the other choices of all agents isimmaterial and can be
assumed to be arbitrary. Observe thatmaxrank1(≻) = k + 1.

Let’s first take RSD and calculate the expected number of agents who get their top choice. With1−k/n
probability, an agentk+1 ≤ j ≤ n shows up as the first agent; he picks itemn. No other agentk+1 ≤ j ≤ n
gets his top choice. Henceforth, for any1 ≤ ℓ ≤ k, the probability that a guy inGℓ shows up before agentℓ
is at least1− 2k

n
. If that occurs, then agentℓ doesn’t get his top choice. Therefore, the expected number of

agents getting their top choice is at most1+2k2/n+o(n). Thus, settingk = Θ(
√
n), the rank approximation

isΩ(
√
n).

In PS, the calculation is easier. For1 ≤ ℓ ≤ k, we getxℓℓ = 1
n−k

+ k
n

(

1− 1
n−k

)

= k−1
n

. For agent

k + 1 ≤ ℓ ≤ n, we getxnℓ = 1
n−k

. Therefore, the expected number of agents getting their topchoice in PS

is precisely1 + k(k−1)
n

. Settingk = Θ(
√
n), we get that the rank approximation isΩ(

√
n).

We do not know if the rank approximation for RSD and PS isΘ(
√
n) or not.

Lex-Truthfulness of RSD, TTCA, and PS TTCA is truthful and RSD is universally truthful. Therefore,
they are lex-truthful as well. PS was shown to be weakly truthful by [7]. We show that in fact PS is lex-
truthful as well. The proof below is akin to the proof of weak truthfulness in [7] mentioned above; we
include it for completeness.

Theorem B.1. PS is lex-truthful.

Proof. Consider any preference profile≻. By renaming items we may assume≻j= (1, 2, . . . , n) for some
agentj. Suppose agentj misreports his preference as≻′

j 6=≻j, and let≻′:= (≻′
j ,≻−j). Let k be the first

position at which≻j and≻′
j differ. That is, forr < k, alt(≻′

j, r) = alt(≻j, r) = r. Note thatj has
‘demoted’k in the misreported preference, that is,pos(≻′

j , k) > k. Let p andq be the distributions over
items thatj obtains on reporting≻j and≻′

j respectively. Letx andx′ be the respective fractional matchings.
Observe that since PS has a notion of time (sincexij ’s are incremented at a certain rate), we can define

x(t) as the assignment at timet. Sox(0) ≡ 0. Let t0 ≥ 0 be the time till which we havex(t0) ≡ x′(t0).

24



If t0 is ill defined, thenx ≡ x′ and sop ≡ q and there’s nothing to prove. We must have that till timet0,
agentj points to the same items in both runs, and right after that instant agentj points to different items in
the two runs. Say att0, agentj pointed to itemk in the original run, andk′ in the new run. Observe that all
itemsr < k have been completely allocated in both runs sincej is pointing tok in the original run. Thus,
p(r) = q(r) for r < k sincex(t0) ≡ x′(t0).

We claimp(k) > q(k). This will showp lexicographically dominatesq. To do so, we need to introduce
some notation. Lett∗ and t′ be the times at whichk is completely allocated in the original and new run
respectively. Lett1 be the time at whichj points tok in the new run. Observet0 < t1 ≤ t′. Also observe
thatxjk = t∗ − t0 andx′jk = t′ − t1.

Now, if t′ ≤ t∗, we getxjk > x′jk, and we are done. So we may assumet′ > t∗. For t ≥ t0, let
S(t, k) andS′(t, k) be the set of agents pointing to itemk at timet. Observe that PS satisfies the following
monotonicity condition: if an agent points to an item at timet, then he continues to do so till the item is
fully allocated. Using this, one can prove the following claim; we defer the proof to the end.

Claim B.2. For all t0 ≤ t < t1, |S′(t, k)| ≥ |S(t, k)| − 1, for t1 ≤ t < t∗, |S′(t, k)| ≥ |S(t, k)|, and for
t∗ ≤ t < t′, |S′(t, k)| ≥ |S(t∗, k)|.

Using the claim, we now showxjk > x′jk. LetC denote the capacity of itemk at timet0. We know that
C < 1. Now, from the run of PS we get

∫ t∗

t0

|S(t, k)|dt = (1− C) =

∫ t′

t0

|S′(t, k)|dt (4)

Using the claim above and rearranging, we get

t0 − t1 ≤ −
∫ t′

t∗
|S(t∗, k)|dt

Now suppose|S(t∗, k)| = 1, that is, in the original run only one guy points to itemk. This must be
agentj. This implies|S(t, k)| = 0 for t < t0, the time at whichj points tok. In particular, we getC = 0,
and thusxjk = 1. We know thatx′jk′ > 0 sincej points tok′ 6= k in the new run. Therefore,x′jk < 1 since
∑

k∈I xjk = 1. Thus, we may assume|S(t∗, k)| > 1, which implies thatt0 − t1 < −(t′ − t∗). Thus,

x′jk = t′ − t1 < t∗ − t0 = xjk. �

Proof of ClaimB.2. In fact, we claim that for every itemi 6= k, the subsetS(t, i) ⊆ S′(t, i) for t0 ≤ t < t′.
This can be proved by induction. Suppose the claim is true at some time; it is true at timet0. The next
interesting timet is when some item isi is completely allocated in one of the runs. By our assumption, this
time t occurs in the new run sinceS′(t, i) ≥ S(t, i) for i 6= k. At this point the agents pointing toi point to
different items increasing their correspondingS′(t, ·)s. The same occurs in the original run albeit at a later
time sayt′′; however, by monotonicity propertyS′(t′′, i) ⊇ S′(t, i), and therefore|S′(t′′, i)| ≥ |S(t′′, i)|.
For the itemk, note that the above argument implies|S′(t, i) \ k| ≥ |S(t, i) \ k|, and then aftert1, j enters
S′(t, k) as well. �
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