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ABSTRACT
Recall the classical hypothesis testing setting with two sets
of probability distributions P and Q. One receives either n
i.i.d. samples from a distribution p ∈ P or from a distribu-
tion q ∈ Q and wants to decide from which set the points
were sampled. It is known that the optimal exponential
rate at which errors decrease can be achieved by a simple
maximum-likelihood ratio test which does not depend on p
or q, but only on the sets P and Q.

We consider an adaptive generalization of this model where
the choice of p ∈ P and q ∈ Q can change in each sample
in some way that depends arbitrarily on the previous sam-
ples. In other words, in the kth round, an adversary, having
observed all the previous samples in rounds 1, . . . , k − 1,
chooses pk ∈ P and qk ∈ Q, with the goal of confusing
the hypothesis test. We prove that even in this case, the
optimal exponential error rate can be achieved by a simple
maximum-likelihood test that depends only on P and Q.

We then show that the adversarial model has applications
in hypothesis testing for quantum states using restricted
measurements. For example, it can be used to study the
problem of distinguishing entangled states from the set of
all separable states using only measurements that can be
implemented with local operations and classical communi-
cation (LOCC). The basic idea is that in our setup, the
deleterious effects of entanglement can be simulated by an
adaptive classical adversary.

We prove a quantum Stein’s Lemma in this setting: In
many circumstances, the optimal hypothesis testing rate is
equal to an appropriate notion of quantum relative entropy
between two states. In particular, our arguments yield an
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alternate proof of Li and Winter’s recent strengthening of
strong subadditivity for von Neumann entropy.

Categories and Subject Descriptors
G.3 [Mathematics of computing]: Probability and statis-
tics; H.1.1 [Information systems]: Models and princi-
ples—Systems and information theory

General Terms
Theory

Keywords
quantum information theory, entanglement testing, compos-
ite hypothesis testing

1. INTRODUCTION
Asymmetric hypothesis testing is the problem of distin-

guishing between two sources where one wants to minimize
the rate of false positives (type-1 error) subject to a con-
straint on the rate of false negatives (type-2 error). In the
case of n i.i.d. samples from a classical or quantum source, a
central result is the Chernoff-Stein Lemma [11, 13, 1] which
states that for any constant bound on the type-2 error, the
optimal type-1 error decreases at an exponential rate whose
exponent is given by the classical (respectively, quantum)
relative entropy. Similar results hold even when we general-
ize the problem so that the sources are described by an un-
known parameter and one needs to design a test that works
for any choice of the parameter.

Adversarial hypothesis testing. In the first part of this
paper (Section 2), we generalize this problem further to al-
low the parameter to vary adaptively from sample to sam-
ple. Since we will allow the parameter to depend arbitrarily
on previous samples, this can be thought of as adversar-
ial hypothesis testing. That is, we wish to devise a test
that can distinguish between samples from two different sets
even against an adversary that can choose the distribution
in each round based on which samples have previously been
observed.

There are some simple cases where it is not hard to see
that this additional power cannot help the adversary. For ex-
ample, suppose we are given a coin with heads probability p
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and wish to distinguish between the cases where p ∈ [0, 1/3]
and where p ∈ [2/3, 1]. It is straightforward to show that
this general problem is no harder than simply distinguishing
a 1/3-biased coin from a 2/3-biased coin; equivalently, the
adversary gains no advantage from the ability to be adap-
tive. On the other hand, distinguishing between the two
settings p ∈ {1/3, 2/3} and p = 1/2 is clearly impossible,
as the adversary can simply choose with probability 1/2 to
flip the 1/3-biased coin, and with probability 1/2 to flip the
2/3-biased coin. The resulting distribution of samples is in-
distinguishable from the one arising from p = 1/2. This
stresses the role of convexity since even a non-adaptive ad-
versary can simulate a convex combination of distributions
by choosing randomly among them.

We will prove in Theorem 2 that this property is suffi-
cient to characterize the optimal error rate for asymmetric
hypothesis testing against an adaptive adversary. Specifi-
cally, if the two sources vary over convex sets of probability
distributions, then the problem is no harder than in the i.i.d.
case. Our Theorem 6 also establishes a version of this claim
for symmetric hypothesis testing. These two results can be
thought of as adversarial versions of the classic Chernoff-
Stein Lemma and Chernoff Theorem, respectively.

Quantum hypothesis testing, entanglement, and ad-
ditivity. One of our main applications for our adversar-
ial Chernoff-Stein Lemma is in quantum hypothesis testing,
when the states to be distinguished need not be i.i.d. Indeed,
a recurrent challenge in quantum information theory is that
even apparently i.i.d. problems can involve complicated en-
tangled states (meaning that they cannot be written as a
convex combination of independent states). For example,
the quantum capacity of an i.i.d channel requires maximiz-
ing over all n-component inputs, and in general it is known
that achieving the capacity requires using states that are
entangled across channel uses [14, 17]. This phenomenon in
quantum information theory—where information-theoretic
quantities for n copies of a system are not simply n times
the one-copy quantity—is known generally as the “additiv-
ity” problem.

A similar additivity problem arises in quantum hypothesis
testing when we wish to distinguish many copies of a fixed
state against a family of states that include non-i.i.d. states.
One important example is the relative entropy of entangle-
ment ER, which is a method of quantifying the entanglement
in a state ρ as the minimum of its relative entropy with re-
spect to any separable (i.e. non-entangled) state. Here, ρ is
a multipartite state (e.g., shared between systems A,B,C)
and separability refers to this partition. However, to es-
tablish the asymptotic hypothesis testing rate of ρ against
separable states, we need to compare n copies of ρ against
states that are separable with respect to our original parti-
tion, but not necessarily across the different copies. In our
example, ρ⊗n lives on systems A1, B1, C1, . . . , An, Bn, Cn
and we need to compare against states that are separable
across the A1 . . . An : B1 . . . , Bn : C1 . . . Cn partition, but
possibly entangled within the A1, . . . , An systems (and the
B1, . . . , Bn and C1, . . . , Cn systems). Indeed, such entangle-
ment across copies is known to be necessary to compute the
relative entropy of entanglement, since examples exist [39]
where ER(ρ⊗ ρ) < 2ER(ρ).

Restricted measurements. A further difficulty arises in
the quantum setting when we consider restricted families of

measurements, such as those arising from locality restric-
tions. Here, too, the optimal measurement can be entan-
gled across copies. Moreover, since the hypothesis testing
problem involves maximizing distinguishability over allow-
able measurements and minimizing over states, it is possible
for entanglement to either increase or decrease the rate.

One particularly relevant example for our work involves
distinguishing many copies of a state ρ against a general
separable state, using measurements from a class (such as
1-LOCC, defined below) which preserves the set of separable
states. This distinguishability scenario was studied exten-
sively in [33, 9, 25, 8]. Though it may initially seem to be an
obscure question, it has found applications to understanding
the quantum conditional mutual information [9], to channel
coding [28], and to classical algorithms for separability test-
ing [10] and the small-set expansion problem [2].

The main result of Section 3 provides quantum versions
of the Chernoff-Stein Lemma and Chernoff’s theorem for
restricted measurements. The main idea is that the dele-
terious effects of entanglement in this setting are no worse
than what could be achieved by an adaptive adversary. Thus
quantum analogues follow as a corollary of our classical re-
sults. One application of these results is an alternate proof
of the improved strong subadditivity inequality of Li and
Winter [25].

2. HYPOTHESIS TESTING AGAINST AN
ADAPTIVE ADVERSARY

2.1 Asymmetric hypothesis testing
Fix two distributions p and q over a finite domain Ω.

Given i.i.d. samples X1, X2, . . . , Xn from a distribution r ∈
{p, q}, the goal is to design a test which distinguishes the two
possibilities based on the sample. The classical Chernoff-
Stein Lemma characterizes the optimal exponential rate of
error decay achievable in the one-sided error setting.

Consider any acceptance region An ⊆ Ωn and the corre-
sponding error probabilities αn = pn(Acn) and βn = qn(An),
where we use Sc to denote the complement of a set S. Then
for 0 < ε < 1, define

βεn ..= min
An⊆Ωn

αn<ε

βn .

We define the optimal error exponent by

E(p, q) ..= lim
ε→0

lim
n→∞

− log βεn
n

.

The following well-known lemma characterizes E in terms
of the relative entropy (see, e.g., Theorem 11.8.3 of [13]).

Lemma 1 (Chernoff-Stein Lemma). Consider any
two distributions p and q over a finite domain Ω with
D(p ‖ q) <∞. Then E(p, q) = D(p ‖ q).

Here, D(p ‖ q) is the relative entropy, given by

D(p ‖ q) ..=
∑
x∈Ω

p(x) log
p(x)

q(x)
,

and we take D(p ‖ q) ..=∞ when there is an x ∈ Ω such that
p(x) 6= 0 but q(x) = 0.

The adaptive setting. Suppose now that P,Q ⊆ RΩ are
closed, convex sets of probability distributions. An adaptive
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P -strategy p̂ is a collection of functions {p̂k : Ωk−1 → P :
k = 1, 2, . . .}. Let A(P ) denote the set of all adaptive P -
strategies. For x ∈ Ωn, we denote

p̂(x) ..=

n∏
k=1

p̂k(x1, . . . , xk−1)(xk) .

As before, let An ⊆ Ωn be an acceptance region, but now
we define

αn ..= sup
p̂∈A(P )

p̂(Acn) ,

and

βεn ..= min
An⊆Ωn

αn<ε

sup
q̂∈A(Q)

q̂(An) .

We denote the adversarial one-sided error exponent by

Eadv(P,Q) ..= lim
ε→0

lim
n→∞

− log βεn
n

.

Observe that for single distributions p, q ∈ RΩ, we have
Eadv({p}, {q}) = E(p, q).

Theorem 2 (Adversarial Chernoff-Stein). Let Ω
be a finite domain. For any closed, convex sets of probability
distributions P,Q ⊆ RΩ, we have

Eadv(P,Q) = min
p∈P,q∈Q

D(p ‖ q) (1)

whenever the right-hand side is finite.

Thus in the asymptotic regime, adversarial adaptive hy-
pothesis testing is no harder than the i.i.d. setting. Indeed,
the hypothesis test used is a simple Neyman-Pearson test
for p, q minimizing the RHS of (1). This result was previ-
ously known in the non-adaptive case, where it is sometimes
referred to as composite hypothesis testing [23].

Proof. Let p∗ ∈ P and q∗ ∈ Q be the minimizers of
D(p ‖ q) as p and q vary over P and Q, respectively. We as-
sume they exist and that 0 < D(p∗ ‖ q∗) <∞, else the the-
orem is vacuously true. By considering non-adaptive strate-
gies that simply play p∗ and q∗ in each coordinate, one sees
that

Eadv(P,Q) ≤ Eadv({p∗}, {q∗}) = E(p∗, q∗) = D(p∗ ‖ q∗) ,

where the last equality is Lemma 1. Thus we need only
prove that Eadv(P,Q) ≥ D(p∗ ‖ q∗).

To this end, for n ∈ N and 0 < ε, we define an acceptance
region

An,ε ={
x ∈ Ωn : log

p∗(x1)p∗(x2) · · · p∗(xn)

q∗(x1)q∗(x2) · · · q∗(xn)
≥ n(D(p∗ ‖ q∗)− ε)

}
.

Our first goal is to argue that, for every adaptive P -strategy
p̂, and every ε > 0, we have

lim
n→∞

p̂(An,ε) = 1 . (2)

We will then show that for any adaptive Q-strategy q̂, we
have

q̂(An,ε) ≤ e−n(D(p∗ ‖ q∗)−ε) . (3)

Once these are proved, letting ε→ 0 yields the desired claim.
Toward proving (2), observe that, for every ε > 0,

limn→∞(p∗)n(An,ε) = 1 by the law of large numbers. The
following lemma will imply that the same is true for p̂.

Lemma 3. For any p ∈ P , we have∑
x∈Ω

p(x) log
p∗(x)

q∗(x)
≥
∑
x∈Ω

p∗(x) log
p∗(x)

q∗(x)
.

Proof. By Theorem 11.6.1 in [13], we have

D(p ‖ q∗) ≥ D(p ‖ p∗) +D(p∗ ‖ q∗) .

Observing that D(p ‖ q∗)−D(p ‖ p∗) =
∑
x∈Ω p(x) log p∗(x)

q∗(x)
,

we see that this is precisely the desired inequality.

Now, for x ∈ Ω, let L(x) = log p∗(x)
q∗(x)

. The preceding

lemma states that for any p ∈ P , we have

Ep[L(x)] ≥ Ep∗ [L(x)] = D(p∗ ‖ q∗) . (4)

Consider a sequence of random variables {Xk} distributed
according to p̂ (in other words, Xk is sampled according to
the measure p̂k(X1, X2, . . . , Xk−1)), and the corresponding
martingale difference sequence

Dk ..= L(Xk)− E[L(Xk) | X1, . . . , Xk−1] .

Since the differences are uniformly bounded, Chebyshev’s
inequality implies that for any ε > 0,

lim
n→∞

P

(
n∑
k=1

Dk ≥ −εn

)
= 1 . (5)

On the other hand, (4) implies that for each k, one has
E[L(Xk) | X1, . . . , Xk−1] ≥ D(p∗ ‖ q∗). Combining this with
(5) yields

lim
n→∞

p̂(An,ε) = lim
n→∞

P

(
n∑
k=1

L(Xk) ≥ n(D(p∗ ‖ q∗)− ε)

)

≥ lim
n→∞

P

(
n∑
k=1

Dk ≥ −εn

)
= 1 ,

confirming (2).
We now turn to verifying (3).

Lemma 4. For any q ∈ Q, we have∑
x∈Ω

q(x)
p∗(x)

q∗(x)
≤ 1 .

Proof. For λ ∈ [0, 1], write qλ = λq + (1 − λ)q∗. Since
q∗ is the minimizer of D(p∗ ‖ q) for q in the convex set Q,
we know that the derivative of D(p∗ ‖ qλ) at λ = 0 is non-
negative.

Calculate

d

dλ
D(p∗ ‖ qλ) =

∑
x∈Ω

p∗(x)
d

dλ
log

p∗(x)

qλ(x)

= −
∑
x∈Ω

p∗(x)
d

dλ
log

(
λq(x) + (1− λ)q∗(x)

p∗(x)

)
= −

∑
x∈Ω

p∗(x)
q(x)− q∗(x)

λq(x) + (1− λ)q∗(x)
.

Using the fact that the derivative is non-negative at λ = 0
yields ∑

x∈Ω

p∗(x)q∗(x)

q∗(x)
≥

k∑
i=1

p∗(x)q(x)

q∗(x)
,

but the left-hand side is equal to 1, yielding the desired
result.
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With the preceding lemma in hand, we finish the proof of
(3). Fix some adaptive Q-strategy q̂. By Markov’s inequal-
ity,

q̂(An,ε) ≤ e−n(D(p∗ ‖ q∗)−ε) Eq̂
[
p∗(x1) · · · p∗(xn)

q∗(x1) · · · q∗(xn)

]
. (6)

We now use the fact that, by Lemma 4, the sequence of like-

lihood ratios
∏n
i=1

p∗(xi)
q∗(xi)

is a supermartingale with respect

to q̂. In particular,

Eq̂
[
p∗(x1) · · · p∗(xn)

q∗(x1) · · · q∗(xn)

]
= Eq̂

[
p∗(x1) · · · p∗(xn−1)

q∗(x1) · · · q∗(xn−1)
Eq̂n(x1,x2,...,xn−1)

p∗(x)

q∗(x)

]
≤ Eq̂

[
p∗(x1) · · · p∗(xn−1)

q∗(x1) · · · q∗(xn−1)

]
≤ · · ·
≤ 1 ,

where in the third line we have applied Lemma 4 to the dis-
tribution q̂n(x1, x2, . . . , xn−1) ∈ Q, and then we have con-
tinued by induction. Combining this with (6) completes our
verification of (3) and hence our proof of the theorem.

2.2 Chernoff information and symmetric hy-
pothesis testing

Suppose again that we have two distributions p and q
over a finite domain Ω. We also have n i.i.d. samples
X1, X2, . . . , Xn from a distribution r ∈ {p, q}, and a Bayesian
hypothesis: The samples come from p with probability πp
and from q with probability πq. Consider a test Tn ⊆ Ωn.
If (X1, X2, . . . , Xn) ∈ Tn, we declare that the sample came
from p.

Our goal is to minimize the expected error

δn(Tn) ..= πp p
n(T cn) + πq q

n(Tn) .

In this case, the best achievable error exponent is

γ(p, q) ..= lim
n→∞

− 1

n
min
Tn⊆Ωn

log δn(Tn) .

Observe that the constants πp and πq do not affect γ(p, q).
For λ ∈ [0, 1], let us define

Γλ(p, q) ..= − log
∑
x∈Ω

p(x)λq(x)1−λ ,

and for p and q distinct, let λ(p, q) be the value of λ ∈ [0, 1]

that maximizes Γλ(p, q). Finally, put Γ∗(p, q) ..= Γλ(p,q)(p, q).
We have the following characterization due to Chernoff (see,
e.g., Theorem 11.9.1 of [13]).

Theorem 5. For any distributions p and q, one has

γ(p, q) = Γ∗(p, q) = D(r ‖ q) = D(p ‖ r) ,

where r is the distribution given by

r(x) ..=
p(x)λ(p,q)q(x)1−λ(p,q)∑
y∈Ω p(y)λ(p,q)q(y)1−λ(p,q)

We will prove a corresponding theorem in the adaptive
setting. To this end consider again two closed, convex sets

of distributions P,Q ⊆ RΩ. Define the adversarial two-sided
error exponent

γadv(P,Q) ..= lim
n→∞

− 1

n
min
Tn⊆Ωn

max
p̂,q̂

log (p̂(T cn) + q̂(Tn))

where the maximum is over all adaptive P -strategies p̂ and
adaptive Q-strategies q̂.

Theorem 6 (Adversarial Chernoff Theorem). For
any finite domain Ω and closed, convex sets of distributions
P,Q ⊆ RΩ, we have

γadv(P,Q) = min
p∈P,q∈Q

Γ∗(p, q) .

Proof. Assume P and Q are disjoint, since otherwise
both γadv(P,Q) and Γ∗(P,Q) are trivially equal to zero. Let
p∗ ∈ P and q∗ ∈ Q denote the minimizers of Γ∗(p, q) and
put λ∗ = λ(p, q). First, we have

γadv(P,Q) ≤ γadv({p∗}, {q∗}) = γ(p∗, q∗) = Γ∗(p∗, q∗) ,

where the latter equality is given by Theorem 6. Thus we
are left to prove γadv(P,Q) ≥ Γ∗(p∗, q∗).

To this end, for n ∈ N, define

Tn ..=

{
x ∈ Ωn :

n∏
i=1

p∗(xi) ≥
n∏
i=1

q∗(xi)

}
.

Fix also an adaptive P -strategy p̂ and an adaptiveQ-strategy
q̂. We will show that

lim
n→∞

− log(p̂(T cn) + q̂(Tn))

n
≤ Γ∗(p∗, q∗) . (7)

We will need to employ the following easy variant of the
“envelope theorem.”

Lemma 7. Consider a differentiable function f : [0, 1]2 →
R. Define V (t) = infλ∈[0,1] f(λ, t) and suppose that for every
t ∈ [0, 1], there is a unique λ∗(t) ∈ (0, 1) such that V (t) =
f(λ∗(t), t). If λ∗ is differentiable at t ∈ [0, 1], then V ′(t) =
f2(λ∗(t), t) where f2 is the partial derivative of f with respect
to its second argument.

Proof. Let f1 denote the partial derivative of f with
respect to its first argument. Writing V (t) = f(λ∗(t), t) and
applying the chain rule yields

V ′(t) = f2(λ∗(t), t) + f1(λ∗(t), t)
d

dt
λ∗(t).

The second term is zero because f1(λ∗(t), t) = 0 by optimal-
ity of λ∗(t).

Remark 8. Observe that if f(λ, t) has ∂2

∂λ2 f(λ, t) > 0
for some t ∈ [0, 1], then λ∗(t) is the unique solution of
∂
∂λ
f(λ, t) = 0 and is differentiable by the implicit function

theorem. Note that the assumptions of Lemma 7 can be re-
laxed considerably; see, e.g., [29, Ch. 3].

This allows us to prove the following.

Lemma 9. For any distribution q ∈ Q, one has∑
x∈Ω

q(x)
p∗(x)λ

∗

q∗(x)λ∗
≤
∑
x∈Ω

q∗(x)
p∗(x)λ

∗

q∗(x)λ∗
.
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Proof. For t ∈ [0, 1], define a distribution qt ..= tq+(1−
t)q∗ ∈ Q. Moreover, define a function f : [0, 1]2 → R by

f(λ, t) =
∑
x∈Ω

qt(x)1−λp∗(x)λ .

Observe that since qt 6= p∗ for any t, we have

∂2

∂λ2
f(λ, t) =

∑
x

qt(x)1−λp∗(x)λ
(

ln

(
p∗(x)

qt(x)

))2

> 0

for all t ∈ [0, 1] and λ ∈ (0, 1). Moreover, for fixed t, the
minimum of f(λ, t) is achieved for some λ ∈ (0, 1).

Let f2 be the partial derivative of f in its second argu-
ment; then one computes:

f2(λ, t) =
∑
x∈Ω

(q(x)− q∗(x))(1− λ)qt(x)−λp∗(x)λ .

If we let V (t) = minλ∈(0,1) f(λ, t), then optimality of q∗

implies V ′(0) ≤ 0. But now Lemma 7 (in conjunction with
Remark 8) yields

0 ≥ V ′(0) = f2(λ∗, 0)

=
∑
x∈Ω

(q(x)− q∗(x))(1− λ∗)q∗(x)−λ
∗
p∗(x)λ

∗
.

Rearranging yields the desired claim.

The preceding lemma shows that the sequence
∏n
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗

is a supermartingale with respect to q̂. Thus we can write

Eq̂

[
n∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗

]

= Eq̂

[
n−1∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗ Eq̂n(x1,...,xn−1)

p∗(xn)λ
∗

q∗(xn)λ∗

]

≤ e−Γ∗(p∗,q∗)Eq̂

[
n−1∏
i=1

p∗(xi)
λ∗

q∗(xi)λ
∗

]
≤ · · ·

≤ e−nΓ∗(p∗,q∗) ,

where in the third line we have used Lemma 9 along with
the fact that q = q̂n(x1, . . . , xn−1) ∈ Q, and then we have
continued by induction.

By Markov’s inequality, this implies q̂(Tn) ≤ e−nΓ∗(p∗,q∗).
By the symmetry of the preceding argument with respect to
P and Q, the same bound of p̂(T cn) ≤ e−nΓ∗(p∗,q∗) holds for
p̂. Combining these yields γadv(P,Q) ≥ Γ∗(p∗, q∗), complet-
ing the proof.

3. DISTINGUISHING QUANTUM STATES
WITH RESTRICTED MEASUREMENTS

A central problem in quantum information is to distin-
guish between a pair of quantum states ρ and σ. Necessary
background and definitions for the reader unfamiliar with
quantum information theory can be found in Appendix A.
As usual, there is a tradeoff between errors of type 1 and 2,
i.e., mistaking ρ for σ and vice versa. The quantum Neyman-
Pearson lemma states that the optimal tradeoff curve be-
tween errors of type 1 and 2 is achieved by choosing

M = {θρ− σ ≥ 0},

for some θ ≥ 0, where {X ≥ 0} denotes the projector onto
the eigenvectors of X with nonnegative eigenvalue. The
estimation strategy is then to perform the measurement
{M, I − M} and guess ρ upon obtaining outcome M or
σ upon obtaining outcome I −M.

One well-known case is when ρ and σ have prior proba-
bilities p and 1 − p, respectively, and we wish to minimize
the total probability of error. In this case the optimal M
is given by M = {pρ − (1 − p)σ ≥ 0}, and the probability

of error is 1−‖pρ−(1−p)σ‖1
2

, where ‖ · ‖1 denotes the Schatten

1-norm. The familiar trace distance 1
2
‖ρ − σ‖1 corresponds

to the case p = 1/2.

We modify this basic problem of state distinguishability in
three (simultaneous) ways:

1. We consider only measurementsM from some restricted
class M .

2. We allow ρ, σ to be drawn adversarially from some sets
R,S, respectively.

3. We consider the asymptotic limit in which M,R, S
are replaced by families M = (M1,M2, . . .),R =
(R1, R2, . . .),S = (S1, S2, . . .) withMn, Rn, Sn describ-
ing measurements and states on V ⊗n. Our goal is then,
for each n, to find a measurement M ∈ Mn that will
effectively distinguish any state ρ ∈ Rn from any state
σ ∈ Sn.

These changes render the problem a good deal more ab-
stract, and introduce a large number of new parameters.
Thus, it may be helpful to keep in mind a prototypical ex-
ample that was one of the motivations for this work. For
some fixed bipartite state ρ over A ⊗ B, let Rn be the sin-
gleton set {ρ⊗n}, and let Sn ..= Sep(A⊗n : B⊗n). This
corresponds to studying the asymptotic distinguishability of
many copies of ρ from a separable state on the same num-
ber of systems. For this special case, we introduce the no-
tation ρ := ({ρ}, {ρ⊗2}, . . .) and Sep(A : B) := (Sep(A :
B),Sep(A⊗2 : B⊗2), . . .). Where the context is understood,
we will often omit the reference to A,B and simply write Sep
or Sep. Finally, we will consider a restricted class of mea-
surements M, such as the class of 1-LOCC measurements
(as discussed in [33, 9, 25, 8]).

3.1 Background on restricted quantum mea-
surements

We begin by introducing notation, describing known re-
sults on restricted-measurement distinguishability, and pre-
senting a few small new results to help clean up the land-
scape. In Section 3.2, we describe our restricted-measurement
version of the quantum Stein’s Lemma, and in Section 3.3
we give an application to quantum conditional mutual in-
formation.

3.1.1 Quantum Stein’s Lemma
Let us first introduce some definitions analogous to the

classical setup discussed in Section 2. We replace our finite
domain Ω with a finite-dimensional vector space V , and de-
note the set of density matrices over V by D(V ). Often we
will be interested in the case where V is a composite system,
e.g., a bipartite space A⊗B. If ρ, σ are density matrices on
V , then the relative entropy of ρ with respect to σ is

D(ρ ‖σ) ..= tr (ρ(log ρ− log σ)) . (8)
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If ker(σ) * ker(ρ), we take D(ρ ‖σ) ..=∞.
Following the classical case, we define an acceptance op-

erator Mn (analogous to the acceptance region Tn) to
be an operator on V ⊗n satisfying 0 ≤ Mn ≤ I (i.e.,
a POVM element), with corresponding error probabilities
αn = tr

(
(I −Mn)ρ⊗n

)
and βn ..= tr

(
Mnσ

⊗n). Again we
can define βεn ..= min{βn : αn < ε} and

E(ρ, σ) ..= lim
ε→0

lim
n→∞

− log βεn
n

(9)

Hiai and Petz [19] proved the following quantum analogue
of Lemma 1:

D(ρ ‖σ) = E(ρ, σ). (10)

See also [5, 24] for elegant and elementary proofs. The
“strong converse” of (10) was proved by Ogawa and Na-
gaoka [31], and can be thought of as showing that (10) holds
when the limit of ε → 0 in (9) is replaced by any fixed
ε ∈ (0, 1).

3.1.2 Asymptotic composite hypothesis testing
An important generalization of hypothesis testing is when

ρ and σ are chosen from sets R,S ⊆ D(V ), respectively, and
we need to design our test with knowledge only of R and S.
This problem is known as composite hypothesis testing and
is closely related to the classical Sanov’s theorem. In [4, 18],
it is proved that the best error exponent when R is general
and S is the singleton set S = {σ} is given by

D(R ‖σ) ..= min
ρ∈R

D(ρ ‖σ) . (11)

One case of particular interest to quantum information
is when ρ ∈ D(A ⊗ B) and S is the set of separable
states on A ⊗ B, i.e., S = Sep(A : B). The quantity
D(ρ ‖ Sep) ..= D(ρ ‖ Sep(A : B)) is known as the relative
entropy of entanglement [38] and has been widely studied as
an entanglement measure (see, e.g., Table I in [9]); note that
it is usually written as ER(ρ).

One challenge in working with the relative entropy of en-
tanglement is that D(ρ⊗n ‖ Sep) will not in general be equal
to n ·D(ρ ‖ Sep), reflecting the fact that Sep(A⊗n : B⊗n) is
larger than the convex hull of {σ1 ⊗ · · · ⊗ σn : σ1, . . . , σn ∈
Sep(A : B)}. Intuitively, Sep(A⊗n : B⊗n) can be thought
of as the set of states on the 2n systems A1 . . . AnB1 . . . Bn
which are separable across the A1 . . . An : B1 . . . Bn cut,
but may be entangled arbitrarily among the A systems and
among the B systems. This is an example of the quantum-
information phenomenon known as the additivity problem
(see, e.g., [41, 36]).

Definition 1. Let R = (R1, R2, . . .), S = (S1, S2, . . .),
with Rn, Sn ⊆ D(V ⊗n). Then the asymptotic relative en-
tropy of R with respect to S is

D(R ‖S) ..= lim
n→∞

inf
ρ∈Rn
σ∈Sn

D(ρ ‖σ)

n
. (12)

We further define

αn(M) ..= sup
ρ∈Rn

tr ((I −M)ρ) (13)

βn(M) ..= sup
σ∈Sn

tr (Mσ) (14)

βεn ..= inf{βn(M) : αn(M) < ε} (15)

E(R,S) ..= lim
ε→0

lim
n→∞

− log βεn
n

(16)

Note that the limits of Eq. (12) (resp. Eq. (16)) may
not exist, in which case we leave D(R ‖S) (resp. E(R,S))
undefined. See [6] for a discussion of replacing the lim with
lim inf or lim sup.

An important special case of Eq. (12) is the regularized
relative entropy of entanglement [37], which is defined to be
limn→∞

1
n
D(ρ⊗n ‖ Sep), and is normally denoted E∞R (ρ). In

our notation this quantity is given by

D(ρ ‖ Sep), (17)

In terms of Definition 1, the result of [4, 18] can be ex-
pressed as

D(R ‖S) = E(R,S), (18)

whenever R,S are of the form Rn = {ρ⊗n : ρ ∈ R1} and
Sn = {σ⊗n}, for some set R1 and some state σ. We call re-
sults of the form (18) “quantum Stein’s Lemmas,” because,
like the classical Chernoff-Stein Lemma, they give an equal-
ity between a relative entropy and an error exponent for
hypothesis testing.

A quantum Stein’s Lemma has also been proven in the
case when R = ρ for a fixed state ρ and S is a family of
sets. In this case, (18) is proved in [7] in the case where S
is a self-consistent family of states, meaning that:

1. Each Sn is convex and closed.

2. There exists a full-rank state σ such that each Sn con-
tains σ⊗n.

3. For each σ ∈ Sn, trn σ ∈ Sn−1.

4. If σn ∈ Sn, σm ∈ Sm then σn ⊗ σm ∈ Sn+m.

5. Sn is closed under permutation.

Some important cases of self-consistent families of states are
Sep (defined in Section 3.1.1), PPT (defined in Appendix A,
although it will not be used in this paper) and σ for any full-
rank state σ.

3.1.3 Hypothesis testing with restricted measure-
ments

We now introduce the problem of quantum hypothesis
testing with restricted measurements. In general, two-
outcome measurements on V ⊗n have the form {M, I −M}
where 0 ≤ M ≤ I. However, it is often useful to con-
sider smaller classes of measurements, such as those that
two parties can perform with local operations and classical
communication (LOCC).

Definition 2. Let R = (R1, R2, . . .), S = (S1, S2, . . .),
with Rn, Sn ⊆ D(V ⊗n), and M = (M1,M2, . . .), with Mn

a set of measurements on D(V ⊗n). Then the asymptotic
relative entropy of R with respect to S under measurements
M is

DM(R ‖S) ..= lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

D(M (ρ) ‖M (σ))

n
. (19)
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We further define

αn(M) ..= sup
ρ∈Rn

tr ((I −M)ρ) (20)

βn(M) ..= sup
σ∈Sn

tr (Mσ) (21)

βεn(M) ..= inf
M∈M

{βn(M) : α(M) < ε} (22)

EM(R,S) ..= lim
ε→0

lim
n→∞

− log βεn
n

(23)

As before, the quantities (19) and (23) are left undefined
when the corresponding limit does not exist.

Following our notation for families of states, we use bold-
face (e.g. M) to denote families of measurements. In par-
ticular, we define SEP(A : B) to denote separable mea-
surements on A : B (i.e. M of the form

∑
iXi ⊗ Yi with

Xi, Yi ≥ 0) and denote the corresponding family by

SEP(A : B) = (SEP(A : B),SEP(A⊗2 : B⊗2), . . .).

Again we will often write SEP or SEP where the systems
A,B are clear from context. Note that Sep(A : B) and
SEP(A : B) both refer to sets of matrices that can be written
as
∑
iXi ⊗ Yi with Xi, Yi ≥ 0; the difference is that Sep

refers to density matrices (i.e. matrices with trace one) and
SEP to measurement outcomes (i.e. matrices with operator
norm ≤ 1).

Another important class of measurements is ALL, which
is simply the set of all valid quantum measurements: i.e.
ALL = {0 ≤ M ≤ I}. The corresponding family is denoted
ALL.

One further definition we will need (following [33], but
with different notation) is the idea of a compatible pair.

Definition 3. For M is a collection of measurements
and S is a collection of states, we say that (M,S) are a
compatible pair if applying a measurement in M to a state
in S and conditioning on any outcome leaves a residual state
that is still in S. In other words, for any positive integers
n, k, applying a measurement in Mk to Sn+k and condition-
ing on any outcome leaves a state that is still in Sn.

For example (SEP,Sep) is a compatible pair. Our main
results (in Sections 3.2 and 3.4) involve compatible pairs,
and we also discuss previously known results about compat-
ible pairs in Section 3.1.5.

3.1.4 Relations between distinguishability measures
Finally, we state some known and new results that re-

late the different versions of D,E,DM, EM. The following
statement is a consequence of the minimax theorem.

Lemma 10. Let R, S and M be closed convex sets. Then

max
M∈M

min
ρ∈R
σ∈S

D(M (ρ) ‖M (σ)) = min
ρ∈R
σ∈S

max
M∈M

D(M (ρ) ‖M (σ))

(24)

The notation M(rho) refers to the probability distribution
of measurement outcomes resulting from applying M to ρ.

Proof. The proof is an application of Sion’s min-
imax theorem [35]. The function f(M, (ρ, σ)) ..=
D(M(ρ) ‖M(σ)) is jointly convex in ρ and σ [27]. How-
ever, to apply minimax we also need that it is quasi-concave
in the measurement M. In order to do so, we linearize the

function in the measurement by maximizing over the set of
probability measures on M instead. Let P(M) be the set of
probability measures over M . We have,

max
M∈M

min
ρ∈R
σ∈S

D(M (ρ) ‖M (σ))

= max
µ∈P(M)

min
ρ∈R
σ∈S

EM∼µD(M (ρ) ‖M (σ))

= min
ρ∈R
σ∈S

max
µ∈P(M)

EM∼µD(M (ρ) ‖M (σ))

= min
ρ∈R
σ∈S

max
M∈M

D(M (ρ) ‖M (σ)) , (25)

where the second equality follows from Sion’s mini-
max theorem applied to the function g(µ, (ρ, σ)) ..=
EM∼µD(M (ρ) ‖M (σ)), which is linear in µ and convex
in (ρ, σ).

Known facts: The following relations between the quantities
have been derived previously.

E(ρ,σ) = D(ρ ‖σ) (26)

quantum Stein’s Lemma [19]

D({ρ} ‖S1) ≥ D(ρ ‖S}) (27)

for S satisfying self-consistency property (4)

D(R ‖S) ≥ DM(R ‖S) (28)

from monotonicity of relative entropy

E(ρ,S) = D(ρ ‖S) (29)

for S a self-consistent class [7]

We can, in fact, relate DALL, D,E using

DALL(· ‖S)
(41)

≥ E(·, S)
(29)
= D(· ‖S)

(28)

≥ DALL(· ‖S) (30)

3.1.5 Superadditivity
When we consider families of states and measurements,

it is not a priori clear whether the distinguishability per
system should increase or decrease with the number of
systems. We say that a quantity f(ρ) is subadditive if
f(ρXY ) ≤ f(ρX) + f(ρY ) (e.g., entropy) and superadditive
if f(ρXY ) ≥ f(ρX) + f(ρY ) (e.g., most entanglement mea-
sures). A function f is weakly subadditive (resp. superad-
ditive) if f(ρ⊗n) is ≤ nf(ρ) (resp., ≥ nf(ρ)). If a function
is both (weakly) subadditive and superadditive then we say
it is (weakly) additive.

One of the main results known so far about relative en-
tropy with restricted measurements is due to Piani [33], who
used these measures to prove a superadditivity inequality:

D(ρXY ‖S2) ≥ DM(ρX ‖S1) +D(ρY ‖S1) (31)

for compatible (M, S) [33]

D(ρ ‖S) ≥ DM(ρ ‖S1) (32)

as a corollary of (31) [33]

In fact, Piani’s result can easily be improved to show that
DM(R ‖S) is superadditive whenever (M,R) and (M,S)
are compatible pairs.

Lemma 11. Let (M,R) and (M,S) be compatible pairs.
Then for all ρXY

DM2(ρXY ‖S2) ≥ DM1(ρX ‖S1) +DM1(ρY ‖S1). (33)
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Moreover,

DM(R ‖S) ≥ DM1(R1 ‖S1), (34)

Proof. The argument is a direct adaptation of the proof
of Theorem 1 in [33].

Let ρXY , σXY ∈ S2 be states andMX ,MY ∈M1 optimal
measurements for DM1(ρX ‖S1) and DM1(ρY ‖S1), respec-
tively. Let k be the number of outcomes of MX , and let
e1, . . . , ek be an orthonormal basis of Ck. Then:

D ((MX ⊗MY )(ρXY ) ‖ (MX ⊗MY )(σXY ))

= D

(
k∑
i=1

pi(ρX)eie
∗
i ⊗MY (ρiY ) ‖

k∑
i=1

pi(σX)eie
∗
i ⊗MY (σiY )

)

= D (pi(ρX) ‖ pi(σX))+

k∑
i=1

pi(ρX)D
(
MY (ρiY ) ‖MY (σiY )

)
≥ D (MX(ρX) ‖MX(σX))

+D

(
k∑
i=1

pi(ρX)MY (ρiY ) ‖
k∑
i=1

pi(ρX)MY (σiY )

)
= D (MX(ρX) ‖MX(σX))

+D

(
MY (ρY ) ‖MY

(
k∑
i=1

pi(σX)σiY

))
, (35)

where the first inequality follows from Proposition 1 of [33],
the second by definition with pi(ρX) = tr(M i

XρX) and ρiY =
trX(M i

X ⊗ IY ρXY )/pi(ρX), the third from Lemma 1 of [33],
and the fourth from property 2 of Proposition 1 of [33].

Since (M,R) and (M,S) are compatible, we can lower
bound the last term of (35) byDM1(ρX ‖S1)+DM1(ρY ‖S1),
from which (33) follows. (34), in turn, is a direct conse-
quence of (33).

The preceding lemma says that DM(· ‖S) is superadditive
for compatible pairs (M,S). The compatibility requirement
here is essential. The pair (ALL,Sep) is not compatible, and
here D(· ‖S) is known to be strictly subadditive (i.e. not
superadditive) in some cases [39].

On the other hand, DM(· ‖S) can be strictly superadditive
(i.e., not subadditive). Let us consider the simple situation
in which Rn = {ρ⊗n} and Sn = {σ⊗n}. It is a consequence
of the quantum Stein’s Lemma (10) that

D(ρ ‖σ) = lim
n→∞

1

n
DALL(ρ⊗n ‖σ⊗n).

Thus, any example in which

max
M∈ALL

D(M(ρ) ‖M(σ)) < D(ρ ‖σ) (36)

will yield an example in which DM(· ‖S) is strictly super-
additive. In fact, Lemma 1 of [32] states that (36) holds
whenever D(ρ ‖σ) is finite and ρσ 6= σρ. Thus superaddi-
tivity is a generic property of DM(· ‖ ·).

3.2 A quantum Stein’s Lemma for restricted
measurements

The following theorem can be thought of as a Quantum
Stein’s Lemma for restricted measurements.

Theorem 12. For any compatible pairs (M,R) and
(M,S),

DM(R ‖S) = EM(R,S) . (37)

Proof. For any positive integer k, let Ek ..=
DMk (Rk ‖Sk), and choose some Mk ∈ Mk achieving the
maximum in DMk (Rk ‖Sk). Let P ..= Mk(Rk) and Q ..=
Mk(Sk). By our choice of M, we have

D(p ‖ q) ≥ Ek ∀p ∈ P, q ∈ Q. (38)

Given a state ρ ∈ D(V ⊗nk), we applyMk to each block of k
systems, obtaining outcomes x1, . . . , xn. Then since (M,R)
and (M,S) are compatible pairs, the distribution of each
xi, conditioned on any possible value of x1, . . . , xi−1, is an
element of P (if ρ ∈ Rnk) or Q (if ρ ∈ Snk). Thus, according
to Theorem 2, there is an acceptance region that achieves
the rate Ek. Thus

EM(R,S) ≥ Ek. (39)

Since (39) holds for any k, we obtain

EM(R,S) ≥ DM(R‖S). (40)

The reverse inequality can be obtained by the following
standard argument: Let Mn ∈ Mn be an optimal sequence
of measurements in DM(R ‖S) and ρn ∈ Rn, and σn ∈ Sn
optimal sequences of states in EM(R,S). (Here “optimal” is
in the sense of Lemma 10; i.e. Mn achieves the maximum
on the LHS of (24) and ρn, σn achieve the minimum on the
RHS of (24).) Then by monotonicity of relative entropy (see,
e.g., [31]),

DM(R ‖S) ≥ lim
n→∞

D(Mn(ρn) ‖Mn(σn))

n

≥ − lim
n→∞

(1− αn(M)) log βn(M)

n

≥ EM(R,S). (41)

This is analogous to the result in [7], which established
E(ρ,S) = DALL(ρ ‖S) for self-consistent sets of states S,
but incomparable because in general (ALL,S) will not be a
compatible pair.

3.3 Stronger Subadditivity of Quantum En-
tropy

We now present an application of Theorem 12 to a
strengthening of the celebrated strong subadditivity inequal-
ity of Lieb and Ruskai for the quantum entropy [26], which
can be written as

I(A : B | C)ρ ≥ 0 (42)

where

I(A : B | C)ρ ..= H(AC)ρ +H(BC)ρ −H(ABC)ρ −H(C)ρ
..= H(ρAC) +H(ρBC)−H(ρABC)−H(ρC)

denotes the conditional mutual information of a state ρABC .
In what follows we will often omit the subscript ρ when the
state is understood. See Appendix A for additional discus-
sion.

In [9], the following lower bound was shown for any state
ρABC :

I(A : B | C) ≥
DALL(ρABC ‖ Sep(A : BC))−DALL(ρAC ‖ Sep(A : C))
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Moreover the following inequality was shown

DALL(ρABC ‖ Sep(A : BC))−DALL(ρAC ‖ Sep(A : C))

≥ E1-LOCC(ρ,Sep(A : B)), (43)

with 1-LOCC the class of all measurements that can be im-
plemented by quantum local operations and classical com-
munication from Bob to Alice (see Appendix A for the pre-
cise definition). This implies that the conditional mutual
information is lower bounded by E1-LOCC(ρ,Sep(A : B)).

In [25] the following strengthening of (43) was obtained:

DALL(ρABC ‖ Sep(A : BC))

≥ DALL(ρAC ‖ Sep(A : C))

+D1-LOCC(ρAB ‖ Sep(A : B)) , (44)

which implies

I(A : B | C) ≥ D1-LOCC(ρAB ‖ Sep(A : B)) . (45)

Theorem 12 shows that (44) is equivalent to (43) and so
it can be used in conjunction with [9] to give an alternative
proof of (45).

3.4 Symmetric hypothesis testing with re-
stricted measurements

Our main result on symmetric hypothesis testing against
an adaptive adversary (Theorem 6) implies a correspond-
ing result for symmetric quantum hypothesis testing. For
quantum states ρ, σ, define

Γ∗(ρ, σ) ..= max
0≤λ≤1

Γλ(ρ, σ) ..= max
0≤λ≤1

− log tr(ρλσ1−λ)

Γ∗M(R,S) ..= lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

Γ∗(M (ρ) ‖M (σ))

n

γM(R,S) ..= lim
n→∞

sup
M∈Mn

inf
ρ∈Rn
σ∈Sn

− 1

n
log tr(Mσ + (I −M)ρ)

A quantum analogue of the Chernoff Theorem was proven
in [1] and in our notation can be expressed as

γALL(ρ,σ) = Γ∗(ρ, σ).

Using the same idea behind the proof of Theorem 12, one
can prove a restricted-measurement quantum Chernoff The-
orem.

Theorem 13. If (M,R) and (M,S) are compatible
pairs, then

γM(R,S) = Γ∗M(R,S).

The proof is essentially the same as that of Theorem 12
with the adversarial Chernoff-Stein’s Lemma replaced by the
adversarial Chernoff Theorem (Theorem 6). We omit the
details.

3.5 Open questions
Having established a quantum Stein’s Lemma for re-

stricted measurements, we would like to know if a strong
converse can also be proven, or more generally if we can cal-
culate the error exponent for type-2 error when type-1 error
is required to be < ε for some fixed ε ∈ (0, 1). The difficulty
is that DM(· ‖S) > DM1(· ‖S1) in general, and we would
need to control the rate of convergence as a function of n in
the lim used to define DM(· ‖S).

Like many information-theoretic quantities, D(ρ ‖ Sep)
and DM(ρ ‖ Sep) (for various natural choices of M) are op-
erationally interesting, but are hard in practice to compute.
We would like to know the complexity of estimating them
(which is a variant of the usual question about the hard-
ness of testing separability, cf. [16, 10]) and whether good
relaxations exist (cf. [3]).

Finally, a major application of restricted-measurement
distinguishability is to the related questions of k-extendable
states1, tripartite states with low conditional mutual infor-
mation (i.e. “approximate Markov states”, cf. [20]), and the
quality of approximations achieved by the sum-of-squares
hierarchy (cf. [2]). A few of the more prominent open ques-
tions here are:

• If I(A : B | E)ρ ≤ ε then does there exist an “ap-
proximate recovery” map T : E → E ⊗ B such that
(id⊗T )ρAE ≈δ ρABE , with δ → 0 as ε → 0? (Here
we use A,B,E both to denote quantum subsystems
and the corresponding vector spaces.) This conjec-
ture is due to Andreas Winter, and would imply an
approximate equivalence between k-extendability and
low conditional mutual information.

• How large can DM(ρ ‖ Sep) be when ρ is k-extendable
and M is the class of separable measurements? Sharp
bounds are known [10] when M = 1-LOCC, and if
they could be extended to separable measurements it
would have implications for quantum Merlin-Arthur
games with multiple Merlins [16] as well as for classical
optimization algorithms.

• The ability of semidefinite programming hierarchies
to estimate small-set expansion can be understood
in terms of a restricted-measurement distinguishabil-
ity problem [2]. A major open question is whether
small-set expansion on graphs of size n can be well-
approximated by O(logn) levels of these hierarchies,
which would imply a quasipolynomial-time algorithm
for the problem. Can tools from quantum information
shed further light here?

APPENDIX
A. APPENDIX: BACKGROUND ON QUAN-

TUM INFORMATION
This appendix contains a very brief review of the quantum

formalism and notation used in this paper. For a much more
detailed introduction to quantum information theory, see
[40], or for an overview of the field of quantum computing
and quantum information more generally see [30, 22].

Density matrices. The quantum analogue of a proba-
bility distribution over [d] = {1, . . . , d} is called a density
matrix, or simply a state. Density matrices must be pos-
itive semi-definite and have trace one. These conditions
are analogous to the requirement that probabilities must be

1A bipartite state ρAB is said to be k-extendable if there
exists a state ρ̃AB1...Bk such that ρ̃ABi = ρAB for each i.
The idea of k-extendability was introduced in [34, 15], where
it was proved that for any fixed dimension of A and/or B,
the set of k-extendable states approaches the set of separable
states. However, the rate of convergence is an open question.
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nonnegative and normalized; indeed diagonal density ma-
trices correspond exactly to probability distributions. If A
is a complex vector space, then define D(A) to be the set
of density matrices on A, meaning the set of operators on
A that are positive semi-definite and have trace one. Let
L(A,B) denote the set of linear operators from A to B, and
let L(A) := L(A,A).

Tensor product. To describe composite quantum systems,
we use the tensor product. The tensor product of a vector
x ∈ Cd1 and a vector y ∈ Cd2 is denoted x⊗y and has entries
that run over all xi1yi2 for i1 ∈ [d1], i2 ∈ [d2]. Similarly, if
X and Y are matrices, then their tensor product X ⊗ Y
has matrix elements (X⊗Y )(i1,i2),(j1,j2) = Xi1,j1Yi2,j2 . For
vector spaces A,B, we let A⊗B denote the span of {a⊗ b :
a ∈ A, b ∈ B}. Note that Cd1 ⊗ Cd2 ∼= Cd1d2 . Finally, in
each case we use the tensor power notation X⊗n to stand
for

n times︷ ︸︸ ︷
X ⊗X ⊗ · · · ⊗X .

Product and separable states. The tensor product is
used to combine quantum states in the same way that in-
dependent classical probability distributions are combined
to form a joint distribution. Indeed, if p, q are probability
distributions of independent random variables, then p ⊗ q
denotes the joint distribution. Similarly, if ρ and σ are den-
sity matrices, then ρ⊗ σ denotes the state of a system that
is in a so-called product state. The convex hull of the set of
product states is called the set of separable states. We write
Sep(A : B) to indicate the split along which we demand that
the states be separable, e.g.

Sep(A : B) = conv{α⊗ β : α ∈ D(A), β ∈ D(β)}. (46)

Although the set Sep(A : B) is convex, it is not easy to
work with. For example, computational hardness results
are known for the weak membership problem. Instead, it is
sometimes more convenient to consider the relaxation PPT,
which denotes the set of states with Positive Partial Trans-
pose. The partial transpose operator Γ (meant to resemble
the right half of the T that usually denotes transpose) acts
linearly on L(A⊗B) by mapping X⊗Y to X⊗Y T ; equiva-
lently we can write it as idA⊗TB , where idA is the identity
operator on L(A) and TB is the transpose operator on L(B).
We define PPT(A : B) = {ρ ∈ D(A⊗ B) : ρΓ ∈ D(A : B)}.
This set is easier to work with because it has a semidefinite-
programming characterization. Moreover, it is straightfor-
ward to show that Sep(A : B) ⊂ PPT(A : B). However, in
general this inclusion is strict, and as the dimensions of A,B
grow large, PPT can be an arbitrarily bad approximation for
Sep [3].

Partial trace. Another concept from probability theory
that we will need to generalize is the idea of a marginal
distribution. Say we have a density matrix ρAB ∈ D(A⊗B).
The subscript emphasizes the systems which ρ describes,
which are analogous to the random variables corresponding
to a probability distribution. To obtain the state on only
the A system, we apply the partial trace operator trB :=
idA⊗ trB to ρAB . The action of the partial trace is often
denoted by writing only the subscripts, as in

ρA := trB ρAB and ρB := trA ρAB . (47)

(This notation generalizes; e.g. if ρ ∈ D(A ⊗ B ⊗ C),
then ρB = trAC ρABC = trA trC ρABC , etc.) Con-
cretely, (ρA)i,i′ =

∑
j(ρAB)(i,j),(i′,j) and (ρB)j,j′ =∑

i(ρAB)(i,j),(i,j′). We see that if ρ is diagonal then this
coincides with the idea of a marginal distribution from clas-
sical probability theory.

Measurements. Although technically all of physics is de-
scribed by quantum mechanics, it is often convenient to
make a distinction between quantum information, which is
often carried in very small systems such as single atoms
or single photons, and classical information, which is car-
ried in macroscopic systems, such as a bit in a classical
RAM. The bridge from quantum state to probability dis-
tribution is given by a measurement (also sometimes called
a POVM), which formally is a collection of matrices M =
(M1, . . . ,Mk) satisfying Mi ≥ 0 for each i (meaning each
Mi is positive semi-definite) and M1 + · · ·+Mk = I. Per-
forming the measurement M on state ρ yields outcome i
with probability tr[ρMi]. Thus we can interpret M as a
linear map from L(V ) to Rk, with the psd and normaliza-
tion conditions serving to guarantee that M maps D(V ) to
valid probability distributions.

Measurements on multipartite states. For our pur-
poses, we will consider a quantum state to be destroyed af-
ter it is measured. However, if we have a quantum state
on multiple systems, such as A ⊗ B, and we measure only
system A, then we will still have a quantum state on system
B. In this case, the probability of obtaining outcome i is
P[i] = tr[MiρA] and the residual state in this case is

trA[(Mi ⊗ I)ρAB ]

P[i]
. (48)

Since
∑
iMi = I, we can verify that if we average over all

measurement outcomes, then system B is left in the state
ρB , independent of the choice of measurement. This is an
important feature of quantum mechanics; despite the possi-
bility of entanglement, there is no way for Alice (who con-
trols system A) to signal to Bob (who controls system B)
through her choice of measurement.

Restricted classes of measurements. Consider a bipar-
tite system A⊗B, with systems A,B held by Alice and Bob
respectively. Performing a general measurement on A ⊗ B
may require that Alice and Bob exchange quantum mes-
sages, so it is often more practical for them to consider only
measurements that they can perform using Local Opera-
tions and Classical Communication (LOCC). Although such
restricted measurements were initially introduced to model
these practical restrictions, they have since arisen in set-
tings such as [9, 25] for completely different reasons. The
class LOCC is difficult to work with and is cumbersome to
even properly define—see [12] for a discussion—so we will
often work with various restrictions or relaxations of it. A
restriction which is interesting in its own right is the class
1-LOCC, which corresponds to Alice performing a measure-
ment locally and sending the outcome to Bob. We say that
M ∈ 1-LOCC if M = {Mi,j} with Mi,j = Xi ⊗ Yi,j , each
Xi, Yi,j ≥ 0,

∑
iXi = I and for each i,

∑
j Yi,j = I. On

the other hand, a useful relaxation is the set SEP, for which
each Mi should have the form Mi =

∑
j Xi,j ⊗ Yi,j with

each Xi,j , Yi,j ≥ 0. An even further relaxation is PPT for
which we demand only that each MΓ

i ≥ 0 (apart from the
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usual conditions that
∑
iMi = I and each Mi ≥ 0). Fi-

nally we use ALL to denote the set of all measurements.
Summarizing, we have

1-LOCC ⊂ LOCC ⊂ SEP ⊂ PPT ⊂ ALL.

In each case, we consider measurements with any finite num-
ber of outcomes, so these classes are technically not compact.

Entanglement swapping. An important concept in our
work (building on [33]) is that of compatible pairs of families
of measurements and states. We say that a measurement
outcome Mi is compatible with a family of states S if for
each n and each ρ ∈ Sn, applying Mi to the first system
leaves a residual state (defined by (48)) that is in Sn−1.
A family of measurements M is compatible with S if each
outcome of each measurement in M is compatible with S. If
S = Sep, then 1-LOCC, LOCC, SEP are all compatible with
S. If S = PPT then the set of compatible measurements
includes PPT. However, it is easy to construct examples of
incompatible pairs. Let e1, . . . , ed be an orthonormal basis
for Cd and define Ψ = 1

d

∑
i,j∈[d] ei ⊗ ej ⊗ ei ⊗ ej . Observe

that Ψ has entanglement between systems 1:3 and systems
2:4, but is product across the 13:24 cut. Now consider a
measurement acting on systems 12. One can calculate that

tr12[(Mi ⊗ I)ΨΨ∗] =
MT

i

d
. (49)

Thus, if MT
i is proportional to an entangled state, then

the measurement can create entanglement on the previ-
ous unentangled states 3,4 that were not measured. This
phenomenon—in which we start with A1 : A2 and B1 :
B2 entanglement, measure A1B1 and end with A2 : B2

entanglement—is called entanglement swapping [21] and is
one of the main new difficulties encountered in attempting
to perform hypothesis testing with respect to classes such as
Sep.

Entropy. The classical (Shannon) entropy of a distribution
p is given by H(p) = −

∑
i pi log(pi). The quantum ana-

logue is called the von Neumann entropy, and is given by
H(ρ) = − tr[ρ log ρ]. Observe that H(ρ) is the Shannon en-
tropy of the eigenvalues of ρ, and coincides with the Shannon
entropy when we consider probability distributions to be di-
agonal density matrices. If ρABC is a multipartite state, then
we let H(A)ρ := H(ρA), H(AB)ρ = H(ρAB), etc. When ρ is
understood, we may write simply H(A), H(AB), . . .. Anal-
ogous to the classical mutual information, conditional en-
tropy, etc. we can define

H(A | B) ..= H(AB)−H(B) (50)

I(A : B) ..= H(A) +H(B)−H(AB) (51)

I(A : B | C) ..= H(AC) +H(BC)−H(ABC)−H(C),
(52)

in each case with an implicit dependence on some state
ρ. Finally, the quantum relative entropy is D(ρ ‖σ) :=
tr[ρ(log ρ−log σ)]. Many of these quantities behave similarly
to their classical analogues, but a number of new subtleties
emerge; see Chapter 11 of [40] or Chapter 11 of [30] for more
information.
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