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Abstract

Non-malleable codes, introduced by Dziembowski, PieterakWichs (ICS 2010), encode messages
s in a manner so that tampering the codeword causes the decoegidrer output or a message that is
independent of. While this is an impossible goal to achieve against uniastt tampering functions,
rather surprisingly non-malleable coding becomes passighinst every fixed familyF of tampering
functions that is not too large (for instance, whé < 22" for somea < 1 wheren is the number of
bits in a codeword).

In this work, we study the “capacity of non-malleable codirand establish optimal bounds on
the achievable rate as a function of the family size, answesin open problem from Dziembowski et
al. (ICS 2010). Specifically,

o We prove that for every family with | F| < 22°", there exist non-malleable codes agaiAstith
rate arbitrarily close td — « (this is achieved w.h.p. by a randomized construction).

e We show the existence of families of sizep(n®1)2%") against which there is no non-malleable
code of ratel — « (in fact this is the case w.h.p for a random family of this kize

e We also show that — « is the best achievable rate for the family of functions whach only
allowed to tamper the firgtn bits of the codeword, which is of special interest.

As a corollary, this implies that the capacity of non-mableacoding in the split-state model
(where the tampering function acts independently but iy on the two halves of the codeword,
a model which has received some attention recently) equals

We also give an efficient Monte Carlo construction of codesat# close td with polynomial time
encoding and decoding that is non-malleable against anyg fixe 0 and family 7 of size 2"*, in
particular tampering functions with say cubic size cirsuit

*Email: (mahdi@csail.mit.edu Research supported in part by V. Guruswami’'s Packard #shipp, MSR-CMU Center for
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1 Introduction

Non-malleable codes are a fascinating new concept putifof8j, following the program on non-malleable
cryptography which was introduced by the seminal work ofdwpDwork and Naor [6]. Non-malleable
codes are aimed at protecting the integrity of data in sanatwhere it might be corrupted in ways that
precludes error-correction or even error-detection. ringdly, a code is non-malleable if the corrupted
codeword either encodes the original message, or a corypleteelated value. This is akin to the notion of
non-malleable encryption in cryptography which requitesintractability of, given a ciphertext, producing
a different ciphertext so that the corresponding plaistexe related to each other.

A non-malleable (binary) code against a family= of tampering functions each mappif@,1}" to
{0,1}", consists of a randomized encoding functir : {0,1}* — {0,1}" and a deterministic decoding
function Dec : {0, 1} — {0,1}* U {L} (whereL denotes error-detection) which satihgc(Enc(s)) = s
always, and the following non-malleability property withr@ e: For every messagec {0, 1}* and every
function f € F, the distribution ofDec(f(Enc(s)) is e-close to a distributiorD; that depends only off
and is independefiof s. In other words, if some adversary (who has full knowledg¢hefcode and the
message, but not the internal randomness of the encoder) tampetsthét codewordEnc(s) corrupting
it to f(Enc(s)), he cannot control the relationship betweemand the message the corrupted codeword
f(Enc(s)) encodes.

In general, itis impossible to achieve non-malleabilitpiagt arbitrary tampering functions. Indeed, the
tampering function can decode the codeword to compute thmal message, flip the last bit ofs to obtain
a related message and then reencode This clearly violates non-malleability as the tamperedeseord
encodes the messagevhich is closely related te. Therefore, in order to construct non-malleable codes,
one focuses on a restricted class of tampering functionseXample, the body of work on error-correcting
codes consists of functions which can flip an arbitrary subsdits up to a prescribed limit on the total
number of bit flips.

The notion of non-malleable coding becomes more interg&tinfamilies against which error-correction
is not possible. A simple and natural such family is the sdup€tions causing arbitrary “additive errors,”
namelyFoaq = {fa | A € {0,1}"} wherefa(z) := x + A. Note that there is no restriction on the Ham-
ming weight of A as in the case of channels causing bounded number of bit Tftsle error-correction
is impossible againsF,qq, error-detectionis still possible — the work of Cramer et al. [5] constructed
codes of rate approachinig(which they called “Algebraic Manipulation Detection” (A¥) codes) such
that offset by an arbitranA # 0 will be detected with high probability. AMD codes give a ctrostion of
non-malleable codes against the fanify,y.

Even error-detection becomes impossible against many atitaral families of tampering functions.
A particularly simple such class consists of all constantfions f.(z) := ¢ for ¢ € {0,1}". This family
includes some function that maps all inputs to a valid coddwd, and hence one cannot detect tamper-
ing. Note, however, that non-malleability is trivial to &Ve against this family — the rate code with
identity encoding function is itself non-malleable as thipoit distribution of a constant function is trivially
independent of the message. A natural function family forctvimon-malleability is non-trivial to achieve
consists obit-tampering functiong in which the different of bits of the codewords are tamperetkpen-

Throughout this paper we deal only with binary codes. We tpoin that non-malleability is mainly interesting over shmal
alphabets, since when the alphabet size is large enough eengr-detection (e.g., via MDS codes) is possible at ratdgeved by
non-malleable codes.

2The formal definition (see Definition2.3) has to accommodlageossibility thaDec error-corrects the tampered codeword to
the original message and this is handled in a manner independent lo§ including a special elemesime in the support oD;.



dently (i.e., either flipped, set /1, or left unchanged); formally (x) = (f1(z1), fa(x2), ..., fu(xy)) for
arbitrary 1-bit functions f1, fo, ..., f. [8].

The family 7 of all functionsf : {0,1}" — {0,1}" has size given bog log | Fai| = n + logn. The
authors of [8] show the existence of a non-malleable codasigany small enough familyF (for which
log log | F| < n). The rate of the code is constantiii log | F| < an for some constant € (0,1). The
guestion of figuring out the optimal rates of non-mallealndes for various families of tampering functions
was left as an open problem in [8]. In this work we give a satitdry answer to this question, pinning down
the rate for many natural function families. We describeresults next.

1.1 Ourresults

Our results include improvements to the rate achievablefasciion of the size of the family of tampering
functions, as well as limitations of non-malleable codemaoestrating that the achieved rate cannot be im-
proved for natural families of the stipulated size. Speailic we establish the following results concerning
the possible rates for non-malleable coding as a functigheo§ize of the family of tampering functions:

1. (Rate lower bound) We prove in Section 3 thafif < 22”", then there exists a (strong) non-malleable
code of rate arbitrarily close tb — o which is non-malleable w.rF with errorexp(—£(n)). This
significantly improves the probabilistic construction 8f,[which achieves a rate close {b— «)/3
using a delicate Martingale argument. In particular, fdsiteary small families, of size2*™, our
result shows that the rate can be made arbitrarily cloteTtis was not known to be possible even for
the family of bit-tampering functions (which has si#®), for which1/3 was the best known rat¢s].

In fact, we note (in Appendix A) why the proof strategy of [8]limited to a rate ofl /2 even for a
very simple tampering function such as the one that flips theHit. As discussed in Section 3.3, our
probabilistic construction is equipped with an encoder @acbder that can be efficiently and exactly
implemented with access to a uniformly random permutati@acle and its inverse (corresponding to
the ideal-cipher model in cryptography). This is a slighdiidnal advantage over [8], where only an
approximation of the encoder and decoder is shown to beeaftigicomputable.

2. (Upper bound/limitations on rate) The above coding teeoshows that the “capacity” of a function
family |F| for non-malleable coding is at least— (loglog|F]|)/n. We also address the natural
“converse coding quesiton” of whether this rate bound ishibet achievable (Section 5). This turns
out to be false in general due to the existence of uninteig$tirge families for which non-malleable
coding with rate close tb is easy. But we do prove that the- « rate is best achievable in “virtually
all” situations:

(a) We prove that forandomfamilies of size22"", with high probability it is not possible to exceed
a rate ofl — « for non-malleable coding with small error.

(b) For the family of tampering functions which leave thé lds— «)n bits intact and act arbitrarily
on the firstan bits, we prove thal — « is the best achievable rate for non-malleable coding.
(Note that a rate of — « is trivial to achieve for this family, by placing the messdgs in the
last(1 — «)n bits of the codeword, and setting the figst bits of the codeword to alls.)

*Assuming the existence of one-way functions, an expligilstaiction of non-malleable codes of rate closé teas proposed
in [8]. This construction, however, only satisfies a weakefirition of non-malleability that considers computatibimadistin-
guishability rather than statistical security.



The result 2b, together with the existential result 1 abpies down the optimal rate for non-malleable
codes in thesplit-state modeto 1/2. In the split-state model, which was the focus of a coupleeotnt
works [7, 1], the tampering function operates indepengefiitit in otherwise arbitary ways) on the two
halves of the codeword, i.ef{(x) = ((fi(z1), f2(z2)) Wherexy, zo are the two halves of and f1, f» are
functions mapping:/2 bits ton /2 bits. The recent work [1] gave an explicit construction irstimodel
with polynomially small rate. Our work shows that the capaoif the split-state model i$/2, but we do
not offer any explicit construction. For the more restvietclass of bit-tampering functions (where each bit
is tampered independently), in a follow-up work [3] we giveexplicit construction with rate approaching
1 [3]. We also present in that work a reduction of non-malleatdding for the split-state model to a new
notion of non-malleable two-source extraction.

Monte Carlo construction for small families. Our result 1 above is based on a random construction which
takes exponential time (and space). Derandomizing thistoaetion, in Section 4 we are able to obtain an
efficient Monte Carlo construction of non-malleable codsite close td (with polynomial time encoding
and decoding, and inverse polynomially small error) foragitrary family of sizeexp(n®) for any fixed

¢ > 0. Note that in particular this includes tampering functidinst can be implemented by circuits of any
fixed polynomial size, or simpler families such as bit-tanmmg adversaries. The construction does not rely
on any computational hardness assumptions, at the cosingf asmall amount of randomness.

1.2 Proofideas

Rate lower bound. Our construction of rate: 1 — (loglog |F|)/n codes is obtained by picking for each
message, a random blob btodewords, such that blobs corresponding to distinct ngessare disjoint.
For each tampering functiofi, our proof analyzes the distribution Bfec(f(Enc(s)) for each message
separately, and shows that w.h.p. they are essentiallg ttothe same distributio®. In order to achieve
sufficiently small error probability allowing for a union bid, the proof uses a number of additional ideas,
including a randomized process that gradually revealgmmédion about the code while examining the
codewords in each blob in sequence. The analysis ensureadhitle information is revealed in each
step as possible, so that enough independence remainsdarttigional joint distribution of the codewords
throughout the analysis. Finally, strong concentratioons are used to derive the desired bound on the
failure probability. The proof for the special case of bijee tampering functions turns out to be quite
straightforward, and as a warm-up we present this specsal it in Section 3.1.

Monte Carlo construction. Since the analysis of the probabilistic code constructiomsiders each mes-
sages separately, we observe that it only only needs limitediSe) independence of the codewords. On the
other hand, the code construction is designed to be spamseiyntakingt = poly(n, log |F|, 1/¢) suffices
for the analysis. This is the key idea behind our efficient MdBarlo construction for small families with
log | F| < poly(n).

The birthday paradox implies that picking the blob of codmgeencoding each message independently
of other messages, while maintaining disjointness of th@wa blobs, limits the rate td/2. Therefore,
we construct the code by means afaise independerdecodingfunction implemented via a random low-
degree polynomial. After overcoming some complicationsrsure an efficient encoding function, we get
our efficient randomized construction for small familiedarhpring functions.

Rate upper bounds. Our main impossibility result for the family of adversarigst only tamper the first
an bits of the codeword uses an information theoretic argum@é argue that if the rate of the code is



sufficiently large, one can always find messaggands; and a sefX,, C {0, 1}*" such that the following
holds: The firstan bits of the encoding of, has a noticeable chance of beingAr, whereas this chance
for sy is quite small. Using this property, we design an adverdaay maps the firstn bits of the encoding
to a dummy string if they belong t&,, and leaves the codeword intact otherwise. This sufficesdiate
non-malleability of the code.

2 Preliminaries

2.1 Notation

We usel,, for the uniform distribution o0, 1}" andU,, for the random variable sampled frai, and
independently of any existing randomness. For a randonablarX, we denote byZ(X) the probability
distribution thatX is sampled from. Moreover, for an evefit we useZ (X |€) to denote the conditional
distribution on the random variabl& on the even€. Generally, we will use calligraphic symbols (such
as X) for probability distributions and the corresponding ¢abletters (such as() for related random
variables. For a discrete distributiot), we denote byX’(z) the probability mass assignedtdy X'. Two
distributions X’ and)’ beinge-close in statistical distance is denoted By~, ). We will use(X’,)) for
the product distribution with the two coordinates indepntty sampled fron” and). All unsubscripted
logarithms are taken to the ba8eSupport of a discrete random variable (or distributigh)s denoted by
supp(X). With a slight abuse of notation, for various bounds we cmidiprobabilities and expectations
on random variables rather than events (X |Y], or Pr[€]Y]). In such instances, the notation means
that the statement holds feverypossible realization of the random variables that we c@ardibn.

2.2 Definitions

In this section, we review the formal definition of non-maliée codes as introduced in [8]. First, we recall
the notion ofcoding schemes

Definition 2.1 (Coding schemes)A pair of functionsEnc: {0,1}* — {0,1}" and Dec: {0,1}" —
{0,1}* U {L} wherek < n is said to be a coding scheme with block lengtland message lengthif
the following conditions hold.

1. The encodeEnc is a randomized function; i.e., at each call it receives fouamily random sequence
of coin flips that the output may depend on. This random inpuisually omitted from the notation
and taken to be implicit. Thus for anyc {0,1}*, Enc(s) is a random variable ove0,1}". The
decoderDec is; however, deterministic.

2. For everys € {0, 1}*, we haveDec(Enc(s)) = s with probability 1.

Therate of the coding scheme is the ratign. A coding scheme is said to have relative distasficer
somes € [0, 1), if for every s € {0, 1}* the following holds. LetX := Enc(s). Then, for anyA € {0,1}"
of Hamming weight at mostn, Dec(X + A) =1 with probability 1. O
Before defining non-malleable coding schemes, we find it eoi@nt to define the following notation.
Definition 2.2. For a finite sel’, the functioncopy: (I' U {same}) x I' — I is defined as follows:

T x % same,
copy(z,y) = { O

Yy T = same.



The notion of non-malleable coding schemes from [8] can newephrased as follows.

Definition 2.3 (Non-malleability) A coding schemé&Enc, Dec) with message length and block lengtm
is said to be non-malleable with errofalso calledexact securitywith respect to a familyF of tampering
functions acting on{0,1}" (i.e., eachf € F maps{0,1}" to {0,1}") if for every f € F there is a
distribution D; over {0, 1}* U {_L,same} such that the following holds. Let € {0,1}* and define the
random variables := Dec(f(Enc(s))). Let S’ be independently sampled frofy. Then,

2(S) ~e Z(copy(5', 5)). O

Remark 2.4. The above definition allows the decoder to output a speciabsy | that corresponds to error
detection. It is easy to note that any such code can be tranatbto one where the decoder never outputs
without affecting the parameters (e.g., the new decodersimagly output)® whenever the original decoder
outputs_).

Dziembowski et al. [8] also consider the following strongariation of non-malleable codes.

Definition 2.5 (Strong non-malleability) A pair of functions as in Definition 2.3 is said to bes@ongnon-
malleable coding scheme with errewith respect to a familyF of tampering functions acting of0, 1}
if the conditions(1) and (2) of Definition 2.3 is satisfied, and additionally, the followi holds. For any
message < {0,1}*, let E, := Enc(s), consider the random variable

) same if f(Es) = Es,
*" | Dec(f(E,)) otherwise,

and letDy s := 2(Dy). It must be the case that for every pair of distinct messages, € {0,1}*,
Dysy e Dy,s,- O

Remark 2.6 (Computational security)Dziembowski et al. also consider the case where statigtisidnce

is replaced with computational indistinguishability witespect to a bounded computational model. As
our goal is to understand information-theoretic limitamf non-malleable codes, we do not consider this
variation in this work. It is clear, however, that our negatiesults in Section 5 apply to this model as well.
A related (but incomparable) model that we consider in $aci is when the distinguishability criterion
is still statistical; however the adversary is computatiynbounded (e.g., one may consider the family of
polynomial sized Boolean circuits). For this case, we aoestan efficient Monte Carlo coding scheme that
achieves any rate arbitrarily close 1o

Remark 2.7 (Efficiency of samplingDy). The original definition of non-malleable codes in [8] alse re
quires the distributiorD; to be efficiently samplable given oracle access to the tamgéunction f. We

find it more natural to remove this requirement from the définisince even combinatorial non-malleable
codes that are not necessarily equipped with efficient colmptis (such as the encoder, decoder, and sam-
pler for D) are interesting and highly non-trivial to construct. Ibshd be noted; however, that for any
non-malleable coding scheme equipped with an efficientdéggrcand decoder, the following is a valid and
efficiently samplable choice for the distributi@y (possibly incurring a constant factor increase in the error
parameter):

1. LetS ~ Uy, andX := Enc(S5).
2. If Dec(X) = S, outputsame. Otherwise, outpuDec(X).

Our Monte Carlo construction in Section 4 is equipped witlolypomial-time encoder and decoder. So is
the case for our probabilistic construction in Section 3 itandom oracle model.



3 Probabilistic construction of non-malleable codes

In this section, we introduce our probabilistic constroictof non-malleable codes. Contrary to the original
construction of Dziembowski et al. [8], where they pick afannly random truth table for the decoder
and do not allow thelL. symbol. Our code, on the other hand, is quite sparse. Inifactir construction
Dec(U,,) =L with high probability. As we observe in Section A, this is #&y to our improvement, since
uniformly random decoders cannot achieve non-mallegbélten against extremely simple adversaries at
rates better thaih/2. Moreover, our sparse construction offers the added featnaving a large minimum
distance in the standard coding sense; any tampering sctiehperturbs the codeword in a fraction of
the positions bounded by a prescribed limit will be detedigdhe decoder with probability. Another
advantage of sparsity is allowing a compact representdtionhe code. We exploit this feature in our
Monte Carlo construction of Section 4. Our probabilisticiog scheme is described in Construction 1.

We remark that Construction 1 can be efficiently implememettie ideal-cipher model, which in turn
implies an efficient approximate implementation in the @ndracle model (see the discussion following
the proof of Theorem 3.1 in Section 3.3). In turn, this implikat the distributiorD in Definition 2.3 for
this construction can be efficiently sampled in both modste Remark 2.7).

e Given: Integer parametet® < & < n and integett > 0 such that2* < 27, and a relative distange
parametep, 0 < 6 < 1/2.

e Output: A pair of functionsEnc: {0,1}* x {0,1}" andDec: {0,1}" — {0,1}*, whereEnc may
also use a uniformly random seed which is hidden from thaitiwot, butDec is deterministic.

e Construction:

1. LetN :={0,1}".
2. For eachs € {0, 1}"/’, in an arbitrary order,
— Let E(s) := 0.
— Forie {1,...,t}:
(a) Pick a uniformly random vectar € N.
(b) Addw to E(s).
(c) LetI'(w) be the Hamming ball of radiu$: centered atv. Removel(w) from A/ (note
that whend = 0, we havel'(w) = {w}).
3. Givens € {0, 1}*, Enc(s) outputs an element df(s) uniformly at random.
4. Givenw € {0, 1}", Dec(s) outputs the unique such thatv € E(s), or L if no suchs exists.

Construction 1: Probabilistic construction of non-malleable codes.

The main theorem of this section is the result below that ggawon-malleability of the coding scheme
in Construction 1.

Theorem 3.1. Let 7: {0,1}" — {0,1}"™ be any family of tampering functions. For aay; > 0, with
probability at leastl — 7, the coding schem@nc, Dec) of Construction 1 is a strong non-malleable code
with respect toF and with errore and relative distancé, provided that both of the following conditions are
satisfied.



1. t > ty, for some
B 1 |FIN

2. k < kg, for some
ko = n(1 — h(0)) —logt — 3log(1/e) — O(1), ()

whereh(-) denotes the binary entropy function.
Thus by choosing = ¢y andk = kg, the construction satisfies
k> n(1l—h(d)) —loglog(|F|/n) —logn — 9log(1/e) — O(1).

In particular, if | F| < 22°" for any constanty € (0, 1), the rate of the code can be made arbitrarily close
to 1 — h(§) — o while allowinge = 27,

Remark 3.2. (Error detection) An added feature of our sparse codingreehe the error-detection capa-
bility. However, observe that any probabilistic coding estte that is non-malleable against all families of
adversaries of bounded size of@r 1}"™ (such as Construction 1, Construction 2, and the prob#bitsn-
struction of [8]) can be turned into one having relative aised (and satisfying the same non-malleability
guarantees) by composing the construction with a fixed @mageC of block lengthn and relative distance
d. Indeed, any clas# of tampering functions for the composed code correspondstass?’ of the same
size or less for the original construction. Namely, eactcfiom f € F’ equalsDece o f (Dece being the
decoder of’) for somef € F. The caveat with this approach (rather than directly adiingsdistance as in
Construction 1) is that the composition may lose strong matieability even if the original code is strongly
non-malleable. Indeed, it may be the case th#g a sophisticated tampering function whereas its projec-
tion f' becomes as simple as the identity function. If so, non-rabllity may be satisfied by choosing
Dy := Y(same) whereas strong non-malleability does not hold.

3.1 Proof of Theorem 3.1 for bijective adversaries

We first prove the theorem for adversaries that are bijeetngehave no fixed points. This case is still broad
enough to contain interesting families of adversaries sigchdditive error adversariés,qq mentioned in
the introduction, for which case we reconstruct the existearoof of AMD codes (although optimal explicit
constructions of AMD codes are already known [5]).

As it turns out, the analysis for this case is quite stramfatard, and significantly simpler than the
general case that we will address in Section 3.2.

Let N := 27, K := 2*, and consider a fixed messagec {0,1}* and a fixed bijective tampering
function f: {0,1}" — {0, 1}" such that for alk: € {0,1}", f(x) # . We show that the non-malleability
requirement of Definition 2.3 holds with respect to the distiion D, that is entirely supported ofiL }.
That is, we wish to show that with high probability, the cafischeme&Enc, Dec) of Construction 1 is so
that

Pr[Dec(f(Enc(s))) #L1] <. (3)

By taking a union bound over all choices painds, this would imply that with high probability, the code is
non-malleable (in fact, strongly non-malleable) for thérerfamily F.



Let E(s) := supp(Enc(s)) be the set of the codewords that are mapped 4y the decoder. Let
Ey, ..., FE; be the codewords in this set in the order they are picked bydlde construction. For any
x € {0,1}™\ E(s), we know that

Pr[Dec(z) #.1] < t(K — 1)/(N —t) < ﬁ ,
wherey := tK/N. This can be seen by observing that each codewot(ifl) for s’ # s is uniformly
distributed on the s€i0, 1} \ E(s), and taking a union bound. Thus, in particular Sii¢éE ), ..., f(E:)}
is a set of size outsideE(s), we see thaPr[Dec(f(E1)) #1] < 11—7 In fact, the same argument holds
for Dec(E2) conditioned on any realization ¢f( E ), and more generally, one can derive for eaeh[t],

Pr(Dec(f(B:)) AL |f(B).., f(Ei1)] € 17 ()

Define indicator random variabl®s= X, X1,...,X; € {0,1}, whereX; = 1iff Dec(f(E1)) #.L. From
(4) and using Proposition B.1, we can deduce that fof all[t], Pr[X; = 1|X,..., X;—1] < % Now,
using Proposition B.5, lettingd := X7 + --- + X4,

ey €t
Pr[X > et] < .
X > ef] (e(l—y))
Assumingy < €/4, the above upper bound simplifiesdop(—Q(et)). By taking a union bound over all
possible choices of and f (that we trivially upper bound by|F]), it can be seen that, as longtas ¢, for

some choice ofy = O (% log(%)), the probability thatEnc, Dec) fails to satisfy (3) for some choice of
sandf is at most,.
Finally, observe that the assumption< /4 can be satisfied provided that < K for some choice of

Ky = Q(eN/t), or equivalently, wherk < ky for some choice ok > n — logt — log(1/¢). Note that for
this case the proof obtains a better dependencecompared to (1) and (2).

3.2 Proof of Theorem 3.1 for general adversaries

First, we present a proof sketch describing the ideas aitiorts behind the general proof, and then proceed
with a full proof of the theorem.

e Proof sketch

In the proof for bijective adversaries, we heavily used tm that the tampering of each gé¢s) of code-

words is a disjoint set of the same size. For general advessdrowever, this may not be true. Intuitively,

since the codewords if'(s) are chosen uniformly and almost independently at randonofigg the dis-

tinctness dependencies), the tampered distribufid@i(s)) should look similar tof (4,,) for all s, if |E(s)|

is sufficiently large. Indeed, this is what shown in the profdfie proof also adjusts the probability mass of

same according to the fraction of the fixed points Hfbut we ignore this technicality for the proof sketch.
Note that the distributiorf (L4,,) may be arbitrary, and may assign a large probability masstoal set

of the probability space. For examplgmay assign half of the probability mass to a single point. \Ale c

the points in{0, 1}" such that receive a noticeable share of the probability magg/, ) theheavy elements

of {0,1}", and fix the randomness of the code construction so that tteddes values at heavy elements
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are revealed before analyzing each individual messageoing so allows us to analyze each message
separately and take a union bound on various choicesasfin the case of bijective adversaries. Contrary
to the bijective case; however, the distributibn is no longer entirely supported ai; but we show that it
still can be made to have a fairly small support; roughdyy(n, log |F|). More precisely, the proof shows
non-malleability with respect to the choice Bf; which is explicitly defined to be the distribution of the
following random variable:

same if f(Un) = Un,
D := { Dec(f(Uy)) if f(U,) # U, andf(U,) € H,
1L otherwise,

whereH C {0, 1}" is the set of heavy elements formally defined as
H :={z € {0,1}": Pr[f(U,) = 2] > 1/r},

for an appropriately chosen= O(¢?t).

Although the above intuition is natural, turning it into garous proof requires substantially more work
than the bijective case, and the final proof turns out to beeratelicate even though it only uses elementary
probability tools. The first subtlety is that revealing theedder at the heavy elements creates dependencies
between various random variables used in the analysis. dardo make the proof more intuitive, we
introduce a random process, described as an algoR#real, that gradually reveals information about the
code as the proof considers the codewatis. . . , E; corresponding to the picked messagé he process
outputs a list of elements if0, 1}*, and we show that the empirical distribution of this list isse to the
desiredD; for all messages.

Roughly speaking, at each step [t] the analysis estimates the distributionDsfc(f(F;)) conditioned
on the particular realizations of the previous codewordser& are three subtleties that we need to handle to
make this work:

1. The randomness corresponding to some ofthis previously revealed by the analysis and thus such
codewords cannot be assumed to be uniformly distributednaone. This issue may arise due to
the revealing of the decoder’s values at heavy elementsibaéginning of analysis, or existence of
cycles in the evaluation graph of the tampering functforiFortunately, it is straightforward to show
that the number of such codewords remain much smaller#kéth high probability, and thus they
may simply be ignored.

2. At each step of the analysis, the revealed informationentlaé distribution oDec(f(E;)) gradually
farther from the desire®;. The proof ensures that the expected increase at each seyalls and
using standard Martingale concentration bounds the tetaation fromD, remains sufficiently small
with high probability at the end of the analysis.

3. Obtaining small upper bounds (e.gxp(—cn) for somec < 1) on the probability of various bad
events in the analysis (e.@ec(f(Enc(s))) significantly deviating fronDy) is not difficult to achieve.
However, extra care is needed to ensure that the probesilitie much smaller thary (2¢|F]) (to
accommodate the final union bound), where the latter mayydasidoubly-exponentially small in
n. An exponential upper bound ekp(—cn) does not even suffice for moderately large families of
adversaries such as bit-tampering adversaries, for whichave| 7| = 4.
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e Complete proof of Theorem 3.1

First, observe that by construction, the minimum distarfdBefinal code is always greater thém; that is,
wheneveDec(w; ) #.L andDec(ws) #_L for any pair of vectorsv; # w9, we have

disty, (wy, wy) > on,

wheredisty (-) denotes the Hamming distance. This is because wheneveresvordi is picked, itsin
neighborhood is removed from the sample space for the fuindewords. LeV’ denote the volume of a
Hamming ball of radiugn. It is well known thatl” < 27"(%) whereh(-) is the binary entropy function.

Fix an adversary € F. We wish to show that the coding scheffic, Dec) defined by Construction 1
is non-malleable with high probability for the chosén

Definepy := Pr[f(U,) = U,]. In the sequel, assume that < 1 (otherwise, there is nothing to prove).
For everyzr € {0,1}", definep(z) := Pr[f(U,) = = Az # U,]. Observe that

Zp(m) =1-1pg.

T

We say that a string € {0, 1}" is heavyif
p(z) > 1/r,

for a parameter < t to be determined later. Note that the number of heavy stringst be less than.
Define

H:={z€{0,1}": p(z) > 1/r},
v :=1t/N,
7 :=tK/N.
Fix the randomness of the code construction soliratz) is revealed for every heawy. We will argue that
no matter how the decoder’s outcome on heavy elements idateby the randomness of the code construc-

tion, the construction is non-malleable for every messaged the chosen functiofi with overwhelming
probability. We will then finish the proof with a union bounden all choices ok and f.

Consider a random variable defined ovef0, 1}* U { L, same} in the following way:

D := < Dec(f(Uy)) if f(U,) # U, andf(U,) € H, 5)
L otherwise.

For the choserf, we explicitly define the distributio®; asDy := Z(D).

Now, consider a fixed messagec {0,1}*, and define the random variabl& := Enc(s). That is, E
is uniformly supported on the séi(s) (this holds by the way that the encoder is defined). Obseaiettle
marginal distribution of each individual sét(s) (with respect to the randomness of the code construction)
is the same for all choices of regardless of the ordering assumed by Construction 1 om#ssage space
{0, 1}*.

Furthermore, define the random varialhle as follows.

. ) same if f(Es) = E;, (6)
*" | Dec(f(E,)) otherwise.
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Our goal is to show that the distribution bf; (for the final realization of the code) ésclose toD ; with
high probability over the randomness of the code constrnctsuch assertion is quite intuitive by comparing
the way the two distribution®), andD; are defined. In fact, it is not hard to show that the assertadsh
with probability 1 — exp(—£2(n)). However, such a bound would be insufficient to accommodatei@n
bound of even moderate sizes sucl2aswhich is needed for relatively simple classes such asbifpering
adversaries. More work needs to be done to ensure that is@lge to achieve a high probability statement
with failure probability much smaller thaty|F|, which may in general be doubly exponentially smalhin

The claim below shows that closenessaffD,) to D; would imply non-malleability of the code.

Claim 3.3. Suppose that for everyc {0, 1}*, we haveZ(D;) ~. Dy for the choice ofD, defined in(5).
Then,(Enc, Dec) is a non-malleable coding scheme with ereand a strong non-malleable coding scheme
with error 2e.

Proof. In order to verify Definition 2.5, we need to verify that foresy distinct pair of messages, s» €
{0,1}*, 2(Ds,) ~2c 2(Ds,). But from the assumption, we know thét(D,,) and 2(D,,) are both
e-close toD;. Thus the result follows by the triangle inequality.

It is of course possible now to use [8, Theorem 3.1] to dedbhe¢ Definition 2.3 is also satisfied.
However, for the clarity of presentation, here we give adisggument that shows that non-malleability is
satisfied with the precise choice Df; defined in (5) and error. Lets € {0, 1}*, and letE; := Enc(s) and
S := Dec(f(Es)). LetS” ~ Dy andS” ~ 2(D,) be sampled independently. We need to show that

2(5) me D(copy(S', 5)). (7)
From the definition oD in (6), sinceDec(f(Es)) = s when f(Es) = Es, we see thatZ(copy(S”, s))

2 (Dec(f(Es))) = 2(S). Now, since by assumptio(S’) ~. 2(S”), it follows that Z(copy (5, s)) =
P (copy(S”, s)) which proves (7). O

Let the random variableg’, ..., E; be the elements aF/(s), in the order they are sampled by Con-
struction 1.

Define, fori € [t],
. Jsame if f(E;) = E;,
""" | Dec(f(E;)) otherwise.
We note that, no matter how the final code is realized by théaamess of the construction, the distribution
Dy is precisely the empirical distribution &f;, . .., S; as determined by the code construction.

In the sequel, for eache [t], we analyze the distribution of the variatffe conditioned on the values
of S1,...S;—1 and use this analysis to prove that the empirical distriloutf the sequencess, ..., S;) is
close toDy.

In order to understand the empirical distribution of #)yewe consider the following proce&eveal that
considers the picked codewords, . .., E; in order, gradually reveals information about the code trans
tion, and outputs a subset of tlie We will ensure that

1. The process outputs a large subsetsyf, ..., S}, and,
2. The empirical distribution of the sequence output by tteegss is close t®; with high probability.

The above guarantees would in turn imply that the empirigsttidution of the entire sequenc®; is also
close toD with high probability. We define the process as follows.
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ProcessReveal:

1. Initialize the setSkip C [t] with the empty set. Recall that the valuesc(w) for all w € H are
already revealed in the analysis, as welDas(I'(w)) for those for whichDec(w) #.L.

2. For each heavy element € H, if Dec(w) = s, consider the uniqug € [t] such thatZ; = w. Revedt
j andFE;, and addj to Skip.

3. Fori from 1 to t, definetheith stageas follows:

3.1. If ¢ € Skip, declare askipand continue the loop with the nextOtherwise, follow the remaining
steps.

3.2. Reveall'(E;). Note that revealings; implies thatDec(E;) is revealed as well, sindeec(E;) =
s. Moreover, recall that for any € I'(E;) \ E;, Dec(x) =L by the code construction.

3.3. If Dec(f(E;)) is not already revealed:
3.3.1. RevealDec(f(Ej;)).
3.2.2.If Dec(f(E;)) = s, consider the uniqug € [t] such thatE); = f(E;). It must be that
J > 1, sinceDec(E);) has not been revealed before. Reveahd add it tcSkip.
3.3.3. Declare that aminveil has happened Dec(f(E;)) #L. If so, revealDec(f(x)) for all
ze(f(E;)) \ E; toequall.
3.4. Reveal and outpus;.

Fori € [t], we use the notatioReveal; to refer to all the information revealed from the beginnifighe
process up to the time thiéh stage begins. We also denotelxt (i) the leastj > i such that a skip does
not occur at stagg; defineNext(:) := t + 1 if no suchy exists, and defin8lext(0) to be the index of the
first stage that is not skipped. Moreover, forc {0,1}", we use the notation € Reveal; as a shorthand
to denote the event that the proc&eseal has revealed the value Bkc(w) at the time theth stage begins.

By the way the code is constructed, the decoder’s value &tggen point is most likelyl . We make
this intuition more rigorous and show that the same holda eeaditioned on the information reveal by the
procesReveal.

Claim 3.4. For all ¢ € [t] and anya € supp(Reveal;),
Pr[Dec(x) #L |(Reveal; = a) A (z ¢ Reveal;)] <+/'/(1 —3yV).

Proof. Supposer ¢ Reveal;, and observe tha&eveal; at each step reveals at most the values of the decoder
at2V points; namelyI'(E;) andI'(f(E;)). Moreover, before the first stage, decoder’s value is redeal

up tor heavy points and its Hamming neighborhood at radius In total, the total number of points at
which decoder’s value is revealed by the informatiofRéveal; is at most

(H|+2( —1)|V| < (2t + r)V < 39V N.

“In arigorous sense, by revealing a random variable we meamwthcondition the probability space on the event that aquéar
value is assumed by the variable. For example, revediingheans that the analysis branches to a conditional world evtier
value of E; is fixed to the revealed value. In an intuitive way, one maypkhof a reveal as writing constraints on the realization
of the code construction on a blackboard, which is subsdtyuemnsulted by the analysis (in form of the random varid®deeal;
that the analysis defines to denote the information revdatdtie process before stafe
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Let
c:=JE(®)

be the set of all codewords of the coding scheme. Some oféhneeeits of” are already included iReveal;,
and by assumption we know that none of these is equal to

The distribution of each unrevealed codeword, seen intisolais uniform over theV(1 — 3yV) re-
maining vectors if{0, 1}". Thus by taking a union bound on the probability of each sweteword hitting
the pointz (which is the only way to makBec(z) #.1, we deduce that

tK

P —a < ———
r[Dec(z) #L |Reveal; = d] NI—37)

=/ = 39V). O

Ideally, for each € [t] we desire to havé’; almost uniformly distributed, conditioned on the revealed
information, so that the distribution d&fec(f(E;)) (which is described by; when E; does not hit a fixed
point of f) becomes close t®ec(f(U,,)). However, this is not necessarily true; for example, when th
procesReveal determines the decoder’s value on the heavy elements, lire ofa say,F; may be revealed,
at which point there is no hope to ensure tliatis nearly uniform. This is exactly what the sghip is
designed for, to isolate the instances when the valug;a$ already determined by the prior information.
More precisely, we have the following.

Claim 3.5. Suppose that ¢ Skip when theith stage oReveal begins. Then, for any € supp(Reveal,),
P(E;|Reveal; = a) ~, Uy,
wherev := (37V) /(1 — 3~V).

Proof. Note that, without any conditioning, the distribution Bf is exactly uniform on{0,1}". If at any
point prior to reaching théth stage it is revealed theitec(E;) = s, either line 2 or line 3.2.2 of process
Reveal ensures thatis added to the sé&kip.

If, on the other hand, the fact thBiec(F;) = s has not been revealed when tile stage begins, the
distribution of E; becomes uniform on the points{f, 1}" that have not been revealed yet. As in Claim 3.4,
the number of revealed points is at m@&t + )V < 37V N. Thus, the conditional distributiof; remains
((3vV) /(1 — 3vV))-close to uniform by Proposition B.2. O

For eachi € [t], define a random variabl§/ € {0,1}* U {same, L} as follows (wherdJ,, is indepen-
dently sampled fron,,):

Si =< Dec(f(Uy,)) if f(Uy,) # Un A f(Uy) € Reveal;, (8)
1 otherwise.

Note thatZ(S') = Dy.

Intuitively, S} is the “cleaned up” version of the random varialsie that we are interested in. As
defined,S! is an independent random variable, and as such we are merested in itslistribution than
value. Observe that the distribution 8f is randomly determined according to the randomness of tte co
construction (in particular, the knowledge Réveal; completely determine¥(S;)). The variableS; is
defined so that its distribution approximates the distidsuof the actualS; conditioned on the revealed
information before stagé Formally, we can show that conditional distributions afgh two variables are
(typically) similar. Namely,
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Claim 3.6. Suppose that ¢ Skip when theith stage oReveal begins. Then, for any € supp(Reveal,),
9(S;|Reveal; = a) ~, Z(S!|Reveal; = a),
wherev := (37V ++')/(1 — 374V).
Proof. First, we apply Claim 3.5 to ensure that
9 (E;|Reveal; = a) =, Uy,

wherer’ = (3yV)/(1—3~V'). Thus we can assume that the conditional distributiof;a6 exactly uniform
at cost of &/’ increase in the final estimate.

Now, observe that, conditioned on the revealed informatioa way.sS; is sampled at stageof Reveal
can be rewritten as follows:

1. SampleE; ~ U,.
2. If f(EZ) = FE;, sets; < same.
3. Otherwise, iff (E;) € Reveal;, setS; to Dec(f(E;)) as determined by the revealed information.

4. Otherwise, revedDec(f(FE;)) (according to its conditional distribution on the knowledgf Reveal;)
and setS accordingly.

This procedure is exactly the same as hjvis sampled by (8); with the difference that at the third step,
S!is set toL whereasS; is sampled according to the conditional distributiorDet(f(E;)). However, we
know by Claim 3.4 that in this case,

Pr[Dec(f(E;)) #L |Reveal; = a] <~'/(1 —3vV).

Thus we see tha$; changes the probability mass af in Z(S!) by at mosty’/(1 — 3yV'). The claim
follows. O

Recall that the distribution &} is the same a®;. However, for subsequent stages this distribution may
deviate fromD;. We wish to ensure that by the end of procBsseal, the deviation remains sufficiently
small.

Fori € [t — 1], defineA,; as
A; = dist(2(Si41), 2(57)).

wheredist(-) denotes statistical distance. Note tlst is a random variable that is determined by the
knowledge ofReveal;;; (recall thatReveal, determines the exact distribution 6f). We show that the
conditional values attained by this random variable ardlsmeaxpectation.

Claim 3.7. For eachi € [t — 1], and alla € supp(Reveal;),
2+
E[A;R i=a| < ———. 9
[A;|Reveal; = a] F1 =39V )

Moreover,Pr[A; < 2/r | Reveal; = a] = 1.
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Proof. Recall that the distribution o}, is different fromS; depending on the points at which the decoder’s
value is revealed during stagef Reveal. If a skip is declared at stagewe haveReveal;,; = Reveal; and
thus,A; = 0. Thus in the following we may assume that this is not the case.

However, observe that whenever for some {0,1}", the decoder’s valuBec(x) is revealed at stage
i, the new information affects the probability distributioh.S; only if Dec(z) #L. This is because when
Dec(z) =L, some of the probability mass assigned$yto L in (8) is removed and reassigned 5, , to
Dec(z), which is still equal taL. Thus, changes of this type can have no effect on the disisibof S.. We
conclude that only revealing the valueBf and an unveil (as defined in line 3.3.3 of proc&sseal) can
contribute to the statistical distance betwegands;_ ;.

Whenever an unveil occurs at stagesay at pointz € {0,1}", some of the probability mass assigned
to L by S is moved toDec(x) in the distribution ofS;_ ;. Since we know that ¢ H, the resulting change
in the distance between the two distributions is bounded /oy no matterwhat the realization of and
Dec(z) are. Overall, using Claim 3.4, the expected change betweetwb distributions contributed by the
occurrence of an unveil is upper bounded by the probabifitgnounveil occurring times /r, which is at
most /)

y/r
T3 (10)

The only remaining factor that may contribute to an incréagte distance between distribution &f
andS, , is the revealing of?; at stage. The effect of this reveal in the statistical distance betwhe two
distributions isp(E;), since according to (8) the value 8f__, is determined by the outcome ¢fU,,), and
thus the probability mass assignedec(£;) by S; | is indeedPr[f (U, ) = E;]. LetDg be the distribution
of E; conditioned on the knowledge &kveal;. Observe that, since the valugs(z): x € {0,1}"} defines
a probability distribution onV points, we clearly have

Z p(z) < 1. (12)

z€supp(Dg)

On the other hand, by the assumption that a skip has not ectatrstage, we can deduce using the
argument in Claim 3.5 th&Py, is uniformly supported on a support of size at ledgt — 3vV"). Therefore,
using (11), the expected contribution4q by the revealing of; is (which is the expected value ptE;))
is at most . /)
Yy/r

NO—3V) S =3y’ (12)
where the inequality uses< /N = tK. The desired bound follows by adding up the two perturbation
(10) and (12) considered.

Finally, observe that each of the perturbations considabede cannot be more thayir, since stage
never reveals the decoder’s value on a heavy element (theatll heavy elements are revealed before the
first stage begins and the choicesHfthat correspond to heavy elements are addeskip whenReveal
begins). Thus, the conditional value Af is never more thag/r. O

Using the above result, we can deduce a concentration bautitesummation of the differencés,.

Claim 3.8. LetA := Ay +--- + A;_1, and suppose
/

~y er
—— < —. 13
1—-3yV ~ 32t (13)
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Then,

Pr[A > €/8] < exp(—€*r?/(2048t)) =: np. (14)
Proof. Fori € [t—1], defineA] := A;r/2, A := 0, andA’ := A} +---+A]_,. SinceReveal; determines
Al_,, by Claim 3.7 we know that
E[AAG, ..., Al ] <,
wherev := % < er/(32t) In the above, conditioning od\(,..., Al instead ofReveal; (for

-3
which Claim 3.7 applies), is valid in light of Proposition1B.since the knowledge dteveal; determines
/07 e ey A;_l.
Moreover, again by the Claim 3.7, we know that theare betweer and1. Using Proposition B.3, it
follows that
Pr[A > ¢/8] = Pr[A" > — - t] < no. O

Next, we prove a concentration bound for the total numbernvkils that can occur in line 3.3.3 of
procesReveal.

Claim 3.9. Letu be the total number of unveils that occur in procBsseal. Assumingy’/(1—37V) < ¢/8
(which is implied by(13)), we have

Prlu > et/4] < exp(—€>t/128) < np.

Proof. Let X1,..., X; be indicator random variable such thf = 1 iff an unveil occurs at stage and let
Xj := 0. Recall that an unveil can only occur at a stage that is n@pgkd. Thus, ifi € [t| when theith
stage begins, we can deduce that= 0.

Consideri € [t] such that ¢ Skip when theith stage begins. An unveil occurs whBec(f(E;)) ¢
Reveal;. In this case, by Claim 3.4, we get that

Pr[Dec(f(E;)) #L |Reveal;] <~'/(1 —3yV).

SinceReveal; determines all the revealed information in each prior stagel in particular the values of
Xo,...,X;_1,we can use Proposition B.1 to deduce that

Pr[XZ = 1’X07 o 7Xi—1] < ’Y,/(l - 3’7‘/)

Finally, Proposition B.3 derives the desired concentratiound on the number of unveils, whichig +
o X O

We are now ready to wrap up the proof and show that with ovelming probability, the empirical
distribution of Sy, ..., S; is e-close toD;.

Suppose that proce&eveal outputs a subset of th€;. Let 7" C [¢] be the set of indices suchReveal
outputssS; in the end of theth stage. Note thal’ = [¢t] \ Skip, whereSkip denotes the skip set wh&eveal
terminates. Observe thigkip| is at most the total number of unveils occurring at line 3c#.Beveal plus
r (which upper bounds the number of heavy elementd)n Thus, using Claim 3.9 we see that, assuming
(13),

Pr[t — |T| = r + et/4] < no. (15)

Let §; for i € [t] denote the statistical distance betwegrandD;. We know that); is a random variable
depending orReveal;. Thus, the value of; becomes known to a particular fixed value conditioned on the
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outcome of everReveal;, j > i. Defined, := max; J;, which is a random variable that becomes revealed
by the knowledge oReveal; in the end of the process.

Using Claim 3.6, we thus know that for anyc supp(Reveal;) andi € T,
2(Si|Reveal; = a) ~,,15, Dy,

where
vo = 37V ++)/(1 = 3yV).

Let S denote the empirical distribution ¢f5;: i € T'}, and defineS; :=_L. From the above conclusion,
using Proposition B.1 we can now write, foe T,

D(Si|(Sj:j €T N{L,...,i—1}) ~yy+s, Dy
Recall thatisupp(Dy)| < r + 2. Assuming that
Vo + 0o < €/4, (16)
Proposition B.7 implies (after simple manipulations) thwéth probability 1 — 7, where
< 27T, (17)

S is (¢/2)-close toDy.
Recall thatZ(S]) = D;. Using the triangle inequality for statistical distancer, éveryi € [t] we can
write

dist(S;, D) = dist(S;, S1) < Ay + -+ + A1 < A,

and thus deduce thdg < A. Recall that by Claim 3.8, we can ensure that, assuming (3}, ¢/8 (and
thus,dy < €/8) with probability at least — 9. Thus under the assumption that

140] < 6/8, (18)

and (13), which we recall below
o er
— o S oo
1—-3yV ~ 32t
we can ensure thaly + dy < ¢/4 with probability at leastt — ny. Moreover, conditioned on the event
vy + 0o < €/4 (recall thatdy is a random variable), we have already demonstrated thhatpratbability at
leastl — 7, S is (¢/2)-close toD;. After removing conditioning on the bound ép, we may deduce that

overall (under the assumed inequalities (13) and (18) pibbability at least — O(ng + m1),
S ~e/2 Dfa
which in turn, implies that the empirical distribution 6f, . . ., S; becomes’-close to uniform, where
€ :=¢€/2+ (1—1T|/t).

Finally, we can use (15) to ensure that (assuming (£3}, e and|T'|/t > 1 — ¢/2 with probability at least
1—O(no+m) as long as
r < et/4. (29)
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By comparing (17) with (14), we also deduce that= O(n) (and also that (19) holds) as longas< r
for some
ro = Q(e%t). (20)

Altogether, we arrive at the conclusion that under assumgpt{13), (18), and by taking := rq, with
probability at least — O(ny),

(empirical distribution ofS1, ..., S;)) =~ Dy,

which ensures the required non-malleability conditionrfassage and tampering functioif. By taking a
union bound over all possible choicessadind f, the probability of failure becomes bounded by

O(noK|F1) =: 1na-

We can now ensure that < 7 for the chosen value for by takingt > ¢, for some
B 1 |FIN
t0—0<5<log7>>. (21)

Furthermore, in order to satisfy assumptions (13), (18),tAe requirementK'V' < 1 which is needed
to make the construction possible, it suffices to hAve K for some

Ko = Q(EN/(tV)).

Using the bound/ < 2% whereh(-) is the binary entropy function, and taking the logarithm oftb
sides, we see that it suffices to havel kg for some

ko = n(1 — h(d)) —logt — 3log(1/e) — O(1).

This concludes the proof of Theorem 3.1.

3.3 Efficiency in the random oracle model

One of the main motivations of the notion of non-malleableem proposed in [8] is the application for
tamper-resilient securityln this application, a stateful consists of a public fuotlity and a private state

s € {0,1}*. The state is stored in form of its non-malleable encodiniictvis prone to tampering by a
family of adversaries. It is shown in [8] that the securitytloé system with encoded private state can be
guaranteed (in a naturally defined sense) provided thatishébdtion D related to the non-malleable code
is efficiently samplable. In light of Remark 2.7, efficientrgaling of D, can be assured if the non-malleable
code is equipped with an efficient encoder and decoder.

Although the code described by Construction 1 may requippeantial time to even describe, it makes
sense to consider efficiency of the encoder and the decodes iandom oracle modelvhere all involved
parties have oracle access to a shared, exponentiallyf@andom string. The uniform decoder construction
of [8] is shown to be efficiently implementable in the randoraabe model in ampproximatesense (as long
as all involved parties query the random oracle a polynomighber of times), assuming existence of an
efficient algorithm implementing a uniformly random peratignIT and its invers@l—'.

We observe that Construction 1, for the distance parandeter0 (which is what needed for strong
non-malleability as originally defined in [8]) can lactlyimplemented efficiently (without any further
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assumptions on boundedness of the access to the randore) @mssliming access to a uniformly random
permutation and its inverse (i.e., the so-called ideah@ignodel). This is because our code is designed so
that the codewords are picked uniformly at random and witheplacement. More precisely, the encoder,
given message € {0,1}*, can sample a uniformly randome [t], and outpuflI(s,i), where(s, i) is
interpreted as an element fd, 1}" (possibly after padding).

As noted in [8], efficient approximate implementations offarmly random permutations exist in the
random oracle model. In particular, [4] show such an appnation with securitypoly(q)/2", whereq is
the number of queries to the random oracle.

4 A Monte Carlo construction for computationally bounded adversaries

An important feature of Construction 1 is that the proof ofifioalleability, Theorem 3.1, only uses limited
independence of the permutation defining the codewdf(ls) corresponding to each message. This is
because the proof analyzes the distributiobet( f (Enc(s))) for each individual message separately, and
then takes a union bound on all choicesof

More formally, below we show that Theorem 3.1 holds for a Devarange of code constructions than
the exact Construction 1.

Definition 4.1 (¢-wise independent schemed)et (Enc, Dec) be any randomized construction of a coding
scheme with block length and message length For eachs € {0, 1}*, defineF(s) := supp(Enc(s)) and
letts := |supp(Enc(s))|. We say that the constructiondswise independent if the following are satisfied.

1. For any realization ofEnc, Dec), the distribution ofEnc(s) (with respect to the internal randomness
of Enc) is uniform onsupp(Enc(s)).

2. The distribution of the codewords defined by the constrads /-wise independent. Formally, we
require the following. LeC := (J,c o 13+ supp(Enc(s)). Suppose the construction can be described

by a deterministic functichE: {0,1}* x IN x IN — {0, 1}" such that for a bounded random oracle
O overN (describing the random bits used by the construction), ¢geasnce

(E(s,1,0))seqo1}* iclt]

enumerates the sét Moreover, for any set of indicesS = {(s;,i;): j € [f],s; € {0,1}*,i; €
[ts]}, we have
-@(E(Slaib 0)7 s ,E(S@,ZQ, O)) = *@(H(l)v s >H(€))

for a uniformly random bijectiodl: [2"] — {0,1}".

Lemma 4.2. Let (Enc, Dec) be any randomized construction of a coding scheme with Bb&withr» and
message length. For eachs € {0, 1}*, defineE(s) := supp(Enc(s)). Suppose that for any realization of
(Enc, Dec), and for everysy, s € {0,1}*, we have

1. |E(s1)| = to, wheret is the parameter defined in Theorem 3.1.

2. |E(s2)| = O(|E(s1)])-

®As an example, in Construction 1, all the valuesire equal to the chosenand moreover, one can taks, i, O) = Il(s, 1),
wherell: {0,1}* x [2"7*] — {0, 1}™ is a uniformly random bijection defined by the randomnes® of
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Moreover, suppose thdt < ko, for ky as in Theorem 3.1. Lét:= max; |E(s)|. Then, assuming that the
construction is(3t)-wise independent, the conclusion of Theorem 3.1 for distgzaramete$ = 0 holds
for the coding schemgEnc, Dec).

Proof. We argue that the proof of Theorem 3.1 holds without any tieghchange if

1. The codewords isupp(Enc(i})) are chosen not fully independently b#)-wise independently,
and

2. Each sef(s) is not necessarily of exact sizéut of size at leasty andO(t).

The key observation to be made is that the proof analyzesieditidual message < {0, 1}* separately,
and then applies a union bound on all choices.ofrhus we only need sufficient independence to ensure
that the view of the analysis on each individual choice ofrtiessage is statistically the same as the case
where the codewords are chosen fully independently.

Observe that the bulk of the information about the code Idake by the analysis for analyzing each
individual message is contained in the random vari&ele=al; | defined in the proof of Theorem 3.1, that
is defined according to how the procégsreal evolves. NamelyReveal;; summarizes all the information
revealed about the code by the end of the proBessal.

For a fixed message € {0,1}" the procesReveal iterates for|E(s)| < ¢ step. At each step, the
location of at most two codewords $npp(Enc(i;)) is revealed. Moreover, before the process starts, the
values of the decoder on the heavy elementg/inwhich can correspond to less thamodewords, are
revealed by the process. The only other place in the proofevae independent codeword is required is
the union bound in the proof of Claim 3.4, which needs anotiegree of independence. Altogether, we
conclude that the proof of Theorem 3.1 only uses at rabgegrees of independence in the distribution of
the codewords picked by the construction.

Moreover, for each messagethe analysis uses the fact thét(s)| > ¢, to ensure that the code does
not satisfy non-malleability for the given choice efand tampering function remains below the desired
level. Since|E(s)| for different values ofs are assumed to be within a constant factor of each other, the
requirement (20) may also be satisfied by an appropriateetaithe hidden constant. Finally, using the
fact thatmax, |E(s)| = O(min, |E(s)|), we can also ensure that assumptions (13), and (18) canisigesht
for appropriate choices of the hidden constants in asyriegdtounds. O

In order to implement an efficieditwise independent coding scheme, we use the bounded irdiepen
property of polynomial evaluations over finite fields. Moregisely, we consider the coding scheme given
in Construction 2.

The advantage of using the derandomized Monte Carlo catistnuis that the number of random bits
required to describe the code is dramatically reduced fttmm i) bits (which can be exponentially large
if the rate of the code i€(1)) to only O(¢n) bits, which is only polynomially large if = poly(n). In order
to efficiently implement the derandomized construction,use bounded independence properties of poly-
nomial evaluation. Using known algorithms for finite fieldepptions and root finding, the implementation
can be done in polynomial time.

Lemma 4.3. Consider the paifEncMC, DecMC) defined in Construction 2. For evefy > 0, there is a
to = O(n +log(1/n)) such that for every > t, (wheret is a power of two), with probability at least— 7
the following hold.
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e Given: Integer parameter® < k£ < n and integett > 1 which is a power of two. Leb := log(2t)
andm :=n—k —b.

e Output: A coding scheméEncMC, DecMC) of block lengthn and message length
e Randomness of the constructiosk uniformly random polynomialP € IFon [9¢ — 1].
e Construction oEncMC: Givens € {0, 1}*,

1. Initialize a sett’ C {0, 1}" to the empty set.
2. Forevery: € {0,1}°,

(a) Construct a vectay := (s,0™, z) € {0,1}" and regard it as an elementB- .

(b) SolveP(X) =y, and add the set of solutions (which is of size at n9ost 1) to E.
3. Output a uniformly random element bf

e Construction oDecMC: Givenz € {0,1}", interpretz as an element dfy-, and lety := P(x),

interpreted asa VeCtolv s >yn) € {07 1}n If (yk’-i-lv Yk+2, - - - 7yk+m) =0, OUtpUt(yh ce 7yk)
Otherwise, output..

Construction 2: The Monte Carlo Construction.

1. (EncMC, DecMC) is a (9t)-wise independent coding scheme.
2. Forall s € {0,1}*, |supp(EncMC(s))] € [t, 3t].

Proof. Let N := 2" and K := 2*. Consider the vectoX := (Xi,...,Xy) € FY,, whereX; := P(i)

and each is interpreted as an elementB$~. Since the polynomiaP is of degreedt — 1, the distribution
of X1, ..., Xy over the randomness of the polynomiais (9¢)-wise independent with each individual;

being uniformly distributed otffi's». This standard linear-algebraic fact easily follows fromertibility of

square Vandermonde matrices.

Note that the decoder functiddecMC in Construction 2 is defined so that

1 with probability 1 — 2t K/N

. » (22)
s € {0,1}* with probability 2¢ /N

DecMC(U,,) = {

Fors € {0,1}*, let E(s) := supp(EncMC(s)). Note that the encoder, given is designed to output
a uniformly random element df(s). Since the definition of th&ncMC(s) is so that it exhausts the list
of all possible words i{0,1}" that can lie inDecMC~(s), it trivially follows that (EncMC, DecMC) is
always a valid coding scheme; that is, for any realizatiorthef code and for alk € {0,1}", we have
DecMC(EncMC(s)) = s subject to the guarantee th#(s)| > 0.

Fix somes € {0,1}*. Let Zy,...,Zy € {0,1} be indicator random variable such that = 1 iff
DecMC(i) = s (wheni is interpreted as am-bit string). RecallthatZ, ..., Zy) is a(9¢)-wise independent
random vector with respect to the randomness of the coddraotien. LetZ := Z; + --- + Zy, and note
thatZ = |E(s)|. From (22), we see that

E[Z] = E[|E(s)[] = 2t .
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Using Theorem B.6 witlf := ¢/4 and A := E[Z]/2 = t, we see that
Pr[|Z — 2t > t] < 8(3/4)/%.

By taking a union bound over all choices ©f {0, 1}%, we conclude that with probability at least- 1,
where we defingy := 8N (3/4)/4, the realization of EncMC, DecMC) is so that

(Vs € {0,1}%): |E(s)| € [t, 3t].
This bound suffices to show the desired conclusion. O

By combining the above tools with Theorem 3.1, we can deheddllowing result on the performance
of Construction 2.

Theorem 4.4. Let 7: {0,1}" — {0,1}"™ be any family of tampering functions. For aay; > 0, with
probability at leastl — n, the pair (EncMC, DecMC) in Construction 2 can be set up so achieve a non-
malleable coding scheme with respectA@nd with errore. Moreover, the scheme satisfies the following.

1. The code achievds> n — loglog(|F|/n) —logn — 9log(1/e) — O(1).
2. The number of random bits needed to specify the co@e{@& + log(|}'|/17))n/66).
3. The encoder and the decoder run in worst case tiohg(log(|.F|/n)n/¢).

Proof. Let ¢ty and ky be the parameters promised by Theorem 3.1. We instantiatst@otion 2 with
parametet := tg andk := ky. Observe that this choice ofis large enough to allow Lemma 4.3 to hold.
Thus we can ensure that, with probability at lelast;, (EncMC, DecMC) is a(9¢)-wise independent coding
scheme where, for every € {0,1}*, |E(s)| € [to, 3tp]. Thus we can now apply Lemma 4.2 to conclude
that with probability at least — 27, (EncMC, DecMC) is a strong non-malleable code with the desired
parameters.

The number of random bits required to represent the codesibithength of the polynomiaP(X) in
Construction 2, which i8tn. Plugging in the value of from (21) gives the desired estimate.

The running time of the decoder is dominated by evaluatiothefpolynomialP(X) at a given point.
Since the underlying field is of characteristic two, a repngéation of the field as well as basic field operations
can be computed in deterministic polynomial time in the degrof the extension using Shoup’s algorithm
[10].

The encoder is, however, slightly more complicated as itdade iterate througlD(¢) steps, and at
each iteration compute all roots of a given degdee- 1 polynomial. Again, since characteristic of the
underlying field is small, this task can be performed in datristic polynomial time in the degre¥ — 1 of
the polynomial and the degreeof the extension (e.g., using [11]). After plugging in thaibhd ont from
(21), we obtain the desired bound on the running time. O

As a corollary, we observe that the rate of the Monte Carlastrantion can be made arbitrarily close
to 1 while keeping the bit-representation of the code as welhasunning time of the encoder and decoder
at poly(n) provided thate = 1/poly(n) and|F| = 2P°¥(™), In particular, we see that the Monte Carlo
construction achieves strong non-malleability even wébpect to such powerful classes of adversaries
as polynomial-sized Boolean circuits (withoutputs bits) and virtually any interesting computatibnal
bounded model.
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Remark 4.5. Since in this construction the erreis only polynomially small, for cryptographic applicat®n
such as tamper-resilient security it is important to sethgdode so as to ensure thdk is significantly
larger than the total number of tampering attempts madedwpdversary.

Caveat. We point out that any explicit coding scheme for computatilyrbounded models (such as polynomial-
sized Boolean circuits) necessarily implies an explicitdo bound for the respective computational model.
This is because a function in the restricted model cannoblhegul enough to compute the decoder func-
tion, as otherwise, the following adversary would violateymalleability:

Consider fixed tuplegsy, z1), (s2,72) € {0,1}* x {0,1}", wheres; # sz, Dec(z1) = s; and
Dec(z2) = so. Given a codeword € {0,1}", computes := Dec(x). If s = s1, outputzs. If
s = s9, outputz;. Otherwise, output.

Remark 4.6. (Alternative Monte Carlo construction) In addition to Comstion 2, it is possible to consider
a related Monte Carlo construction when polynomial evaduas performed at the encoder and root finding
is done by the encoder. More precisely, the encoder, given{0,1}*, may sample € [t] uniformly at
random, and outpuP(s, i) where(s, ) is interpreted as an element Bf- (possibly after padding). The
drawback with this approach is that the rate of the code wbaeltimited by1/2, since for larger rates there
is a noticeable chance that the encoder maps different gessaithe same codeword.

5 Impossibility bounds

In this section, we show that the bounds obtained by Theorérarg essentially optimal. In order to do so,
we consider three families of adversaries. Throughout gloiian, we useé: andn for the message length
and block length of coding schemes and defihe= 2" and K := 2.

5.1 General adversaries

The first hope is to demonstrate that Theorem 3.1 is the besilpe foreveryfamily of the tampering
functions of a prescribed size. We rule out this possibditg demonstrate a famil§f of tampering functions
achievinglog log |F| ~ n for which there is a non-malleable code achieving ate~ for arbitrarily small
v > 0.
Let S C {0,1}" be any set of size at leagt! = and at mostV/2. Consider the family* of functions
satisfying the property that
(VfeF)(VxeS): f(x) ==

We can take the union of such families over all choice$'dfiowever, for our purposes it suffices to define
F with respect to a single choice 6t Observe that

’f‘NN_IS‘ > NN/Z,

which implies
loglog |F| > n — 1.

However, there is a trivial coding scheme that is non-mhblkavith zero error for all functions iF.
Namely, the encoddtnc is a deterministic function that maps messages to distieat@ents ofS, whereas
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the decodeDec inverts the encoder and furthermore, maps any string @usid L. In this construction,
we see that

(Vf € F)(Vz € {0,1}*): Dec(f(Enc(z))) = ,

since f necessarily fixes all the points  (in particular, in Definition 2.3 one can taki®; := Z(same)).
Finally, observe that the rate of this coding scheme is atlea~. In fact, this result holds for any > 1/n,
implying that the rate of the code can be made o(1).

5.2 Random adversaries

The observation in Section 5.1 rules out the hope for a gelmvar bound that only depends on the size
of the adversarial family. However, in this section we shboat tfor “virtually all” families of tampering
functions of a certain size, Theorem 3.1 gives the best plessound. More precisely, we construct a family
F of a designed siz@/ as follows: For each € [M], sample a uniformly random functiofy: {0,1}" —
{0,1}™ and addf; to the family. Since some of thg may turn out to be the same (albeit with negligible
probability), | 7| may in general be lower thalt (which can only make a lower bound stronger).

We prove the following.

Theorem 5.1. For any« > 0, there is an) satisfying
log log My < an + O(logn)

such that with probabilityl — exp(—n), a random familyF with designed sizéd/ > M, satisfies the
following: There is no coding scheme achieving rate at ldasta and errore < 1 that is non-malleable
with respect to the tampering famif.

Proof. We begin with the following simple probabilistic argument:

Claim 5.2. LetC C [¢]"V be a multi-set of vectors each chosen uniformly and indegrathdat random.
For any integer/ € [N] and parametery > 0, there is anMy = O({q" log(q¢N/~)) such that as long as
IC| > My, the following holds with probability at leasgt— ~: For everyS C [N] with |S| < ¢, the set of
vectors inC restricted to the positions picked Byis equal to[g]!!.

Proof. Fix any choice of the set (where, without loss of generalitys| = ¢) and letCs be the set of vectors
in C restricted to the positions ifi. For anyw € [¢]!¥, we have

Prlw ¢ Cs] = (1 - %)IC < exp(—Q(|Cl/q")).

By taking a union bound on all the choiceswfand S, the probability thatC does not satisfy the desired
property can be seen to be at most

(aN)* exp(=Q([C]/q")),
which can be made no more tharfor some

(€l = O (4" (¢10g(N) + log(1/))) - O
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Lety > 0 be a parameter to be determined later. By Claim 5.2, withaividby at leastl — ~ over the
randomness of the famil§F, we can ensure that for all se$sC {0, 1}" of size at mose N*, and for all
functionsfs: S — {0,1}", there is a functiorf € F that agrees wittfs on all points inS. This guarantee
holds if we takeF > M, for some

My=0 (N<4N“> (SN° log(N/y))) .
Overestimating the above bound yields
log log My < an + loglog(N/v) + O(1)

which is at mostvn + O(log n) for v = exp(—n). Assuming that the familyF attains the above-mentioned
property, we now proceed as follows.

Consider any coding schemn&nc, Dec) with block lengthn and message length which is non-
malleable for the familyF randomly constructed as above and achieving rate atleast for somea > 0
and any non-trivial error < 1. For any messagec {0, 1}%, let

E(s) := supp(Enc(s)) C [N]
and observe that(s) N E(s') = 0 for all s # s’. Observe that
E[[E(Uy)[] < N*
by the disjointness property of thé(s) and the assumption on the rate of the code. By Markov’s bound,
Pr[|E(Ug)| = 2N%] < 1/2

implying that for at least half of the choices of {0, 1}*, we can assumg(s)| < 4N“. Take two distinct
vectorssy, s € {0, 1}* satisfying this bound.

Now, letS := E(s1) U E(s2), where|S| < 2N“ as above. Consider amy € E(s;) andcy € E(s2)
and definefs: S — {0,1}" such that

(Vz € E(s1)): fs(x) =ce and (Vz € E(s2)): fs(z)=c1.

By the choice ofF, we know that there ig € F that agrees witlfs on all the points inS. This choice of
the adversary ensures that

Pr[Dec(f(Enc(s1))) =s2]) =1 and Pr[Dec(f(Enc(s2))) =s1]=1

with respect to the randomness of the encoder. Since theistvibdtionsDec( f(Enc(sy))) andDec(f(Enc(s2)))
are maximally far from each other and moreover, the advergaways tampers codewords kY s;) and
E(s2) to a codeword corresponding to a different message, we woadhat there is no choice @iy in
Definition 2.3 that ensures non-malleability with any edess thant. O

5.3 General adversaries acting on a subset of positions

An important family of adversaries is the one that is onlytieted by the subset of bits it acts upon. More
precisely, letl’ C [n] be a fixed set of sizen, for a parametery € (0,1). Forz € {0,1}", we use the
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notationzy € {0, 1}‘T| for the restriction ofr to the positions ir¥". Without loss of generality, assume that
T contains the firstT'| coordinate positions so that= (z7,z+), whereT := [n] \ T. We consider the
family Fr of all functionsf: {0,1}"™ — {0, 1}" such that

f(x) = (9(@r), 27)
for someg: {0, 1}/ — {0,1}/"!. Observe thatFr| < NN which implieslog log | Fr| < an.
We prove the following lower bound, which is a variation oétblassical Singleton bound for non-
malleable codes. What makes this variation much more catyillg to prove is the fact that 1) non-malleable
codes allow a randomized encoder, and 2) non-malleabdligyrmore relaxed requirement than error detec-

tion, and hence the proof must rule out the case where theddeclmes not detect errors (i.e., outputs a
wrong message) while still satisfies non-malleability.

Theorem 5.3. LetT C [n] be of sizexn and consider the family=r of the tampering functions that only
act on the coordinate positions i (as defined above). Then, there iga= O((logn)/n) such that
the following holds. LetEnc, Dec) be any coding scheme which is non-malleable for the farRilyand
achieves ratd — a + ¢, for anyd € [dp, o] and errore. Then,e > 6/(16«). In particular, whena and
are absolute constants,= (1).

Before proving the theorem, we state the following immesldrollary.

Corollary 5.4. LetF be the family of split-state adversaries actingrohits. Thatis, eaclf € F interprets
the input as a paiz;, z2) wherez, € {0,1}"/2) andz, € {0,1}/"/21, and outputs f; (1), f2(z2)) for
arbitrary tampering functiong; and f, (acting on their respective input lengths).

Moreover, for a fixed constant € (0, 1), let F5 be the class of tampering functions wherec F; iff
every bit off(z) depends on at mogbtn | of ths bits ofz.

Let (Ency, Decy) (resp., (Encs, Decs) be any coding scheme which is non-malleable for the class
(resp.,.Fs) achieving error at most and rate R (resp.,Rs). Then, for every fixed constamt> 0, there is a
fixed constanty > 0 such that ife < ¢g, the following bounds hold.

() R<1/2—7,
(i) Re<1—-6—1.
The proof of Theorem 5.3 uses basic tools from informaticotis, and the core ideas can be described
as follows. Assume that the codeword %, X») where the adversary acts 6fi, which is of lengthan.

We show that for any coding scheme with rate slightly larg@nt(1 — «)n, there is a sei,, C {0,1}*"
such that

1. For some messagsg, X lies in X, with noticeable probability.
2. For a “typical” message,, X is unlikely to land inX,,.

3. There is a vectow € {0, 1}*™ that cannot be extended to a codew6ud w’) that maps to eithes,
or s1 by the decoder.

We then use the above properties to design the followingestyathat violates non-malleability of the code:
Given (X1, X»), if X; € X, the adversary tampers the codewordu9 X5 ), which decodes to a message
outside{ sy, s1 }. This ensures thddec( f(Enc(sp))) has a noticeable chance of being tampered to an incor-
rect message. Otherwise, the adversary leaves the codewcndnged, ensuring thec(f(Enc(s1))) has

little chance of being tampered at all. Thus there is no ehfioc a distributionD ; that sufficiently matches
bothDec(f(Enc(sg))) andDec(f(Enc(s1))).
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Proof of Theorem 5.3

Throughout the proof, we use standard information theotetls, such as the notatidii(X') for the Shan-
non entropy of a discrete random variabfeand I(X;Y’) for the mutual information between discrete
random variablesX andY . We will need the following standard information-theocefact.

Claim 5.5. Suppose?(X) < r and letp(x) := Pr[X = z]. For anyn > 0, and define

1
Xy = {w € supp(X): p(2) > o=y}

Then,Pr[X € X,] > nand|X]| < 2/,

Proof. The upper bound ohX,,| is immediate from the definition ok,,. Let X, := supp(X) \ X,. We
need to show thar[X € Xn] < 1 — 5. If this is not the case, we can write

H(X)> Y p(w)log(1/p(x))

SCEX’!]
S Z rp(x)
= v 1 _ ,’7
SCEX'!]
=Prlz € X,Jr/(1 —n) >,

a contradiction. O

Suppose there is a coding scheffec, Dec) that is non-malleable for the famil¥r and achieving rate
at leastl — « + ¢, for an arbitrarily small parameteér € (0, «]. LetS ~ U, X := Enc(S) and suppose
X = (Xl,XQ) whereX; := X7y and X,y := XT'

For anys € {0,1}*, defineE(s) := supp(Enc(s)). Observe that

ES‘E(S)‘ < N/Nl_a+6 — Noz—6
By Markov’s bound, for anyy € (0, 1],
Pr{|E(S)| > N*7° /7] <. (23)

By the assumption on raté] (S) > n(1 — a + ¢). Also, H(X3|S) < H(X2) < n— |T| = n(1l — ).
Thus,
I(X2;5) = H(S) — H(S|X2)

Using the chain rule for mutual information,

I(X1;8) = I(X1, Xo;.5) — I(X2; S|X1)
= (H(S) — H(S|X1,X2)) — (H(X2|X1) — H(X2[S, X1))

> H(S) — H(X3|X1) (24)
> H(S) — H(X3) (25)
>(1—-—a+dn—(1—a)n=on, (26)
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where (24) holds because = Dec(X1, X2) and thusH(S|X;, X2) = 0, in addition to non-negativity
of entropy; (25) uses the fact that conditioning does notease entropy; and (26) holds because of the
assumption on the rate of the code and the lengtki-ofFrom this, we can deduce that

H(Xl‘S) = H(Xl) — [(Xl;S) < H(Xl) — on.

Note that the latter inequality in particular implies thd{X;) > dn, and thatsupp(X;) > 2°". By
Markov’s bound,
k

144y

{s € {0,1}*: H(X ]S = s) > (H(X1) — 6n)(1+47)}| < < (1 —27)28. (27)

By combining (23) and (27) using a union bound, there is aahofs, € {0, 1}* such that
|E(s0)| < N®°/~, and,H(X1|S = s0) < (H(X1) — 0n)(1 + 47).
We can takey := ¢/(8a) so that the above becomes
|E(s0)] < 8aN®°/5, and,H(X1|S = s0) < H(X}) — n/2. (28)

For a parametey > 0, to be determined later, we can now apply Claim 5.5 to theitiondl distribution
of X, subject toS = s, and construct a sef,, C {0,1}*" such that

Pr[X, € X,|S = so] > n, (29)
X, | < 20H(X0)~0n/2)/(1=n),

Letn' := Pr[X; € X,], and leth(-) denote the binary entropy function. Using a simple infoiorat
theoretic rule that follows from the definition of Shannoirepy, we can write
H(X1) = h(n) +n'H(X1|X1 € Xp) + (1 =) H(X1| X1 ¢ X))
H(X1) — (6/2)n

<h(n') +n'- T + (1 =) H(X1|X1 ¢ Xy) (30)
<h(') +1'" H(Xll) — 7(75/2)n + (1 =7 )H(X1), (31)

where (30) is due to the upper bound on the support siz€,adnd (31) holds since conditioning does not
increase entropy. After simple manipulations, (31) sifigsito

o 2hDA —m) - 2h())
on—2nH(Xy) ~ n(d—2na)

(32)

Now, we take; := §/(4«), so that the above inequalities, combined with the esti@te = O(n' log(1/7'))
yields

h(n")/n' = on/4 = log(1/n) = Q(6n) = 1’ < exp(—Q(dn)).

From the above inequality, straightforward calculationsuge that

n <n/4=46/(16a), (33)
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aslong a9 > dp = O((logn)/n).
From (33), recalling that’ = Pr[X; € X,,] and using Markov’s bound,
[{s: Pr[X; € X,|S = s] >n/2}|/2F < 1/2.
Combined with (23) and a union bound, there is a fixed {0, 1}* such that

|E(s1)| < 8aN7°/5, and, Pr[X; € X,|S = s1] < /2. (34)

Assuming the chosen lower bound fonwe can also ensure that, using (28), tatsg) U E(s1)| < N©.
Thus, there is a fixed string € {0,1}*" that cannot be extended to any codewordifs,) or in E(s1);
i.e.,

Pr[X; = w|(S = s0) V (S =s1)] =0,

which in turn implies
(Vzo € {0, 1}"(1_0‘)): Dec(w, z2) ¢ {so,s1}- (35)

Now, we consider the following tampering strategy {0, 1}/71 x {0,1}*~ 71 — {0, 1}/"! x {0, 1}~ |7
acting on the coordinate positionsdh

e Given(zy,x2) € {0, 1} x {0,1}"=ITif z; € X, output(w, x2).
e Otherwise, outputz, z2).

Suppose the coding schenienc, Dec) satisfied Definition 2.3 for a particular distributidh; over
{0,1}™ U {same, L } for the tampering functiorf.
Since f does not alter any string with the first component outside (34) implies that

Pl”[f(Xl,XQ) = (Xl,X2)|S = 31] >1- 77/2 (36)
On the other hand, by (29) and (35),
Pr[Dec(f (X1, X2)) & {s0,s1}|S = s0] = n. (37)

By (37) and Definition 2.3 D; must bee-close to a distributionD, that assigns at mosgt — » of the
probability mass tdsame, so, s1}. On the other hand, by (36]2; must bee-close to a distributiorD; that
assigns at leadt— »/2 of the probability mass tfsame, s; }. Thus, the statistical distance betwdemand
D is at leasty/2 (from the distinguisher corresponding to the evésime, s;}). By triangle inequality,
however,D, and D, are(2¢)-close. Therefores > n/4 and the result follows.
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A Rate 1/2 barrier for the uniform coding scheme.

Dziembowski et al. [8] consider the uniformly random codgafjeme Enc, Dec) in which the decodebec
maps any given input € {0,1}" to a uniform and independent random string{in1}*. Moreover, the
encoder, gives € {0, 1}*, outputs a uniformly random element@éc ' (s). In this section, we argue that
the uniform coding scheme cannot achieve a rate betterltfiaaven with respect to very simple tampering
functions.

Suppose that the scheme is indeed non-malleable with eperbounded by a small constant (say
1/4), and consider any bijective tampering functign {0,1}" — {0,1}". For example, one may think
of f as the function that flips the first bit of the input. For siropli, we assume that the coding scheme
achieves strong non-malleability (as proved by Dziembawsél. [8]. Since the chosen tampering function
does not have any fixed points (i.¢(x) # x), Definition 2.5 implies that there is a choice®f that has no
support on{same}, and we can restrict to such a distribution. However, it carstown that the argument
extends to the weaker definition of non-malleability as well

Let X := Enc(Ux) and observe tha®¥(X) = U, which in turn implies thatZ(f(X)) = U,. Con-
sider S := Dec(f(X)). Note thatZ(S) is a random variable depending on the randomness of the code
construction (namely, it is the empirical distribution bgttruth table of the decoder). With respect to this
randomness, we have
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Moreover, with overwhelming probability, the realizatiohthe code is so that
D(S) =o(1) U

Suppose this is the case and fix the randomness of the codeumbias accordingly.

Since for everys € {0,1}*, we know thatZ(Dec(f(Enc(s)))) is close (in the sense described by
Definition 2.3) toDy, it follows that the convex combination

Z Pr[Dec(U,,) = s]| - Z(Dec(f(Enc(s))))
s€{0,1}*

is equally close taD;. But, sincef(Enc(Dec(i4,))) = f(U,) = U,, the above convex combination is
exactly Z(Dec(Uy,)) = 2(S), which we know is close texy,.

Thus it follows that for every € {0, 1}*,
(s, Dec(f(Enc(s)))) o) (s,Ur),

and, forU ~ U,
(U, Dec(f(Enc(U)))) =o(1) Uzk- (38)

Since(U, Dec(f(Enc(U)))) is a function ofEnc(U), we get
H(U,Dec(f(Enc(U)))) < n.
On the other hand, 38 implies that the above entropy is cw8&.tThus,k < (n/2)(1 4 o(1)).

B Useful tools

In many occasions in the paper, we deal with a chain of cda@leandom variable8 = X, X;,..., X,
where we wish to understand an event dependingXgrtonditioned on the knowledge of the previous
variables. That is, we wish to understand

E[f(X:)|Xo, ..., Xi_1]-

The following proposition shows that in order to understtreabove quantity, it suffices to have an estimate
with respect to a more restricted event than the knowledg&of .., X; 1. Formally, we can state the
following, whereX stands forX; in the above example and stands for Xy, ..., X;_1).

Proposition B.1. Let X andY be possibly correlated random variables and f&tbe a random variable
such that the knowledge d&f determinesy’; that is, Y = f(Z) for some functionf. Suppose that for
every possible outcome of the random variaBlemamely, for every € supp(Z), and for some real-valued
functiong, we have

Elg(X)|Z =z] € 1. (39)

for a particular interval I. Then, for every € supp(Y'),
Elg(X)lY =y] € I.

Similarly, suppose for some distributid, and all z € supp(Z2),
P2(X|Z = z) = D.

Then, for ally € supp(Y),
2(X|Y =y) = D.
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Proof. LetT = {z € supp(Z): f(z) =y}, and letp(z) := Pr[Z = 2|Y = y]. Then,

Elg(X))Y =y] = ZP X)|Z = z].

zeT
Since by (39), eacli[g(X)|Z = 2] liesinI and}___p(z) = 1, we deduce that
E[g(X))Y =yl e L.

Proof of the second part is similar, by observing that if demion of distributions is statistically close to a
particular distributioriD, any convex combination of them is equally clos&xas well. O

Proposition B.2. Let the random variabl& € {0, 1}"™ be uniform on a set of size at legdt— ¢)2". Then,
D(X)is (¢/(1 — €))-close taldy,.

We will use the following tail bounds on summation of posgitdependent random variables, which are
direct consequences of Azuma’s inequality.

Proposition B.3. Let0 = X, X1,..., X, be possibly correlated random variables|ih 1] such that for
everyi € [n] and for somey > 0,
]E[XZ‘X(% s 7Xi—l] < -

Then, for every: > 1

n

Pr[ZXZ eny] < exp(—ny?(c — 1)%/2),
i=1

or equivalently, for every > ~,

Pr[zn: X; > nd) < exp(—n(d —7)%/2).
i=1
Proof. The proof is a standard Martingale argument. Fear[n], define
XZ( = X; —
and ‘ ‘
S = ZZ:X{ = zZ:XZ- — 7.
j=1 j—1
By assumption.S; is a super-martingale, that is, assumig:= 0,
E[S;+1|S0,-..,5:] < S;.
Thus, by Azuma'’s inequality, for atl > 0
Pr[S, > t] < exp(—t2/(2n)).
Substitutingt := (¢ — 1)n~y proves the claim. O

In a similar fashion (using Azuma’s inequality for sub-niragles rather than super-martingales in the
proof), we may obtain a tail bound when we have a lower bouncoowlitional expectations.
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Proposition B.4. Let0 = X, X1,..., X, be possibly correlated random variables|ih 1] such that for
everyi € [n] and for somey > 0,

E[X:] Xo,..., Xi—1] > 7.
Then, for every < =,

n
Pr[z X; < nd] < exp(—n(s —7)?/2).
i=1
The following tail bound is similar in flavor to the one givey Broposition B.3, but only applies to
indicator random variables. However, it can be better winenimdividual expectations are low and the
target deviation from mean is very large.

Proposition B.5. Let0 = X, X3,...,X,, € {0,1} be indicator, possibly dependent, random variables
such that for every € [n],
]E[XZ’XM o 7Xi—1] < D,

for somep € [0, 1]. LetX := X3 + --- + X,,. Then, for every > 1,
Pr[X > cnp] < (e/c)“™P.

Proof. We closely follow the standard proof of Chernoff bounds fatapendent indicator random variables
(see, e.g., [9]). Using Markov’s bound on the exponentiatmant of X, we can write, for a parameter> 0
to be determined later,

Elexp(tX)] Elexp(tX1)---exp(tXy,)]

Pr[X < _ . 40
HX > enp) exp(tenp) exp(tenp) (40)

However, we can write down the expectation of product asdheviing chain of conditional expectations

]E(Xh...,Xn)[eXp(tX)] =Ex, etXlE(XQ‘Xl) [etX? . E(Xn‘Xl,...7Xn71)etX”] . H
< (pexp(t) +1)".
where the inequality uses the fact that tigare Bernoulli random variables and thus
Elexp(tX;)| X1,...,X;—1] < pexp(t) + (1 — p) exp(0) < pexp(t) + 1.
Using the inequality(1 4+ =)™ < exp(nx) the above simplifies to
Elexp(t.X)] < exp(npexp(t)),
and thus, plugging the above result into (40),

exp(np exp(t))
exp(tenp)
Choosingt := In ¢ yields the desired conclusion. O

Pr[X > enp] <

For summation of-wise independent random variables, we use the followiihdp¢and from [2]:

Theorem B.6. Let¢ > 1 be an even integer, and 1&f;, ..., X,, € [0,1] bet-wise independent variables.
DefineX := X; + --- + X,, andp := E[X]. Then,
L+ 0)\4/2
Pr]|X — >A]<8( (A2 )) .
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Approximating distributions by fuzzy correlated sampling

In this section, we show that it is possible to sharply appnate a distributiorD with finite support by
sampling possibly correlated random variabkés . . ., X,, where the distribution of eacK; is close toD
conditioned on the previous outcomes, and computing thereralpdistribution of the drawn samples.

Lemma B.7. Let D be a distribution over a finite sét such thatsupp(D)| < r. For anyn, e, > 0 such
thaty < ¢, there is a choice of

n=O((r+2+log(1/n))/(c — 7))

such that the following holds. Suppdse- Xy, X1, ..., X,, € X are possibly correlated random variables
such that for alli € [n] and all values) = x, 21 ..., z, € supp(D),

2(Xi|Xo = xo, ..., Xj—1 = xi_1) =, D.
Then, with probability at least — 7, the empirical distribution of the outcomes, ..., X, is e-close toD.

Proof. First, we argue that without loss of generality, we can assthat|>| < r + 1. This is because if
not, we can define a functiofi: ¥ — supp(D) U {x} as follows:

x otherwise.

flz) = {:U if © € supp(D)

Observe that for any distributio®’ over X, dist(D’,D) = dist(f(D’), D), since the elements outside
supp(D) always contribute to the statistical distance and we aggeeall such mass on a single extra point
*, and by doing so do not affect the statistical distance. Thegmpirical distribution ofX;,..., X,) is
e-close toD iff the empirical distribution of f(X1), ..., f(X,)) is.

Now supposeY| < r + 1. Let A C ¥ be any non-empty event, and denote Bythe empirical

distribution of the outcomeX, ..., X,,. Letp := D(A), and define indicator random variables
0 X;¢A
Y;: = 2 ¢ )
1 X, e A

for i € [n] andYp := 0. Observe that
D) = 2=
n
and, by the assumption on the closeness of conditionalldittins of theX; to D,
E[Y;|Yo,....Yia] € [p—v.p+1].
By Propositions B.3 and B.4, we can thus obtain a conceatrdtound
Pr{|D/(A) — p| > €] < 2exp(—(e —7)*n/2).
Now we can apply a union bound on all possible choiced ahd conclude that
Pr[=(D' x D)] < 2" exp(—(e — 7)*n/2),
which can be ensured to be at mgdor some choice of

n=O0((r+2+1log(1/n))/(e = 7)?). O
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