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Abstract

Non-malleable codes, introduced by Dziembowski, Pietrzakand Wichs (ICS 2010), encode messages
s in a manner so that tampering the codeword causes the decoderto either outputs or a message that is
independent ofs. While this is an impossible goal to achieve against unrestricted tampering functions,
rather surprisingly non-malleable coding becomes possible against every fixed familyF of tampering
functions that is not too large (for instance, when|F| 6 22

αn

for someα < 1 wheren is the number of
bits in a codeword).

In this work, we study the “capacity of non-malleable coding,” and establish optimal bounds on
the achievable rate as a function of the family size, answering an open problem from Dziembowski et
al. (ICS 2010). Specifically,

• We prove that for every familyF with |F| 6 22
αn

, there exist non-malleable codes againstF with
rate arbitrarily close to1− α (this is achieved w.h.p. by a randomized construction).

• We show the existence of families of sizeexp(nO(1)2αn) against which there is no non-malleable
code of rate1− α (in fact this is the case w.h.p for a random family of this size).

• We also show that1 − α is the best achievable rate for the family of functions whichare only
allowed to tamper the firstαn bits of the codeword, which is of special interest.

As a corollary, this implies that the capacity of non-malleable coding in the split-state model
(where the tampering function acts independently but arbitrarily on the two halves of the codeword,
a model which has received some attention recently) equals1/2.

We also give an efficient Monte Carlo construction of codes ofrate close to1 with polynomial time
encoding and decoding that is non-malleable against any fixed c > 0 and familyF of size 2n

c

, in
particular tampering functions with say cubic size circuits.
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1 Introduction

Non-malleable codes are a fascinating new concept put forthin [8], following the program on non-malleable
cryptography which was introduced by the seminal work of Dolev, Dwork and Naor [6]. Non-malleable
codes are aimed at protecting the integrity of data in situations where it might be corrupted in ways that
precludes error-correction or even error-detection. Informally, a code is non-malleable if the corrupted
codeword either encodes the original message, or a completely unrelated value. This is akin to the notion of
non-malleable encryption in cryptography which requires the intractability of, given a ciphertext, producing
a different ciphertext so that the corresponding plaintexts are related to each other.

A non-malleable (binary1) code against a familyF of tampering functions each mapping{0, 1}n to
{0, 1}n, consists of a randomized encoding functionEnc : {0, 1}k → {0, 1}n and a deterministic decoding
functionDec : {0, 1}n → {0, 1}k ∪ {⊥} (where⊥ denotes error-detection) which satisfyDec(Enc(s)) = s
always, and the following non-malleability property with error ǫ: For every messages ∈ {0, 1}k and every
function f ∈ F , the distribution ofDec(f(Enc(s)) is ǫ-close to a distributionDf that depends only onf
and is independent2 of s. In other words, if some adversary (who has full knowledge ofthe code and the
messages, but not the internal randomness of the encoder) tampers with the codewordEnc(s) corrupting
it to f(Enc(s)), he cannot control the relationship betweens and the message the corrupted codeword
f(Enc(s)) encodes.

In general, it is impossible to achieve non-malleability against arbitrary tampering functions. Indeed, the
tampering function can decode the codeword to compute the original messages, flip the last bit ofs to obtain
a related messagẽs, and then reencodẽs. This clearly violates non-malleability as the tampered codeword
encodes the messages̃ which is closely related tos. Therefore, in order to construct non-malleable codes,
one focuses on a restricted class of tampering functions. For example, the body of work on error-correcting
codes consists of functions which can flip an arbitrary subset of bits up to a prescribed limit on the total
number of bit flips.

The notion of non-malleable coding becomes more interesting for families against which error-correction
is not possible. A simple and natural such family is the set offunctions causing arbitrary “additive errors,”
namelyFadd = {f∆ | ∆ ∈ {0, 1}

n} wheref∆(x) := x+∆. Note that there is no restriction on the Ham-
ming weight of∆ as in the case of channels causing bounded number of bit flips.While error-correction
is impossible againstFadd, error-detectionis still possible — the work of Cramer et al. [5] constructed
codes of rate approaching1 (which they called “Algebraic Manipulation Detection” (AMD) codes) such
that offset by an arbitrary∆ 6= 0 will be detected with high probability. AMD codes give a construction of
non-malleable codes against the familyFadd.

Even error-detection becomes impossible against many other natural families of tampering functions.
A particularly simple such class consists of all constant functionsfc(x) := c for c ∈ {0, 1}n. This family
includes some function that maps all inputs to a valid codeword c∗, and hence one cannot detect tamper-
ing. Note, however, that non-malleability is trivial to achieve against this family — the rate1 code with
identity encoding function is itself non-malleable as the output distribution of a constant function is trivially
independent of the message. A natural function family for which non-malleability is non-trivial to achieve
consists ofbit-tampering functionsf in which the different of bits of the codewords are tampered indepen-

1Throughout this paper we deal only with binary codes. We point out that non-malleability is mainly interesting over small
alphabets, since when the alphabet size is large enough, even error-detection (e.g., via MDS codes) is possible at ratesachieved by
non-malleable codes.

2The formal definition (see Definition2.3) has to accommodatethe possibility thatDec error-corrects the tampered codeword to
the original messages; and this is handled in a manner independent ofs by including a special elementsame in the support ofDf .
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dently (i.e., either flipped, set to0/1, or left unchanged); formallyf(x) = (f1(x1), f2(x2), . . . , fn(xn)) for
arbitrary1-bit functionsf1, f2, . . . , fn [8].

The familyFall of all functionsf : {0, 1}n → {0, 1}n has size given bylog log |Fall| = n+ log n. The
authors of [8] show the existence of a non-malleable code against any small enough familyF (for which
log log |F| < n). The rate of the code is constant iflog log |F| 6 αn for some constantα ∈ (0, 1). The
question of figuring out the optimal rates of non-malleable codes for various families of tampering functions
was left as an open problem in [8]. In this work we give a satisfactory answer to this question, pinning down
the rate for many natural function families. We describe ourresults next.

1.1 Our results

Our results include improvements to the rate achievable as afunction of the size of the family of tampering
functions, as well as limitations of non-malleable codes demonstrating that the achieved rate cannot be im-
proved for natural families of the stipulated size. Specifically, we establish the following results concerning
the possible rates for non-malleable coding as a function ofthe size of the family of tampering functions:

1. (Rate lower bound) We prove in Section 3 that if|F| 6 22
αn

, then there exists a (strong) non-malleable
code of rate arbitrarily close to1 − α which is non-malleable w.r.tF with error exp(−Ω(n)). This
significantly improves the probabilistic construction of [8], which achieves a rate close to(1 − α)/3

using a delicate Martingale argument. In particular, for arbitrary small families, of size22
o(n)

, our
result shows that the rate can be made arbitrarily close to1. This was not known to be possible even for
the family of bit-tampering functions (which has size4n), for which1/3 was the best known rate3 [8].
In fact, we note (in Appendix A) why the proof strategy of [8] is limited to a rate of1/2 even for a
very simple tampering function such as the one that flips the first bit. As discussed in Section 3.3, our
probabilistic construction is equipped with an encoder anddecoder that can be efficiently and exactly
implemented with access to a uniformly random permutation oracle and its inverse (corresponding to
the ideal-cipher model in cryptography). This is a slight additional advantage over [8], where only an
approximation of the encoder and decoder is shown to be efficiently computable.

2. (Upper bound/limitations on rate) The above coding theorem shows that the “capacity” of a function
family |F| for non-malleable coding is at least1 − (log log |F|)/n. We also address the natural
“converse coding quesiton” of whether this rate bound is thebest achievable (Section 5). This turns
out to be false in general due to the existence of uninteresting large families for which non-malleable
coding with rate close to1 is easy. But we do prove that the1− α rate is best achievable in “virtually
all” situations:

(a) We prove that forrandomfamilies of size22
αn

, with high probability it is not possible to exceed
a rate of1− α for non-malleable coding with small error.

(b) For the family of tampering functions which leave the last (1−α)n bits intact and act arbitrarily
on the firstαn bits, we prove that1 − α is the best achievable rate for non-malleable coding.
(Note that a rate of1 − α is trivial to achieve for this family, by placing the messagebits in the
last(1− α)n bits of the codeword, and setting the firstαn bits of the codeword to all0s.)

3Assuming the existence of one-way functions, an explicit construction of non-malleable codes of rate close to1 was proposed
in [8]. This construction, however, only satisfies a weaker definition of non-malleability that considers computational indistin-
guishability rather than statistical security.
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The result 2b, together with the existential result 1 above,pins down the optimal rate for non-malleable
codes in thesplit-state modelto 1/2. In the split-state model, which was the focus of a couple of recent
works [7, 1], the tampering function operates independently (but in otherwise arbitary ways) on the two
halves of the codeword, i.e.,f(x) = ((f1(x1), f2(x2)) wherex1, x2 are the two halves ofx andf1, f2 are
functions mappingn/2 bits ton/2 bits. The recent work [1] gave an explicit construction in this model
with polynomially small rate. Our work shows that the capacity of the split-state model is1/2, but we do
not offer any explicit construction. For the more restrictive class of bit-tampering functions (where each bit
is tampered independently), in a follow-up work [3] we give an explicit construction with rate approaching
1 [3]. We also present in that work a reduction of non-malleable coding for the split-state model to a new
notion of non-malleable two-source extraction.

Monte Carlo construction for small families. Our result 1 above is based on a random construction which
takes exponential time (and space). Derandomizing this construction, in Section 4 we are able to obtain an
efficient Monte Carlo construction of non-malleable codes of rate close to1 (with polynomial time encoding
and decoding, and inverse polynomially small error) for anarbitrary family of sizeexp(nc) for any fixed
c > 0. Note that in particular this includes tampering functionsthat can be implemented by circuits of any
fixed polynomial size, or simpler families such as bit-tampering adversaries. The construction does not rely
on any computational hardness assumptions, at the cost of using a small amount of randomness.

1.2 Proof ideas

Rate lower bound. Our construction of rate≈ 1 − (log log |F|)/n codes is obtained by picking for each
message, a random blob oft codewords, such that blobs corresponding to distinct messages are disjoint.
For each tampering functionf , our proof analyzes the distribution ofDec(f(Enc(s)) for each messages
separately, and shows that w.h.p. they are essentially close to the same distributionDf . In order to achieve
sufficiently small error probability allowing for a union bound, the proof uses a number of additional ideas,
including a randomized process that gradually reveals information about the code while examining thet
codewords in each blob in sequence. The analysis ensures that as little information is revealed in each
step as possible, so that enough independence remains in theconditional joint distribution of the codewords
throughout the analysis. Finally, strong concentration bounds are used to derive the desired bound on the
failure probability. The proof for the special case of bijective tampering functions turns out to be quite
straightforward, and as a warm-up we present this special case first in Section 3.1.

Monte Carlo construction. Since the analysis of the probabilistic code construction considers each mes-
sages separately, we observe that it only only needs limited (t-wise) independence of the codewords. On the
other hand, the code construction is designed to be sparse, namely takingt = poly(n, log |F|, 1/ǫ) suffices
for the analysis. This is the key idea behind our efficient Monte Carlo construction for small families with
log |F| 6 poly(n).

The birthday paradox implies that picking the blob of codewords encoding each message independently
of other messages, while maintaining disjointness of the various blobs, limits the rate to1/2. Therefore,
we construct the code by means of at-wise independentdecodingfunction implemented via a random low-
degree polynomial. After overcoming some complications toensure an efficient encoding function, we get
our efficient randomized construction for small families oftampring functions.

Rate upper bounds.Our main impossibility result for the family of adversariesthat only tamper the first
αn bits of the codeword uses an information theoretic argument. We argue that if the rate of the code is
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sufficiently large, one can always find messagess0 ands1 and a setXη ⊆ {0, 1}
αn such that the following

holds: The firstαn bits of the encoding ofs0 has a noticeable chance of being inXη, whereas this chance
for s1 is quite small. Using this property, we design an adversary that maps the firstαn bits of the encoding
to a dummy string if they belong toXη and leaves the codeword intact otherwise. This suffices to violate
non-malleability of the code.

2 Preliminaries

2.1 Notation

We useUn for the uniform distribution on{0, 1}n andUn for the random variable sampled fromUn and
independently of any existing randomness. For a random variableX, we denote byD(X) the probability
distribution thatX is sampled from. Moreover, for an eventE , we useD(X|E) to denote the conditional
distribution on the random variableX on the eventE . Generally, we will use calligraphic symbols (such
asX ) for probability distributions and the corresponding capital letters (such asX) for related random
variables. For a discrete distributionX , we denote byX (x) the probability mass assigned tox by X . Two
distributionsX andY beingǫ-close in statistical distance is denoted byX ≈ǫ Y. We will use(X ,Y) for
the product distribution with the two coordinates independently sampled fromX andY. All unsubscripted
logarithms are taken to the base2. Support of a discrete random variable (or distribution)X is denoted by
supp(X). With a slight abuse of notation, for various bounds we condition probabilities and expectations
on random variables rather than events (e.g.,E[X|Y ], or Pr[E|Y ]). In such instances, the notation means
that the statement holds foreverypossible realization of the random variables that we condition on.

2.2 Definitions

In this section, we review the formal definition of non-malleable codes as introduced in [8]. First, we recall
the notion ofcoding schemes.

Definition 2.1 (Coding schemes). A pair of functionsEnc : {0, 1}k → {0, 1}n and Dec : {0, 1}n →
{0, 1}k ∪ {⊥} wherek 6 n is said to be a coding scheme with block lengthn and message lengthk if
the following conditions hold.

1. The encoderEnc is a randomized function; i.e., at each call it receives a uniformly random sequence
of coin flips that the output may depend on. This random input is usually omitted from the notation
and taken to be implicit. Thus for anys ∈ {0, 1}k , Enc(s) is a random variable over{0, 1}n. The
decoderDec is; however, deterministic.

2. For everys ∈ {0, 1}k , we haveDec(Enc(s)) = s with probability1.

Therate of the coding scheme is the ratiok/n. A coding scheme is said to have relative distanceδ, for
someδ ∈ [0, 1), if for everys ∈ {0, 1}k the following holds. LetX := Enc(s). Then, for any∆ ∈ {0, 1}n

of Hamming weight at mostδn, Dec(X +∆) =⊥ with probability1.

Before defining non-malleable coding schemes, we find it convenient to define the following notation.

Definition 2.2. For a finite setΓ, the functioncopy : (Γ ∪ {same})× Γ→ Γ is defined as follows:

copy(x, y) :=

{

x x 6= same,

y x = same.

6



The notion of non-malleable coding schemes from [8] can now be rephrased as follows.

Definition 2.3 (Non-malleability). A coding scheme(Enc,Dec) with message lengthk and block lengthn
is said to be non-malleable with errorǫ (also calledexact security) with respect to a familyF of tampering
functions acting on{0, 1}n (i.e., eachf ∈ F maps{0, 1}n to {0, 1}n) if for every f ∈ F there is a
distributionDf over {0, 1}k ∪ {⊥, same} such that the following holds. Lets ∈ {0, 1}k and define the
random variableS := Dec(f(Enc(s))). LetS′ be independently sampled fromDf . Then,

D(S) ≈ǫ D(copy(S′, s)).

Remark 2.4. The above definition allows the decoder to output a special symbol⊥ that corresponds to error
detection. It is easy to note that any such code can be transformed to one where the decoder never outputs⊥
without affecting the parameters (e.g., the new decoder maysimply output0k whenever the original decoder
outputs⊥).

Dziembowski et al. [8] also consider the following strongervariation of non-malleable codes.

Definition 2.5 (Strong non-malleability). A pair of functions as in Definition 2.3 is said to be astrongnon-
malleable coding scheme with errorǫ with respect to a familyF of tampering functions acting on{0, 1}n

if the conditions(1) and (2) of Definition 2.3 is satisfied, and additionally, the following holds. For any
messages ∈ {0, 1}k , letEs := Enc(s), consider the random variable

Ds :=

{

same if f(Es) = Es,

Dec(f(Es)) otherwise,

and letDf,s := D(Ds). It must be the case that for every pair of distinct messagess1, s2 ∈ {0, 1}k ,
Df,s1 ≈ǫ Df,s2 .

Remark 2.6 (Computational security). Dziembowski et al. also consider the case where statisticaldistance
is replaced with computational indistinguishability withrespect to a bounded computational model. As
our goal is to understand information-theoretic limitations of non-malleable codes, we do not consider this
variation in this work. It is clear, however, that our negative results in Section 5 apply to this model as well.
A related (but incomparable) model that we consider in Section 4 is when the distinguishability criterion
is still statistical; however the adversary is computationally bounded (e.g., one may consider the family of
polynomial sized Boolean circuits). For this case, we construct an efficient Monte Carlo coding scheme that
achieves any rate arbitrarily close to1.

Remark 2.7 (Efficiency of samplingDf ). The original definition of non-malleable codes in [8] also re-
quires the distributionDf to be efficiently samplable given oracle access to the tampering functionf . We
find it more natural to remove this requirement from the definition since even combinatorial non-malleable
codes that are not necessarily equipped with efficient components (such as the encoder, decoder, and sam-
pler forDf ) are interesting and highly non-trivial to construct. It should be noted; however, that for any
non-malleable coding scheme equipped with an efficient encoder and decoder, the following is a valid and
efficiently samplable choice for the distributionDf (possibly incurring a constant factor increase in the error
parameter):

1. LetS ∼ Uk, andX := Enc(S).

2. If Dec(X) = S, outputsame. Otherwise, outputDec(X).

Our Monte Carlo construction in Section 4 is equipped with a polynomial-time encoder and decoder. So is
the case for our probabilistic construction in Section 3 in the random oracle model.
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3 Probabilistic construction of non-malleable codes

In this section, we introduce our probabilistic construction of non-malleable codes. Contrary to the original
construction of Dziembowski et al. [8], where they pick a uniformly random truth table for the decoder
and do not allow the⊥ symbol. Our code, on the other hand, is quite sparse. In fact,in our construction
Dec(Un) =⊥ with high probability. As we observe in Section A, this is thekey to our improvement, since
uniformly random decoders cannot achieve non-malleability even against extremely simple adversaries at
rates better than1/2. Moreover, our sparse construction offers the added feature of having a large minimum
distance in the standard coding sense; any tampering schemethat perturbs the codeword in a fraction of
the positions bounded by a prescribed limit will be detectedby the decoder with probability1. Another
advantage of sparsity is allowing a compact representationfor the code. We exploit this feature in our
Monte Carlo construction of Section 4. Our probabilistic coding scheme is described in Construction 1.

We remark that Construction 1 can be efficiently implementedin the ideal-cipher model, which in turn
implies an efficient approximate implementation in the random oracle model (see the discussion following
the proof of Theorem 3.1 in Section 3.3). In turn, this implies that the distributionDf in Definition 2.3 for
this construction can be efficiently sampled in both models (see Remark 2.7).

• Given: Integer parameters0 < k 6 n and integert > 0 such thatt2k 6 2n, and a relative distance
parameterδ, 0 6 δ < 1/2.

• Output: A pair of functionsEnc : {0, 1}k × {0, 1}n andDec : {0, 1}n → {0, 1}k , whereEnc may
also use a uniformly random seed which is hidden from that notation, butDec is deterministic.

• Construction:

1. LetN := {0, 1}n.

2. For eachs ∈ {0, 1}k , in an arbitrary order,

– LetE(s) := ∅.

– For i ∈ {1, . . . , t}:

(a) Pick a uniformly random vectorw ∈ N .

(b) Addw to E(s).

(c) LetΓ(w) be the Hamming ball of radiusδn centered atw. RemoveΓ(w) fromN (note
that whenδ = 0, we haveΓ(w) = {w}).

3. Givens ∈ {0, 1}k , Enc(s) outputs an element ofE(s) uniformly at random.

4. Givenw ∈ {0, 1}n, Dec(s) outputs the uniques such thatw ∈ E(s), or⊥ if no suchs exists.

Construction 1: Probabilistic construction of non-malleable codes.

The main theorem of this section is the result below that proves non-malleability of the coding scheme
in Construction 1.

Theorem 3.1. Let F : {0, 1}n → {0, 1}n be any family of tampering functions. For anyǫ, η > 0, with
probability at least1 − η, the coding scheme(Enc,Dec) of Construction 1 is a strong non-malleable code
with respect toF and with errorǫ and relative distanceδ, provided that both of the following conditions are
satisfied.
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1. t > t0, for some

t0 = O

(

1

ǫ6

(

log
|F|N

η

)

)

. (1)

2. k 6 k0, for some
k0 > n(1− h(δ)) − log t− 3 log(1/ǫ) −O(1), (2)

whereh(·) denotes the binary entropy function.

Thus by choosingt = t0 andk = k0, the construction satisfies

k > n(1− h(δ)) − log log(|F|/η) − log n− 9 log(1/ǫ)−O(1).

In particular, if |F| 6 22
αn

for any constantα ∈ (0, 1), the rate of the code can be made arbitrarily close
to 1− h(δ) − α while allowingǫ = 2−Ω(n).

Remark 3.2. (Error detection) An added feature of our sparse coding scheme is the error-detection capa-
bility. However, observe that any probabilistic coding scheme that is non-malleable against all families of
adversaries of bounded size over{0, 1}n (such as Construction 1, Construction 2, and the probabilistic con-
struction of [8]) can be turned into one having relative distanceδ (and satisfying the same non-malleability
guarantees) by composing the construction with a fixed outercodeC of block lengthn and relative distance
δ. Indeed, any classF of tampering functions for the composed code corresponds toa classF ′ of the same
size or less for the original construction. Namely, each function f ′ ∈ F ′ equalsDecC ◦ f (DecC being the
decoder ofC) for somef ∈ F . The caveat with this approach (rather than directly addressing distance as in
Construction 1) is that the composition may lose strong non-malleability even if the original code is strongly
non-malleable. Indeed, it may be the case thatf is a sophisticated tampering function whereas its projec-
tion f ′ becomes as simple as the identity function. If so, non-malleability may be satisfied by choosing
Df := D(same) whereas strong non-malleability does not hold.

3.1 Proof of Theorem 3.1 for bijective adversaries

We first prove the theorem for adversaries that are bijectiveand have no fixed points. This case is still broad
enough to contain interesting families of adversaries suchas additive error adversariesFadd mentioned in
the introduction, for which case we reconstruct the existence proof of AMD codes (although optimal explicit
constructions of AMD codes are already known [5]).

As it turns out, the analysis for this case is quite straightforward, and significantly simpler than the
general case that we will address in Section 3.2.

Let N := 2n, K := 2k, and consider a fixed messages ∈ {0, 1}k and a fixed bijective tampering
functionf : {0, 1}n → {0, 1}n such that for allx ∈ {0, 1}n, f(x) 6= x. We show that the non-malleability
requirement of Definition 2.3 holds with respect to the distribution Df that is entirely supported on{⊥}.
That is, we wish to show that with high probability, the coding scheme(Enc,Dec) of Construction 1 is so
that

Pr[Dec(f(Enc(s))) 6=⊥] 6 ǫ. (3)

By taking a union bound over all choices off ands, this would imply that with high probability, the code is
non-malleable (in fact, strongly non-malleable) for the entire familyF .

9



Let E(s) := supp(Enc(s)) be the set of thet codewords that are mapped tos by the decoder. Let
E1, . . . , Et be the codewords in this set in the order they are picked by thecode construction. For any
x ∈ {0, 1}n \ E(s), we know that

Pr[Dec(x) 6=⊥] 6 t(K − 1)/(N − t) 6
γ

1− γ
,

whereγ := tK/N . This can be seen by observing that each codeword inE(s′) for s′ 6= s is uniformly
distributed on the set{0, 1}n\E(s), and taking a union bound. Thus, in particular since{f(E1), . . . , f(Et)}
is a set of sizet outsideE(s), we see thatPr[Dec(f(E1)) 6=⊥] 6

γ
1−γ . In fact, the same argument holds

for Dec(E2) conditioned on any realization off(E1), and more generally, one can derive for eachi ∈ [t],

Pr[Dec(f(Ei)) 6=⊥ |f(E1), . . . , f(Ei−1)] 6
γ

1− γ
. (4)

Define indicator random variables0 = X0,X1, . . . ,Xt ∈ {0, 1}, whereXi = 1 iff Dec(f(E1)) 6=⊥. From
(4) and using Proposition B.1, we can deduce that for alli ∈ [t], Pr[Xi = 1|X0, . . . ,Xi−1] 6

γ
1−γ . Now,

using Proposition B.5, lettingX := X1 + · · ·+Xt,

Pr[X > ǫt] 6
( eγ

ǫ(1− γ)

)ǫt
.

Assumingγ 6 ǫ/4, the above upper bound simplifies toexp(−Ω(ǫt)). By taking a union bound over all
possible choices ofs andf (that we trivially upper bound byN |F|), it can be seen that, as long ast > t0 for

some choice oft0 = O
(

1
ǫ log(

N |F|
η )

)

, the probability that(Enc,Dec) fails to satisfy (3) for some choice of

s andf is at mostη.

Finally, observe that the assumptionγ 6 ǫ/4 can be satisfied provided thatK 6 K0 for some choice of
K0 = Ω(ǫN/t), or equivalently, whenk 6 k0 for some choice ofk > n − log t − log(1/ǫ). Note that for
this case the proof obtains a better dependence onǫ compared to (1) and (2).

3.2 Proof of Theorem 3.1 for general adversaries

First, we present a proof sketch describing the ideas an intuitions behind the general proof, and then proceed
with a full proof of the theorem.

• Proof sketch

In the proof for bijective adversaries, we heavily used the fact that the tampering of each setE(s) of code-
words is a disjoint set of the same size. For general adversaries; however, this may not be true. Intuitively,
since the codewords inE(s) are chosen uniformly and almost independently at random (ignoring the dis-
tinctness dependencies), the tampered distributionf(E(s)) should look similar tof(Un) for all s, if |E(s)|
is sufficiently large. Indeed, this is what shown in the proof. The proof also adjusts the probability mass of
same according to the fraction of the fixed points off , but we ignore this technicality for the proof sketch.

Note that the distributionf(Un) may be arbitrary, and may assign a large probability mass to asmall set
of the probability space. For example,f may assign half of the probability mass to a single point. We call
the points in{0, 1}n such that receive a noticeable share of the probability massin f(Un) theheavy elements
of {0, 1}n, and fix the randomness of the code construction so that the decoder’s values at heavy elements
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are revealed before analyzing each individual messages. Doing so allows us to analyze each messages
separately and take a union bound on various choices ofs as in the case of bijective adversaries. Contrary
to the bijective case; however, the distributionDf is no longer entirely supported on⊥; but we show that it
still can be made to have a fairly small support; roughlypoly(n, log |F|). More precisely, the proof shows
non-malleability with respect to the choice ofDf which is explicitly defined to be the distribution of the
following random variable:

D :=











same if f(Un) = Un,

Dec(f(Un)) if f(Un) 6= Un andf(Un) ∈ H,

⊥ otherwise,

whereH ⊆ {0, 1}n is the set of heavy elements formally defined as

H := {x ∈ {0, 1}n : Pr[f(Un) = x] > 1/r},

for an appropriately chosenr = Θ(ǫ2t).

Although the above intuition is natural, turning it into a rigorous proof requires substantially more work
than the bijective case, and the final proof turns out to be rather delicate even though it only uses elementary
probability tools. The first subtlety is that revealing the decoder at the heavy elements creates dependencies
between various random variables used in the analysis. In order to make the proof more intuitive, we
introduce a random process, described as an algorithmReveal, that gradually reveals information about the
code as the proof considers the codewordsE1, . . . , Et corresponding to the picked messages. The process
outputs a list of elements in{0, 1}k , and we show that the empirical distribution of this list is close to the
desiredDf for all messagess.

Roughly speaking, at each stepi ∈ [t] the analysis estimates the distribution ofDec(f(Ei)) conditioned
on the particular realizations of the previous codewords. There are three subtleties that we need to handle to
make this work:

1. The randomness corresponding to some of theEi is previously revealed by the analysis and thus such
codewords cannot be assumed to be uniformly distributed anymore. This issue may arise due to
the revealing of the decoder’s values at heavy elements in the beginning of analysis, or existence of
cycles in the evaluation graph of the tampering functionf . Fortunately, it is straightforward to show
that the number of such codewords remain much smaller thant with high probability, and thus they
may simply be ignored.

2. At each step of the analysis, the revealed information make the distribution ofDec(f(Ei)) gradually
farther from the desiredDf . The proof ensures that the expected increase at each step issmall, and
using standard Martingale concentration bounds the total deviation fromDf remains sufficiently small
with high probability at the end of the analysis.

3. Obtaining small upper bounds (e.g.,exp(−cn) for somec < 1) on the probability of various bad
events in the analysis (e.g.,Dec(f(Enc(s))) significantly deviating fromDf ) is not difficult to achieve.
However, extra care is needed to ensure that the probabilities are much smaller than1/(2k |F|) (to
accommodate the final union bound), where the latter may easily be doubly-exponentially small in
n. An exponential upper bound ofexp(−cn) does not even suffice for moderately large families of
adversaries such as bit-tampering adversaries, for which we have|F| = 4n.
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• Complete proof of Theorem 3.1

First, observe that by construction, the minimum distance of the final code is always greater thanδn; that is,
wheneverDec(w1) 6=⊥ andDec(w2) 6=⊥ for any pair of vectorsw1 6= w2, we have

disth(w1, w2) > δn,

wheredisth(·) denotes the Hamming distance. This is because whenever a codeword is picked, itsδn
neighborhood is removed from the sample space for the futurecodewords. LetV denote the volume of a
Hamming ball of radiusδn. It is well known thatV 6 2nh(δ), whereh(·) is the binary entropy function.

Fix an adversaryf ∈ F . We wish to show that the coding scheme(Enc,Dec) defined by Construction 1
is non-malleable with high probability for the chosenf .

Definep0 := Pr[f(Un) = Un]. In the sequel, assume thatp0 < 1 (otherwise, there is nothing to prove).
For everyx ∈ {0, 1}n, definep(x) := Pr[f(Un) = x ∧ x 6= Un]. Observe that

∑

x

p(x) = 1− p0.

We say that a stringx ∈ {0, 1}n is heavyif

p(x) > 1/r,

for a parameterr 6 t to be determined later. Note that the number of heavy stringsmust be less thanr.
Define

H := {x ∈ {0, 1}n : p(x) > 1/r},

γ := t/N,

γ′ := tK/N.

Fix the randomness of the code construction so thatDec(x) is revealed for every heavyx. We will argue that
no matter how the decoder’s outcome on heavy elements is decided by the randomness of the code construc-
tion, the construction is non-malleable for every messages and the chosen functionf with overwhelming
probability. We will then finish the proof with a union bound over all choices ofs andf .

Consider a random variableD defined over{0, 1}k ∪ {⊥, same} in the following way:

D :=











same if f(Un) = Un,

Dec(f(Un)) if f(Un) 6= Un andf(Un) ∈ H,

⊥ otherwise.

(5)

For the chosenf , we explicitly define the distributionDf asDf := D(D).

Now, consider a fixed messages ∈ {0, 1}k , and define the random variableEs := Enc(s). That is,Es

is uniformly supported on the setE(s) (this holds by the way that the encoder is defined). Observe that the
marginal distribution of each individual setE(s) (with respect to the randomness of the code construction)
is the same for all choices ofs, regardless of the ordering assumed by Construction 1 on themessage space
{0, 1}k .

Furthermore, define the random variableDs as follows.

Ds :=

{

same if f(Es) = Es,

Dec(f(Es)) otherwise.
(6)
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Our goal is to show that the distribution ofDs (for the final realization of the code) isǫ-close toDf with
high probability over the randomness of the code construction. Such assertion is quite intuitive by comparing
the way the two distributionsDs andDf are defined. In fact, it is not hard to show that the assertion holds
with probability 1 − exp(−Ω(n)). However, such a bound would be insufficient to accommodate aunion
bound of even moderate sizes such as2n, which is needed for relatively simple classes such as bit-tampering
adversaries. More work needs to be done to ensure that it is possible to achieve a high probability statement
with failure probability much smaller than1/|F|, which may in general be doubly exponentially small inn.

The claim below shows that closeness ofD(Ds) toDf would imply non-malleability of the code.

Claim 3.3. Suppose that for everys ∈ {0, 1}k , we haveD(Ds) ≈ǫ Df for the choice ofDf defined in(5).
Then,(Enc,Dec) is a non-malleable coding scheme with errorǫ and a strong non-malleable coding scheme
with error 2ǫ.

Proof. In order to verify Definition 2.5, we need to verify that for every distinct pair of messagess1, s2 ∈
{0, 1}k , D(Ds1) ≈2ǫ D(Ds2). But from the assumption, we know thatD(Ds1) and D(Ds2) are both
ǫ-close toDf . Thus the result follows by the triangle inequality.

It is of course possible now to use [8, Theorem 3.1] to deduce that Definition 2.3 is also satisfied.
However, for the clarity of presentation, here we give a direct argument that shows that non-malleability is
satisfied with the precise choice ofDf defined in (5) and errorǫ. Let s ∈ {0, 1}k , and letEs := Enc(s) and
S := Dec(f(Es)). LetS′ ∼ Df andS′′ ∼ D(Ds) be sampled independently. We need to show that

D(S) ≈ǫ D(copy(S′, s)). (7)

From the definition ofDs in (6), sinceDec(f(Es)) = s whenf(Es) = Es, we see thatD(copy(S′′, s)) =
D(Dec(f(Es))) = D(S). Now, since by assumptionD(S′) ≈ǫ D(S′′), it follows thatD(copy(S′, s)) ≈ǫ

D(copy(S′′, s)) which proves (7).

Let the random variablesE1, . . . , Et be the elements ofE(s), in the order they are sampled by Con-
struction 1.

Define, fori ∈ [t],

Si :=

{

same if f(Ei) = Ei,

Dec(f(Ei)) otherwise.

We note that, no matter how the final code is realized by the randomness of the construction, the distribution
Ds is precisely the empirical distribution ofS1, . . . , St as determined by the code construction.

In the sequel, for eachi ∈ [t], we analyze the distribution of the variableSi conditioned on the values
of S1, . . . Si−1 and use this analysis to prove that the empirical distribution of the sequence(S1, . . . , St) is
close toDf .

In order to understand the empirical distribution of theSi, we consider the following processReveal that
considers the picked codewordsE1, . . . , Et in order, gradually reveals information about the code construc-
tion, and outputs a subset of theSi. We will ensure that

1. The process outputs a large subset of{S1, . . . , St}, and,

2. The empirical distribution of the sequence output by the process is close toDf with high probability.

The above guarantees would in turn imply that the empirical distribution of the entire sequenceSi is also
close toDf with high probability. We define the process as follows.
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ProcessReveal:

1. Initialize the setSkip ⊆ [t] with the empty set. Recall that the values ofDec(w) for all w ∈ H are
already revealed in the analysis, as well asDec(Γ(w)) for those for whichDec(w) 6=⊥.

2. For each heavy elementw ∈ H, if Dec(w) = s, consider the uniquej ∈ [t] such thatEj = w. Reveal4

j andEj, and addj to Skip.

3. For i from 1 to t, definetheith stageas follows:

3.1. If i ∈ Skip, declare askipand continue the loop with the nexti. Otherwise, follow the remaining
steps.

3.2. RevealΓ(Ei). Note that revealingEi implies thatDec(Ei) is revealed as well, sinceDec(Ei) =
s. Moreover, recall that for anyx ∈ Γ(Ei) \Ei, Dec(x) =⊥ by the code construction.

3.3. If Dec(f(Ei)) is not already revealed:

3.3.1. RevealDec(f(Ei)).

3.2.2. If Dec(f(Ei)) = s, consider the uniquej ∈ [t] such thatEj = f(Ei). It must be that
j > i, sinceDec(Ej) has not been revealed before. Revealj and add it toSkip.

3.3.3. Declare that anunveil has happened ifDec(f(Ei)) 6=⊥. If so, revealDec(f(x)) for all
x ∈ Γ(f(Ei)) \ Ei to equal⊥.

3.4. Reveal and outputSi.

For i ∈ [t], we use the notationReveali to refer to all the information revealed from the beginning of the
process up to the time theith stage begins. We also denote byNext(i) the leastj > i such that a skip does
not occur at stagej; defineNext(i) := t + 1 if no suchj exists, and defineNext(0) to be the index of the
first stage that is not skipped. Moreover, forw ∈ {0, 1}n, we use the notationw ∈ Reveali as a shorthand
to denote the event that the processReveal has revealed the value ofDec(w) at the time theith stage begins.

By the way the code is constructed, the decoder’s value at each given point is most likely⊥. We make
this intuition more rigorous and show that the same holds even conditioned on the information reveal by the
processReveal.

Claim 3.4. For all i ∈ [t] and anya ∈ supp(Reveali),

Pr[Dec(x) 6=⊥ |(Reveali = a) ∧ (x /∈ Reveali)] 6 γ′/(1 − 3γV ).

Proof. Supposex /∈ Reveali, and observe thatReveali at each step reveals at most the values of the decoder
at 2V points; namely,Γ(Ei) andΓ(f(Ei)). Moreover, before the first stage, decoder’s value is revealed at
up to r heavy points and its Hamming neighborhood at radiusδn. In total, the total number of points at
which decoder’s value is revealed by the information inReveali is at most

(|H|+ 2(i− 1))|V | 6 (2t+ r)V 6 3γV N.

4In a rigorous sense, by revealing a random variable we mean that we condition the probability space on the event that a particular
value is assumed by the variable. For example, revealingEi means that the analysis branches to a conditional world where the
value ofEi is fixed to the revealed value. In an intuitive way, one may think of a reveal as writing constraints on the realization
of the code construction on a blackboard, which is subsequently consulted by the analysis (in form of the random variableReveali

that the analysis defines to denote the information revealedby the process before stagei).
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Let
C :=

⋃

s

E(s)

be the set of all codewords of the coding scheme. Some of the elements ofC are already included inReveali,
and by assumption we know that none of these is equal tox.

The distribution of each unrevealed codeword, seen in isolation, is uniform over theN(1 − 3γV ) re-
maining vectors in{0, 1}n. Thus by taking a union bound on the probability of each such codeword hitting
the pointx (which is the only way to makeDec(x) 6=⊥, we deduce that

Pr[Dec(x) 6=⊥ |Reveali = a] 6
tK

N(1− 3γV )
= γ′/(1 − 3γV ).

Ideally, for eachi ∈ [t] we desire to haveEi almost uniformly distributed, conditioned on the revealed
information, so that the distribution ofDec(f(Ei)) (which is described bySi whenEi does not hit a fixed
point of f ) becomes close toDec(f(Un)). However, this is not necessarily true; for example, when the
processReveal determines the decoder’s value on the heavy elements, the value of, say,E1 may be revealed,
at which point there is no hope to ensure thatE1 is nearly uniform. This is exactly what the setSkip is
designed for, to isolate the instances when the value ofEi is already determined by the prior information.
More precisely, we have the following.

Claim 3.5. Suppose thati /∈ Skip when theith stage ofReveal begins. Then, for anya ∈ supp(Reveali),

D(Ei|Reveali = a) ≈ν Un,

whereν := (3γV )/(1 − 3γV ).

Proof. Note that, without any conditioning, the distribution ofEi is exactly uniform on{0, 1}n. If at any
point prior to reaching theith stage it is revealed thatDec(Ei) = s, either line 2 or line 3.2.2 of process
Reveal ensures thati is added to the setSkip.

If, on the other hand, the fact thatDec(Ei) = s has not been revealed when theith stage begins, the
distribution ofEi becomes uniform on the points in{0, 1}n that have not been revealed yet. As in Claim 3.4,
the number of revealed points is at most(2t+ r)V 6 3γV N . Thus, the conditional distributionEi remains
((3γV )/(1− 3γV ))-close to uniform by Proposition B.2.

For eachi ∈ [t], define a random variableS′
i ∈ {0, 1}

k ∪ {same,⊥} as follows (whereUn is indepen-
dently sampled fromUn):

S′
i :=











same if f(Un) = Un,

Dec(f(Un)) if f(Un) 6= Un ∧ f(Un) ∈ Reveali,

⊥ otherwise.

(8)

Note thatD(S′
1) = Df .

Intuitively, S′
i is the “cleaned up” version of the random variableSi that we are interested in. As

defined,S′
i is an independent random variable, and as such we are more interested in itsdistribution than

value. Observe that the distribution ofS′
i is randomly determined according to the randomness of the code

construction (in particular, the knowledge ofReveali completely determinesD(S′
i)). The variableS′

i is
defined so that its distribution approximates the distribution of the actualSi conditioned on the revealed
information before stagei. Formally, we can show that conditional distributions of these two variables are
(typically) similar. Namely,
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Claim 3.6. Suppose thati /∈ Skip when theith stage ofReveal begins. Then, for anya ∈ supp(Reveali),

D(Si|Reveali = a) ≈ν D(S′
i|Reveali = a),

whereν := (3γV + γ′)/(1 − 3γV ).

Proof. First, we apply Claim 3.5 to ensure that

D(Ei|Reveali = a) ≈ν′ Un,

whereν ′ = (3γV )/(1−3γV ). Thus we can assume that the conditional distribution ofEi is exactly uniform
at cost of aν ′ increase in the final estimate.

Now, observe that, conditioned on the revealed information, the waySi is sampled at stagei of Reveal
can be rewritten as follows:

1. SampleEi ∼ Un.

2. If f(Ei) = Ei, setSi ← same.

3. Otherwise, iff(Ei) ∈ Reveali, setSi toDec(f(Ei)) as determined by the revealed information.

4. Otherwise, revealDec(f(Ei)) (according to its conditional distribution on the knowledge ofReveali)
and setS accordingly.

This procedure is exactly the same as howS′
i is sampled by (8); with the difference that at the third step,

S′
i is set to⊥ whereasSi is sampled according to the conditional distribution ofDec(f(Ei)). However, we

know by Claim 3.4 that in this case,

Pr[Dec(f(Ei)) 6=⊥ |Reveali = a] 6 γ′/(1 − 3γV ).

Thus we see thatSi changes the probability mass of⊥ in D(S′
i) by at mostγ′/(1 − 3γV ). The claim

follows.

Recall that the distribution ofS′
1 is the same asDf . However, for subsequent stages this distribution may

deviate fromDf . We wish to ensure that by the end of processReveal, the deviation remains sufficiently
small.

For i ∈ [t− 1], define∆i as
∆i := dist(D(S′

i+1),D(S′
i)).

wheredist(·) denotes statistical distance. Note that∆i is a random variable that is determined by the
knowledge ofReveali+1 (recall thatReveali determines the exact distribution ofS′

i). We show that the
conditional values attained by this random variable are small in expectation.

Claim 3.7. For eachi ∈ [t− 1], and alla ∈ supp(Reveali),

E[∆i|Reveali = a] 6
2γ′

r(1− 3γV )
. (9)

Moreover,Pr[∆i 6 2/r | Reveali = a] = 1.
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Proof. Recall that the distribution ofS′
i+1 is different fromS′

i depending on the points at which the decoder’s
value is revealed during stagei of Reveal. If a skip is declared at stagei, we haveReveali+1 = Reveali and
thus,∆i = 0. Thus in the following we may assume that this is not the case.

However, observe that whenever for somex ∈ {0, 1}n, the decoder’s valueDec(x) is revealed at stage
i, the new information affects the probability distributionof S′

i only if Dec(x) 6=⊥. This is because when
Dec(x) =⊥, some of the probability mass assigned bySi to⊥ in (8) is removed and reassigned byS′

i+1 to
Dec(x), which is still equal to⊥. Thus, changes of this type can have no effect on the distribution ofS′

i. We
conclude that only revealing the value ofEi and an unveil (as defined in line 3.3.3 of processReveal) can
contribute to the statistical distance betweenS′

i andS′
i+1.

Whenever an unveil occurs at stagei, say at pointx ∈ {0, 1}n, some of the probability mass assigned
to⊥ by S′

i is moved toDec(x) in the distribution ofS′
i+1. Since we know thatx /∈ H, the resulting change

in the distance between the two distributions is bounded by1/r, no matterwhat the realization ofx and
Dec(x) are. Overall, using Claim 3.4, the expected change between the two distributions contributed by the
occurrence of an unveil is upper bounded by the probability of an unveil occurring times1/r, which is at
most

γ′/r

1− 3γV
. (10)

The only remaining factor that may contribute to an increasein the distance between distribution ofS′
i

andS′
i+1 is the revealing ofEi at stagei. The effect of this reveal in the statistical distance between the two

distributions isp(Ei), since according to (8) the value ofS′
i+1 is determined by the outcome off(Un), and

thus the probability mass assigned toDec(Ei) byS′
i+1 is indeedPr[f(Un) = Ei]. LetDE be the distribution

of Ei conditioned on the knowledge ofReveali. Observe that, since the values{p(x) : x ∈ {0, 1}n} defines
a probability distribution onN points, we clearly have

∑

x∈supp(DE)

p(x) 6 1. (11)

On the other hand, by the assumption that a skip has not occurred at stagei, we can deduce using the
argument in Claim 3.5 thatDE is uniformly supported on a support of size at leastN(1− 3γV ). Therefore,
using (11), the expected contribution to∆i by the revealing ofEi is (which is the expected value ofp(Ei))
is at most

1

N(1− 3γV )
6

γ′/r

(1− 3γV )
, (12)

where the inequality usesr 6 γ′N = tK. The desired bound follows by adding up the two perturbations
(10) and (12) considered.

Finally, observe that each of the perturbations consideredabove cannot be more than1/r, since stagei
never reveals the decoder’s value on a heavy element (recallthat all heavy elements are revealed before the
first stage begins and the choices ofEi that correspond to heavy elements are added toSkip whenReveal
begins). Thus, the conditional value of∆i is never more than2/r.

Using the above result, we can deduce a concentration bound on the summation of the differences∆i.

Claim 3.8. Let∆ := ∆1 + · · · +∆t−1, and suppose

γ′

1− 3γV
6

ǫr

32t
. (13)
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Then,
Pr[∆ > ǫ/8] 6 exp(−ǫ2r2/(2048t)) =: η0. (14)

Proof. For i ∈ [t−1], define∆′
i := ∆ir/2, ∆′

0 := 0, and∆′ := ∆′
1+ · · ·+∆′

t−1. SinceReveali determines
∆′

i−1, by Claim 3.7 we know that
E[∆′

i|∆
′
0, . . . ,∆

′
i−1] 6 ν,

where ν := γ′

1−3γV 6 ǫr/(32t) In the above, conditioning on∆′
0, . . . ,∆

′
i−1 instead ofReveali (for

which Claim 3.7 applies), is valid in light of Proposition B.1, since the knowledge ofReveali determines
∆′

0, . . . ,∆
′
i−1.

Moreover, again by the Claim 3.7, we know that the∆′
i are between0 and1. Using Proposition B.3, it

follows that
Pr[∆ > ǫ/8] = Pr[∆′

>
ǫr

16t
· t] 6 η0.

Next, we prove a concentration bound for the total number of unveils that can occur in line 3.3.3 of
processReveal.

Claim 3.9. Letu be the total number of unveils that occur in processReveal. Assumingγ′/(1−3γV ) 6 ǫ/8
(which is implied by(13)), we have

Pr[u > ǫt/4] 6 exp(−ǫ2t/128) 6 η0.

Proof. LetX1, . . . ,Xt be indicator random variable such thatXi = 1 iff an unveil occurs at stagei, and let
X0 := 0. Recall that an unveil can only occur at a stage that is not skipped. Thus, ifi ∈ [t] when theith
stage begins, we can deduce thatXi = 0.

Consideri ∈ [t] such thati /∈ Skip when theith stage begins. An unveil occurs whenDec(f(Ei)) /∈
Reveali. In this case, by Claim 3.4, we get that

Pr[Dec(f(Ei)) 6=⊥ |Reveali] 6 γ′/(1− 3γV ).

SinceReveali determines all the revealed information in each prior stage, and in particular the values of
X0, . . . ,Xi−1, we can use Proposition B.1 to deduce that

Pr[Xi = 1|X0, . . . ,Xi−1] 6 γ′/(1− 3γV ).

Finally, Proposition B.3 derives the desired concentration bound on the number of unveils, which isX1 +
· · ·+Xt.

We are now ready to wrap up the proof and show that with overwhelming probability, the empirical
distribution ofS1, . . . , St is ǫ-close toDf .

Suppose that processReveal outputs a subset of theSi. Let T ⊆ [t] be the set of indicesi suchReveal
outputsSi in the end of theith stage. Note thatT = [t] \ Skip, whereSkip denotes the skip set whenReveal
terminates. Observe that|Skip| is at most the total number of unveils occurring at line 3.3.3of Reveal plus
r (which upper bounds the number of heavy elements inH). Thus, using Claim 3.9 we see that, assuming
(13),

Pr[t− |T | > r + ǫt/4] 6 η0. (15)

Let δi for i ∈ [t] denote the statistical distance betweenS′
i andDf . We know thatδi is a random variable

depending onReveali. Thus, the value ofδi becomes known to a particular fixed value conditioned on the
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outcome of everyRevealj , j > i. Defineδ0 := maxi δi, which is a random variable that becomes revealed
by the knowledge ofRevealt in the end of the process.

Using Claim 3.6, we thus know that for anya ∈ supp(Reveali) andi ∈ T ,

D(Si|Reveali = a) ≈ν0+δ0 Df ,

where
ν0 := (3γV + γ′)/(1− 3γV ).

Let S denote the empirical distribution of{Si : i ∈ T}, and defineS0 :=⊥. From the above conclusion,
using Proposition B.1 we can now write, fori ∈ T ,

D(Si|(Sj : j ∈ T ∩ {1, . . . , i− 1}) ≈ν0+δ0 Df .

Recall that|supp(Df )| 6 r + 2. Assuming that

ν0 + δ0 6 ǫ/4, (16)

Proposition B.7 implies (after simple manipulations) thatwith probability1− η1, where

η1 6 2r+4−Ω(ǫ2|T |), (17)

S is (ǫ/2)-close toDf .

Recall thatD(S′
1) = Df . Using the triangle inequality for statistical distance, for everyi ∈ [t] we can

write
dist(S′

i,Df ) = dist(S′
i, S

′
1) 6 ∆1 + · · ·+∆i−1 6 ∆,

and thus deduce thatδ0 6 ∆. Recall that by Claim 3.8, we can ensure that, assuming (13),∆ 6 ǫ/8 (and
thus,δ0 6 ǫ/8) with probability at least1− η0. Thus under the assumption that

ν0 6 ǫ/8, (18)

and (13), which we recall below
γ′

1− 3γV
6

ǫr

32t
,

we can ensure thatν0 + δ0 6 ǫ/4 with probability at least1 − η0. Moreover, conditioned on the event
ν0 + δ0 6 ǫ/4 (recall thatδ0 is a random variable), we have already demonstrated that with probability at
least1− η1, S is (ǫ/2)-close toDf . After removing conditioning on the bound onδ0, we may deduce that
overall (under the assumed inequalities (13) and (18)), with probability at least1−O(η0 + η1),

S ≈ǫ/2 Df ,

which in turn, implies that the empirical distribution ofS1, . . . , St becomesǫ′-close to uniform, where

ǫ′ := ǫ/2 + (1− |T |/t).

Finally, we can use (15) to ensure that (assuming (13)),ǫ′ 6 ǫ and|T |/t > 1− ǫ/2 with probability at least
1−O(η0 + η1) as long as

r 6 ǫt/4. (19)
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By comparing (17) with (14), we also deduce thatη1 = O(η0) (and also that (19) holds) as long asr 6 r0
for some

r0 = Ω(ǫ2t). (20)

Altogether, we arrive at the conclusion that under assumptions (13), (18), and by takingr := r0, with
probability at least1−O(η0),

(empirical distribution of(S1, . . . , St)) ≈ǫ Df ,

which ensures the required non-malleability condition formessages and tampering functionf . By taking a
union bound over all possible choices ofs andf , the probability of failure becomes bounded by

O(η0K|F|) =: η2.

We can now ensure thatη2 6 η for the chosen value forr by takingt > t0 for some

t0 = O

(

1

ǫ6

(

log
|F|N

η

)

)

. (21)

Furthermore, in order to satisfy assumptions (13), (18), and the requirementtKV 6 1 which is needed
to make the construction possible, it suffices to haveK 6 K0 for some

K0 = Ω(ǫ3N/(tV )).

Using the boundV 6 2nh(δ), whereh(·) is the binary entropy function, and taking the logarithm of both
sides, we see that it suffices to havek 6 k0 for some

k0 > n(1− h(δ)) − log t− 3 log(1/ǫ)−O(1).

This concludes the proof of Theorem 3.1.

3.3 Efficiency in the random oracle model

One of the main motivations of the notion of non-malleable codes proposed in [8] is the application for
tamper-resilient security. In this application, a stateful consists of a public functionality and a private state
s ∈ {0, 1}k . The state is stored in form of its non-malleable encoding, which is prone to tampering by a
family of adversaries. It is shown in [8] that the security ofthe system with encoded private state can be
guaranteed (in a naturally defined sense) provided that the distributionDf related to the non-malleable code
is efficiently samplable. In light of Remark 2.7, efficient sampling ofDf can be assured if the non-malleable
code is equipped with an efficient encoder and decoder.

Although the code described by Construction 1 may require exponential time to even describe, it makes
sense to consider efficiency of the encoder and the decoder inthe random oracle model, where all involved
parties have oracle access to a shared, exponentially long,random string. The uniform decoder construction
of [8] is shown to be efficiently implementable in the random oracle model in anapproximatesense (as long
as all involved parties query the random oracle a polynomialnumber of times), assuming existence of an
efficient algorithm implementing a uniformly random permutationΠ and its inverseΠ−1.

We observe that Construction 1, for the distance parameterδ = 0 (which is what needed for strong
non-malleability as originally defined in [8]) can beexactly implemented efficiently (without any further
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assumptions on boundedness of the access to the random oracle) assuming access to a uniformly random
permutation and its inverse (i.e., the so-called ideal-cipher model). This is because our code is designed so
that the codewords are picked uniformly at random and without replacement. More precisely, the encoder,
given messages ∈ {0, 1}k , can sample a uniformly randomi ∈ [t], and outputΠ(s, i), where(s, i) is
interpreted as an element of{0, 1}n (possibly after padding).

As noted in [8], efficient approximate implementations of uniformly random permutations exist in the
random oracle model. In particular, [4] show such an approximation with securitypoly(q)/2n, whereq is
the number of queries to the random oracle.

4 A Monte Carlo construction for computationally bounded adversaries

An important feature of Construction 1 is that the proof of non-malleability, Theorem 3.1, only uses limited
independence of the permutation defining the codewordsE(s) corresponding to each message. This is
because the proof analyzes the distribution ofDec(f(Enc(s))) for each individual message separately, and
then takes a union bound on all choice ofs.

More formally, below we show that Theorem 3.1 holds for a broader range of code constructions than
the exact Construction 1.

Definition 4.1 (ℓ-wise independent schemes). Let (Enc,Dec) be any randomized construction of a coding
scheme with block lengthn and message lengthk. For eachs ∈ {0, 1}k , defineE(s) := supp(Enc(s)) and
let ts := |supp(Enc(s))|. We say that the construction isℓ-wise independent if the following are satisfied.

1. For any realization of(Enc,Dec), the distribution ofEnc(s) (with respect to the internal randomness
of Enc) is uniform onsupp(Enc(s)).

2. The distribution of the codewords defined by the construction is ℓ-wise independent. Formally, we
require the following. LetC :=

⋃

s∈{0,1}k supp(Enc(s)). Suppose the construction can be described

by a deterministic function5 E : {0, 1}k ×N ×N → {0, 1}n such that for a bounded random oracle
O overN (describing the random bits used by the construction), the sequence

(E(s, i,O))s∈{0,1}k ,i∈[ts]

enumerates the setC. Moreover, for any set oft indicesS = {(sj , ij) : j ∈ [ℓ], sj ∈ {0, 1}
k , ij ∈

[ts]}, we have
D(E(s1, i1,O), . . . , E(sℓ, iℓ,O)) = D(Π(1), . . . ,Π(ℓ))

for a uniformly random bijectionΠ: [2n]→ {0, 1}n.

Lemma 4.2. Let (Enc,Dec) be any randomized construction of a coding scheme with blocklengthn and
message lengthk. For eachs ∈ {0, 1}k , defineE(s) := supp(Enc(s)). Suppose that for any realization of
(Enc,Dec), and for everys1, s2 ∈ {0, 1}k , we have

1. |E(s1)| > t0, wheret0 is the parameter defined in Theorem 3.1.

2. |E(s2)| = O(|E(s1)|).

5As an example, in Construction 1, all the valuests are equal to the chosent, and moreover, one can takeE(s, i,O) = Π(s, i),
whereΠ: {0, 1}k × [2n−k] → {0, 1}n is a uniformly random bijection defined by the randomness ofO.
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Moreover, suppose thatk 6 k0, for k0 as in Theorem 3.1. Lett := maxs |E(s)|. Then, assuming that the
construction is(3t)-wise independent, the conclusion of Theorem 3.1 for distance parameterδ = 0 holds
for the coding scheme(Enc,Dec).

Proof. We argue that the proof of Theorem 3.1 holds without any technical change if

1. The codewords insupp(Enc(Uk)) are chosen not fully independently but(3t)-wise independently,
and

2. Each setE(s) is not necessarily of exact sizet but of size at leastt0 andΘ(t).

The key observation to be made is that the proof analyzes eachindividual messages ∈ {0, 1}k separately,
and then applies a union bound on all choices ofs. Thus we only need sufficient independence to ensure
that the view of the analysis on each individual choice of themessage is statistically the same as the case
where the codewords are chosen fully independently.

Observe that the bulk of the information about the code looked up by the analysis for analyzing each
individual message is contained in the random variableRevealt+1 defined in the proof of Theorem 3.1, that
is defined according to how the processReveal evolves. Namely,Revealt+1 summarizes all the information
revealed about the code by the end of the processReveal.

For a fixed messages ∈ {0, 1}n the processReveal iterates for|E(s)| 6 t step. At each step, the
location of at most two codewords insupp(Enc(Uk)) is revealed. Moreover, before the process starts, the
values of the decoder on the heavy elements inH, which can correspond to less thant codewords, are
revealed by the process. The only other place in the proof where an independent codeword is required is
the union bound in the proof of Claim 3.4, which needs anotherdegree of independence. Altogether, we
conclude that the proof of Theorem 3.1 only uses at most3t degrees of independence in the distribution of
the codewords picked by the construction.

Moreover, for each messages, the analysis uses the fact that|E(s)| > t0 to ensure that the code does
not satisfy non-malleability for the given choice ofs and tampering function remains below the desired
level. Since|E(s)| for different values ofs are assumed to be within a constant factor of each other, the
requirement (20) may also be satisfied by an appropriate choice of the hidden constant. Finally, using the
fact thatmaxs |E(s)| = O(mins |E(s)|), we can also ensure that assumptions (13), and (18) can be satisfied
for appropriate choices of the hidden constants in asymptotic bounds.

In order to implement an efficientℓ-wise independent coding scheme, we use the bounded independence
property of polynomial evaluations over finite fields. More precisely, we consider the coding scheme given
in Construction 2.

The advantage of using the derandomized Monte Carlo construction is that the number of random bits
required to describe the code is dramatically reduced fromO(tnK) bits (which can be exponentially large
if the rate of the code isΩ(1)) to onlyO(tn) bits, which is only polynomially large ift = poly(n). In order
to efficiently implement the derandomized construction, weuse bounded independence properties of poly-
nomial evaluation. Using known algorithms for finite field operations and root finding, the implementation
can be done in polynomial time.

Lemma 4.3. Consider the pair(EncMC,DecMC) defined in Construction 2. For everyη > 0, there is a
t0 = O(n+ log(1/η)) such that for everyt > t0 (wheret is a power of two), with probability at least1− η
the following hold.
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• Given: Integer parameters0 < k 6 n and integert > 1 which is a power of two. Letb := log(2t)
andm := n− k − b.

• Output: A coding scheme(EncMC,DecMC) of block lengthn and message lengthk.

• Randomness of the construction:A uniformly random polynomialP ∈ F2n [9t− 1].

• Construction ofEncMC: Givens ∈ {0, 1}k ,

1. Initialize a setE ⊆ {0, 1}n to the empty set.

2. For everyz ∈ {0, 1}b,

(a) Construct a vectory := (s, 0m, z) ∈ {0, 1}n and regard it as an element ofF2n .

(b) SolveP (X) = y, and add the set of solutions (which is of size at most9t− 1) to E.

3. Output a uniformly random element ofE.

• Construction ofDecMC: Givenx ∈ {0, 1}n, interpretx as an element ofF2n , and lety := P (x),
interpreted as a vector(y1, . . . , yn) ∈ {0, 1}n. If (yk+1, yk+2, . . . , yk+m) = 0m, output(y1, . . . , yk).
Otherwise, output⊥.

Construction 2: The Monte Carlo Construction.

1. (EncMC,DecMC) is a (9t)-wise independent coding scheme.

2. For all s ∈ {0, 1}k , |supp(EncMC(s))| ∈ [t, 3t].

Proof. Let N := 2n andK := 2k. Consider the vectorX := (X1, . . . ,XN ) ∈ F
N
2n , whereXi := P (i)

and eachi is interpreted as an element ofF2n . Since the polynomialP is of degree9t− 1, the distribution
of X1, . . . ,XN over the randomness of the polynomialP is (9t)-wise independent with each individualXi

being uniformly distributed onF2n . This standard linear-algebraic fact easily follows from invertibility of
square Vandermonde matrices.

Note that the decoder functionDecMC in Construction 2 is defined so that

DecMC(Un) =

{

⊥ with probability1− 2tK/N

s ∈ {0, 1}k with probability2t/N.
(22)

For s ∈ {0, 1}k , let E(s) := supp(EncMC(s)). Note that the encoder, givens, is designed to output
a uniformly random element ofE(s). Since the definition of theEncMC(s) is so that it exhausts the list
of all possible words in{0, 1}n that can lie inDecMC−1(s), it trivially follows that (EncMC,DecMC) is
always a valid coding scheme; that is, for any realization ofthe code and for alls ∈ {0, 1}n, we have
DecMC(EncMC(s)) = s subject to the guarantee that|E(s)| > 0.

Fix somes ∈ {0, 1}k . Let Z1, . . . , ZN ∈ {0, 1} be indicator random variable such thatZi = 1 iff
DecMC(i) = s (wheni is interpreted as ann-bit string). Recall that(Z1, . . . , ZN ) is a(9t)-wise independent
random vector with respect to the randomness of the code construction. LetZ := Z1 + · · · + ZN , and note
thatZ = |E(s)|. From (22), we see that

E[Z] = E[|E(s)|] = 2t .
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Using Theorem B.6 withℓ := t/4 andA := E[Z]/2 = t, we see that

Pr[|Z − 2t| > t] 6 8(3/4)t/4 .

By taking a union bound over all choices ofs ∈ {0, 1}k , we conclude that with probability at least1 − η0,
where we defineη0 := 8N(3/4)t/4 , the realization of(EncMC,DecMC) is so that

(∀s ∈ {0, 1}k) : |E(s)| ∈ [t, 3t].

This bound suffices to show the desired conclusion.

By combining the above tools with Theorem 3.1, we can derive the following result on the performance
of Construction 2.

Theorem 4.4. Let F : {0, 1}n → {0, 1}n be any family of tampering functions. For anyǫ, η > 0, with
probability at least1 − η, the pair (EncMC,DecMC) in Construction 2 can be set up so achieve a non-
malleable coding scheme with respect toF and with errorǫ. Moreover, the scheme satisfies the following.

1. The code achievesk > n− log log(|F|/η) − log n− 9 log(1/ǫ)−O(1).

2. The number of random bits needed to specify the code isO
(

(n+ log(|F|/η))n/ǫ6
)

.

3. The encoder and the decoder run in worst case timepoly(log(|F|/η)n/ǫ).

Proof. Let t0 and k0 be the parameters promised by Theorem 3.1. We instantiate Construction 2 with
parametert := t0 andk := k0. Observe that this choice oft is large enough to allow Lemma 4.3 to hold.
Thus we can ensure that, with probability at least1−η, (EncMC,DecMC) is a(9t)-wise independent coding
scheme where, for everys ∈ {0, 1}k , |E(s)| ∈ [t0, 3t0]. Thus we can now apply Lemma 4.2 to conclude
that with probability at least1 − 2η, (EncMC,DecMC) is a strong non-malleable code with the desired
parameters.

The number of random bits required to represent the code is the bit length of the polynomialP (X) in
Construction 2, which is9tn. Plugging in the value oft from (21) gives the desired estimate.

The running time of the decoder is dominated by evaluation ofthe polynomialP (X) at a given point.
Since the underlying field is of characteristic two, a representation of the field as well as basic field operations
can be computed in deterministic polynomial time in the degreen of the extension using Shoup’s algorithm
[10].

The encoder is, however, slightly more complicated as it needs to iterate throughO(t) steps, and at
each iteration compute all roots of a given degree9t − 1 polynomial. Again, since characteristic of the
underlying field is small, this task can be performed in deterministic polynomial time in the degree9t−1 of
the polynomial and the degreen of the extension (e.g., using [11]). After plugging in the bound ont from
(21), we obtain the desired bound on the running time.

As a corollary, we observe that the rate of the Monte Carlo construction can be made arbitrarily close
to 1 while keeping the bit-representation of the code as well as the running time of the encoder and decoder
at poly(n) provided thatǫ = 1/poly(n) and |F| = 2poly(n). In particular, we see that the Monte Carlo
construction achieves strong non-malleability even with respect to such powerful classes of adversaries
as polynomial-sized Boolean circuits (withn outputs bits) and virtually any interesting computationally
bounded model.
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Remark 4.5. Since in this construction the errorǫ is only polynomially small, for cryptographic applications
such as tamper-resilient security it is important to set up the code so as to ensure that1/ǫ is significantly
larger than the total number of tampering attempts made by the adversary.

Caveat. We point out that any explicit coding scheme for computationally bounded models (such as polynomial-
sized Boolean circuits) necessarily implies an explicit lower bound for the respective computational model.
This is because a function in the restricted model cannot be powerful enough to compute the decoder func-
tion, as otherwise, the following adversary would violate non-malleability:

Consider fixed tuples(s1, x1), (s2, x2) ∈ {0, 1}k × {0, 1}n, wheres1 6= s2, Dec(x1) = s1 and
Dec(x2) = s2. Given a codewordx ∈ {0, 1}n, computes := Dec(x). If s = s1, outputx2. If
s = s2, outputx1. Otherwise, outputx.

Remark 4.6. (Alternative Monte Carlo construction) In addition to Construction 2, it is possible to consider
a related Monte Carlo construction when polynomial evaluation is performed at the encoder and root finding
is done by the encoder. More precisely, the encoder, givens ∈ {0, 1}k , may samplei ∈ [t] uniformly at
random, and outputP (s, i) where(s, i) is interpreted as an element ofF2n (possibly after padding). The
drawback with this approach is that the rate of the code wouldbe limited by1/2, since for larger rates there
is a noticeable chance that the encoder maps different messages to the same codeword.

5 Impossibility bounds

In this section, we show that the bounds obtained by Theorem 3.1 are essentially optimal. In order to do so,
we consider three families of adversaries. Throughout the section, we usek andn for the message length
and block length of coding schemes and defineN := 2n andK := 2k.

5.1 General adversaries

The first hope is to demonstrate that Theorem 3.1 is the best possible forevery family of the tampering
functions of a prescribed size. We rule out this possibilityand demonstrate a familyF of tampering functions
achievinglog log |F| ≈ n for which there is a non-malleable code achieving rate1− γ for arbitrarily small
γ > 0.

Let S ⊆ {0, 1}n be any set of size at leastN1−α and at mostN/2. Consider the familyF of functions
satisfying the property that

(∀f ∈ F)(∀x ∈ S) : f(x) = x.

We can take the union of such families over all choices ofS; however, for our purposes it suffices to define
F with respect to a single choice ofS. Observe that

|F|NN−|S|
> NN/2,

which implies
log log |F | > n− 1.

However, there is a trivial coding scheme that is non-malleable with zero error for all functions inF .
Namely, the encoderEnc is a deterministic function that maps messages to distinct elements ofS, whereas
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the decoderDec inverts the encoder and furthermore, maps any string outsideS to⊥. In this construction,
we see that

(∀f ∈ F)(∀x ∈ {0, 1}k) : Dec(f(Enc(x))) = x,

sincef necessarily fixes all the points inS (in particular, in Definition 2.3 one can takeDf := D(same)).
Finally, observe that the rate of this coding scheme is at least1−γ. In fact, this result holds for anyγ > 1/n,
implying that the rate of the code can be made1− o(1).

5.2 Random adversaries

The observation in Section 5.1 rules out the hope for a general lower bound that only depends on the size
of the adversarial family. However, in this section we show that for “virtually all” families of tampering
functions of a certain size, Theorem 3.1 gives the best possible bound. More precisely, we construct a family
F of a designed sizeM as follows: For eachi ∈ [M ], sample a uniformly random functionfi : {0, 1}n →
{0, 1}n and addfi to the family. Since some of thefi may turn out to be the same (albeit with negligible
probability), |F| may in general be lower thanM (which can only make a lower bound stronger).

We prove the following.

Theorem 5.1. For anyα > 0, there is anM0 satisfying

log logM0 6 αn+O(log n)

such that with probability1 − exp(−n), a random familyF with designed sizeM > M0 satisfies the
following: There is no coding scheme achieving rate at least1 − α and error ǫ < 1 that is non-malleable
with respect to the tampering familyF .

Proof. We begin with the following simple probabilistic argument:

Claim 5.2. Let C ⊆ [q]N be a multi-set of vectors each chosen uniformly and independently at random.
For any integerℓ ∈ [N ] and parameterγ > 0, there is anM0 = O(ℓqℓ log(qN/γ)) such that as long as
|C| > M0, the following holds with probability at least1 − γ: For everyS ⊆ [N ] with |S| 6 ℓ, the set of
vectors inC restricted to the positions picked byS is equal to[q]|S|.

Proof. Fix any choice of the setS (where, without loss of generality,|S| = ℓ) and letCS be the set of vectors
in C restricted to the positions inS. For anyw ∈ [q]|S , we have

Pr[w /∈ CS ] =
(

1−
1

qℓ

)|C|
6 exp(−Ω(|C|/qℓ)).

By taking a union bound on all the choices ofw andS, the probability thatC does not satisfy the desired
property can be seen to be at most

(qN)ℓ exp(−Ω(|C|/qℓ)),

which can be made no more thanγ for some

|C| = O
(

qℓ(ℓ log(qN) + log(1/γ))
)

.
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Let γ > 0 be a parameter to be determined later. By Claim 5.2, with probability at least1 − γ over the
randomness of the familyF , we can ensure that for all setsS ⊆ {0, 1}n of size at most2Nα, and for all
functionsfS : S → {0, 1}n, there is a functionf ∈ F that agrees withfS on all points inS. This guarantee
holds if we takeF > M0 for some

M0 = O
(

N (4Nα)(8Nα log(N/γ))
)

.

Overestimating the above bound yields

log logM0 6 αn+ log log(N/γ) +O(1)

which is at mostαn+O(log n) for γ = exp(−n). Assuming that the familyF attains the above-mentioned
property, we now proceed as follows.

Consider any coding scheme(Enc,Dec) with block lengthn and message lengthk which is non-
malleable for the familyF randomly constructed as above and achieving rate at least1− α for someα > 0
and any non-trivial errorǫ < 1. For any messages ∈ {0, 1}k , let

E(s) := supp(Enc(s)) ⊆ [N ]

and observe thatE(s) ∩ E(s′) = ∅ for all s 6= s′. Observe that

E[|E(Uk)|] 6 Nα

by the disjointness property of theE(s) and the assumption on the rate of the code. By Markov’s bound,

Pr[|E(Uk)| > 2Nα] < 1/2

implying that for at least half of the choices ofs ∈ {0, 1}k , we can assume|E(s)| 6 4Nα. Take two distinct
vectorss1, s2 ∈ {0, 1}k satisfying this bound.

Now, letS := E(s1) ∪ E(s2), where|S| 6 2Nα as above. Consider anyc1 ∈ E(s1) andc2 ∈ E(s2)
and definefS : S → {0, 1}n such that

(∀x ∈ E(s1)) : fS(x) = c2 and (∀x ∈ E(s2)) : fS(x) = c1.

By the choice ofF , we know that there isf ∈ F that agrees withfS on all the points inS. This choice of
the adversary ensures that

Pr[Dec(f(Enc(s1))) = s2] = 1 and Pr[Dec(f(Enc(s2))) = s1] = 1

with respect to the randomness of the encoder. Since the two distributionsDec(f(Enc(s1))) andDec(f(Enc(s2)))
are maximally far from each other and moreover, the adversary f always tampers codewords inE(s1) and
E(s2) to a codeword corresponding to a different message, we conclude that there is no choice ofDf in
Definition 2.3 that ensures non-malleability with any errorless than1.

5.3 General adversaries acting on a subset of positions

An important family of adversaries is the one that is only restricted by the subset of bits it acts upon. More
precisely, letT ⊆ [n] be a fixed set of sizeαn, for a parameterα ∈ (0, 1). Forx ∈ {0, 1}n, we use the
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notationxT ∈ {0, 1}|T | for the restriction ofx to the positions inT . Without loss of generality, assume that
T contains the first|T | coordinate positions so thatx = (xT , xT̄ ), whereT̄ := [n] \ T . We consider the
family FT of all functionsf : {0, 1}n → {0, 1}n such that

f(x) = (g(xT ), xT̄ )

for someg : {0, 1}|T | → {0, 1}|T |. Observe that|FT | 6 N (αNα) which implieslog log |FT | 6 αn.

We prove the following lower bound, which is a variation of the classical Singleton bound for non-
malleable codes. What makes this variation much more challenging to prove is the fact that 1) non-malleable
codes allow a randomized encoder, and 2) non-malleability is a more relaxed requirement than error detec-
tion, and hence the proof must rule out the case where the decoder does not detect errors (i.e., outputs a
wrong message) while still satisfies non-malleability.

Theorem 5.3. LetT ⊆ [n] be of sizeαn and consider the familyFT of the tampering functions that only
act on the coordinate positions inT (as defined above). Then, there is aδ0 = O((log n)/n) such that
the following holds. Let(Enc,Dec) be any coding scheme which is non-malleable for the familyFT and
achieves rate1 − α + δ, for anyδ ∈ [δ0, α] and error ǫ. Then,ǫ > δ/(16α). In particular, whenα andδ
are absolute constants,ǫ = Ω(1).

Before proving the theorem, we state the following immediate corollary.

Corollary 5.4. LetF be the family of split-state adversaries acting onn bits. That is, eachf ∈ F interprets
the input as a pair(x1, x2) wherex2 ∈ {0, 1}⌊n/2⌋ andx2 ∈ {0, 1}⌈n/2⌉, and outputs(f1(x1), f2(x2)) for
arbitrary tampering functionsf1 andf2 (acting on their respective input lengths).

Moreover, for a fixed constantδ ∈ (0, 1), let Fδ be the class of tampering functions wheref ∈ Fδ iff
every bit off(x) depends on at most⌊δn⌋ of ths bits ofx.

Let (Enc1,Dec1) (resp., (Encδ,Decδ) be any coding scheme which is non-malleable for the classF
(resp.,Fδ) achieving error at mostǫ and rateR (resp.,Rδ). Then, for every fixed constantγ > 0, there is a
fixed constantǫ0 > 0 such that ifǫ 6 ǫ0, the following bounds hold.

(i) R 6 1/2 − γ,

(ii) Rδ 6 1− δ − γ.

The proof of Theorem 5.3 uses basic tools from information theory, and the core ideas can be described
as follows. Assume that the codeword is(X1,X2) where the adversary acts onX1, which is of lengthαn.
We show that for any coding scheme with rate slightly larger than(1 − α)n, there is a setXη ⊆ {0, 1}

αn

such that

1. For some messages0, X1 lies inXη with noticeable probability.

2. For a “typical” messages1, X1 is unlikely to land inXη.

3. There is a vectorw ∈ {0, 1}αn that cannot be extended to a codeword(w,w′) that maps to eithers0
or s1 by the decoder.

We then use the above properties to design the following strategy that violates non-malleability of the code:
Given(X1,X2), if X1 ∈ Xη, the adversary tampers the codeword to(w,X2), which decodes to a message
outside{s0, s1}. This ensures thatDec(f(Enc(s0))) has a noticeable chance of being tampered to an incor-
rect message. Otherwise, the adversary leaves the codewordunchanged, ensuring thatDec(f(Enc(s1))) has
little chance of being tampered at all. Thus there is no choice for a distributionDf that sufficiently matches
bothDec(f(Enc(s0))) andDec(f(Enc(s1))).
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Proof of Theorem 5.3

Throughout the proof, we use standard information theoretic tools, such as the notationH(X) for the Shan-
non entropy of a discrete random variableX and I(X;Y ) for the mutual information between discrete
random variablesX andY . We will need the following standard information-theoretic fact.

Claim 5.5. SupposeH(X) 6 r and letp(x) := Pr[X = x]. For anyη > 0, and define

Xη := {x ∈ supp(X) : p(x) >
1

2r/(1−η)
}.

Then,Pr[X ∈ Xη] > η and |X| < 2r/(1−η).

Proof. The upper bound on|Xη| is immediate from the definition ofXη . Let X̄η := supp(X) \ Xη. We
need to show thatPr[X ∈ X̄η] 6 1− η. If this is not the case, we can write

H(X) >
∑

x∈X̄η

p(x) log(1/p(x))

>
∑

x∈X̄η

rp(x)

1− η

= Pr[x ∈ X̄η ]r/(1− η) > r,

a contradiction.

Suppose there is a coding scheme(Enc,Dec) that is non-malleable for the familyFT and achieving rate
at least1 − α + δ, for an arbitrarily small parameterδ ∈ (0, α]. Let S ∼ Uk, X := Enc(S) and suppose
X = (X1,X2) whereX1 := XT andX2 := XT̄ .

For anys ∈ {0, 1}k , defineE(s) := supp(Enc(s)). Observe that

ES|E(S)| 6 N/N1−α+δ = Nα−δ

By Markov’s bound, for anyγ ∈ (0, 1],

Pr[|E(S)| > Nα−δ/γ] < γ. (23)

By the assumption on rate,H(S) > n(1− α+ δ). Also,H(X2|S) 6 H(X2) 6 n− |T | = n(1 − α).
Thus,

I(X2;S) = H(S)−H(S|X2)

Using the chain rule for mutual information,

I(X1;S) = I(X1,X2;S)− I(X2;S|X1)

= (H(S) −H(S|X1,X2))− (H(X2|X1)−H(X2|S,X1))

> H(S)−H(X2|X1) (24)

> H(S)−H(X2) (25)

> (1− α+ δ)n − (1− α)n = δn, (26)
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where (24) holds becauseS = Dec(X1,X2) and thusH(S|X1,X2) = 0, in addition to non-negativity
of entropy; (25) uses the fact that conditioning does not increase entropy; and (26) holds because of the
assumption on the rate of the code and the length ofX2. From this, we can deduce that

H(X1|S) = H(X1)− I(X1;S) 6 H(X1)− δn.

Note that the latter inequality in particular implies thatH(X1) > δn, and thatsupp(X1) > 2δn. By
Markov’s bound,

|{s ∈ {0, 1}k : H(X1|S = s) > (H(X1)− δn)(1 + 4γ)}| <
2k

1 + 4γ
6 (1− 2γ)2k . (27)

By combining (23) and (27) using a union bound, there is a choice ofs0 ∈ {0, 1}k such that

|E(s0)| 6 Nα−δ/γ, and,H(X1|S = s0) 6 (H(X1)− δn)(1 + 4γ).

We can takeγ := δ/(8α) so that the above becomes

|E(s0)| 6 8αNα−δ/δ, and,H(X1|S = s0) 6 H(X1)− δn/2. (28)

For a parameterη > 0, to be determined later, we can now apply Claim 5.5 to the conditional distribution
of X1 subject toS = s0 and construct a setXη ⊆ {0, 1}

αn such that

Pr[X1 ∈ Xη|S = s0] > η, (29)

|Xη | 6 2(H(X1)−δn/2)/(1−η) .

Let η′ := Pr[X1 ∈ Xη], and leth(·) denote the binary entropy function. Using a simple information-
theoretic rule that follows from the definition of Shannon entropy, we can write

H(X1) = h(η′) + η′H(X1|X1 ∈ Xη) + (1− η′)H(X1|X1 /∈ Xη)

6 h(η′) + η′ ·
H(X1)− (δ/2)n

1− η
+ (1− η′)H(X1|X1 /∈ Xη) (30)

6 h(η′) + η′ ·
H(X1)− (δ/2)n

1− η
+ (1− η′)H(X1), (31)

where (30) is due to the upper bound on the support size ofXη and (31) holds since conditioning does not
increase entropy. After simple manipulations, (31) simplifies to

η′ 6
2h(η′)(1− η)

δn − 2ηH(X1)
6

2h(η′)

n(δ − 2ηα)
. (32)

Now, we takeη := δ/(4α), so that the above inequalities, combined with the estimateh(η′) = O(η′ log(1/η′))
yields

h(η′)/η′ > δn/4⇒ log(1/η′) = Ω(δn)⇒ η′ 6 exp(−Ω(δn)).

From the above inequality, straightforward calculations ensure that

η′ 6 η/4 = δ/(16α), (33)
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as long asδ > δ0 = O((log n)/n).

From (33), recalling thatη′ = Pr[X1 ∈ Xη] and using Markov’s bound,

|{s : Pr[X1 ∈ Xη |S = s] > η/2}|/2k < 1/2.

Combined with (23) and a union bound, there is a fixeds1 ∈ {0, 1}
k such that

|E(s1)| 6 8αNα−δ/δ, and,Pr[X1 ∈ Xη|S = s1] 6 η/2. (34)

Assuming the chosen lower bound forδ, we can also ensure that, using (28), that|E(s0)∪E(s1)| < Nα.
Thus, there is a fixed stringw ∈ {0, 1}αn that cannot be extended to any codeword inE(s0) or in E(s1);
i.e.,

Pr[X1 = w|(S = s0) ∨ (S = s1)] = 0,

which in turn implies
(∀x2 ∈ {0, 1}

n(1−α)) : Dec(w, x2) /∈ {s0, s1}. (35)

Now, we consider the following tampering strategyf : {0, 1}|T | × {0, 1}n−|T | → {0, 1}|T | × {0, 1}n−|T |

acting on the coordinate positions inT :

• Given(x1, x2) ∈ {0, 1}|T | × {0, 1}n−|T |, if x1 ∈ Xη, output(w, x2).

• Otherwise, output(x1, x2).

Suppose the coding scheme(Enc,Dec) satisfied Definition 2.3 for a particular distributionDf over
{0, 1}n ∪ {same,⊥} for the tampering functionf .

Sincef does not alter any string with the first component outsideXη , (34) implies that

Pr[f(X1,X2) = (X1,X2)|S = s1] > 1− η/2. (36)

On the other hand, by (29) and (35),

Pr[Dec(f(X1,X2)) /∈ {s0, s1}|S = s0] > η. (37)

By (37) and Definition 2.3,Df must beǫ-close to a distributionD0 that assigns at most1 − η of the
probability mass to{same, s0, s1}. On the other hand, by (36),Df must beǫ-close to a distributionD1 that
assigns at least1− η/2 of the probability mass to{same, s1}. Thus, the statistical distance betweenD0 and
D1 is at leastη/2 (from the distinguisher corresponding to the event{same, s1}). By triangle inequality,
however,D0 andD1 are(2ǫ)-close. Therefore,ǫ > η/4 and the result follows.
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A Rate 1/2 barrier for the uniform coding scheme.

Dziembowski et al. [8] consider the uniformly random codingscheme(Enc,Dec) in which the decoderDec
maps any given inputx ∈ {0, 1}n to a uniform and independent random string in{0, 1}k . Moreover, the
encoder, givens ∈ {0, 1}k , outputs a uniformly random element ofDec−1(s). In this section, we argue that
the uniform coding scheme cannot achieve a rate better than1/2 even with respect to very simple tampering
functions.

Suppose that the scheme is indeed non-malleable with error upper bounded by a small constant (say
1/4), and consider any bijective tampering functionf : {0, 1}n → {0, 1}n. For example, one may think
of f as the function that flips the first bit of the input. For simplicity, we assume that the coding scheme
achieves strong non-malleability (as proved by Dziembowski et al. [8]. Since the chosen tampering function
does not have any fixed points (i.e.,f(x) 6= x), Definition 2.5 implies that there is a choice ofDf that has no
support on{same}, and we can restrict to such a distribution. However, it can be shown that the argument
extends to the weaker definition of non-malleability as well.

Let X := Enc(Uk) and observe thatD(X) = Un, which in turn implies thatD(f(X)) = Un. Con-
siderS := Dec(f(X)). Note thatD(S) is a random variable depending on the randomness of the code
construction (namely, it is the empirical distribution of the truth table of the decoder). With respect to this
randomness, we have

E[D(S)] = Uk.
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Moreover, with overwhelming probability, the realizationof the code is so that

D(S) ≈o(1) Uk.

Suppose this is the case and fix the randomness of the code construction accordingly.

Since for everys ∈ {0, 1}k , we know thatD(Dec(f(Enc(s)))) is close (in the sense described by
Definition 2.3) toDf , it follows that the convex combination

∑

s∈{0,1}k

Pr[Dec(Un) = s] ·D(Dec(f(Enc(s))))

is equally close toDf . But, sincef(Enc(Dec(Un))) = f(Un) = Un, the above convex combination is
exactlyD(Dec(Un)) = D(S), which we know is close toUk.

Thus it follows that for everys ∈ {0, 1}k ,

(s,Dec(f(Enc(s)))) ≈o(1) (s,Uk),

and, forU ∼ Uk,
(U,Dec(f(Enc(U)))) ≈o(1) U2k. (38)

Since(U,Dec(f(Enc(U)))) is a function ofEnc(U), we get

H(U,Dec(f(Enc(U)))) 6 n.

On the other hand, 38 implies that the above entropy is close to 2k. Thus,k 6 (n/2)(1 + o(1)).

B Useful tools

In many occasions in the paper, we deal with a chain of correlated random variables0 = X0,X1, . . . ,Xn

where we wish to understand an event depending onXi conditioned on the knowledge of the previous
variables. That is, we wish to understand

E[f(Xi)|X0, . . . ,Xi−1].

The following proposition shows that in order to understandthe above quantity, it suffices to have an estimate
with respect to a more restricted event than the knowledge ofX0, . . . ,Xi−1. Formally, we can state the
following, whereX stands forXi in the above example andY stands for(X0, . . . ,Xi−1).

Proposition B.1. Let X andY be possibly correlated random variables and letZ be a random variable
such that the knowledge ofZ determinesY ; that is, Y = f(Z) for some functionf . Suppose that for
every possible outcome of the random variableZ, namely, for everyz ∈ supp(Z), and for some real-valued
functiong, we have

E[g(X)|Z = z] ∈ I. (39)

for a particular intervalI. Then, for everyy ∈ supp(Y ),

E[g(X)|Y = y] ∈ I.

Similarly, suppose for some distributionD, and allz ∈ supp(Z),

D(X|Z = z) ≈ǫ D.

Then, for ally ∈ supp(Y ),
D(X|Y = y) ≈ǫ D.
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Proof. Let T = {z ∈ supp(Z) : f(z) = y}, and letp(z) := Pr[Z = z|Y = y]. Then,

E[g(X)|Y = y] =
∑

z∈T

p(z)E[g(X)|Z = z].

Since by (39), eachE[g(X)|Z = z] lies in I and
∑

z∈T p(z) = 1, we deduce that

E[g(X)|Y = y] ∈ I.

Proof of the second part is similar, by observing that if a collection of distributions is statistically close to a
particular distributionD, any convex combination of them is equally close toD as well.

Proposition B.2. Let the random variableX ∈ {0, 1}n be uniform on a set of size at least(1− ǫ)2n. Then,
D(X) is (ǫ/(1 − ǫ))-close toUn.

We will use the following tail bounds on summation of possibly dependent random variables, which are
direct consequences of Azuma’s inequality.

Proposition B.3. Let 0 = X0,X1, . . . ,Xn be possibly correlated random variables in[0, 1] such that for
everyi ∈ [n] and for someγ > 0,

E[Xi|X0, . . . ,Xi−1] 6 γ.

Then, for everyc > 1,

Pr[
n
∑

i=1

Xi > cnγ] 6 exp(−nγ2(c− 1)2/2),

or equivalently, for everyδ > γ,

Pr[
n
∑

i=1

Xi > nδ] 6 exp(−n(δ − γ)2/2).

Proof. The proof is a standard Martingale argument. Fori ∈ [n], define

X ′
i := Xi − γ,

and

Si :=

i
∑

j=1

X ′
i =

i
∑

j−1

Xi − iγ.

By assumption,Si is a super-martingale, that is, assumingS0 := 0,

E[Si+1|S0, . . . , Si] 6 Si.

Thus, by Azuma’s inequality, for allt > 0,

Pr[Sn > t] 6 exp(−t2/(2n)).

Substitutingt := (c− 1)nγ proves the claim.

In a similar fashion (using Azuma’s inequality for sub-martingales rather than super-martingales in the
proof), we may obtain a tail bound when we have a lower bound onconditional expectations.
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Proposition B.4. Let 0 = X0,X1, . . . ,Xn be possibly correlated random variables in[0, 1] such that for
everyi ∈ [n] and for someγ > 0,

E[Xi|X0, . . . ,Xi−1] > γ.

Then, for everyδ < γ,

Pr[

n
∑

i=1

Xi 6 nδ] 6 exp(−n(δ − γ)2/2).

The following tail bound is similar in flavor to the one given by Proposition B.3, but only applies to
indicator random variables. However, it can be better when the individual expectations are low and the
target deviation from mean is very large.

Proposition B.5. Let 0 = X0,X1, . . . ,Xn ∈ {0, 1} be indicator, possibly dependent, random variables
such that for everyi ∈ [n],

E[Xi|X1, . . . ,Xi−1] 6 p,

for somep ∈ [0, 1]. LetX := X1 + · · ·+Xn. Then, for everyc > 1,

Pr[X > cnp] 6 (e/c)cnp.

Proof. We closely follow the standard proof of Chernoff bounds for independent indicator random variables
(see, e.g., [9]). Using Markov’s bound on the exponential moment ofX, we can write, for a parametert > 0
to be determined later,

Pr[X > cnp] 6
E[exp(tX)]

exp(tcnp)
=

E[exp(tX1) · · · exp(tXn)]

exp(tcnp)
. (40)

However, we can write down the expectation of product as the following chain of conditional expectations

E(X1,...,Xn)[exp(tX)] = EX1

[

etX1E(X2|X1)

[

etX2 . . .E(Xn|X1,...,Xn−1)e
tXn ] . . .

]

]

6 (p exp(t) + 1)n.

where the inequality uses the fact that theXi are Bernoulli random variables and thus

E[exp(tXi)|X1, . . . ,Xi−1] 6 p exp(t) + (1− p) exp(0) 6 p exp(t) + 1.

Using the inequality(1 + x)n 6 exp(nx) the above simplifies to

E[exp(tX)] 6 exp(np exp(t)),

and thus, plugging the above result into (40),

Pr[X > cnp] 6
exp(np exp(t))

exp(tcnp)
.

Choosingt := ln c yields the desired conclusion.

For summation ofℓ-wise independent random variables, we use the following tail bound from [2]:

Theorem B.6. Let ℓ > 1 be an even integer, and letX1, . . . ,Xn ∈ [0, 1] be t-wise independent variables.
DefineX := X1 + · · ·+Xn andµ := E[X]. Then,

Pr[|X − µ| > A] 6 8
(ℓ(µ+ ℓ)

A2

)ℓ/2
.
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Approximating distributions by fuzzy correlated sampling

In this section, we show that it is possible to sharply approximate a distributionD with finite support by
sampling possibly correlated random variablesX1, . . . ,Xn where the distribution of eachXi is close toD
conditioned on the previous outcomes, and computing the empirical distribution of the drawn samples.

Lemma B.7. LetD be a distribution over a finite setΣ such that|supp(D)| 6 r. For anyη, ǫ, γ > 0 such
thatγ < ǫ, there is a choice of

n = O((r + 2 + log(1/η))/(ǫ − γ)2)

such that the following holds. Suppose0 = X0,X1, . . . ,Xn ∈ Σ are possibly correlated random variables
such that for alli ∈ [n] and all values0 = x0, x1 . . . , xn ∈ supp(D),

D(Xi|X0 = x0, . . . ,Xi−1 = xi−1) ≈γ D.

Then, with probability at least1− η, the empirical distribution of the outcomesX1, . . . ,Xn is ǫ-close toD.

Proof. First, we argue that without loss of generality, we can assume that|Σ| 6 r + 1. This is because if
not, we can define a functionf : Σ→ supp(D) ∪ {⋆} as follows:

f(x) :=

{

x if x ∈ supp(D)

⋆ otherwise.

Observe that for any distributionD′ over Σ, dist(D′,D) = dist(f(D′),D), since the elements outside
supp(D) always contribute to the statistical distance and we aggregate all such mass on a single extra point
⋆, and by doing so do not affect the statistical distance. Thusthe empirical distribution of(X1, . . . ,Xn) is
ǫ-close toD iff the empirical distribution of(f(X1), . . . , f(Xn)) is.

Now suppose|Σ| 6 r + 1. Let A ⊆ Σ be any non-empty event, and denote byD′ the empirical
distribution of the outcomesX1, . . . ,Xn. Let p := D(A), and define indicator random variables

Yi :=

{

0 Xi /∈ A,

1 Xi ∈ A.

for i ∈ [n] andY0 := 0. Observe that

D′(A) =

∑n
i=1 Yi

n
,

and, by the assumption on the closeness of conditional distributions of theXi toD,

E[Yi|Y0, . . . , Yi−1] ∈ [p− γ, p + γ].

By Propositions B.3 and B.4, we can thus obtain a concentration bound

Pr[|D′(A)− p| > ǫ] 6 2 exp(−(ǫ− γ)2n/2).

Now we can apply a union bound on all possible choices ofA and conclude that

Pr[¬(D′ ≈ǫ D)] 6 2r+2 exp(−(ǫ− γ)2n/2),

which can be ensured to be at mostη for some choice of

n = O((r + 2 + log(1/η))/(ǫ − γ)2).
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