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Abstract. Consider two parties Alice and Bob, who hold private inputs x and y, and wish to compute
a function f(x, y) privately in the information theoretic sense; that is, each party should learn nothing
beyond f(x, y). However, the communication channel available to them is noisy. This means that the
channel can introduce errors in the transmission between the two parties. Moreover, the channel is
adversarial in the sense that it knows the protocol that Alice and Bob are running, and maliciously
introduces errors to disrupt the communication, subject to some bound on the total number of errors.
A fundamental question in this setting is to design a protocol that remains private in the presence of
large number of errors.
If Alice and Bob are only interested in computing f(x, y) correctly, and not privately, then quite robust
protocols are known that can tolerate a constant fraction of errors. However, none of these solutions
is applicable in the setting of privacy, as they inherently leak information about the parties’ inputs.
This leads to the question whether we can simultaneously achieve privacy and error-resilience against
a constant fraction of errors.
We show that privacy and error-resilience are contradictory goals. In particular, we show that for every
constant c > 0, there exists a function f which is privately computable in the error-less setting, but for
which no private and correct protocol is resilient against a c-fraction of errors.

Keywords: Interactive communication, coding, adversarial noise, private function evaluation, in-
formation-theoretic security.

1 Introduction

Consider two parties, A and B that wish to compute some function f(x, y) of their respective
private inputs x, y. The channel connecting the parties might be prone to error, and in order to
compute f the parties run some error-resilient interactive protocol that is guaranteed to output
f(x, y) as long as the amount of error is small (e.g., the fraction of corrupt messages is below some
threshold c > 0).

If efficiency is not concerned, party A can simply encode its input using a standard (Shannon)
error-correcting code that corrects a fraction c < 1/2 of errors [Sha48]; party B computes the output
f(x, y) and sends it back (encoded with the same parameters) to A. This allows a global error rate
of up to 1/4. However, x might be very large, and more efficient protocols (communication-wise)
can be found. In 1993, Schulman [Sch93, Sch96] showed a way to compile any interactive protocol π
that assumes no error, into an error-resilient protocol Π that withstands a fraction of errors of up
to 1/240, whose overhead is linear (i.e., the communication of Π, is linear in the communication
of π). This was followed by a flow of other works [RS94, BR11, GMS11, FGOS12, BK12, BN13]
trying to improve the efficiency or error-resilience in various settings. Notably, the recent work of
Braverman and Rao [BR11] showed how to compile a (noiseless) π into an error-resilient Π that
correctly computes f as long as the error fraction is less than 1/4. Their construction, similar to the



construction of Schulman, has a linear overhead (such constructions are also called constant rate).
The recent elegant work of Brakerski and Kalai [BK12] shows how to achieve efficient computation
in the presence of adversarial noise of rates less than 1/32.

All the above works consider only the correctness of the protocol in the presence of adversarial
error. In this work we aim at achieving other properties as well, specifically, privacy. We ask the
following question:

Can error-resilient protocols tolerating some constant fraction of errors be devised, if we
also require the protocol to be private, that is, not to leak any information besides f(x, y)?

Evidently, privacy is no longer guaranteed when compiling a private (error-free) protocol π for f
using the methods of Schulman or Braverman and Rao. For instance, Schulman’s scheme works by
‘running’ π until the users suspect their views are ‘inconsistent’ due to channel errors. Then, the
users ‘backtrack’ to the last consistent point and continue from there. This “rewinding” is vital for
the protocol’s ability to recover from errors, yet it is fatal for its privacy.

We answer the above question in the negative, and show that privacy and error-resilience are
in fact contradicting aspirations.

Theorem 1.1 (Separation of error-free and adversarial error for private protocols). For
any constant c > 0, there exists a function f such that a private protocol for f exists in the error-
free setting, but no protocol is both private and correctly computes f over a noisy channel with at
most a c-fraction of adversarial errors.

In fact, our impossibility result is even stronger, as it rules out protocols even when the error-rate
is below constant:

Theorem 1.2 (main, informal). For any d = O(2n), there is a function f taking two inputs of
size n, such that a private protocol for f exists in the error-free setting, but such that no private
protocol correctly computes f over a noisy channel with at most O(1/d)-fraction of adversarial
errors.

With our result, it is very interesting to compare private computations in the error-free model,
the random-noise model, and the adversarial-error model. As first shown by Kushilevitz [Kus89,
Kus92] and Beaver [Bea91], in the error-free model, some functions are privately-computable and
others are not. The set of functions that can be computed in a privately is fully characterized
in [Bea91, Kus92], wherein an optimal protocol for any function in this set is also provided. In
the random-noise model, a recent work by Ishai, Kushilevitz, Ostrovsky, Prabhakaran, Sahai, and
Wullschleger [IKO+11] shows how to obtain oblivious transfer (OT) over the binary symmetric
channel1 (BSC) with constant communication. Since any function f can be privately computed
assuming OT [GMW87] (in the semi-honest model), the result of [IKO+11] implies a constant
rate protocol for any function f . In the adversarial-error model, on the other hand, we show that
depending on the error rate, there are functions that can be privately computed in the error-free
setting but not in the adversarial-error model. Thus, there is no hope to achieve constant-rate
schemes for any function f , or even for any f which can be computed privately in the error-free
setting.

1 The BSC channel is parametrized by a probability p ∈ [0, 1]. For any input bit b ∈ {0, 1}, the output is 1− b with
probability p, and b with probability 1− p. That is, the channel flips the input bit with probability p.
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Our Techniques. Our key insight is that resilience to errors implies that the protocol must be able
to “backtrack” its course from an incorrect track reached due to channel errors, while, at least
intuitively, privacy should prevent the protocol from taking any course other than the correct one
and prevent “rewinding” the protocol and changing its intermediates inputs. Hence, showing that
privacy forces the protocol to advance in a specific order, say, through specific ordered steps, would
imply that error-correction can be performed only within a single step, but not between steps.

The line of work initiated by Kushilevitz [Kus89, Kus92] and Beaver [Bea91] helps us with
this problem. In particular, the result of Maji, Prabhakaran and Rosulek [MPR09], shows that
private protocols in the error-free model must advance in very specific ways. The progress of such a
protocol can be split into steps where at each step only a single quantum of information is revealed
(namely, a single decomposition of the domain, see formal definitions in Section 2). Moreover,
revealing the information of step i before the information of step j < i is revealed leads to violating
privacy. The amount of steps depends only on f , and for any 1 ≤ d ≤ 2(2n − 1) there exists a
privately-computable function with exactly d steps [Kus92].

We revisit the works of [Bea91, Kus92, MPR09] and examine them in the adversarial error
model. We show that a similar property exists in any private, error-resilient protocol. Next, we
show that if a channel completely changes the messages of two consecutive steps, the privacy is
compromised. This gives a lower bound of Ω(1/d) on the proportion of allowed error, and proves
our main theorem.

More specifically, We identify the point in the protocol where A reveals that his input is in
some set P rather than in Q (where P ∪Q is some subset of his domain). The adversarial channel
changes the messages of this “step” to lead B to believe that A’s input is actually in Q. Then, at
the next “step” it’s B’s turn to reveal whether his input is in some partition V,W of (a subset
of) his domain. The channel keeps changing A’s messages until the end of this step. However, this
violates the privacy of B since his partition is done assuming A’s input is in Q. Conditioned on the
fact it is in P , the next step of B should have been decomposing his sub-domain into Ṽ , W̃ 6= V,W .
Hence, some information was leaked, and the protocol is not private.

Related Work. Concurrently and independently of our work, a very recent paper of Chung, Pass and
Telang [CPT13] also examines impossibility results for coding schemes for secure interactive com-
munication, however their work considers a model where a party can be adversarial together with
the (rate-limited) adversarial channel, and the adversary can potentially also be computationally
bounded. In contrast, our impossibility results are for a model where parties are semi-honest, and
only the channel can be adversarial (and rate-limited). Thus, the impossibility results of [CPT13]
and ours are largely incomparable; however, taken together, our paper and [CPT13] provide impos-
sibility results for private interactive communication in both the cases of semi-honest parties and
malicious parties.

Roadmap. We start with preliminaries and definitions in Section 2. Of special importance is Sec-
tion 2.2, where we model the adversarial channel, and give definitions of privacy and correctness
in the presence of such a channel. In Section 3 we study the structure of transcripts generated by
a perfectly private and correct protocol in the presence of adversarial channel. The main result of
this section is Theorem 3.11 which proves that a private protocol must advance in a very specific
sequence of steps. This fact is used in Section 4 to construct a channel that introduces errors at
well-chosen points in the protocol execution and violates privacy. Section 5 discusses extensions to
the case of protocols which are not perfectly secure.
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2 Interactive Computation With and Without Noise

2.1 Preliminaries: two-party computation in the noiseless model

We begin by recalling some definitions of two-party computation, assuming noiseless communica-
tion. Two parties, A and B hold inputs x ∈ X and y ∈ Y respectively. The parties wish to compute
the value of f : X × Y → Z for some finite set Z. The computation is done via an interactive
probabilistic protocol π = (πA, πB). The protocol works in rounds and defines for each party, at
each round, the next message to be transmitted as a function of its input, randomness, and received
messages.2 The parties send massages m ∈ Σ according to π in an alternating3 way: for odd rounds,
mi = πA(x,RA,m2m4 · · ·mi−1) and for even rounds mi = πB(y,RB,m1m3 · · ·mi−1). We denote
the transcript of a specific instance t = m1m2 · · · as the messages transmitted within that instance.
We assume messages are delimited so it is possible to parse the transcript into specific messages.

At the end of an execution of π, the parties compute their outputs as a function of their respec-
tive inputs, randomness, and views. These functions will be denoted by outπA(·, ·, ·) and outπB(·, ·, ·)
respectively. That is, for inputs (x, y) ∈ X×Y , transcript t, and randomness RA, RB, party A’s out-
put will be outπA(x,RA, t), and B’s output is outπB(y,RB, t). We will usually omit the randomness,
and implicitly treat π (along with the output function) as a single randomized protocol.

Correctness and Privacy. We recall the standard definitions for correctness and privacy, assuming
the computation is over an error-free channel.

Definition 2.1. A protocol is said to be (perfectly) correct if

∀x, y : Pr
t←π(x,y)

[outπA(x, t) = outπB(y, t) = f(x, y)] = 1.

As for privacy, we follow the notions developed by Chor, Kushilevitz and Beaver [Kus89, CK91,
Bea91, Kus92].

Definition 2.2 (Privacy for Noiseless Protocols). A protocol is private (with respect to party A)
if, for any x, x′ ∈ X and y ∈ Y such that f(x, y) = f(x′, y), the protocol generates the same distribu-
tion of transcripts for inputs (x, y) and (x′, y). Formally, for any t ∈ Σ∗, Pr[t | x, y] = Pr[t | x′, y].
Similarly, privacy of party B is given if for any x ∈ X and y, y′ ∈ Y such that f(x, y) = f(x, y′),
for any t ∈ Σ∗, Pr[t | x, y] = Pr[t | x, y′].

Kushilevtiz [Kus92] and Beaver [Bea91] gave a full characterization for functions that can be com-
puted privately (in the noiseless model). We now recall this characterization.

We say that f is column-partitionable if there exists a non-trivial partition of Y into disjoint
P,Q ⊂ Y such that for any x ∈ X, for any y ∈ P, y′ ∈ Q, it holds that f(x, y) 6= f(x, y′). We refer
to such P,Q as valid column-partitions. We let fX×P and fX×Q be f restricted to the domains
X × P and X × Q. Similarly, we say f is row-partitionable, if we can partition X into Q and P
such that for any y ∈ Y , and any x ∈ P , x′ ∈ Q, it holds that f(x, y) 6= f(x′, y). Domains that
were achieved by a sequence of valid partitionings are called restricted domains. We say that some
subdomain X ′ × Y ′ is a restricted domain of depth d if it takes d recursive decompositions to
obtain X ′ × Y ′. Furthermore, we can generalize the notion of f being row-partitionable, if X can

2 Note that previously sent messages are function of the above and need not be given explicitly to the protocol.
3 This assumption can be avoided with changing our results by a factor of at most 2.
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be partitioned into m > 1 disjoint sets X1, X2, . . . , Xm and for any u ∈ Xi and any v ∈ Xj where
j 6= i, it holds that for every y ∈ Y , f(u, y) 6= f(v, y). A partition of X into m∗ disjoint sets is called
maximal if any other partition of X has m ≤ m∗. We will mostly consider binary decomposable
functions—functions which are maximally partitionable into at most m = 2 partitions.

We say that f is partitionable if: (1) f is constant; or, (2) f is either row-partitionable or
column-partitionable, and each of the restricted functions is also partitionable.

The following lemma which appears in [Bea91, Kus92], identifies the set of privately-computable
functions exactly as the set of partitionable functions.

Lemma 2.3 ([Bea91, Kus92]). A function f has a correct protocol π (in the noiseless model)
which is private with respect to both parties if and only if f is partitionable.

2.2 The noisy model: two-party computation over a noisy channel

Let us now augment the above model into a noisy version. First, let us define the notion of a channel.
We assume an arbitrary, causal channel (possibly with memory). The channel’s instantiation at the
`-th round Ch`(m` | (m1,m

′
1)(m2,m

′
2) · · · (m`−1m

′
`−1)) is a distribution on Σ characterized by the

(input,output) channel-messages up to that round. Hence, the probability that the channel takes
m = m1 · · ·mn and outputs m′ = m′1 · · ·m′n is given by

Pr[Ch(m) = (m′)] := Pr
[
Ch1(m1 | ∅) = m′1

]
× Pr

[
Ch2

(
m2 | (m1,m

′
1)
)

= m′2
]
· · ·

× Pr
[
Chn

(
mn | (m1,m

′
1)(m2,m

′
2) · · · (mn−1m

′
n−1)

)
= m′n

]
(1)

Again we assume that the parties alternately send messages. For a specific instance of the
protocol, we denote the transcript t = (ts, tr) = (m1m2 · · · ,m′1m′2 · · · ) as the messages observed
for that instance (where ts denotes the messages the parties send, and tr the massages they receive).
We denote by tsA = m1m3m5 · · · the messages sent by A and similarly tsB = m2m4m6 · · · is the
messages sent by B. The messages received by each party, trA, trB are defined in a similar way.

A protocol π = (πA, πB) over a noisy channel Ch is defined in a similar way to the noiseless
case: the protocol defines for each party, at each round the next message to send as a function of
its inputs, randomness and all the messages received up to that round. Explicitly, A’s messages
on odd rounds are m2i−1 = πA(x,RA,m

′
2m
′
4 · · ·m′2i−2), and B’s messages on even rounds are

m2i = πB(y,RB,m
′
1m
′
3 · · ·m′2i−1), with m′ = Ch(m).

For some protocol π over a channel Ch and some input (x, y) we can ask what is the set of
possible transcripts generated by π for that input, and what is the probability to observe each such
transcript. Formally, let T s(x, y, tr) be the random variable describing ts = m1m2 · · · defined by π
on inputs (x, y) given that tr = m′1m

′
2 · · · is received by the parties. Then, the probability that an

instance of π sending messages over a channel Ch on inputs (x, y) produces t = (ts, tr) is given by

Pr[t | x, y,Ch] := PT s(x,y,tr)(t
s) · Pr[Ch(ts) = tr]. (2)

The probability can be generalized to any prefix of t in the standard way, quantifying the
probability that π over Ch produces that prefix on (x, y). The probabilities to have a specific sent-
messages transcript ts, and a specific received-messages transcript tr are given by the marginal
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probabilities,

Pr[ts | x, y,Ch] =
∑
tr

PT s(x,y,tr)(t
s) · Pr [Ch(ts) = tr] , and (3)

Pr[tr | x, y,Ch] =
∑
ts

PT s(x,y,tr)(t
s) · Pr [Ch(ts) = tr] . (4)

For a given input (x, y) ∈ X×Y the execution of π with inputs (x, y) over channel Ch induces a
distribution over the set of all transcripts according to the above equations. Let u be a fixed partial
transcript. For a given string u′ such that u ◦ u′ is a complete transcript, we can compute the
probability that the protocol π (with inputs (x, y) and channel Ch) will produce u′ when executed
with the history u′. We will use πCh(x, y; u) to refer to this distribution over completions u′. We will
use τCh(x, y) :=

{
t← πCh(x, y)

}
to denote the set of all possible (complete) transcripts generated

by π on inputs (x, y) assuming messages are being sent over the channel Ch. The output function
for A is defined as above, outπA(x,RA, t

r
A) where trA are the even indices of tr, i.e., the messages

received by A. Similarly, the output for B is outπB(y,RB, t
r
B).

Error Rate. For i = 1, 2, . . ., by tr[i], we denote the i-th message in tr, and similarly for ts, and let
t[i] = (ts[i], tr[i]). We define tr[0] and ts[0] to be the empty string. By |tr| (resp. |ts|), we denote
the number of messages in transcript tr (resp. ts). We denote |t| as the number of pairs in t so that
|t| = |tr| = |ts|. If no noise is added by the channel, then for all i = 1, 2, . . ., we have tr[i] = ts[i].
Define the error weight η(t) of a transcript t = (tr, ts) as

η(t) := |{ i | tr[i] 6= ts[i] }| . (5)

Definition 2.4 (Error Rate of Ch). We say that a channel Ch has error rate µ ∈ [0, 1], if for
any inputs (x, y) and any transcript t ∈ τCh(x, y), it holds that

η(t) ≤ µ|t|.

Correctness and Privacy. We now augment the privacy and correctness definitions to the noisy
case. The correctness definition is straightforward.

Definition 2.5 (Perfect Correctness). A protocol π is perfectly correct with respect to some
function f over Ch if for any inputs x, y,

Pr
RA,RB ,RCh

(ts,tr)←πCh(x,y)

[outπA(x, trA) = outπB(y, trB) = f(x, y)] = 1.

We further say a protocol π is perfectly correct with rate µ if π is perfectly correct over every
channel Ch with error rate µ.

We define privacy in a similar way to the noiseless case, where the transcript doesn’t leak more
than what is trivially conveyed by the function’s output.

Definition 2.6 (Perfect Privacy). A protocol π for f is perfectly private over Ch with respect
to A if for any inputs such that f(x, y) = f(x′, y) it holds that for any t,

Pr[t | x, y,Ch] = Pr[t | x′, y,Ch].
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Similarly, perfect privacy with respect to B requires that whenever f(x, y) = f(x, y′) it also holds
that Pr[t | x, y,Ch] = Pr[t | x, y′,Ch].
Furthermore, We say a protocol π is perfectly private with rate µ if it is perfectly private (for both
players) over every channel Ch with rate µ.

We mention the following difference between our setting and the one used in [Bea91, Kus92,
MPR09]. One of the assumptions used by these works is that the last message of π is the output
f(x, y) (this doesn’t restrict the generality of those results). However in our noisy model, this
assumption doesn’t make much sense as the channel can always “violate” the correctness of the
protocol by changing this single message. To avoid this inconvenience we assume the output is
given by the functions outA, outB and is not part of the transcript. The next lemma shows that
this change has no effect on the distribution of transcripts, namely, that different outputs imply
different transcripts, regardless of the parties’ randomness (which is trivially the case when the
output is part of the transcript).

Lemma 2.7. Let π be a perfectly correct and perfectly private protocol for a function f , and let
x, y, y′ be inputs such that f(x, y) 6= f(x, y′). Then, for any channel Ch and for any transcript t, if
Pr[t | x, y,Ch] > 0, then Pr[t | x, y′,Ch] = 0.

Proof. We say A’s random tape RA is consistent with transcript t and input x if for 1 ≤ i ≤ |t|,

πA(x,RA, t
r[0 . . . i−1]) = ts[i].

Let t∗ be a transcript such that both Pr[t∗ | x, y,Ch] > 0 and Pr[t∗ | x, y′,Ch] > 0. Consider the
set,

St∗ = {RA | RA is consistent with t∗ and x }

As Pr[t∗ | x, y,Ch] > 0, by perfect correctness, for all RA ∈ St∗ , we have outA(x,RA, t
∗) =

f(x, y). Similarly, as Pr[t∗ | x, y′,Ch] > 0, for all RA ∈ St∗ , we have that outA(x,RA, t
∗) = f(x, y′).

But these statements are mutually contradictory as f(x, y) 6= f(x, y′). Therefore, it must be that
St∗ = ∅, and either Pr[t∗ | x, y,Ch] = 0 or Pr[t∗ | x, y′,Ch] = 0. ut

3 Properties of Private Protocols: The Perfect Case

The goal of this section is to show that a private protocol reveals information about the parties’
inputs in a particular well-defined order. This section extends the results in [MPR09] to the noisy
channel setting. In particular, we analyze the transcripts of the protocol and show that they pro-
ceed through well-defined stages that depend upon the partitioning of the function. At each such
stage, one of the parties necessarily reveals a particular partition of its input space in which its
current input lies. This is formalized by the concept of “frontiers”(see Definition 3.7 for the formal
definition). A frontier is a prefix-free set of partial transcripts which is maximal in the sense that
every transcript has a prefix in the frontier. The main result of this section is Theorem 3.11, where
we construct a set of frontiers which correspond to the stages where the transcripts reveal the
partitions.

We focus on functions that have a certain structure, which we call binary-uniquely decomposable:
their domain is maximally row-partitionable into 2 partitions and is not column-partitionable. Each
one of the two restricted domains is either constant or (maximally, binary) column-partitionable
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but not row-partitionable. This continues recursively in an alternating manner (i.e., one level row-
partitionable and the next level is column-partitionable). Although the proofs could be extended
to a more general case, this simpler class of functions is enough for our impossibility result, as we
are only required to provide one function that has no perfectly-correct and private protocol over a
noisy channel (of certain parameters). A simple example of such a function is the following Vickrey
auction function [Vic61] (a variant of the min function), which is very useful for performing private
2nd-price (Vickrey) auctions,

f(x, y) =

{
2x x ≤ y
2y + 1 x > y

where the inputs x and y are integers less than a certain bound N .

Our first step is to identify certain inputs that form a minor. These will be associated with each
level of f ’s decomposition.

Definition 3.1 (Minor). We say that x, x′, y, y′ form a j-minor (resp., a i-minor) if

f(x, y) = f(x, y′)
6= 6=

f(x′, y) 6= f(x′, y′)
(resp., if

f(x, y) 6= f(x, y′)
= 6=

f(x′, y) 6= f(x′, y′)
.)

Lemma 3.2. Assume a binary-uniquely decomposable function f on X×Y which is row-partitionable
into P,Q, but not column-partitionable. Then, exactly one of the following happens.

1. Both fQ×Y and fP×Y are constant.

2. Only one of fQ×Y , fP×Y is constant, and there exists a j-minor (x, x′, y, y′) with x and x′ in
different sets of the partition (specifically x is in the constant partition). Furthermore, y, y′ are
in different sets of the column-partitioning of the non-constant restricted function.

3. Both fQ×Y and fP×Y are non constants, and there are at least two “overlapping” minors:
if fQ×Y is partitioned into YQ0 , YQ1 and fP×Y is partitioned into YP0 , YP1, there exist minors
(x, x′, y, y′) and (x, x′, w, w′) where x ∈ P and x′ ∈ Q. And if both y, y′ are in the same partition
YPi and both w,w′ are in YQj then YPi ∩ YQj contains one of w,w′ and one of y, y′.

P

Q

P

Q
x′, y x′, y′

x, y x, y′

P

Q

YPi

YQj
y′y

w w′

Fig. 1. A simplified illustration of the three cases; A closed area means constant value of f within this area

Proof. We note that cases 1 and 2 are simple, and prove case 3. First, we mention that YP0 , YP1 is
not a valid partition for fQ×Y , since if it was, then f would be column-partitionable in contradiction
to its definition. The same applies to YQ0 , YQ1 and fP×Y .
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Consider fP×Y . There must exist x ∈ P and y ∈ YQ0 , y
′ ∈ YQ1 such that f(x, y) = f(x, y′), or

otherwise YQ0 , YQ1 is a valid column partition of fP×Y . It follows that y, y′ must be in the same
partition YPi . Note that for any x′ ∈ Q, (x, x′, y, y′) is a minor.

Let YQj be the partition that has non-empty intersection with both YP0 , YP1 (at least one of
YQ0 , YQ1 must intersect both YP0 , YP1 , or otherwise f is column-partitionable). There must exist
u′ ∈ Q and w ∈ YQj ∩ YP0 , w′ ∈ YQj ∩ YP1 such that f(u′, w) = f(u′, w′), or otherwise YP0 , YP1 is
a valid partition for fQ×Y . Then, for any u ∈ P (and specifically for x), (u′, u, w,w′) is a j-minor.
Finally, note that we are allowed to choose any x′ ∈ Q, u ∈ P ; we choose x′ = u′ and u = x and
complete the proof. ut

With this setting we can start exploring the sequential revelation of information in private
protocols. Consider inputs (x, x′, y, y′) which form a j-minor. The following lemma shows that
transcripts produced by inputs (x, y) and those produced by inputs (x′, y) must differ at some
point. Further, the earliest point where they differ must be a point where party A speaks. This
round will symbolize the point where A begins to reveal the row-decomposition of this level.

Lemma 3.3. For a perfectly correct π for f over Ch, the following holds. If f(x, y) 6= f(x′, y),
then for any t ∈ τCh(x, y) ∪ τCh(x′, y) there exists an odd round ρ such that Pr[t[1..ρ] | x, y,Ch] 6=
Pr[t[1..ρ] | x′, y,Ch], yet for any ` < ρ it holds that Pr[t[1..`] | x, y,Ch] = Pr[t[1..`] | x′, y,Ch].

Proof. Let t = (ts, tr) ∈ τCh(x, y)∪ τCh(x′, y). Since f(x, y) 6= f(x′, y) and the protocol is perfectly-
correct, Lemma 2.7 suggests that there must exist some round k for which Pr[t[1..k] | x, y,Ch] 6=
Pr[t[1..k] | x′, y,Ch]. Let ρ be the minimal round that satisfies this condition.

Assume towards contradiction that ρ is even, i.e., the next one to send a message is party B.
Then,

Pr
[
t[1..ρ] | x, y,Ch

]
=

= Pr
[
π(x, y, tr [1..ρ]) = ts[1..ρ]]

]
Pr
[
Ch(ts[1..ρ]) = tr [1..ρ]

]
= Pr

[
πB(y, tr [1..ρ−1]) = ts[ρ]

]
Pr
[
π(x, y, tr [1..ρ−1]) = ts[1..ρ−1]

]
× Pr

[
Ch(ts[ρ] | t[1..ρ−1]) = tr[ρ]

]
Pr
[
Ch(ts[1..ρ−1]) = tr [1..ρ−1]

]
= Pr

[
πB(y, tr [1..ρ−1]) = ts[ρ]

]
Pr
[
(Ch(ts[ρ] | t[1..ρ−1]) = tr[ρ]

]
× Pr

[
t[1..ρ−1] | x′, y,Ch

]
= Pr[t[1..ρ] | x′, y,Ch]

which leads to a contradiction. The third transition is due the fact that for any round k < ρ,
Pr[t[1..k] | x, y,Ch] = Pr[t[1..k] | x′, y,Ch], by the way we define ρ. ut

The next two lemmas show that when considering two consecutive levels of the decomposition
(say, row-decomposition followed by a column-decomposition; those are associated with some j-
minor (x, x′, y, y′)), if party B reveals some information about whether its input is y or y′ (i.e.
the column-decomposition), it must be the case, that party A has completely revealed whether his
input is x or x′, or more precisely, whether his input is in P or Q for the matching row-partition.

Lemma 3.4. For a perfectly correct π for f over Ch, the following holds. For any x, x′, y, y′ that
form a j-minor, let t ∈ τCh(x′, y)∪ τCh(x′, y′), and let ρ be the first round where Pr[t[1..ρ] | x′, y] 6=
Pr[t[1..ρ] | x′, y′]. Then,

Pr
[
t[1..ρ−1] | x, y,Ch

]
= Pr

[
t[1..ρ−1] | x, y′,Ch

]
= 0.

9



Proof. First, note that ρ must be even (this follows from Lemma 3.3). Let t ∈ τCh(x′, y)∪τCh(x′, y′),
and assume (towards contradiction) that Pr[t[1..ρ−1] | x, y′,Ch] > 0. Now,

Pr[t[1..ρ] | x, y,Ch] = Pr
[
πB (y, trB [1..ρ−1]) = ts[ρ]

]
Pr
[
Ch (ts[ρ] | t[1..ρ−1]) = tr[ρ]

]
· Pr[t[1..ρ−1] | x, y,Ch]

= Pr
[
t[ρ] | y, t[1..ρ−1],Ch

]
Pr[t[1..ρ−1] | x, y′,Ch].

In addition, due to B’s privacy and the fact that f(x, y) = f(x, y′), for any round ρ′ and specifically
for the above ρ we have,

Pr[t[1..ρ] | x, y,Ch] = Pr[t[1..ρ] | x, y′,Ch]

= Pr
[
t[ρ] | y′, t[1..ρ−1],Ch

]
Pr[t[1..ρ−1] | x, y′,Ch],

and since Pr[t[1..ρ−1] | x, y′] 6= 0, it must be that

Pr
[
t[ρ] | y, t[1..ρ−1],Ch

]
= Pr

[
t[ρ] | y′, t[1..ρ−1],Ch

]
. (6)

On the other hand, we know that ρ is the first round such that Pr [t[1..ρ] | x′, y] 6= Pr [t[1..ρ] | x′, y′],
thus,

Pr[t[1..ρ] | x′, y,Ch] = Pr
[
t[ρ] | y, t[1..ρ−1],Ch

]
Pr[t[1..ρ−1] | x′, y,Ch]

= Pr
[
t[ρ] | y, t[1..ρ−1],Ch

]
Pr[t[1..ρ−1] | x′, y′,Ch]

6=
Pr
[
t[ρ] | y′, t[1..ρ−1],Ch

]
Pr[t[1..ρ−1] | x′, y′,Ch] = Pr[t[1..ρ] | x′, y′,Ch]

and since t ∈ τCh(x′, y) ∪ τCh(x′, y′) we know that Pr[t[1..ρ−1] | x′, y′,Ch] > 0 and we conclude that

Pr
[
t[ρ] | y, t[1..ρ−1],Ch

]
6= Pr

[
t[ρ] | y′, t[1..ρ−1],Ch

]
, (7)

contradicting Eq. (6). A similar proof works for (x, y). ut

Lemma 3.5. Let π be a perfectly-correct private protocol for f over Ch. For any x, x′, y, y′ that
form a j-minor, let t ∈ τCh(x, y) ∪ τCh(x, y′). Then, there exists a round ρ such that

Pr[t[1..ρ−1] | x′, y,Ch] = 0, Pr[t[1..ρ−1] | x′, y′,Ch] = 0

Moreover, for any t∗ ∈ τCh(x′, y) ∪ τCh(x′, y′) such that t[1..ρ′] = t∗[1..ρ′] for some ρ′, it holds
that ρ′ < ρ.

Proof. The existence of ρ is trivially guaranteed by (perfect-)correctness. Clearly ρ > ρ′ since at
least one of Pr[t[1..ρ′] | x′, y,Ch], Pr[t[1..ρ′] | x′, y′,Ch] must be non zero, by the way we pick t∗ and
the fact that t[1..ρ′] = t∗[1..ρ′]. ut

We conclude with the following Theorem, which is a simple corollary of the above lemmas, and
formalizes the fact that there is a round in which we fully know the row-partition but nothing about
the next-level column-decomposition.

Theorem 3.6. Let π be perfectly-correct private protocol for f over Ch. Let x, x′, y, y′ form a j-
minor. Then, for any transcript t, there is a round ρ such that at least one of the following is
satisfied.

1. Pr[t[1..ρ] | x, y,Ch] = Pr[t[1..ρ] | x, y′,Ch] = 0, and Pr[t[1..ρ] | x′, y,Ch] = Pr[t[1..ρ] | x′, y′,Ch].
2. Pr[t[1..ρ] | x′, y,Ch] = Pr[t[1..ρ] | x′, y′,Ch] = 0, and Pr[t[1..ρ] | x, y,Ch] = Pr[t[1..ρ] | x, y′,Ch].

It is important to note at this point that analogous claims for the above Lemma 3.2 through The-
orem 3.6 can similarly be shown for a binary-uniquely decomposable f which is column-partitionable
but not row-partitionable, and for (x, x′, y, y′) being a i-minor instead of a j-minor, etc.
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3.1 Frontiers: dealing with more than a single transcript

While above we have analyzed one transcript at a time, we now extend the definitions to treat
many transcripts (e.g., the entire τCh(x, y)) at the same time. In the spirit of [MPR09] we define
frontiers as a means to deal with several transcripts rather than a single transcript. We begin with
a few definitions.

Definition 3.7 (Frontiers). A set F of partial transcripts is called a frontier if,

1. F is prefix-free4.

2. F is maximal, i.e., Pr[F | x, y,Ch] = 1 for all inputs x, y, where

Pr[F | x, y,Ch] :=
∑
u∈F

Pr[u | x, y,Ch].

Informally, we say that a partial transcript u has reached frontier F if u ∈ F . For frontiers F
and G, we will also be interested in the probability that F ‘precedes’ G; that is, the probability
that the protocol reaches frontier F before it reaches frontier G. Formally, we have the following
definition.

Definition 3.8. For any frontiers F and G, define

Pr[F ≤ G | x, y,Ch] =
∑

{u∈F |u is a prefix of some u′∈G}

Pr[u | x, y,Ch]

the weighted probability of all the transcripts in F that are prefixes of transcripts in G. In the same
manner define Pr[F < G | x, y,Ch] for transcripts which are strict prefixes.

For notational conciseness, for fixed x, y,Ch, we will use the statement “F ≤ G” as a shorthand
for the statement “Pr[F ≤ G | x, y,Ch] = 1”. The same holds for the statement “F < G”.

Given a minor (x, x′, y, y′) we define the set F (x, x′, y, y′) as the collection of transcripts prefixes
up to the point where the “partition” related with this minor happens via Theorem 3.6. Note that
the length of each prefix can be different.

Definition 3.9. For a minor (x, x′, y, y′) define

F (x, x′, y, y′) :=
{
t[1..ρ] | t is a transcript and ρ = ρ(t) is the minimal satisfying Theorem 3.6.

}
Lemma 3.10. Given a minor (x, x′, y, y′), the set F (x, x′, y, y′) is a frontier.

Proof. First, we show that F = F (x, x′, y, y′) is prefix free. Assume that u,v ∈ F such that u is a
strict prefix of v. Let t be any transcript with prefix v. The minimal ρ that satisfies Theorem 3.6
for t is |u|, therefore it cannot be that v ∈ F because of t. However, this claim holds for any t
whose prefix is v, thus v /∈ F . Second, observe that F is maximal since we consider all possible
transcripts t. ut
4 That is, no string in F is a proper prefix of another string in F . Formally, for any t, t′ ∈ F where |t| ≤ |t′|, it

holds that t 6= t′[1..|t|].
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We are now ready for the main theorem of this section. Let f be a binary-uniquely decomposable
function on X×Y and let π be a perfectly correct and private protocol for f . We define a sequence
of domains X1 × Y1 ⊆ · · · ⊆ Xd × Yd, according to the partitioning of f , where Xd × Yd = X × Y .
For any such sequence we define a sequence of frontiers Fi = F (Xi × Yi) where Fi represents
one decomposition step of the protocol (i.e., the decomposition of Xi × Yi into Xi−1 × Yi−1 and
(Xi \Xi−1)× Yi−1, assuming that the i-th decomposition level is a row-partition). Furthermore, it
holds that Fi+1 ≤ Fi, that is, the protocol reaches these frontiers exactly in their order (i.e., the
information about f ’s decomposition is revealed exactly in this order).

Theorem 3.11. Suppose that f is binary-uniquely decomposable and assume that the maximal
number of decomposition in f is d ≥ 1. Let π be a perfectly-correct private protocol for f over Ch. Let
X1×Y1 ⊆ · · · ⊆ Xd×Yd be a sequence of restricted domains such that Xd×Yd = X×Y , and Xi×Yi is
one of the partitions of Xi+1×Yi+1. Then, for any Xi×Yi there exists a frontier Fi = F (Xi×Yi) such
that (assuming fXi×Yi is row-partitionable; a similar claim holds if fXi×Yi is column-partitionable.),
for any x, x′ ∈ Xi and y, y′ ∈ Yi, and any u ∈ Fi,

1. if x, x′ are in the same partition, Pr[u | x, y,Ch] = Pr[u | x′, y′,Ch].
2. if x, x′ belong to different partitions, at least one of Pr[u | x, y,Ch], Pr[u | x′, y′,Ch] is zero.

Moreover, for any restricted domain Xj × Yj such that Xi × Yi ⊂ Xj × Yj, it holds that Fj ≤ Fi.

Proof. Assume fXi×Yi is row-partitionable into P,Q ⊂ X. We prove the claim by induction on
i = 1 . . . d. We split the proof into cases according to Lemma 3.2.

Case I: fP×Yi , fQ×Yi are constant. Let Fi be the set of complete transcripts Fi = {t ∈ τCh(x, y) |
x, y ∈ Xi × Yi}, and the claim trivially follows from privacy, and Lemma 2.7. Also note that
this must be the case for the induction’s base case X1 × Y1.

Case II: fP×Yi is constant but fQ×Yi is not. By Lemma 3.2 we know that there exists a minor
(x◦, x

′
◦, y◦, y

′
◦) where x◦ ∈ P and x′◦ ∈ Q. Define Fi = F (x◦, x

′
◦, y◦, y

′
◦) as given by Definition 3.9.

We begin with proving the first property.
If x, x′ ∈ P the first property trivially holds from the privacy of (the constant) fP×Yi .
If x, x′ ∈ Q then, assume fQ×Yi is column-partitionable into Y 0

i , Y
1
i , and recall that Lemma 3.2

suggests that y◦ and y′◦ are in different partitions, say y◦ ∈ Y 0
i and y′◦ ∈ Y 1

i . Now, if y, y′ are
in the same partition, then the first property holds due to the induction hypothesis on Q× Yi.
Namely, Q × Yi ⊂ Xi × Yi and the induction implies that any string u′ in Fi−1 = F (Q × Yi)
satisfies property (1.); since Fi ≤ Fi−1, then any u ∈ Fi is a prefix of some u′ ∈ Fi−1 and must
satisfy the same property.
If y ∈ Y 0

i and y′ ∈ Y 1
i then, again using the induction hypothesis we know that for any u ∈ Fi

and for any x, x′ ∈ Q,

Pr[u | x, y,Ch] = Pr[u | x′◦, y◦,Ch] and Pr[u | x′, y′,Ch] = Pr[u | x′◦, y′◦,Ch].

The claim follows since Pr[u | x′◦, y◦,Ch] = Pr[u | x′◦, y′◦,Ch] as given by Theorem 3.6, and the
way we have defined Fi.
We now prove the second property. Let x ∈ P, x′ ∈ Q and y, y′ ∈ Yi. Note that due to Theo-
rem 3.6, for any u ∈ Fi it holds that at least one of Pr[u | x′◦, y◦,Ch] and Pr[u | x◦, y′◦,Ch] is
zero. Also note that Pr[u | x, y,Ch] = Pr[u | x◦, y,Ch] and Pr[u | x′, y′,Ch] = Pr[u | x′◦, y′,Ch],
the former due to privacy (recall that fP×Yi is constant) and the latter due to the induction
hypothesis on Q× Yi. This completes the proof of property (2.) for this case.
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Case III: both fP×Yi and fQ×Yi are non constant. Assume fP×Yi is column-partitionable to
Y 0
p , Y

1
p and that fQ×Yi to Y 0

q , Y
1
q . Let (x◦, x

′
◦, y◦, y

′
◦) and (x◦, x

′
◦, w◦, w

′
◦) be the minors guar-

anteed by Lemma 3.2. Define Fi to be F (x◦, x
′
◦, y◦, y

′
◦), and note that F (x◦, x

′
◦, y◦, y

′
◦) =

F (x◦, x
′
◦, w◦, w

′
◦): by using the induction hypothesis on each of the domains Q× YQ0 , Q× YQ1 ,

P × YP0 ,P × YP1 we get that Pr[u | x, y,Ch] = Pr[u | x, y′,Ch] = Pr[u | x,w′,Ch] and
Pr[u | x′, w,Ch] = Pr[u | x′, w′,Ch] = Pr[u | x′, y,Ch] (refer to Figure 1). By using the same
reasoning as in Case II, the first term also equals Pr[u | x,w,Ch] and the second also equals
Pr[u′ | x′, y′,Ch] which implies these frontiers are in fact the same.

It is easy to verify that the induction holds for this case as well: the first property holds due
to the same reason as the case where x, x′ ∈ Q in Case II; when x, x′ ∈ P we use the minor
(x◦, x

′
◦, w◦, w

′
◦) and when x, x′ ∈ Q we use the minor (x◦, x

′
◦, y◦, y

′
◦).

The second property also follows the same way as in Case II.

Finally, we complete the induction by showing that Fi ≤ Fi−1 (assuming the induction holds for
all Fj with j < i). Suppose not, and let u ∈ Fi be a transcript that violates this condition, that
is, there exists u′ ∈ Fi−1 such that u′ is a strict prefix of u. Due to the way we construct the
frontiers, either Fi contains only complete transcripts (and then any frontier Fj satisfies Fj ≤ Fi)
or otherwise Fi−1 is defined via Definition 3.9 by some minor x, x′, y, y′ where x, x′ ∈ Xi−1 and
y, y′ ∈ Yi−1 (wlog, a i-minor); additionally, let v, v′, w, w′ be the (j-)minor that defines Fi, where
v, v′ ∈ Xi and w,w′ ∈ Yi.

By Theorem 3.6 we know that for any u′ ∈ Fi−1, either Pr[u′ | x, y,Ch] = 0 or Pr[u′ | x, y′,Ch] =
0. If both are 0 then u′ (or prefix or it) is in Fi by its construction and it can’t be that u ∈ Fi for
any u that has a proper prefix u′.

Otherwise, since u′ is a prefix of u, it follows that also either Pr[u | x, y,Ch] = 0 or Pr[u |
x′, y,Ch] = 0. However, Xi−1 and Xi \ Xi−1 is a valid partitioning of Xi, thus x, x′ are both
in the same partition after the decomposition step of Fi. By the way we construct Fi, it holds
that Pr[u | v′, w,Ch] = Pr[u | v′, w′,Ch]. Furthermore, using the induction hypothesis on the two
partitions of Fi−1, we get that Pr[u | x, y,Ch] = Pr[u | x′, y,Ch] = Pr[u | v′, w,Ch] as well as Pr[u |
x, y′,Ch] = Pr[u | x′, y′,Ch] = Pr[u | v′, w′,Ch]. It follows that Pr[u | x, y′,Ch] = Pr[u | x, y,Ch] = 0
and we reached a contradiction. ut

4 Impossibility of Constant-Rate Coding for Private Protocols

Intuitively, Theorem 3.11 implies that the information is leaked by order: first A speaks and tells
where, in the first decomposition his input lies (and until then, B doesn’t say anything meaningful);
then it’s B’s turn to reveal where his input lies in the next decomposition, etc. It is not allowed
to give information beyond the current point of decomposition (this will damage privacy), and
moreover, if the other side does not acknowledge the correct partition of the decomposition, he
might violate his privacy (or at least the protocol outputs a wrong output). This gives a strict
bound on the error rate any such protocol can withstand.

Before we prove our impossibility result, we discuss a subtlety regarding the definition of error
rate in protocols of varying length. Consider a (deterministic) protocol so that for any input x, y
we can match a single transcript t(x,y). Assume that for any (x, y) 6= (x′, y′) it holds that |t(x,y)| 6=
|t(x′,y′)|. In this setting, Definition 2.4 has no practical meaning. Indeed, if the channel is allowed
to corrupt a fraction c ∈ (0, 1) of the transmission, and the protocol runs on the input whose
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transcript t is the longest, the protocol might terminate before round |t|, and the ‘effective’ fraction
of errors in the observed transcript will be higher than c.

To overcome this issue, we restrict our discussion only to protocols whose output length is the
same for every transcript. This doesn’t restrict the power of the protocol: after executing outA, outB
the parties can send “0” as many times as needed, ignoring any received messages. On the other
hand, the channel is potentially stronger, as it is allowed a higher proportion of errors for transcripts
that prematurely terminate (if any exists). We also mention that protocols in which both parties
always have consensus about whose turn it is to speak and whether or not the protocol ended, must
be of the same length for any input; see Claim 9 in [BR11].

Theorem 4.1 (main). Let f be a function that is binary-uniquely decomposable and has maximal
decomposition depth d. Then, no private protocol for f is perfectly correct and perfectly private with
error rate 1/d. Namely, for every perfectly correct protocol π for f , there exists a channel Ch∗ with
error rate 1/d, such that πCh

∗
is not private.

We begin with an intuitive outline of the proof. For any protocol π, we will construct a channel
Ch∗ which violates party B’s privacy. In particular, we will show there exist inputs x ∈ X, y, y′ ∈ Y ,
and a transcript t, such that f(x, y) = f(x, y′), but Pr[t | x, y,Ch∗] 6= Pr[t | x, y′,Ch∗].

We start with inputs x0, x1 ∈ X, y0, y1 ∈ Y which form a j-minor, and analyze protocol π
with the noiseless channel Ch0. Theorem 3.11 tells us precisely how information about the inputs
(x0, x1, y0, y1) is revealed by π: first A reveals whether its input is in the partition corresponding
to x0 or x1, then, if A’s input is in the partition corresponding to x1, B reveals whether its input
is in the partition corresponding to y0 or y1. More precisely, there exists 1 ≤ i ≤ d, such that,

– till frontier Fi, party A does not reveal any information that can distinguish the partitions
corresponding to x0 from x1,

– at frontier Fi+1, party A reveals whether its input is in the partition corresponding to x0 or x1,

– if A’s input was in partition corresponding to x1, B reveals the partition of its own input at
frontier Fi+2.

We use the above observations to design the adversarial channel Ch∗. Consider an execution
of π with inputs x0, y0. The channel lets the messages go back and forth unmodified till the protocol
reaches frontier Fi. At this stage, it samples a random tape RA for A consistent with the transcript
so far, and input x1. Thereafter, the channel replaces A’s messages with what it would have sent
had its input been x1 and random tape RA. Note that as transcripts for x0 and x1 are identically
distributed till frontier Fi, B’s view is consistent with the execution of π with inputs x1, y0 with
the noiseless channel. The channel Ch∗ continues modifying A’s messages this way until in B’s
view, the protocol reaches frontier Fi+2. At this point party B has revealed information about the
partition of its input, which violates its privacy.

The crucial missing piece in the above is the rate of the channel Ch∗. Recall that our channel is
allowed to introduce only a 1/d fraction of errors. If we pick an arbitrary minor (x0, x1, y0, y1) and
launch the above attack, it is possible that the frontiers Fi+2 and Fi are “far apart”, and thus the
channel has to introduce large number of errors. To avoid this, we start by picking inputs x1, y0,
and a transcript t in τCh(x1, y0). As there are d frontiers, by an averaging argument, there exists
an i such that the fraction of messages in t between Fi and Fi+2 is 2/d. Further, there must exist
x0, y1 such that (x0, x1, y0, y1) forms a j-minor which corresponds to the frontier Fi. The channel
Ch∗ uses this minor for the attack described above. The formal proof follows.
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Proof. (Theorem 4.1) Let Ch0 be the ‘noiseless channel’, that is, for any ` ∈ N and any sequence
of messages m = m1 · · ·m`,

Pr[Ch0(m) = m] = 1.

Suppose d > 2 (the theorem trivially holds for d ≤ 2) and let X◦ × Y◦ be a subdomain obtained
by recursively performing d decomposition of f ’s domain (a restricted domain of depth d). Let
F1, . . . , Fd be the frontiers given by Theorem 3.11, and let F0 be the empty set. We re-index the
frontiers in a reverse order so that Fd = F (X◦ × Y◦) and F1 ≤ · · · ≤ Fd. Let x, y ∈ X◦ × Y◦ and

fix t ∈ τCh0(x, y). For 1 ≤ j ≤ d, let λj(t) be the length of the longest prefix of t in Fj . Then for
0 ≤ j < k ≤ d, we can define the number of messages in t between Fj and Fk, λj,k(t), as

λj,k(t) := λk(t)− λj(t).

As
∑d

j=1 λj−1,j(t) = |t|, there exists i such that λ := λi,i+2(t) ≤ 2|t|/d.

For any partial transcript u, we define the active domain at u as the set of inputs that have a
non-zero probability of producing a transcript with prefix u. Let Xi × Yi be the active domain at
the longest prefix of t in Fi (clearly (x, y) ∈ Xi × Yi)). Let the next decomposition step be a row-
decomposition, with row partitionsX0

i , X
1
i ⊂ Xi. Let us rename the partitions so that x ∈ X1

i . First,
as the decomposition depth of (x, y) is d ≥ i+2, it can not be the case that both fX0

i ,Yi
is constant,

and fX1
i ,Yi

is constant. In particular, as x ∈ X1
i , fX1

i ,Yi
is not constant. Let Y 0

i , Y
1
i ⊂ Yi be the next

column-partition of X1
i × Yi. Then, by Lemma 3.2, there exist x0 ∈ X0

i , x1 ∈ X1
i , y0 ∈ Y 0

i , y1 ∈ Y 1
i

such that (x0, x1, y0, y1) form a j-minor. As f(x, y0) 6= f(x, y1), inputs (x0, x, y0, y1) also form a
j-minor.

Now we will construct a channel Ch∗ that violates B’s privacy. Let u be the longest prefix
of t in Fi. Fix, t′ ∈ τCh0(x0, y0) that also has u as a prefix. The existence of t′ is guaranteed by
Theorem 3.11. Define the channel Ch∗ as follows:

– Ch∗ does not introduce any errors till |u| rounds. If the partial transcript so far is not identical
to u, the channel acts as the noiseless channel Ch0 for the entire protocol.

– If the partial transcript up to round |u| is identical to u, then the channel modifies messages as
follows: sample a random tape RA for party A from the conditional distribution over random
tapes given the transcript so far and the input x ∈ X1

i . For the next λ = λi,i+2 rounds, send
B’s messages to A without change. Change A’s sent messages to what A would have sent when
using input x and the random tape sampled earlier. That is, for every message m, every odd
round j such that |u| < j ≤ |u|+ λ,

Pr
[
Ch∗

(
t′
s
[j] | t′[1..(j−1)]

)
= m

]
= Pr [πA (x,RA, t

s
[1..(j−1)]) = m] .

The channel continues with the remaining protocol without modifying any messages.

First, note that Ch∗ introduces only 1/d fraction of errors. This is because it only changes half
of the messages between frontiers Fi and Fi+2, of which there are only a fraction 2/d of the length
of transcript t. As all transcripts are of the same length, the channel makes only 1/d fraction errors.

Next, we argue that channel Ch∗ violates B’s privacy. Fix a transcript t∗ ∈ τCh∗(x0, y0) which
has u as a prefix. Again, the existence of t∗ is guaranteed by Theorem 3.11. We will show that
Pr[t∗ | x0, y1,Ch∗] = 0.
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We have,

Pr[(t∗s, t∗r) | x0, y1,Ch∗] = Pr[πA(x0, t
∗r
A) = t∗sA] Pr[Ch∗(t∗s) = t∗r] Pr[πB(y1, t

∗r
B) = t∗sB]. (8)

To maintain readability of the probability calculations below, we take two notational short-
cuts: (1) all probabilities below are conditioned on observing the prefix u, but we do not explicitly
mention this conditioning, and (2) we analyze t∗ only up to round |u|+ λ, so from now on we will
take t∗ to mean the prefix t∗[1..(|u|+λ)] (same for t∗s, t∗r).

By the channel’s definition,

Pr[Ch∗(t∗s) = t∗r] =

(|u|+λ)/2∏
j=|u|+1

Pr
[
Ch∗(t∗s[2j − 1] | t∗[|u|..(2j−2)]) = t∗r[2j − 1]

]×
(|u|+λ)/2∏

j=|u|+1

Pr
[
Ch∗(t∗s[2j] | t∗[|u|..(2j−1)]) = t∗r[2j]

] .

Note that for every even round j, t∗s[j] = t∗r[j], as Ch∗ does not modify B’s messages to A.
Thus, the second product on the right hand side above is 1. By construction of Ch∗, for every odd
|u|+ 1 ≤ j ≤ (|u|+ λ),

Pr
[
Ch∗(t∗s[2j − 1] | t∗[|u|..(2j−2)]) = t∗r[2j − 1]

]
= Pr

[
πA(x, t∗s[|u|..(2j−2)]) = t∗r[2j − 1]

]
Going back to Eq. (8), we have,

Pr[(t∗s, t∗r) | x0, y1,Ch∗] = Pr[πA(x0, t
∗r
A) = t∗sA] Pr[Ch∗(t∗s) = t∗r] Pr[πB(y1, t

∗r
B) = t∗sB]

= Pr[πA(x0, t
∗r
A) = t∗sA]×

(|u|+λ)/2∏
j=|u|

(
Pr
[
πA(x, t∗s[|u|..(2j−2)]) = t∗r[2j − 1]

]
×

Pr
[
πB(y1, t

∗r
[|u|..(2j−1)]) = t∗s[2j]

])
= Pr[πA(x0, t

∗r
A) = t∗sA] Pr[t∗∗ | x, y1,Ch0].

where t∗∗ = (t∗∗s1 , t∗∗r1 ) is the following transcript: t∗∗s consists of all messages sent by the channel
to B and all messages sent by B, and t∗∗r = t∗∗s. We now prove that Pr[t∗∗ | x, y1,Ch0] = 0.

Recall that y0 and y1 are in different (column) partitions of X1
i × Yi. Also, by construction of

Ch∗, Pr[t∗∗ | x, y0,Ch0] > 0. Therefore, by Theorem 3.11, Pr[t∗∗ | x0, y1,Ch0] = 0. Thus,

Pr[t∗ | x0, y1,Ch∗] = 0,

and although f(x0, y0) = f(x0, y1) we learn that B holds y0 rather than y1, in violation of B’s
privacy according to Definition 2.5. ut

5 Properties of Private Protocol: The Non-Perfect Case

The above results assume a perfectly-correct protocol, which is interesting on its own. Indeed,
possibility results for computing non-private functions over adversarial channels [Sch96, BR11] do
achieve perfect correctness for error rate less than 1/4. However, from a practical point of view, the
question of computing private functions over a noisy channel is interesting also for the non-perfect
case, that is, where the protocol is only (1− ε)-correct and (1− δ)-private, for some ε, δ > 0.
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Definition 5.1 (Correctness). A protocol π is (1 − ε)-correct with respect to some function f
over Ch if for any inputs x, y,

Pr
RA,RB ,RCh

(ts,tr)←πCh(x,y)

[outπA(x, trA) = outπB(y, trB) = f(x, y)] ≥ 1− ε.

Definition 5.2 (Privacy). We say that a protocol π is (1−δ)-private with respect to party A over
a channel Ch, if for any x, x′ ∈ X, y ∈ Y such that f(x, y) = f(x′, y), and for any frontier F ,

SDCh
F ((x, y), (x′, y)) ,

1

2

∑
t∈F

∣∣Pr[t | x, y,Ch]− Pr[t | x′, y,Ch]
∣∣ ≤ δ

Finally, we say that π is an (ε, δ)-protocol for f if π is (1− ε)-correct and (1− δ)-private.

This leads to our main result for (ε, δ)-protocols,

Theorem 5.3 (main, (ε, δ)-case). Let f be a function that is binary-uniquely decomposable and
has maximal decomposition depth d. Then, for every protocol π and for any small enough ε, δ > 0,
there exists a channel Ch∗ with error rate 1/d, such that πCh

∗
is not (ε, δ)-protocol for f .

Before we prove the main theorem, we show that (ε, δ)-protocols have the same property of
revealing the information in a very specific order. This suggests that the same impossibility result
holds also for the non-perfect case. The following two lemmas conceptually extend Theorem 3.6
and Theorem 3.11 to (ε, δ)-protocols. We also note that similar lemmas appear in [MPR09] for the
case where the channel is error-free, and with ε = δ.

Lemma 5.4. Let π be a (ε, δ)-protocol for f over Ch, with ε, δ > 0. For any x 6= x′ there exists
a frontier F (intuitively, the frontier that is associated to the partition separating x from x′) such
that,

1. If f(x, y) 6= f(x′, y) then SDCh
F ((x, y), (x′, y)) > 1− 5

√
ε+ δ.

2. For x, x′, y, y′ that form a j-minor, SDCh
F ((x′, y), (x′, y′)) <

√
δ and SDCh

F ((x, y), (x, y′)) < δ.

Proof. Recall that in our model parties alternately send messages m ∈ Σ, where for odd rounds
mi = πA(x,m1 · · ·mi−1), while for even rounds mi = πB(y,m1 · · ·mi−1). Given an input (x, y) we
expand the probability of a transcript t according to its prefixes t[1..ρ].

Pr[t | x, y,Ch] = Pr[πA(x,y,∅)=ts[1]] Pr[Ch(ts[1])=tr[1]]︸ ︷︷ ︸
Pr[t[1..1]|x,y,∅,Ch]

× Pr[πB(x,y,tr [1..1])=ts[2]) Pr[Ch(ts[2]|t[1..1])=tr[2])︸ ︷︷ ︸
Pr[t[1..2]|x,y,t[1..1],Ch]

× · · ·

=

|t|/2∏
j=1

Pr [t[1..2j−1] | x, y, t[1..2j−2],Ch]

|t|/2∏
j=1

Pr[t[1..2j] | x, y, t[1..2j−1],Ch]


= PA(t, x,Ch)PB(t, y,Ch)

where PA and PB are defined as the terms in the parenthesis.
For a fixed µ < 1 to be defined later, we say that a transcript (or a prefix of a transcript) u

distinguishes between x and x′ if

|PA(u, x,Ch)− PA(u, x′,Ch)|
PA(u, x,Ch) + PA(u, x′,Ch)

≥ µ
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Next, we define a frontier F as a function of x, x′ by considering the frontier induced by the
following set

{u | u is a complete transcript, or u distinguishes between x and x′ over Ch}

where a complete transcript is a transcript of full length (recall all inputs terminate after the same
number of rounds) on which the parties terminate the protocol and give output. Note that any
string in F either distinguishes x, x′ or is a complete transcript, and let F = Fdist∪Fcomp according
to this division.

First, let’s bound the weight of transcripts that do not distinguish between x, x′, given the
input (x, y). For any possible output k we set

Outk = {u ∈ Fcomp | u implies output k with probability > 1/2},

and let Notk = Fcomp \ Outk. Note that Outk ∩ Outj = ∅ for k 6= j. Due to correctness note that∑
u∈Notf(x,y) Pr[u | x, y,Ch] ≤ 2ε and similarly,

∑
u∈Notf(x′,y)

Pr[u | x′, y,Ch] ≤ 2ε. Now,

Pr[Fcomp | x, y,Ch] ≤
∑

u∈Notf(x,y)

PA(u, x,Ch)PB(u, y,Ch) +
∑

u∈Notf(x′,y)

PA(u, x,Ch)PB(u, y,Ch)

≤
∑

u∈Notf(x,y)

PA(u, x,Ch)PB(u, y,Ch) +
1 + µ

1− µ
∑

u∈Notf(x′,y)

PA(u, x′,Ch)PB(u, y,Ch)

= 2ε

(
1 +

1 + µ

1− µ

)
=

4ε

1− µ

where the second transition is due to the fact that u is not distinguishing, thus PA(u, x,Ch) ≤
1+µ
1−µPA(u, x′,Ch).

For any u ∈ Fdist it holds that

SDCh
Fdist

((x, y), (x′, y)) = 1
2

∑
u∈Fdist

|PA(u, x,Ch)PB(u, y,Ch)− PA(u, x′,Ch)PB(u, y,Ch)|

= 1
2

∑
u∈Fdist

|PA(u, x,Ch)− PA(u, x′,Ch)|PB(u, y,Ch)

≥ µ · 12
∑

u∈Fdist

(PA(u, x,Ch) + PA(u, x′,Ch))PB(u, y,Ch)

≥ µ

2

(
Pr[Fdist | x, y,Ch] + Pr[Fdist | x′, y,Ch]

)
Finally, Pr[Fdist | x, y,Ch] = 1− Pr[Fcomp | x, y,Ch] ≥ 1− 4ε

1−µ , and similarly for x′, y, and we get,

SDCh
F ((x, y), (x′, y)) ≥ SDCh

Fdist
((x, y), (x′, y)) ≥ µ

(
1− 4ε

1− µ

)
.

For the other part, note that SDCh
F ((x, y), (x, y′)) < δ trivially by the privacy of the protocol. In

order to bound SDCh
F ((x′, y), (x′, y′)) we again split F into Fcomp ∪ Fdist as above. We define F−dist

as the prefixes obtained by taking all u ∈ Fdist and removing the last round (a message which was
sent by A). Note that SDCh

F−dist
((x′, y), (x′, y′)) = SDCh

Fdist
((x′, y), (x′, y′)) since A’s message depends
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only on the input x′, and will be distributed the same for y and for y′. On the other hand, by the
way we have defined F and Fdist, note that all the prefixes in F−dist are not distinguishing between x

and x′ anymore, and thus any u ∈ F−dist satisfies PA(u, x′,Ch) ≤ 1+µ
1−µPA(u, x,Ch). The same holds

to any u ∈ Fcomp, since it is not distinguishing to begin with. Now,

SDCh
F ((x′, y), (x′, y′)) = SDCh

Fcomp
((x′, y), (x′, y′)) + SDCh

Fdist
((x′, y), (x′, y′))

= SDCh
Fcomp

((x′, y), (x′, y′)) + SDCh
F−dist

((x′, y), (x′, y′))

= 1
2

∑
u∈Fcomp∪F−dist

PA(u, x′,Ch)|PB(u, y,Ch)− PB(u, y′,Ch)|

≤ 1
2

1 + µ

1− µ
∑
u∈Fcomp∪F−dist

PA(u, x,Ch)|PB(u, y,Ch)− PB(u, y′,Ch)|

≤ 1
2

1 + µ

1− µ
· SDCh

F ((x, y), (x, y′)) = 1
2

1 + µ

1− µ
· δ

Choosing µ = 1−
√
ε+ δ completes the proof. ut

Lemma 5.5. Assume that f is binary-uniquely decomposable with at most d ≥ 1 levels, and π is
a (ε, δ)-protocol for f . Let X1 × Y1 ⊆ · · · ⊆ Xd × Yd be a sequence of restricted domains such that
Xd × Yd = X × Y , and Xi × Yi is one of the partitions of Xi+1 × Yi+1. For any restricted domain
Xi × Yi there exists a frontier Fi = F (Xi × Yi) such that (assuming fXi×Yi is row-partitionable; a
similar claim holds if fXi×Yi is column-partitionable.), for any x, x′ ∈ Xi and y, y′ ∈ Yi, and any
u ∈ Fi,

1. if x, x′ are in the same partition, SDCh
Fi

((x, y), (x′, y′)) < µi
2. if x, x′ belong to different partitions, SDCh

Fi
((x, y), (x′, y′)) > 1− µi

with µi = 2O(i)
√
ε+ δ.

Moreover, for any restricted domains Xi−1×Yi−1 ⊂ Xi×Yi, it holds that except with probability µi,
the protocol reaches F (Xi× Yi) before reaching F (Xi−1× Yi−1), on any input (x, y) ∈ Xi−1× Yi−1.

Proof. Before we begin the proof, we recall the following technical lemma (Lemma 5 in [MPR09])

Lemma 5.6. For frontiers F and G, for any x, x′, y, y′,

SDCh
F ((x, y), (x′, y′)) ≤ SDCh

G ((x, y), (x′, y′)) +
1

2

(
Pr[G ≤ F | x, y,Ch] + Pr[G ≤ F | x′, y′,Ch]

)
The proof can be found in [MPR09].

Assume fXi×Yi is row-partitionable into P,Q ⊂ Xi. As in the perfect case, we prove the claim
by induction on i = 1 . . . d. We split the proof into cases according to Lemma 3.2.

Case I: fP×Yi , fQ×Yi are constant. Let Fi be the set of complete transcripts. Property (1) follows
from privacy (for µi = δ). Property (2) follows from correctness (for µi = 2ε). Also note that
this must be the case for the induction’s base case X1 × Y1, thus µ1 = max(2ε, δ).

Case II: fP×Yi is constant and fQ×Yi is not. By by Lemma 3.2 we know that there exist a
minor (x◦, x

′
◦, y◦, y

′
◦) where x◦ ∈ P and x′◦ ∈ Q. Define Fi to be the frontier given by Lemma 5.4

for this minor.
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We begin with proving the first property.
case (II)a x, x′ ∈ P . Privacy guarantees us that for any y, y′ ∈ Yi, SDFi((x, y), (x′, y′)) < δ.
case (II)b, x, x′ ∈ Q. For this case, the proof works by bounding SDFi((x, y), (x′, y)) using
the induction hypothesis, and using the minor (x◦, x

′
◦, y◦, y

′
◦) as intermediate points as needed.

Specifically, assume fQ×Yi is column-partitionable into Y 0
i , Y

1
i , and recall that y◦ and y′◦ are in

different partition by the proof of Lemma 3.2, say y◦ ∈ Y 0
i and y′◦ ∈ Y 1

i . If y, y′ are both in the
same partition, we directly bound the statistical distance between the points (x, y) ↔ (x′, y′),
via the induction hypothesis on Q×Y 0

i . If y, y′ are in different partitions, say y ∈ Y 0
i and y′ ∈ Y 1

i

we bound each two consecutive points in the path (x, y) ↔ (x′◦, y◦) ↔ (x′◦, y
′
◦) ↔ (x′, y′), and

use a triangle inequality to bound the statistical distance of the entire path.

– y, y′ are both in the same partition (say, Y 0
i ). we use the induction hypothesis on

Fi−1 = F (Q × Y 0
i ), and get that SDCh

Fi−1
((x, y), (x′, y′)) ≤ µi−1. However we need to bound

also the effect to the statistical distance made from messages between Fi−1 and Fi.
Using Lemma 5.6, we get that

SDCh
Fi

((x, y), (x′, y′)) ≤ SDCh
Fi−1

((x, y), (x′, y′))

+
1

2

(
Pr[Fi−1 ≤ Fi | x, y,Ch] + Pr[Fi−1 ≤ Fi | x′, y′,Ch]

)
≤ µi−1 + (2

√
δ + 3µi−1),

where the second transition is due to Lemma 5.7 (which is the second part of this induction
proof; it shows that the probability the frontiers are not “in order” is small).

– y, y′ are in different partitions, say y ∈ Y 0
i and y′ ∈ Y 1

i . Then, using the induction
hypothesis, we know that for any x, x′ ∈ Q,

SDCh
Fi−1

((x, y), (x′◦, y◦)) ≤ µi−1 ; SDCh
Fi−1

((x′, y′), (x′◦, y◦)) ≤ µi−1

and in a similar way to the above, we can bound the distance gained between Fi−1 to Fi,

SDCh
Fi

((x , y ), (x′◦, y◦)) ≤ 2
√
δ + 4µi−1,

SDCh
Fi

((x′, y′), (x′◦, y◦)) ≤ 2
√
δ + 4µi−1.

In addition note that SDCh
Fi

((x′◦, y◦), (x
′
◦, y
′
◦)) ≤

√
δ by Lemma 5.4 and the way we con-

struct Fi. With a triangle inequality we conclude that

SDFi((x, y), (x′, y′)) ≤ SDCh
Fi

((x, y), (x′◦, y◦)) + SDCh
Fi

((x′◦, y◦), (x
′
◦, y
′
◦)) + SDCh

Fi
((x′◦, y

′
◦), (x, y

′))

≤ 8µi−1 + 5
√
δ , βi.

We now prove the second property. Let x ∈ P, x′ ∈ Q and y, y′ ∈ Y . Lemma 5.4 tells us
that for every y ∈ Y , SDCh

Fi
((x◦, y), (x′◦, y)) > 1− 5

√
ε+ δ. A triangle inequality tells us that

SDCh
Fi

((x◦, y), (x′◦, y)) < SDCh
Fi

((x◦, y), (x, y)) + SDCh
Fi

((x, y), (x′, y′)) + SDCh
Fi

((x′, y′), (x′◦, y)),

thus,

SDCh
Fi

((x, y), (x′, y′)) ≥ −SDCh
Fi

((x′◦, y), (x, y)) + SDCh
Fi

((x◦, y), (x′◦, y))− SDCh
Fi

((x′, y′), (x′◦, y))

≥ −βi + 1− 5
√
ε+ δ − βi = 1− 16µi−1 − 10

√
δ − 5

√
ε+ δ.

And we can set µi , 16µi−1 + 10
√
δ + 5

√
ε+ δ (this is also consistent with case III which we

analyze immediately).
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Case III: fP×Yi and fQ×Yi are non constant. This case is very similar to Case II. Let (x, y), (x′, y′)
be given. Recall that there exist two overlapping minor (x◦, x

′
◦, y◦, y

′
◦) and (x◦, x

′
◦, w◦, w

′
◦). Since

both minors share the same x◦, x
′
◦, the frontier defined by Lemma 5.4 is the same for both minors,

and the proof of Case II holds for most of the situations using one of the minors (see Figure 1).
The only case which is different is when (using the notations of Figure 1) (x, y) ∈ P × (Y \YPi)
and (x′, y′) ∈ Q× (Y \ YQj ) (in Figure 1, the first input is in the upper-left rectangle, and the
other is in the lower-right rectangle, which seemingly requires using both minors). For this case,
we need to show that SDCh

Fi
((x, y), (x′, y′)) is large.

By a triangle inequality (using property (1) of this lemma on inputs in the same partition of Fi),

SDCh
Fi

((x◦, y◦), (x
′
◦, y◦)) ≤ SDCh

Fi
((x◦, y◦), (x, y)) + SDCh

Fi
((x, y), (x′, y′)) + SDCh

Fi
((x′, y′), (x′◦, y◦))

Thus, SDCh
Fi

((x, y), (x′, y′)) ≥ 1− 5
√
ε+ δ − 2βi = 1− µi

We are left to prove the last part of the lemma, namely that except with small probability the
protocol travels through the frontiers in the right order.

Lemma 5.7. For any Xi−1 × Yi−1 ⊂ Xi × Yi, on any input (x, y) ∈ Xi−1 × Yi−1,

Pr[F (Xi−1 × Yi−1) < F (Xi × Yi) | x, y,Ch] < 2
√
δ + 3µi−1.

Proof. As above, this proof is by induction on i, where in the base case we take full transcripts and
the claim trivially holds.

Let (x◦, x
′
◦, y◦, y

′
◦) be the minor that defines Fi = F (Xi × Yi). Denote Fi−1 = F (Xi−1 × Yi−1),

and let (x, y) ∈ Xi−1 × Yi−1. Assume that Xi−1 × Yi−1 is row-partitionable into Y0 and Y1 so that
x′◦ ∈ Xi−1, y◦ ∈ Y0 and y′◦ ∈ Y1. (If the next level is not partitionable, then Fi−1 contains complete
transcripts and the claim again trivially holds). By Lemma 5.6,

SDCh
Fi−1

((x′◦, y◦), (x
′
◦, y
′
◦))

≤ SDCh
Fi

((x′◦, y◦), (x
′
◦, y
′
◦)) +

1

2

(
Pr[Fi < Fi−1 | (x′◦, y◦),Ch] + Pr[Fi < Fi−1 | (x′◦, y′◦),Ch]

)
Substitue Pr[Fi−1 ≤ Fi | (x′◦, y◦),Ch] = 1 − Pr[Fi < Fi−1 | (x′◦, y◦),Ch] (and the equivalent for
x′◦, y

′
◦) to obtain

1

2

(
Pr[Fi−1 ≤ Fi | (x′◦, y◦),Ch]+ Pr[Fi−1 ≤ Fi | (x′◦, y′◦),Ch]

)
≤ SDCh

Fi
((x′◦, y◦), (x

′
◦, y
′
◦))− SDCh

Fi−1
((x′◦, y◦), (x

′
◦, y
′
◦)) + 1

≤
√
δ − (1− µi−1) + 1 ≤

√
δ + µi−1 (9)

where the last transition is due to Lemma 5.4 and the way we construct Fi, and the induction
hypothesis for Fi−1.

Next, note that the event Fi < Fi−1 can be determined by looking on transcripts only until the
point they cross Fi−1, thus it is a statistical test for distributions on Fi−1, and it must hold that
for any (u, v), (u′, v′) ∈ Xi−1 × Yi−1∣∣Pr[Fi < Fi−1 | (u, v),Ch]− Pr[Fi < Fi−1 | (u′, v′),Ch]

∣∣ ≤ SDCh
Fi−1

((u, v), (u′, v′)) ≤ µi−1
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and specifically for (x′◦, y◦) and for (x, y), which along with Eq. (9) lead to

Pr[Fi−1 ≤ Fi | x, y,Ch] ≤ Pr[Fi−1 ≤ Fi | x′◦, y◦,Ch] + µi−1

≤ 2(
√
δ + µi−1) + µi−1.

Which completes the proof of the Lemma. ut
ut

We are finally ready to prove Theorem 5.3. To this end, we extend the techniques used in
the proof of Theorem 4.1 for perfectly-correct and private protocols, and apply them onto (ε, δ)-
protocols. Informally, the proof starts with some restricted domain of depth d and constructs a
sequence of frontiers according to Lemma 5.5. With high probability (i.e., for most of the tran-
scripts), the frontiers are well-ordered, F1 ≤ · · · ≤ Fd. For every complete transcript t there are
two consecutive frontiers Fi(t), Fi(t)+1, such that the number of messages between these frontiers is
at most 2|t|/d.

We define the channel Ch∗ as in the perfect case. The channel makes no errors until the transcript
reaches Fi(t), then the channel changes the messages between Fi(t) and Fi(t)+2 by simulating party A
on input x′◦, for some j-minor that depends on the prefix of the transcript so far. We then run
the protocol over Ch∗ for the input x◦, y◦. As in the perfect case, B is led to believe that A has
the input x′◦ and by the round where the channel stops changing messages, B has leaked too much
information about his input.

Proof. (Theorem 5.3) Let X◦×Y◦ be a restricted domain of depth d ≥ 3 (the claim trivially holds
for d ≤ 2), and let F = F1, . . . , Fd the sequence of frontiers defined by Theorem 5.5, reindexed such
that Fd contains the complete transcripts and F1 contains possibly shorter prefixes; let F0 = ∅.

Let x, y be some input in X◦ × Y◦. For any given transcript t ∈ τCh0(x, y) we can define the
number of messages between any two frontiers. Formally, for 1 ≤ j ≤ d, let λj(t) be the length of
the longest prefix of t in Fj . Then for 0 ≤ j < k ≤ d, we can define the number of messages in t
between Fj and Fk, λj,k(t), as

λj,k(t) := λk(t)− λj(t).

As
∑d

j=1 λj−1,j(t) = |t|, there exists i such that λi,i+2(t) ≤ 2|t|/d, and let i(t) be the minimal such
number i for t, and let λ(t) := λi(t),i(t)+2(t) . Note that for any two transcripts t1, t2 that share a
prefix u, then either i(t1) = i(t2) or i(t1), i(t2) are such that the longest prefix of t1 in Fi(t1)+2 is
longer then u (i.e., t1, t2 diverge before reaching Fi(t1)+2, Fi(t2)+2).

Practically, this means that when the protocol runs on inputs x, y the event of reaching i(t) is
well defined and causal. Indicator of this event can be obtained from observing the partial transcript
of t at up to the point when it reaches Fi(t), that is, one does not need to know the complete t in
advance but only the prefix u ∈ Fi(t) — any transcript t′ that has u as a prefix satisfies i(t′) = i(t).

By t|Fi
we denote the partial v ∈ Fi such that v is a prefix of t until the point it crosses Fi.

Next, we wish to fix only a single round i – since different i’s mean different frontiers, it is somewhat
meaningless to discuss different i’s. For each i ∈ N define

w(i) =
∑

t∈τCh0 (x,y) s.t. i(t)=i

Pr[t|Fi(t)
| x, y,Ch0]

and we fix i◦ to be the one that maximizes w(i). Obviously, w(i◦) > 1/2d.
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Define (x◦, x
′
◦, y◦, y

′
◦) as the minor associated with Fi◦+1, and assume wlog it is a j-minor. This

allows us to define the channel Ch∗ that fails π in the following way. Suppose the complete transcript
in this instance is t. The channel doesn’t make noise until the prefix it observes reaches Fi◦ . Again,
this point is well defined without knowing the complete transcript t.

Let u := t|Fi◦
be the transcript observed so far. The channel changes any message sent to B

by simulating πA on input x′◦ given the prefix u. Formally, for a given u, the channel samples a
randomness tape RA that is consistent with the transcript so far, conditioned on the input x′◦. If no
such randomness exists, the channel aborts its attack (i.e., behaves like Ch0). It is easy to verify that
the channel is able find a consistent randomness except with probability at most µi. The channel
continues by changing A’s sent messages to what A would have sent when using input x′◦ and the
random tape sampled earlier. The channel delivers B’s messages to A without any change. The
channel stops the interference after 2|t|/d rounds, after which it delivers all the messages intact.

To prove our theorem, we will show that if the channel does not abort the attack (that is, if
there exists a consistent random tape RA for A as described above), then SDCh∗ ((x◦, y◦), (x◦, y

′
◦)) is

large. Thus, the channel violates B’s privacy with probability 1−µi. Intuitively, our proof proceeds
as follows:

- show that B’s ‘view’ in πCh
∗
(x◦, y◦) is statistically close to B’s view in πCh

0
(x′◦, y◦) up to a

certain point in the protocol,
- show that B’s ‘view’ in πCh

∗
(x◦, y

′
◦) is statistically close to B’s view in πCh

0
(x′◦, y

′
◦), up to the

same point in the protocol,
- use the fact that πCh

0
(x′◦, y◦) and πCh

0
(x′◦, y

′
◦) are statistically far apart at that point to conclude

the argument.

Before we begin with the formal details for the above steps, we remark that for our proof we only
need to consider partial transcripts of particular lengths. To this end, we introduce the following
notation. For a transcript t, define,

t|i◦+2 , t [1 . . . (λi◦(t) + 2|t|/d)] .

As the Ch∗ transcripts and Ch0 transcripts have different structure (i.e., one has noise, while
the other is noiseless), to relate B’s view under Ch∗ with his view in Ch0, we introduce a transfor-
mation T on partial transcripts under Ch∗. We can view a partial transcript u as four components:
(usA, u

r
A, u

s
B, u

r
B), where usA and urA are the messages sent and received by A, and usB and urB are

the messages sent and received by B. Define the transformation T as follows,

T : (usA, u
r
A, u

s
B, u

r
B) 7→ (urB, u

s
B, u

s
B, u

r
B)|i◦+2.

Further, let FT be the set of all truncated transcripts as defined above. That is,

FT ,
{

t|i◦+2 | t is a complete transcript.
}
.

As statistical distance can not be increased by applying T, we have,

SD
(
πCh

∗
(x◦, y◦), π

Ch∗(x◦, y
′
◦)
)
≥ SD

(
T(πCh

∗
(x◦, y◦)),T(πCh

∗
(x◦, y

′
◦))
)
.

Thus, in order to show that B’s privacy is compromised (according to Definition 5.2) and complete
the proof of the theorem, we only need to show that SD

(
T(πCh

∗
(x◦, y◦)),T(πCh

∗
(x◦, y

′
◦))
)

is large
enough (non-negligible). This we show in the following lemma.
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Lemma 5.8. SD
(
T(πCh

∗
(x◦, y◦)),T(πCh

∗
(x◦, y

′
◦))
)
≥ 1/d− 3µi◦ − µi◦+2.

Proof. We begin by showing that the random variables T(πCh
∗
(x◦, y◦)) and T(πCh

0
(x′◦, y◦)) are

close. Indeed,

SD(T(πCh
∗
(x◦, y◦)),T(πCh

0

(x′◦, y◦)))

=
1

2

∑
u∈FT

∣∣∣Pr[T(πCh
∗
(x◦, y◦)) = u]− Pr[T(πCh

0

(x′◦, y◦)) = u]
∣∣∣

=
1

2

∑
u1∈Fi◦

∑
u2

∣∣∣Pr[T(πCh
∗
(x◦, y◦; u1)) = u2] Pr[T(πCh

∗
(x◦, y◦))|Fi◦

= u1]

−Pr[T(πCh
0

(x′◦, y◦; u1)) = u2] Pr[T(πCh
0

(x′◦, y◦))|Fi◦
= u1]

∣∣∣ . (10)

Now, by construction, we have that after frontier Fi◦ , the channel plays as party A with input x′◦.
Thus, for every u1 ∈ Fi◦ and any completion u2 of length 2|t|/d,

Pr[T(πCh
∗
(x◦, y◦; u1)) = u2] = Pr[T(πCh

0

(x′◦, y◦; u1)) = u2].

Furthermore, again by construction, the channel does not change any messages before frontier Fi◦ .
Thus,

Pr[T(πCh
∗
(x◦, y◦))|Fi◦

= u1] = Pr[T(πCh
0

(x◦, y◦))|Fi◦
= u1].

Therefore, continuing with Eq. (10),

SD(T(πCh
∗
(x◦, y◦)),T(πCh

0

(x′◦, y◦)))

=
∑

u1∈Fi◦

∣∣∣Pr[T(πCh
0

(x◦, y◦)) = u1]− Pr[T(πCh
0

(x′◦, y◦)) = u1]
∣∣∣×∑

u2

Pr[T(πCh
0

(x′◦, y◦) = u2 | u1]

= SD
(
T(πCh

0

(x◦, y◦))|Fi◦
,T(πCh

0

(x′◦, y◦))|Fi◦

)
, (11)

where the last equality follows from the fact that the second summation in the first equality sums
to 1.

For a “noiseless” transcript u, observe that applying transformation T only shortens the length,
and does not swap any components of the transcript; that is, for noiseless u, T(u)|Fi◦

= u|Fi◦
. Thus,

we have,

SD(T(πCh
∗
(x◦, y◦))|Fi◦

,T(πCh
0

(x′◦, y◦))|Fi◦
) = SD

(
πCh

0

(x◦, y◦)|Fi◦
, πCh

0

(x′◦, y◦)|Fi◦

)
which with Eq. (11) and Lemma 5.4 gives

SD(T(πCh
∗
(x◦, y◦)),T(πCh

0

(x′◦, y◦)) ≤ µi◦ .

By a similar argument, we get,

SD(T(πCh
∗
(x◦, y

′
◦)),T(πCh

0

(x′◦, y
′
◦))) ≤ µi◦ .
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Finally, we have,

SD(T(πCh
∗
(x◦, y◦)),T(πCh

∗
(x◦, y

′
◦)))

≥ SD(T(πCh
0

(x′◦, y◦)),T(πCh
0

(x′◦, y
′
◦)))

− SD(T(πCh
∗
(x◦, y◦)),T(πCh

0

(x′◦, y◦)))− SD(T(πCh
∗
(x◦, y

′
◦)),T(πCh

0

(x′◦, y
′
◦))) (12)

≥ SDCh0

FT∩Fi◦+2
((x′◦, y◦), (x

′
◦, y
′
◦))− 2µi◦ (13)

≥ 1/d− 3µi◦ − µi◦+2. (14)

In the above, Eq. (12) is due a triangle inequality. Eq. (13) holds because the transformation T
only truncates the noiseless transcripts without swapping the components. For Eq. (14), we have
from Lemma 5.4 that

SDCh0

Fi◦+2
((x′◦, y◦), (x

′
◦, y
′
◦)) ≥ 1− µi◦+2.

However, note that the above statistical distance is over the frontier Fi◦+2, while the statistical
distance in Eq. (13) is over the set FT ∩ Fi◦+2. By construction, FT ∩ Fi◦+2 contains at least 1/d

fraction of the probability mass (of transcripts in the execution of πCh
0
(x◦, y◦)), that is,∑

u∈FT∩Fi◦+2

Pr[u is a prefix of πCh
0

(x◦, y◦)] ≥ 1/d.

By Theorem 5.5, the random variables πCh
0
(x◦, y◦) and πCh

0
(x′◦, y◦) are statistically close up to

frontier Fi◦ (recall, that (x◦, x
′
◦, y◦, y◦) is the minor associated with Fi◦+1). Thus,∑

u∈FT∩Fi◦+2

Pr[u is a prefix of πCh
0

(x′◦, y◦)] ≥ 1/d− µi◦ .

Therefore, we have,

SDCh0

FT∩Fi◦+2
((x′◦, y◦), (x

′
◦, y
′
◦)) ≥ 1/d− µi◦ − µi◦+2,

and Eq. (14) follows. ut
This completes the proof of the theorem. ut
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