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Abstract

One-time memories (OTM’s) are simple tamper-resistant cryptographic devices, which can be
used to implement one-time programs, a very general form of software protection and program
obfuscation. Here we investigate the possibility of building OTM’s using quantummechanical devices.
It is known that OTM’s cannot exist in a fully-quantum world or in a fully-classical world. Instead,
we propose a new model based on isolated qubits — qubits that can only be accessed using local
operations and classical communication (LOCC). This model combines a quantum resource (single-
qubit measurements) with a classical restriction (on communication between qubits), and can be
implemented using current technologies, such as nitrogen vacancy centers in diamond. In this model,
we construct OTM’s that are information-theoretically secure against one-pass LOCC adversaries
that use 2-outcome measurements.

Our construction resembles Wiesner’s old idea of quantum conjugate coding, implemented using
random error-correcting codes; our proof of security uses entropy chaining to bound the supremum
of a suitable empirical process. In addition, we conjecture that our random codes can be replaced
by some class of efficiently-decodable codes, to get computationally-efficient OTM’s that are secure
against computationally-bounded LOCC adversaries.

In addition, we construct data-hiding states, which allow an LOCC sender to encode an (n−O(1))-
bit messsage into n qubits, such that at most half of the message can be extracted by a one-pass
LOCC receiver, but the whole message can be extracted by a general quantum receiver.

1 Introduction

One-time memories (OTM’s) are a simple type of tamper-resistant cryptographic hardware [1]. An

OTM device behaves as follows: one party (Alice) can write two messages s, t ∈ {0, 1}k into the
device, and then give the device to another party (Bob); after receiving the device, Bob can then
choose to read either s or t, but not both. An OTM is far simpler than a general-purpose processor,
but it can be used to implement sophisticated forms of secure computation, such as one-time pro-
grams1 [1, 2, 3] (and, more recently, quantum one-time programs [4]). The remarkable fact about
these constructions is that the OTM is the only piece of hardware that has to be tamper-resistant;
everything else consists of cryptographic software running on untrusted general-purpose processors.

1A one-time program is a package of hardware and software that is prepared by Alice and given to Bob. It can compute
a function f (chosen by Alice when she prepares the package) on a single input x provided by Bob (when he runs the
package). During its execution, the one-time program behaves like a black box, i.e., Bob learns nothing about its internal
functioning. After running once, the one-time program “self-destructs,” i.e., it stops functioning, and no more information
can be extracted from it.
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Intuitively, it seems much easier to build an OTM, rather than a general-purpose tamper-proof
processor. Indeed, there are many practical approaches to building such devices. However, from a
theoretical perspective, it would be nice if one could build provably-secure OTM’s based on some
clear physical principle, in the same way that one can build provably-secure encryption and signa-
ture schemes based on assumptions that certain problems are computationally intractable. But this
line of investigation runs into a number of obstacles. OTM’s cannot exist in a fully classical world,
because information can always be copied without destroying it. One might hope to build OTM’s in
a quantum world, where the no-cloning principle limits an adversary’s ability to copy an unknown
quantum state. However, this is also impossible, because an OTM can be used to perform oblivious
transfer with information-theoretic security, and there are strong no-go theorems for quantum obliv-
ious transfer, quantum bit commitment, and many other kinds of two-party secure computation in
a quantum world [5, 6, 7, 8].

One way around these no-go theorems is to try to construct protocols that are secure against a
restricted class of quantum adversaries. The adversaries in the no-go theorems (that break quantum
bit commitment, oblivious transfer, etc.) seem to require the full power of a quantum computer,
i.e., the ability to perform arbitrary quantum circuits with entangling gates. However, a number of
authors have shown protocols for bit commitment and other functionalities that are secure against
adversaries who can only perform k-local measurements [9], or adversaries who only have bounded
or noisy quantum storage [10, 11, 12, 13].

In this paper, we propose a new model of this type, called the isolated qubits model. This model
allows the adversary to perform local operations and classical communication (LOCC); intuitively,
this is the class of operations that can generate classical correlations between the qubits, but not
entanglement. We then aim to construct OTM’s that are secure in this model.

The main challenge in this paper arises from the fact that OTM’s are non-interactive: after
Alice gives the OTM to Bob, there is no further communication between them. Thus, they cannot
use standard cryptographic tools, such as privacy amplification, to give Bob an advantage over the
adversary. This makes OTM’s very different from most other protocols for bit-commitment and
oblivious transfer. 2

For our OTM’s, we instead use an old idea called conjugate coding, which is due to Wiesner
[16], and which works in this non-interactive setting. Conjugate coding uses quantum states that
are not entangled, hence they can be prepared by honest parties in our model. Wiesner argued
that conjugate coding is secure against non-adaptive adversaries who can only perform single-qubit
destructive measurements, but that it is not secure against adversaries who can perform many-qubit
entangled measurements. However, apart from those two extreme cases, little seems to be known
about the security of conjugate coding. It is a natural question, then, whether conjugate coding is
secure against the more general class of LOCC adversaries (which may be adaptive, and may perform
repeated weak measurements on the same qubit). If the answer turned out to be yes, this would be
a fairly realistic scenario in which conjugate coding provides useful security.

Unfortunately, proving good upper bounds on the power of LOCC adversaries is a long-standing
open problem. Previous results in this area include demonstrations of “nonlocality without en-
tanglement” (NLWE) [17] (see [18] for a recent survey), and constructions of data-hiding states
[19, 20, 21, 22]. However, these results do not seem to apply to our OTM’s. We are only able to
prove partial results on the security of our OTM’s, but given that strong bounds of this type are
quite rare, we believe this is significant progress.

On a conceptual level, we show that information can be hidden from an LOCC adversary in
a stronger and more sophisticated way, such that the adversary can retrieve one of the messages
contained in the OTM, but not both. This contrasts with previous work on NLWE and data-hiding
states. On a technical level, we prove security of our OTM’s against “1-pass” LOCC adversaries

2More precisely, the difference is that OTM’s are asynchronous, in the sense that there is only one message from Alice
to Bob. In contrast, most other protocols (even those that only require one-way communication rather than two-way
interaction [14]) still use a sequence of two messages from Alice to Bob, in such a way that any dishonest action occurs
before the second message, so that the second message can be used to perform privacy amplification. A notable exception
is the recent work [15], which considers a situation that is fully asynchronous, with a non-adaptive adversary.
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(which may be adaptive, but are still restricted to destructive single-qubit measurements). This ex-
tends Wiesner’s original claim, though not all the way to general LOCC adversaries. The techniques
used to prove this result are quite nontrivial: we construct our OTM’s using random codes, and
we prove security using entropy chaining (also called Dudley’s inequality for suprema of empirical
processes [23], or “using correlations to beat the union bound”).

1.1 Isolated qubits

In this paper we consider a model with isolated qubits, where all parties are only allowed to perform
local quantum operations (on each qubit) and classical communication (between qubits). This class of
operations is known as n-partite LOCC, where n is the number of qubits. (See Section 2 for details.)
We will construct an OTM that consists of n isolated qubits. When Alice prepares the device, she
can perform n-partite LOCC operations on the qubits, and likewise, when Bob reads the device,
he can perform n-partite LOCC operations on the qubits. However, there is no communication or
interaction between Alice and Bob, apart from the step where Alice gives the device (containing the
n qubits) to Bob.

Note that this is a different scenario from most previous work on the power of LOCC operations
[17, 19], where Alice and Bob share some bipartite quantum system, and a “local operation” refers
to an arbitrary operation on either Alice’s subsystem or Bob’s subsystem, and “classical communi-
cation” refers to communication between Alice and Bob.

Our model of isolated qubits is motivated by recent experimental work on nitrogen vacancy
centers in diamond [24]. Nitrogen vacancy (NV) centers can be used to implement single qubits that
have relatively long coherence times (on the order of seconds or minutes), at room temperature in
a solid-state material. Individual NV centers can be read out and manipulated optically, but it is
difficult to perform entangling operations on pairs of NV centers, due to variations in their emission
spectra. (Recent experiments have demonstrated entanglement between distant NV centers [25], but
for our purposes there are natural ways of designing a device to prevent such entangling operations.)
NV centers have been studied in connection with quantum money [26], and they are a plausible
candidate to implement our model of isolated qubits.

Isolated qubits are similar (but not directly comparable) to Salvail’s k-local measurement model
[9]. In Salvail’s model, the adversary can perform entangled measurements on up to k qubits, where
k is proportional to n; however, the adversary is only allowed to perform projective measurements,
not repeated weak measurements (which are allowed in LOCC).

We also argue that isolated qubits can exist in a world with quantum computers. Isolated
qubits are simply designed to satisfy different requirements than the qubits in a quantum computer.
More specifically, recall that in any quantum device, there is a tradeoff between two conflicting
requirements: first, protecting the device from unwanted interactions with the environment, such
as noise and decoherence; and second, providing strong coherent interactions between the device
and an external probe, in order to perform some useful task. Isolated qubits represent one possible
compromise between these requirements, namely strong protection from noise and decoherence, and
only classical (not entangling) gates and measurements. (Note that one cannot teleport information
to or from an isolated qubit.) In contrast, quantum computers and quantum memories must satisfy
both of the above requirements, which is a different, possibly more difficult task. (Indeed, the
bounded / noisy storage model [10, 13] assumes that it is hard to build large, high-fidelity quantum
memories.)

In some sense, our isolated qubits model is complementary to the bounded / noisy storage model.
In the bounded / noisy storage model, the honest parties Alice and Bob use qubits that may allow
entangled measurements, but cannot be stored for a long time. In our model, Alice and Bob use
qubits that can be stored for a long time, but do not allow entangled measurements.

1.2 Data-hiding states

Our first main result is a construction for data hiding states (see Section 3). These states are simpler
to analyze than our one-time memories, and they demonstrate the basic point that a sender can use
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LOCC operations to “hide” information from a LOCC receiver. We consider a system of n isolated
qubits, and we construct a set of 2ñ states, where ñ := n − Θ(1), by sampling independently at
random from the set {|0〉, |1〉, |+〉, |−〉}⊗n. (Here, |+〉 := (|0〉+ |1〉)/

√
2 and |−〉 := (|0〉− |1〉)/

√
2 are

the Hadamard basis states.) These states are all tensor products of single-qubit pure states, hence
they can be prepared using only LOCC operations.

First, we show that these states can be distinguished almost perfectly using an entangled quantum
measurement (the “pretty good measurement,” see Section 3.1). Then we consider “one-pass” LOCC
measurement strategies, i.e., measurement strategies that measure each qubit at most once. (For
comparison, a general LOCC measurement strategy may perform many weak measurements on the
same qubit. Note that bounding the power of general LOCCmeasurement strategies is a difficult open
problem.) We show that a one-pass LOCC measurement strategy using 2-outcome measurements can
extract at most ≈ n/2 bits of information about which state was prepared3 (see Section 3.2). Note
that there exists a trivial LOCC measurement strategy that can extract n/2 bits of information,
by measuring each qubit in the {|0〉, |1〉} basis, for instance; hence the above bound is tight. In
addition, we show that a one-pass LOCC measurement strategy using q-outcome measurements (for
any constant q) can extract at most ≈ (0.7067)n bits of information (see Section 3.3).

The main point of this data-hiding result is to develop the proof techniques for our one-time
memories, which will use a similar idea of sampling random states from the set {|0〉, |1〉, |+〉, |−〉}⊗n,
but will restrict access to the data in a more subtle way. We use two proof techniques: entropy
chaining, and a bound on the collision entropy. We will describe these techniques below.

In addition, our data-hiding states may also be of independent interest, as they differ from previ-
ous work in some significant ways. On one hand, most previous constructions of data-hiding states
[19, 20, 21, 22] are secure against a much stronger class of LOCC adversaries (with infinite LOCC
rather than one-pass LOCC). On the other hand, almost all of those constructions use entangled
states, which cannot be realized in our isolated qubits model. (An exception is [20], which uses
separable Werner states. This approach too is quite different from ours.)

We remark that another line of work has focused on “nonlocality without entanglement” [17],
where one considers a bipartite system, and one constructs sets of separable states that are orthogonal
but cannot be perfectly distinguished using LOCC; see [18] for a recent survey. Finally, there are a
number of elegant results about unambiguous state discrimination using multipartite LOCC, which
are applicable when the number of states to be distinguished is relatively small [27, 28, 29].

1.3 Entropy chaining

One of our proof techniques is “entropy chaining,” aka Dudley’s inequality for empirical processes
[23]. This is similar to a union bound over the set of all one-pass adaptive LOCC measurement
strategies, but it takes advantage of the positive correlations between the performance of strategies
that are similar. This approach gives a tight bound for adversaries that use 2-outcome measurements,
but it performs poorly when applied to adversaries that use q-outcome measurements for large q (see
Section 3.2).

The basic idea is as follows. Let E denote the random choices made in the construction of our
data-hiding states. Let the resulting collection of data-hiding states be denoted by |E(u)〉 (for all

u ∈ {0, 1}ñ). We imagine a game, where a referee chooses u ∈ {0, 1}ñ uniformly at random, and
prepares the state |E(u)〉, then an adversary performs some measurement strategy, and outputs a
string of measurement outcomes z. The adversary’s goal is to maximize the mutual information
I(Z;U) (where Z and U are random variables containing the strings z and u).

As a first step, note that if we fix a particular adversary strategy, then with high probability
over E, I(Z;U) ≈ n/2. To see this, write I(Z;U) = H(Z) −H(Z|U); note that for 1-pass LOCC
strategies using 2-outcome measurements, H(Z) ≤ n; and note that H(Z|U) = 2−ñ

∑
uH(Z|U = u)

is a sum of independent random variables with respect to E; hence by Hoeffding’s inequality, with
high probability over E, H(Z|U) will be close to its expected value, which is roughly n/2.

3Formally, we upper-bound the Shannon mutual information.
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We want to prove a much stronger statement, however. We want to estimate the probability
(over the random choice of E) that the best LOCC strategy (chosen with knowledge of the states
|E(u)〉) can extract more than n/2 bits of information about U . To achieve this, we can try to use
the union bound over all possible LOCC strategies. However, note that adaptive LOCC strategies
can be described by decision trees, and in the case of 1-pass LOCC strategies using 2-outcome
measurements, there are 2Θ(2n) such decision trees. Meanwhile, the quantity H(Z|U) is a sum of
only 2ñ independent random variables, so the failure probability in Hoeffding’s inequality is only
exponentially small in n, not doubly-exponentially small in n. Thus the union bound fails to give a
useful result.

Entropy chaining fixes this problem by exploiting correlations among the different strategies —
the fact that two strategies that make similar measurements will produce similar results, and hence
their failure probabilities do not add up in the worst-case fashion described by the union bound.
The term “entropy chaining” refers to the fact that one must use a sequence of these arguments,
to capture both strong correlations between very similar strategies and weak correlations between
less-similar strategies. Each such argument involves covering the set of strategies with an ε-net at a
different resolution, which can be interpreted as bounding the entropy of the set.

1.4 Bounding the collision entropy

Our second proof technique involves calculating the collision entropy of the unknown message U ,
conditioned on every possible sequence of measurement outcomes. This approach does not give a
tight bound, but it works fairly well for all values of q (see Section 3.3).

Here we take a different perspective: instead of considering LOCC measurement strategies (which
correspond to decision trees), we consider measurement outcomes (which correspond to tensor prod-
ucts of single-qubit POVM elements). That is, a measurement outcome is described by a POVM
element of the form MA =

⊗
i∈AMi, where A ⊂ [n] is the set of qubits that were measured, and Mi

is a POVM element acting on qubit i. (Measurement outcomes have this form when the adversary
performs separable measurements, which include LOCC measurements as a special case; but this
does not hold when the adversary performs entangled measurements.)

The basic idea is to fix some measurement outcome MA, then lower-bound the collision entropy
H2(U |MA) (with high probability over E), and then use the union bound over all measurement
outcomes MA. To lower-bound H2(U |MA), we proceed as follows. Essentially we want to upper-
bound the collision probability

Pr[col|MA] =
∑

u

Pr[U = u|MA]
2 = 4−ñ Pr[MA]

−2
∑

u

Pr[MA|U = u]2. (1)

To do this, we note that both Pr[MA] = 2−ñ
∑

u Pr[MA|U = u] and
∑

u Pr[MA|U = u]2 are sums of
independent random variables (with respect to E), and we use large deviation bounds. Finally, to
take the union bound over all MA, we note that we only have to include those MA that are of tensor
product form, hence the number of MA is exponential in |A|, rather than doubly exponential in |A|.

1.5 One-time memories

We now describe our construction for one-time memories (see Section 4.2). We consider a system

of n isolated qubits, and we pick two random error-correcting codes, C : {0, 1}k → {0, 1}n and

D : {0, 1}k → {0, 1}n. (That is, each codeword is chosen independently and uniformly at random

in {0, 1}n.) Given two messages s and t in {0, 1}k, we prepare each qubit i (for i = 1, 2, . . . , n)
as follows. Let C(s)i and D(t)i denote the i’th bit in the strings C(s) and D(t), respectively. We
prepare the i’th qubit in a pure state that has the following properties: first, if the qubit is measured
in the {|0〉, |1〉} basis, the outcome is more likely to be |0〉 if C(s)i = 0, and |1〉 if C(s)i = 1; and
second, if the qubit is measured in the {|+〉, |−〉} basis, the outcome is more likely to be |+〉 if
D(t)i = 0, and |−〉 if D(t)i = 1. This is similar to Wiesner’s idea of quantum conjugate coding [16].
We refer to these states as one-time memory (OTM) states.
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It is straightforward to check that these OTM states can be prepared using only LOCC operations,
and that an honest party can recover either s or t using only LOCC operations (see Section 4.3).

However, the security of these OTM states is somewhat problematic. For instance, an LOCC
adversary can always obtain partial information about both s and t, by measuring some of the qubits
in the {|0〉, |1〉} basis and some of the qubits in the {|+〉, |−〉} basis. Also, these OTM states can
“leak” extra information: there is a one-pass LOCC strategy that can extract n/2 ≈ (1.2528)k bits
of information about s and t. 4

To address this issue, we define a notion of a “leaky OTM,” which we believe is still strong enough
to construct one-time programs (see Section 4.1). Essentially, we conjecture that one-time programs
can be built using Yao’s garbled circuits [1], leaky OTM’s, and a leak-resistant encryption scheme
[30].

We then present some evidence that our OTM states satisfy this notion of “leaky security”.
Essentially, we prove that our OTM states satisfy a weaker notion of security, in which the smoothed
min-entropy Hε

∞ is replaced by the Shannon entropy H (see Section 4.2). We believe it should be
possible to strengthen this result to show “leaky security.” In particular, we note that certain parts
of the proof already use the collision entropy H2, which is stronger than H , and implies bounds on
Hε

∞.
Our technical result is that no 1-pass LOCC adversary using 2-outcome measurements can extract

more than ≈ (1.9189)k < 2k bits of information about (s, t) (see Section 4.4). (We believe that this
constant factor can be improved.) The proof uses a two-stage argument that applies both the collision
entropy bound and entropy chaining; we will describe this below.

We remark that there is a subtle point involving the difference between 1-pass LOCC measure-
ments and general LOCC measurements, when applied to our OTM’s based on conjugate coding.
For our OTM’s, there is a 1-pass LOCC measurement that can reconstruct s (and there is a similar
measurement for t). Also, Winter’s “gentle measurement lemma” [38] implies that, if there is a non-
destructive measurement that reconstructs s, and there is a similar measurement for t, then there
is a measurement that reconstructs both s and t simultaneously. However, this does not imply the
existence of a 2-pass LOCC measurement that can reconstruct both s and t simultaneously.

The reason is that, in order to reconstruct s (or t) using 1-pass LOCC operations, the measure-
ment must be destructive (i.e., one must perform a projective measurement on each qubit, obtain
a string of classical measurement outcomes, and then run the classical decoding algorithm). If one
wants to reconstruct s (or t) using a nondestructive measurement, one must use entangling op-
erations (i.e., one must run the classical decoding algorithm on a superposition of many different
inputs). Thus the gentle measurement lemma cannot be applied to these particular 1-pass LOCC
measurements, and it does not rule out the possibility that our OTM’s are secure against 2-pass or
general LOCC adversaries.

1.6 Two-stage argument

Let us denote our OTM states by |E(s, t)〉 (for s, t ∈ {0, 1}k). These states resemble the data-hiding
states studied previously, but there are some important differences. First, there are fewer OTM
states (there are 4k states in dimension 2n, where k ≈ (0.3991)n), hence the states are easier to
distinguish. Also, the OTM states are not constructed independently at random: there are 4k states
|E(s, t)〉, but only 2 · 2k independent random variables (consisting of the codewords C(s) and D(t)).
As a result, there are positive correlations between states |E(s, t)〉 that have the same s but different
t.

To deal with the correlations among the states |E(s, t)〉, we use large-deviation bounds for sums
of locally dependent random variables [40, 37]. However, these large-deviation bounds are not as
strong as the ones we had for data-hiding states, and so neither of our proof techniques (i.e., entropy
chaining and collision entropy) gives a useful result by itself.

4Let
∣

∣αC(s)iD(t)i

〉

be the state used to encode C(s)i and D(t)i into qubit i (see Section 3 for the precise definition). It
turns out that |α00〉 and |α11〉 are orthogonal, and likewise, |α01〉 and |α10〉 are orthogonal. So, a one-pass LOCC strategy
that measures each qubit in the basis {|α00〉, |α11〉} can extract n/2 ≈ (1.2528)k bits of information.
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To get around this difficulty, we combine the two techniques in sequence. Let S and T be random
variables containing the messages s and t. We use the collision entropy technique to analyze the first
few steps taken by the adversary; this yields a lower-bound on H2(S, T |MA), for any measurement
outcome MA observed by the adversary thus far. Then we use entropy chaining to prove bounds
on the adversary’s subsequent steps; this yields an upper-bound on I(Z̃;S, T |MA), where Z̃ is the
adversary’s output from subsequent measurements. It is necessary to apply the two techniques in this
order, because the collision entropy technique yields an upper-bound on

∑
st Pr[S = s, T = t|MA]

2;
this helps us to get stronger large-deviation bounds for the quantity

H(Z̃|S, T,MA) =
∑

st

H(Z̃|S = s, T = t,MA) Pr[S = s, T = t|MA], (2)

which is crucial for entropy chaining.

1.7 Outlook

We think it is an interesting challenge to develop our OTM construction into a useful primitive
for secure computation. In this paper we have taken a first step, by constructing OTM’s based
on isolated qubits, and analyzing their security in a simple information-theoretic framework (e.g.,
using random codes in the OTM’s, and describing the adversary’s knowledge in terms of mutual
information). The next step is to make our OTM’s efficient, and prove a stronger security guarantee
that allows composition of OTM’s to implement one-time programs.

First, we conjecture that the random codes C and D can be replaced by some class of efficiently-
decodable codes, to construct computationally-efficient one-time memories that are secure against
computationally-bounded LOCC adversaries. For comparison, note that the present construction,
while not computationally efficient, also makes no assumptions about the adversary’s computational
power, i.e., it is secure against one-pass LOCC adversaries that have unbounded computational
power.

Second, we conjecture that our OTM’s satisfy a particular notion of “leaky security,” which can
be combined with leak-resistant encryption schemes [30] to construct one-time programs. This notion
of “leaky security” uses the smoothed min-entropy to quantify the adversary’s uncertainty about the
messages s and t. Here we presented bounds that support this conjecture, using the Shannon entropy
and the collision entropy.

Finally, it is an open problem to better understand the security of Wiesner’s conjugate coding
technique against general LOCC strategies (rather than the one-pass LOCC strategies considered
here).

1.8 Notation

For any integer n ≥ 1, we define the set [n] := {1, 2, . . . , n}. For any vector v ∈ Cn, we define the ℓ2
norm ‖v‖2 = (

∑
i |vi|

2
)1/2.

For any matrix M ∈ Cm×n, with singular values λ1(M) ≥ λ2(M) ≥ · · · , we define the operator
norm ‖M‖ := λ1(M) and the Frobenius norm ‖M‖F := (

∑
i λi(M)2)1/2. The notation M � 0

means M is positive semidefinite.
An ε-net E (for a set S, with respect to some metric d) is a subset E ⊆ S such that, for all x ∈ S,

there exists some x′ ∈ E, such that d(x, x′) ≤ ε. The covering number N(S, d, ε) is the minimum
cardinality of any such ε-net E.

Logarithms are denoted as follows: ln(·) is the natural logarithm, lg(·) is the base-2 logarithm,
and log(·) is the logarithm when the base does not matter (because the log appears inside a big-O
expression).

The Hamming distance between two binary strings s, t ∈ {0, 1}n is denoted dH(s, t).
The L1 or total variation distance between two random variables X and X ′ is denoted by

∆(X,X ′) =
∑

x |Pr[X = x]− Pr[X ′ = x]|.
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The Shannon entropy of a random variable X is denoted by H(X) = −∑
x Pr[X = x] lg Pr[X =

x], and the mutual information between random variables X and Y is denoted by I(X ;Y ) = H(X)−
H(X |Y ). (Note that I without parentheses denotes the identity operator. It will be clear from the
context which one is meant.)

The Renyi collision entropy of X is denoted H2(X) = − lg
(∑

x Pr[X = x]2
)
. The min-entropy

of X is given by H∞(X) = − lg
(
maxx Pr[X = x]

)
, and the smoothed min-entropy of X is given by

Hε
∞(X) = maxX′ : ∆(X,X′)≤εH∞(X ′).

2 Isolated qubits, and LOCC measurement strategies

In this section we introduce the model of isolated qubits, and the class of LOCC measurement
strategies. Essentially, in a system of n isolated qubits, the allowed operations are local (single-
qubit) quantum operations, and classical communication between qubits. These are n-party LOCC
operations, where each party holds a single qubit.

Any n-party LOCC measurement strategy can be described as a sequence of steps, which outputs
a sequence of measurement outcomes, as follows:

Begin at step 1.
At step a, conditioned on the output of the previous steps 1, 2, . . . , a− 1:

Choose one of the parties, specified by i ∈ {1, 2, . . . , n}.
Choose some measurement M . 5

Perform the measurement M on the i’th party’s qubits; this yields some outcome j.
Output j, and proceed to step a+ 1.

LOCC measurement strategies can use an unbounded number of steps, and can measure each
qubit many times, for instance by using a sequence of weak measurements (which may be chosen
adaptively). Strategies using unbounded LOCC are difficult to analyze; in particular, it is a long-
standing open problem to prove strong quantitative bounds on the amount of information returned
by strategies using unbounded LOCC.

Here we consider a restricted class of LOCC strategies: those that measure each qubit at most
once. We will refer to these as 1-pass LOCC strategies.

Let us introduce some notation. A 1-pass LOCC strategy consists of n steps, labeled by a ∈ [n]
(where we define [n] := {1, 2, . . . , n}). Suppose the strategy uses single-qubit measurements that have
at most q outcomes. At step a, let z<a := (z1, z2, . . . , za−1) ∈ [q]a−1 be the output of the previous
steps; let Qa(z<a) ∈ [n] be the choice of which qubit to measure next; let Ma(z<a, ζ) ∈ C2×2 (for all
ζ ∈ [q]) be the POVM elements corresponding to the choice of measurement in this step; and let za
be the actual measurement outcome that is obtained, so that Ma(z≤a) is the corresponding POVM
element. We can write the complete strategy as a POVM measurement on n qubits, whose elements
are given by

M(z) :=

n⊗

a=1

Ma(z≤a), ∀z ∈ [q]n, (3)

where Ma(z≤a) acts on the qubit indicated by Qa(z<a).

2.1 A state discrimination game

Consider a collection of n-qubit quantum states |E(u)〉, indexed by u ∈ U . How well can an LOCC
adversary distinguish among these states? To make this question precise, one can define the following
state discrimination game: first the referee chooses u ∈ U uniformly at random, then prepares the

5Any measurement can be described by a set of measurement operators K1,K2, . . . which satisfy
∑

j K
†
jKj = I .

For a given state ρ, the measurement returns outcome j with probability tr(KjρK
†
j ), and the post-measurement state

(conditioned on observing j) is KjρK
†
j / tr(KjρK

†
j ). Note that the measurement can also be described by a set of POVM

elements Mj = K†
jKj ; the probability of observing outcome j can then be written as tr(Mjρ).
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corresponding state |E(u)〉, and gives it to the adversary; then the adversary carries out some LOCC
measurement strategy, and outputs some string z ∈ [q]n. We can measure the adversary’s success in
terms of the mutual information I(Z;U), where U and Z are the random variables describing the
referee’s choice and the adversary’s output.

Note that, in the isolated qubits model, each party holds a single qubit (rather than a higher-
dimensional quantum system). We can make use of this fact, to further simplify the set of possible
LOCC strategies.

Lemma 2.1. Let M be any 1-pass LOCC strategy in the isolated qubits model, which uses q-outcome
measurements and returns output Z. Then there exists M′, a 1-pass LOCC strategy in the isolated
qubits model, which uses q-outcome measurements and returns output Z ′, and has the following
additional properties:

1. I(Z ′;U) ≥ I(Z;U) (when playing the state discrimination game shown above).

2. In every measurement performed by M′, the POVM elements all have rank 1.

Proof: See Appendix A.

2.2 Discretization of LOCC strategies

Let S be the set of all single-qubit measurements with q outcomes, where every POVM element has
rank 1:

S = {(M1, . . . ,Mq) |Mi ∈ C
2×2, Mi � 0,

q∑

i=1

Mi = I, rank(Mi) = 1}. (4)

This is a continuous set. In our proofs, we would like to approximate it by a finite ε-net L, with
respect to some appropriate metric t. It will be convenient to define t as follows:

t(M, M̃) := max
i∈[q]

‖Mi − M̃i‖. (5)

(Here ‖·‖ denotes the operator norm.) The following two lemmas bound the size of the ε-net L, first
in the special case where q = 2 (for which we have a better bound), and then in the general case
where q ≥ 2.

Lemma 2.2. Let q = 2. For any 0 < ε ≤ 1, there exists an ε-net L for S, with respect to the
metric t, that has cardinality |L| ≤ C/ε2 (where C is some numerical constant). Equivalently, we
have N(S, t, ε) ≤ C/ε2.

Proof: See Appendix A.

Lemma 2.3. Let q ≥ 2. For any 0 < ε ≤ 1, there exists an ε-net L for S, with respect to the metric
t, that has cardinality |L| ≤ (C/ε)3q (where C is some numerical constant). Equivalently, we have
N(S, t, ε) ≤ (C/ε)3q.

Proof: See Appendix A.

We now bound the effect of this discretization when applied to a complete LOCC strategy.
Essentially, if we choose ε ≤ O(1/qn), then the discretization has a negligible effect on the amount
of information returned by the strategy.

Lemma 2.4. Let M be any 1-pass LOCC strategy in the isolated qubits model, which uses q-outcome
measurements, where all POVM elements have rank 1, and which has output Z. Fix some 0 < ε ≤
1/(qne), and let L be the ε-net for S defined above. Let M′ be the strategy that is obtained by
duplicating the strategy M, and replacing each measurement M ∈ S with the best approximating
measurement M̃ ∈ L. Let Z ′ be the output of the strategy M′. Then

|I(Z ′;U)− I(Z;U)| ≤ 2qn2ε+ 2η(qnε), (6)

where η(x) := −x lg x.
Proof: See Appendix A.
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3 Data-hiding states

Consider a system of n qubits. We will construct a set B of 2ñ quantum states, with ñ ≥ n−O(1),
that has the following properties:

1. The states are pure and unentangled (i.e., they are tensor products of pure single-qubit states).

2. There exists an entangled quantum measurement that distinguishes these states almost per-
fectly. In particular, given a state chosen uniformly at random from B, this measurement
recovers nearly ñ bits of information about the identity of the state.

3. No n-party LOCC measurement strategy can distinguish these states very well. In particular,
given a state chosen uniformly at random from B, no n-party LOCC measurement strategy
using 2-outcome measurements can recover more than about n/2 bits of information about the
identity of the state. Similar bounds hold for n-party LOCC measurement strategies using
q-outcome measurements, for constant q.

We construct the set of states B as follows. Set ñ = n − Θ(1). Briefly, B is a set of 2ñ states
chosen independently and uniformly at random from the set {|0〉, |1〉, |+〉, |−〉}⊗n. To state this more
explicitly, we define the following single-qubit states:

|α00〉 := |0〉, |α11〉 := |1〉, |α01〉 := |+〉 = 1√
2
(|0〉+ |1〉), |α10〉 := |−〉 = 1√

2
(|0〉 − |1〉). (7)

Choose a random mapping E : {0, 1}ñ → {00, 01, 10, 11}n, i.e., for each u ∈ {0, 1}ñ, assign E(u) a
value chosen independently and uniformly at random in {00, 01, 10, 11}n. Also, for a = 1, 2, . . . , n,
let E(u)a ∈ {00, 01, 10, 11} denote the a’th entry in the string E(u). Then let B be the set of states
|E(u)〉 defined as follows:

|E(u)〉 :=
n⊗

a=1

∣∣αE(u)a

〉
, ∀u ∈ {0, 1}ñ. (8)

We will consider the following state discrimination problem, which we describe as a game between
a referee and a distinguisher. First, the referee chooses a random string u in {0, 1}ñ, and prepares
the state |E(u)〉. Given this state, the distinguisher performs some measurement, and outputs a
string z (over some alphabet). The goal of the distinguisher is to maximize the mutual information
I(Z;U), where U and Z are the random variables representing the referee’s choice of the state and
the distinguisher’s output.

3.1 The pretty good measurement

In this section we show that the states |E(u)〉 can be distinguished almost perfectly by a measurement
that uses entanglement among the n qubits. In particular, we will consider the “pretty good measure-
ment” [31], which is defined as follows. Let ρ be the mixed state ρ := 2−ñ

∑
u∈{0,1}ñ |E(u)〉〈E(u)|.

Then the “pretty good measurement” is given by the following set of POVM elements:

MPGM := {|M(z)〉〈M(z)|, z ∈ {0, 1}ñ}, where |M(z)〉 := 2−ñ/2ρ−1/2|E(z)〉. (9)

(If ρ is not full-rank, then ρ−1/2 is defined on the support of ρ.)
We will show that, with high probability over the choice of the states |E(u)〉, the pretty good

measurement works well. In particular, let Z be the output of the pretty good measurement; we will
show that Z = U with probability close to 1, and the mutual information I(Z;U) is close to ñ.

Lemma 3.1. Let C ≥ 1. With probability ≥ 1− 1
C (over the choice of E), we have

Pr[Z = U ] ≥ 1− 2
√
C · 2(ñ−n)/2. (10)

In particular, for any ε > 0, suppose that ñ satisfies ñ ≤ n − lg(C/ε2) − 2. Then equation (10)
implies that

Pr[Z = U ] ≥ 1− ε. (11)
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Proof: First, we will give a lower-bound for Pr[Z = U ] in terms of the eigenvalues of the Gram
matrix of the states |E(u)〉, using an argument due to Montanaro [32]. We write

Pr[Z = U ] = 2−ñ
∑

u∈{0,1}ñ

|〈M(u)|E(u)〉|2 = 4−ñ
∑

u∈{0,1}ñ

|〈E(u)|ρ−1/2|E(u)〉|2. (12)

We define the matrix P ∈ C2ñ×2ñ , whose entries are Puv = 〈E(u)|ρ−1/2|E(v)〉. In addition, we define

the Gram matrix G ∈ C
2ñ×2ñ , whose entries are Guv = 〈E(u)|E(v)〉. It is easy to see that both P

and G are positive semidefinite, and that P 2 = 2ñG; hence we can write P = 2ñ/2
√
G. So we have

Pr[Z = U ] = 4−ñ
∑

u

|Puu|2 = 2−ñ
∑

u

((
√
G)uu)

2. (13)

We can lower-bound this as follows, using the convexity of the square function, and letting λu(G)
denote the eigenvalues of G:

Pr[Z = U ] ≥
(
2−ñ

∑

u

(
√
G)uu

)2

=
(
2−ñ tr

√
G
)2

=
(
2−ñ

∑

u

√
λu(G)

)2

. (14)

Next, define

νu(G) :=

{
λu(G) if 0 ≤ λu(G) ≤ 1

1 if λu(G) ≥ 1
(15)

and observe that
√
λu(G) ≥ νu(G). So we have

Pr[Z = U ] ≥
(
2−ñ

∑

u

νu(G)
)2

=
(
1− 2−ñ

∑

u

(1 − νu(G))
)2

≥ 1− 2 · 2−ñ
∑

u

(1− νu(G)) ≥ 1− 2 · 2−ñ2ñ/2‖~1− ~ν(G)‖2.
(16)

Also note that |1− νu(G)| ≤ |1− λu(G)|, hence ‖~1− ~ν(G)‖2 ≤ ‖~1− ~λ(G)‖2 = ‖G− I‖F . So we
have

Pr[Z = U ] ≥ 1− 2 · 2−ñ/2‖G− I‖F . (17)

Finally, we will use Markov’s inequality to show that, with high probability (over the choice of
E), ‖G− I‖F is not too large. We write:

EE [‖G− I‖2F ] = EE

[ ∑

u6=v∈{0,1}ñ

|Guv|2
]
, (18)

EE [|Guv|2] = EE

[ n∏

a=1

|
〈
αE(u)a

∣∣αE(v)a

〉
|2
]
=

n∏

a=1

(14 (1 + 0 + 1
2 + 1

2 )) = 2−n (∀u 6= v), (19)

EE [‖G− I‖2F ] = 2ñ(2ñ − 1)2−n < 4ñ2−n. (20)

Hence, by Markov’s inequality, for any C ≥ 1,

Pr
E
[‖G− I‖2F ≥ C · 4ñ2−n] ≤ 1

C . (21)

That is, with probability ≥ 1 − 1
C (over the choice of E), we have ‖G− I‖F ≤

√
C · 2ñ2−n/2.

Combining this with equation (17) completes the proof. �

We have just shown a lower-bound on the success probability Pr[Z = U ]; this now implies a
lower-bound on the mutual information I(Z;U).

Lemma 3.2. Suppose that Pr[Z = U ] ≥ 1 − ε, and ε is sufficiently small that 2
√
ε + 2−ñ ≤ 1/e.

Then I(Z;U) ≥ (1− 5
√
ε)ñ− η(2

√
ε), where η(x) := −x lg x.

Proof: See Appendix B.

11



3.2 1-pass LOCC strategies with 2-outcome measurements

In this section, we prove that the states |E(u)〉 (u ∈ {0, 1}ñ) cannot be fully distinguished by any
1-pass LOCC strategy that uses 2-outcome measurements. In particular, we show that any such
strategy cannot extract more than about n/2 bits of information about U . This claim holds with
high probability over the randomized construction of the states |E(u)〉; more precisely, the claim

holds with high probability over the choice of the map E : {0, 1}ñ → {00, 01, 10, 11}n, which we view
as a random variable.

The proof uses an entropy chaining argument, which is stated in Lemma C.1. This is essentially
Dudley’s inequality for bounding the supremum of an empirical process with Gaussian decaying
correlations [23], with some minor technical modifications (in particular, the result is stated as a tail
bound for the supremum, rather than a bound on the expected supremum); the proof is given in
Appendix C.

Theorem 3.3. Let M be the set of all 1-pass LOCC strategies in the isolated qubits model using
2-outcome measurements. Let t0 > 0 and u ≥ 1. Then, with probability ≥ 1 − exp(−2t20) − 2 · 2−u2

(over the choice of E), the following statement holds:

∀M ∈ M, I(Z;U) ≤ (0.54)n+O(1) + t0ñ2
−ñ/2 + u · O(

√
logn), (22)

where Z denotes the output of the strategy M.

Proof: First, let L be an ε-net for the set of single-qubit measurements with 2 outcomes where all
POVM elements have rank 1, as described in Lemma 2.2; and set ε = 1/(100n). Let M′ be the set
of all strategies that use measurements chosen from the set L. By Lemmas 2.1 and 2.4, any strategy
in M can be approximated by one in M′.

For any strategy M, let Z denote its output. Note that Z takes values in {0, 1}n, and we can
split its output into two pieces, Z = (Z1,...,ñ, Zñ+1,...,n). So we can write

I(Z;U) = H(Z)−H(Z|U) ≤ n−H(Z1,...,ñ|U). (23)

We want to show that H(Z1,...,ñ|U) is not too small.
Let M′′ be the set of all strategies with ñ steps, whose behavior matches the first ñ steps of some

strategy in M′. For any M ∈ M′′, we now define

QM := H(Z1,...,ñ|U), (24)

which is a random variable depending on E. Let µM := EE QM; we will prove a lower bound for
µM below. We will then use entropy chaining (Lemma C.1) to lower-bound the quantity

inf
M∈M′′

(QM − µM). (25)

First, we evaluate µM:

µM = EE

[
H(Z1,...,ñ|U)

]
= 2−ñ

∑

u∈{0,1}ñ

∑

z∈{0,1}ñ

EE

[
−Pr(z|u) lgPr(z|u)

]
, (26)

where for convenience we wrote Pr(z|u) in place of Pr[Z1,...,ñ = z|U = u]. Consider any fixed u, z ∈
{0, 1}ñ. Recall that |E(u)〉 is chosen uniformly at random inA⊗n, whereA := {|α00〉, |α01〉, |α10〉, |α11〉}.
So we have

EE

[
−Pr(z|u) lg Pr(z|u)

]
= 4−ñ

∑

|ψ〉∈A⊗ñ

−〈ψ|M(z)|ψ〉 lg 〈ψ|M(z)|ψ〉. (27)

Furthermore, we know that 〈ψ|M(z)|ψ〉 =
∏ñ
a=1

〈
ψQa(z<a)

∣∣Ma(z≤a)
∣∣ψQa(z<a)

〉
, where we used the
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notation introduced in Section 2. Hence we can write

EE

[
− Pr(z|u) lgPr(z|u)

]

=

ñ∑

a=1

4−ñ
∑

|ψ〉∈A⊗ñ

−〈ψ|M(z)|ψ〉 lg
〈
ψQa(z<a)

∣∣Ma(z≤a)
∣∣ψQa(z<a)

〉

=

ñ∑

a=1

4−ñ
[ ∑

ψa∈A
−〈ψa|Ma(z≤a)|ψa〉 lg 〈ψa|Ma(z≤a)|ψa〉

]∏

b6=a

[ ∑

ψb∈A
〈ψb|Mb(z≤b)|ψb〉

]
(28)

Recall that we are considering single-qubit measurements with 2 outcomes, where each outcome
corresponds to a rank-1 POVM element. Hence each Mb(z≤b) is a rank-1 projector, i.e., it can be
viewed as a density matrix of a quantum state. Hence we can write

∑

ψb∈A
〈ψb|Mb(z≤b)|ψb〉 = 2 trMb(z≤b) = 2. (29)

Also, suppose we let R0 be the result of measuring the state Ma(z≤a) in the orthonormal basis
{|α00〉, |α11〉}, and we let R1 be the result of measuring the same state in the orthonormal basis
{|α01〉, |α10〉}. Then we can write

∑

ψa∈A
−〈ψa|Ma(z≤a)|ψa〉 lg 〈ψa|Ma(z≤a)|ψa〉 = H(R0) +H(R1) ≥ 1, (30)

using an entropic uncertainty relation of Maassen and Uffink [34, 35]. Substituting into the previous
equations, we get

EE

[
−Pr(z|u) lg Pr(z|u)

]
≥ 2−ñ−1 · ñ, (31)

µM ≥ ñ/2. (32)

We now show several technical facts which are needed in order to apply the entropy chaining
argument (Lemma C.1). First, fix some particular strategy M0 ∈ M′′. We will show that QM0 is
tightly concentrated around its mean. Observe that QM0 = 2−ñ

∑
u∈{0,1}ñ H(Z1,...,ñ|U = u) is a sum

of 2ñ independent random variables, since the strings E(u) for different u are chosen independently
at random. Using Hoeffding’s inequality, we get that

Pr
E
[QM0 < µM0 − t] ≤ exp

(
− 2t2

2ñ(n/2ñ)2

)
= exp

(
−2t2 · 2ñ

ñ2

)
(∀t > 0), (33)

or equivalently

Pr
E

[
QM0 < µM0 −

t0ñ

2ñ/2

]
≤ exp(−2t20), (∀t0 > 0). (34)

Next, we show that when two strategies M and M′ are “similar,” the random variables QM and
QM′ are positively correlated. In particular, suppose that M and M′ behave identically for the first
ℓ steps. Let Z1,...,ñ and Z ′

1,...,ñ be the output of these two strategies; then (Z1,...,ℓ, U) and (Z ′
1,...,ℓ, U)

have the same distribution. So we can write

QM −QM′ = H(Zℓ+1,...,ñ|Z1,...,ℓ, U)−H(Z ′
ℓ+1,...,ñ|Z ′

1,...,ℓ, U)

= 2−ñ
∑

u∈{0,1}ñ

H(Zℓ+1,...,ñ|Z1,...,ℓ, U = u)−H(Z ′
ℓ+1,...,ñ|Z ′

1,...,ℓ, U = u), (35)

which again is a sum of 2ñ independent random variables. By Hoeffding’s inequality,

Pr
E
[QM −QM′ − µM + µM′ ≥ t] ≤ exp

(
− 2t2

2ñ(2(ñ− ℓ)/2ñ)2

)
= exp

(
− t2 · 2ñ
2(ñ− ℓ)2

)
. (36)
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We can rewrite this bound in terms of a metric d that measures the “distance” between strategies.
We define d as follows: 6

d(M,M′) :=
√
2 · 2−ñ/2(ñ− ℓ(M,M′)), where (37)

ℓ(M,M′) := max {ℓ | 0 ≤ ℓ ≤ ñ, and M and M′ behave identically on steps 1, 2, . . . , ℓ}. (38)

We then have

Pr
E
[QM −QM′ − µM + µM′ ≥ t] ≤ exp

(
− t2

d(M,M′)2

)
. (39)

Next, we bound the covering numbers of M′′ with respect to the metric d. We use a simple
bound:

N(M′′, d,
√
2 · 2−ñ/2ε) ≤

{
(n|L|)2⌈ñ−ε⌉

if ε ≤ ñ

1 if ε > ñ.
(40)

(This bound simply counts the number of possible strategies with ⌈ñ− ε⌉ steps. Each such strategy
is described by a binary tree of depth ⌈ñ− ε⌉, and at every node there is a choice of which of the n
qubits to measure next, and which of the measurements in the set L to perform.) We now bound the
integral appearing in Lemma C.1 (“Dudley’s entropy integral”): (here C0 is a numerical constant)

S ≤ C0

∫ ∞

0

√
logN(M′′, d, ε)dε

= C0

∫ ∞

0

√
logN(M′′, d,

√
2 · 2−ñ/2ε) ·

√
2 · 2−ñ/2dε

≤ C0

∫ ñ

0

√
2ñ−ε+1 log(n|L|) ·

√
2 · 2−ñ/2dε

= C0

∫ ñ

0

2−ε/2dε · 2
√
log(n|L|)

= C0(
2

ln 2 )(1 − 2−ñ/2) · 2
√
log(n|L|)

< C0(
2

ln 2 ) · 2
√
log(n|L|).

(41)

Recall that |L| ≤ O(1/ε2) = O(n2). Hence we have:

S ≤ O(
√

logn). (42)

Finally, using Lemma C.1, we have that: for all t0 > 0 and u ≥ 1, with probability ≥ 1 −
exp(−2t20)− 2 · 2−u2

, the following holds:

∀M ∈ M
′′, QM − µM > − t0ñ

2ñ/2
− uS. (43)

This implies that

∀M ∈ M
′′, QM >

ñ

2
− t0ñ

2ñ/2
− u ·O(

√
logn). (44)

Plugging into equation (23), we get that

∀M ∈ M
′, I(Z;U) < n− ñ

2
+

t0ñ

2ñ/2
+ u · O(

√
logn). (45)

Finally, using Lemmas 2.1 and 2.4, we get that

∀M ∈ M, I(Z;U) < n− ñ

2
+

n

25
+O(1) +

t0ñ

2ñ/2
+ u ·O(

√
logn). (46)

This proves the claim. �

6Note that d is indeed a metric: It is easy to see that d(M,M′) ≥ 0, with equality iff M = M′. Also, clearly
d(M,M′) = d(M′,M). It remains to show that d(M,M′′) ≤ d(M,M′) + d(M′,M′′). We consider two cases. On one
hand, if M′ satisfies ℓ(M,M′) ≤ ℓ(M,M′′) or ℓ(M′,M′′) ≤ ℓ(M,M′′), then the claim follows immediately. On the
other hand, if M′ satisfies ℓ(M,M′) > ℓ(M,M′′) and ℓ(M′,M′′) > ℓ(M,M′′), then this is impossible, since M and
M′′ do not agree at step ℓ(M,M′′) + 1; hence this case cannot occur.
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3.3 1-pass LOCC strategies with q-outcome measurements

In this section, we consider a more general class of 1-pass LOCC strategies, that use q-outcome
measurements (for any constant q). Again we show that the states |E(u)〉 (u ∈ {0, 1}ñ) cannot be
perfectly distinguished by such an adversary. Quantitatively, we show that such an adversary can
extract at most ≈ (0.71)ñ bits of information about U ; we do not believe this bound is optimal,
but it does nonetheless show that a constant fraction of the information in U is hidden from the
adversary.

We use a different proof technique from the previous section: here we show an explicit lower
bound on the Renyi collision entropy of U conditioned on the output Z≤m of the first m steps of
the adversary. This “collision entropy” proof is a useful alternative to the “entropy chaining” proof
of the previous section. The collision entropy proof works quite well when q is large, whereas the
entropy chaining proof has some difficulty because the number of possible measurement strategies
grows rapidly with q. However, the collision entropy proof does not give a tight bound for any value
of q, while the entropy chaining approach does give a tight bound when q = 2.

Theorem 3.4. Let M be the set of all 1-pass LOCC strategies in the isolated qubits model, using
q-outcome measurements. Then, with probability ≥ 1− e−Ω(n) (over the choice of E), the following
statement holds:

∀M ∈ M, I(Z;U) ≤ (0.7067)n+O(1) +O(lg(qn)), (47)

where Z denotes the output of the strategy M.

Proof: First, let L be an ε-net for the set of single-qubit measurements with q outcomes where all
POVM elements have rank 1, as described in Lemma 2.3; and set ε = 1/(200qn). Let M′ be the set
of all strategies that use measurements chosen from the set L. By Lemmas 2.1 and 2.4, any strategy
in M can be approximated by one in M′.

We will analyze the first m steps of any strategy in M′, where m = ⌊ñ/ lg(8/3)⌋ ≈ (0.7067)ñ. We
will show the following bound:

Lemma 3.5. With probability ≥ 1− e−Ω(n) (over the choice of E),

∀M ∈ M
′, ∀z1,...,m ∈ [q]m, H2(U |Z1,...,m = z1,...,m) ≥ ñ−m lg(32 )− lg(O(qn lg(qn))), (48)

where Z1,...,m denotes the output of the first m steps of the strategy M, H2 denotes the Renyi collision
entropy, and lg(32 ) ≈ 0.5850.

Proof (of Lemma 3.5): Note that the lemma is equivalent to the following statement: with high
probability (over the choice of E),

for all subsets of qubits A ⊂ [n], of size |A| = m,
for all possible measurement outcomes MA that correspond to measuring the qubits in

the set A using any measurements in the set L,
H2(U |MA) (where we condition on observing the measurement outcome MA) is large.

Note that a measurement outcome MA is uniquely represented by a rank-1 POVM element of the
formMA =

⊗
i∈AMi, where each Mi is a POVM element acting on qubit i, that corresponds to one

possible outcome of some measurement in the set L.
We will now proceed as follows. First, we will show that, for every A and MA, Pr[MA] is

approximately tr(MA)/2
m. Secondly, we will show that, for every A and MA,

∑
u Pr[MA|U = u]2

is small. (To show these claims, we will use large-deviation bounds for every fixed choice of A and
MA, followed by the union bound over all A and MA.) Finally, we will combine these two claims to
get a lower-bound on H2(U |MA).

First, fix some subset of qubits A ⊂ [n], of size |A| = m. Let ρ be the mixed state presented to
the adversary, ρ := 2−ñ

∑
u∈{0,1}ñ |E(u)〉〈E(u)|, and let ρA be the reduced state on the subset A,

ρA := tr[n]\A(ρ) = 2−ñ
∑

u∈{0,1}ñ

|E(u)A〉〈E(u)A|, where |E(u)A〉 :=
⊗

a∈A

∣∣αE(u)a

〉
. (49)
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Note that EE ρA = I/2m. We claim that, with high probability (over the choice of E), ρA is close to
the maximally mixed state I/2m, and hence any measurement outcome MA on the subset A will be
observed with probability approximately tr(MA)/2

m. To show this, we will use the matrix Bernstein
inequality [36].

For convenience, define H :=
∑

u∈{0,1}ñ Hu, where Hu := |E(u)〉A〈E(u)|A. Note that EE H =

2ñ−mI and EEHu = 2−mI. Note that the Hu are bounded:

‖Hu − EE Hu‖ = max {1− 2−m, 2−m} < 1 =: R. (50)

The variance of H is described by

EE [(H − EE H)2] = EE [H
2]− (EE H)2

= EE [
∑

u

H2
u +

∑

u6=v
HuHv]− 4ñ−mI

=
∑

u

EE [H
2
u] +

∑

u6=v
EE [Hu]EE [Hv]− 4ñ−mI

= 2ñ−mI + (4ñ − 2ñ)4−mI − 4ñ−mI

= 2ñ−m(1− 2−m)I.

(51)

In particular, note that
σ2 := ‖EE [(H − EE H)2]‖ < 2ñ−m. (52)

Then the matrix Bernstein inequality [36] implies that, for any t > 0,

Pr
E
[‖H − EE H‖ ≥ t] ≤ 2 · 2m exp

(
− t2

2(σ2 + 1
3Rt)

)
= 2 · 2m exp

(
− t2

2(2ñ−m + 1
3 t)

)
. (53)

Now set
t := t0

√
m2(ñ−m)/2, for any t0 ≥ 1. (54)

Recall that 0 ≤ m ≤ ñ − lg ñ. This implies that lg ñ ≤ ñ−m, hence t < t0
√
ñ2(ñ−m)/2 ≤ t02

ñ−m,
and hence 2ñ−m + 1

3 t ≤ 4
3 t02

ñ−m. Substituting into the above equation, we get that

Pr
E
[‖H − EE H‖ ≥ t0

√
m2(ñ−m)/2] ≤ 2 · 2m exp(− 3

8 t0m). (55)

Recall that ρA = 2−ñH , hence this implies a large-deviation bound for ρA:

Pr
E
[‖ρA − 2−mI‖ ≥ 2−ñt0

√
m2(ñ−m)/2] ≤ 2 · 2m exp(− 3

8 t0m). (56)

Now use the union bound over all subsets A ⊂ [n] of size |A| = m. (There are
(
n
m

)
< 2n such

sets.) So with probability ≥ 1− 2n+m+1 exp(− 3
8 t0m) (over the choice of E), we have that

for all subsets A of size m, ‖ρA − 2−mI‖ ≤ 2−ñt0
√
m2(ñ−m)/2 = 2−m2−(ñ−m)/2t0

√
m. (57)

By setting t0 to be a sufficiently large constant, we can make the failure probability exponentially
small in n. Finally, equation (57) implies that, for any subset A of size m, and any measurement
outcome MA, the probability of observing MA (which is given by Pr[MA] = tr(MAρA)) satisfies the
bound

|Pr[MA]− 2−m tr(MA)| ≤ 2−m tr(MA)2
−(ñ−m)/2t0

√
m. (58)

Next, fix some subset of qubits A ⊂ [n], |A| = m, and some measurement outcome MA. We will
use Bernstein’s inequality to upper-bound the quantity

F :=
∑

u∈{0,1}ñ

Fu, where Fu := (tr(MA))
−2 Pr[MA|U = u]2. (59)
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Recall that MA is a tensor product of rank-1 operators acting on single qubits, and so MA/ tr(MA)
can be written in the form

MA

tr(MA) = |ψA〉〈ψA|, where |ψA〉 =
⊗

a∈A
|ψa〉, |ψa〉 ∈ C

2, 〈ψa|ψa〉 = 1. (60)

So we can write

Fu =
(
〈E(u)A| MA

tr(MA) |E(u)A〉
)2

= |〈ψA|E(u)A〉|4. (61)

First, we will calculate EE F =
∑

u EE Fu. Note that EE Fu =
∏
a∈A |〈ψa|E(u)a〉|4. We can

upper-bound this as follows:

EE

[
|〈ψa|E(u)a〉|4

]
= 1

4

[
|〈ψa|α00〉|4 + |〈ψa|α01〉|4 + |〈ψa|α10〉|4 + |〈ψa|α11〉|4

]
= 1

4 〈ψa|
⊗2T |ψa〉⊗2,

(62)
where we define the matrix T ∈ C

4×4 to be

T :=
(
|0〉〈0|

)⊗2

+
(
|1〉〈1|

)⊗2

+
(
|+〉〈+|

)⊗2

+
(
|−〉〈−|

)⊗2

. (63)

Now write the spectral decomposition of T :

T =
∣∣Ψ+

〉〈
Ψ+

∣∣+ 2
∣∣Φ+

〉〈
Φ+

∣∣+
∣∣Φ−〉〈Φ−∣∣, (64)

where |Ψ±〉 = 1√
2
(|01〉 ± |10〉) and |Φ±〉 = 1√

2
(|00〉 ± |11〉) are the Bell states. Now write |ψa〉 in the

form |ψa〉 = α|0〉+ β|1〉. This implies

|ψa〉⊗2
=

√
2αβ

∣∣Ψ+
〉
+ 1√

2
(α2 + β2)

∣∣Φ+
〉
+ 1√

2
(α2 − β2)

∣∣Φ−〉. (65)

Now we calculate

〈ψa|⊗2(2T )|ψa〉⊗2 = 4|α|2|β|2 + 2(α2 + β2)∗(α2 + β2) + (α2 − β2)∗(α2 − β2)

= 4|α|2|β|2 + 3|α|4 + (α2)∗β2 + (β2)∗α2 + 3|β|4

= 2(|α|2 + |β|2)2 + |α2 + β2|2

≤ 3(|α|2 + |β|2)2 = 3.

(66)

This implies that EE
[
|〈ψa|E(u)a〉|4

]
≤ 3

8 , and hence EE Fu ≤ (38 )
m and EE F ≤ 2ñ(38 )

m.
In addition, we bound the variance of Fu as follows (using the fact that 0 ≤ Fu ≤ 1): VarE Fu ≤

EE(F
2
u ) ≤ EE Fu ≤ (38 )

m.
Now Bernstein’s inequality [37] implies that, for all t > 0,

Pr
E
[F > EE F + t] ≤ exp

(
− t2

2 · 2ñ(38 )m + 2
3 t

)
. (67)

Recall that m ≤ ñ/ lg(83 ), and note that this implies 2ñ(38 )
m ≥ 1. Now set

t = t1[2
ñ(38 )

m]1/2, for any t1 ≥ 1. (68)

This implies 2 · 2ñ(38 )m + 2
3 t ≤ (2 + 2

3 )t12
ñ(38 )

m. Substituting into the above equation, we get

Pr
E
[F > 2ñ(38 )

m + t1[2
ñ(38 )

m]1/2] ≤ exp(− 3
8 t1). (69)

Now take the union bound over all subsets A ⊂ [n] of size |A| = m, and all measurement outcomes
MA that correspond to measurements chosen from the set L and performed on the qubits in the set
A. (There are

(
n
m

)
< 2n such sets, and (q|L|)m ≤ (qO(1/ε)3q)m ≤ (qO(qn)3q)m ≤ 2O(qn lg(qn)) such

measurement outcomes.) Then, with probability ≥ 1− 2O(qn lg(qn)) exp(− 3
8 t1), we have that

for all subsets A of size m, and all measurement outcomes MA, F ≤ 2ñ(38 )
m + t1[2

ñ(38 )
m]1/2. (70)
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By setting t1 := Θ(qn lg(qn)), we can make the failure probability exponentially small in n.
Finally, we will combine equations (58) and (70) to get a lower bound on H2(U |MA). For any A

and MA, we write

2−H2(U|MA) =
∑

u∈{0,1}ñ

Pr[U = u|MA]
2

= Pr[MA]
−24−ñ

∑

u∈{0,1}ñ

Pr[MA|U = u]2

= Pr[MA]
−24−ñ(tr(MA))

2F

≤ [2−m tr(MA)(1− 2−(ñ−m)/2t0
√
m)]−24−ñ(tr(MA))

2[2ñ(38 )
m + t1[2

ñ(38 )
m]1/2]

≤ 4m(1− 2−(ñ−m)/2t0
√
m)−24−ñ2ñ(38 )

m(1 + t1)

≤ 2−ñ(32 )
mO(qn lg(qn)).

(71)

This implies

H2(U |MA) ≥ ñ−m lg(32 )− lg(O(qn lg(qn)))

≈ ñ− (0.5850)m− lg(O(qn lg(qn))).
(72)

This completes the proof of Lemma 3.5. �

We now return to the proof of Theorem 3.4. Consider any strategy M ∈ M′. We want to bound
the mutual information

I(U ;Z) = I(U ;Z1,...,m) + I(U ;Zm+1,...,n|Z1,...,m). (73)

We bound the first term using Lemma 3.5. First we write

I(U ;Z1,...,m) = H(U)−H(U |Z1,...,m)

≤ ñ−
∑

z1,...,m∈[q]m

Pr[Z1,...,m = z1,...,m]H(U |Z1,...,m = z1,...,m). (74)

For any particular string of measurement outcomes z1,...,m ∈ [q]m, let A ⊂ [n] be the set of qubits
that were measured, and let MA be the corresponding POVM element. Then, by Lemma 3.5, we
have

H(U |Z1,...,m = z1,...,m) ≥ H2(U |Z1,...,m = z1,...,m)

≥ ñ− ñ lg(3/2)
lg(8/3) −O(lg(qn)).

(75)

We bound the second term using Holevo’s inequality [33]. First we write

I(U ;Zm+1,...,n|Z1,...,m) =
∑

z1,...,m∈[q]m

Pr[Z1,...,m = z1,...,m]I(U ;Zm+1,...,n|Z1,...,m = z1,...,m). (76)

For any particular string of measurement outcomes z1,...,m ∈ [q]m, let A ⊂ [n] be the set of qubits
that were measured, and let p(u) = Pr[U = u|Z1,...,m = z1,...,m]. Then we have

I(U ;Zm+1,...,n|Z1,...,m = z1,...,m) ≤ S

( ∑

u∈{0,1}ñ

p(u)|E(u)〉〈E(u)|[n]\A
)
−

∑

u∈{0,1}ñ

p(u)S
(
|E(u)〉〈E(u)|[n]\A

)

≤ n−m ≤ n− ñ
lg(8/3) + 1.

(77)
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Combining these bounds, we get

I(U ;Z) ≤ ñ− ñ+ ñ lg(3/2)
lg(8/3) +O(lg(qn)) + n− ñ

lg(8/3) + 1

≤ n− ñ lg(4/3)
lg(8/3) +O(lg(qn))

≈ n− (0.2933)ñ+O(lg(qn)).

(78)

�

4 One-time memories from isolated qubits

A one-time memory (OTM) is a device that implements the following functionality [1]: one party

(Alice) can write two messages s, t ∈ {0, 1}k into the device, and then give the device to another
party (Bob); after receiving the device, Bob can then choose to read either s or t, but not both. The
main application of OTM’s is to construct one-time programs [1, 2, 3].

In this section, we will construct devices which are similar to OTM’s, in the isolated qubits model.
Our devices will not implement the ideal OTM functionality described above, but we conjecture that
they do provide a weaker “leaky OTM” functionality that is still sufficient to construct one-time
programs. We will first define this “leaky OTM” functionality, and then describe our construction
based on isolated qubits.

4.1 Leaky OTM’s

Definition 4.1. Fix some class of adversary strategies M, some leakage parameter δ ∈ [0, 1], and
some failure probability ε ∈ [0, 1]. A leaky one-time memory (leaky OTM) with parameters (M, δ, ε)
is a device that has the following behavior. Suppose that the device is programmed with two messages
s and t chosen uniformly at random in {0, 1}k; and let S and T be the random variables containing
these messages. Then:

1. Correctness: There exists an honest strategy M(1) ∈ M that interacts with the device and
recovers the message s with probability ≥ 1 − ε. Likewise, there exists an honest strategy
M(2) ∈ M that recovers the message t with probability ≥ 1− ε.

2. Leaky security: For every strategy M ∈ M, if Z is the random variable containing the classical
information output by M, then with probability ≥ 1 − ε, Z takes on a value z such that
Hε

∞(S, T |Z = z) ≥ (1− δ)k. (Here Hε
∞ is the smoothed min-entropy.)

This leaky OTM is weaker than the ideal OTM in two important respects: it assumes that the
messages s and t are chosen uniformly at random, independent of all other variables; and it allows
the adversary to obtain partial information about both s and t, so long as the adversary still has
(1− δ)k bits of uncertainty (as measured by the smoothed min-entropy).

Also, note that when we chooseM to be the class of LOCC adversaries, the above definition yields
information-theoretic (rather than computational) notions of correctness and security. In particular,
the honest strategies are not required to be computationally efficient, but at the same time, security
holds against LOCC adversaries with unbounded computational power.

We remark that this definition is mostly classical, rather than quantum. In particular, this
definition assumes that the party who programs the OTM is classical, so that the messages s and t
are classical bit strings. This definition also assumes that the party who reads the OTM may make
(quantum) LOCC measurements, but immediately outputs a classical string z. These assumptions
are reasonable, since the isolated qubits model is mostly classical, as LOCC operations can never
generate quantum entanglement.

We conjecture that one can construct one-time programs from (computationally-efficient) leaky
OTM’s, provided the leakage parameter δ is a sufficiently small constant, and the failure probability
ε is negligible. To see why this is plausible, consider the one-time programs in [1], which are based
on Yao’s garbled circuits. Here, the OTM’s contain keys for an encryption scheme. These keys are
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chosen independently at random, and are never re-used. Furthermore, one can use a leak-resistant
encryption scheme, which can tolerate leakage of a constant fraction of the bits of the key [30]. Here,
the adversary’s remaining uncertainty about the key is expressed using the (smoothed) min-entropy.
This suggests that leaky OTM’s will be sufficient for this construction.

4.2 Construction using isolated qubits

We consider a system of n isolated qubits, and we construct a set of states |E(s, t)〉 (for s, t ∈ {0, 1}k),
where k ≈ (0.3991)n. First, choose a random function C : {0, 1}k → {0, 1}n, i.e., for each s ∈ {0, 1}k,
choose C(s) ∈ {0, 1}n independently and uniformly at random. Similarly, choose a random function

D : {0, 1}k → {0, 1}n. Now define

|E(s, t)〉 :=
n⊗

a=1

∣∣αC(s)aD(t)a

〉
, (79)

where the single-qubit states |α00〉, |α01〉, |α10〉, |α11〉 are defined in the same way as in the previous
section:

|α00〉 = |0〉, |α11〉 = |1〉, |α01〉 = 1√
2
(|0〉+ |1〉), |α10〉 = 1√

2
(|0〉 − |1〉). (80)

Note that these states can be prepared using single-qubit operations in the isolated qubits model.
We now describe the “honest” measurement strategies, that can be used to learn either s or t.

The states |E(s, t)〉 are reminiscent of Wiesner’s conjugate coding [16], in that measuring in one
basis reveals information about s, while measuring in another basis reveals information about t. Let
us define the states

|βφ〉 := cos(φ)|0〉+ sin(φ)|1〉, φ ∈ R. (81)

Then measuring each qubit in the basis {
∣∣βπ/8

〉
,
∣∣β5π/8

〉
} returns a “noisy” copy of the string C(s),

which can be decoded to recover s (since, with high probability, C is a good error-correcting code).
Likewise, measuring each qubit in the basis {

∣∣β−π/8
〉
,
∣∣β3π/8

〉
} returns a “noisy” copy of the string

D(t), which can be decoded to recover t.
Is there some measurement strategy that will reveal both s and t? Wiesner pointed out that there

does exist a joint measurement on the n qubits that can recover both s and t; this also follows from the
“gentle measurement lemma” of Winter [38]. However, when the codes C and D are “unstructured,”
one may expect this measurement to be highly entangled, hence impossible to perform using only
LOCC operations. We will give rigorous evidence that this is indeed the case.

We will show that these states partially satisfy the definition of a leaky OTM. In particular, with
high probability over the random choice of C and D, the following statements hold:

1. Suppose s and t are chosen uniformly at random. There exists a sequence of single-qubit
projective measurements that can reconstruct s with probability ≥ 1− e−Ω(n). Likewise, there
exists a sequence of single-qubit projective measurements that can reconstruct t with probability
≥ 1− e−Ω(n).

2. Suppose s and t are chosen uniformly at random. No 1-pass LOCC measurement strategy using
2-outcome measurements can recover more than ≈ (1.9190)k bits of information about s and
t. That is, if S and T are the random variables containing the strings s and t, and Z is the
output of the measurement strategy, then

I(Z;S, T ) ≤ (1.9190)k+O(
√
n logn). (82)

Note that we can write I(Z;S, T ) = H(S, T )−H(S, T |Z), hence this implies

H(S, T |Z) ≥ (0.081)k −O(
√
n logn). (83)

These statements are similar to the definition of a leaky OTM, where M is the set of 1-pass
LOCC measurement strategies using 2-outcome measurements, the leakage parameter is δ ≈ 0.9190,

20



the failure probability is ε = e−Ω(n), and the security condition is relaxed by replacing the smoothed
min-entropy Hε

∞ with the Shannon entropy H . (Also, we set aside the requirement that the honest
strategies must be computationally efficient.)

We believe it should be possible to prove much stronger results of this type. In particular, it
should be possible to improve our bound on the leakage parameter δ, as our current proof technique
is somewhat ad hoc. Also, we remark that some parts of our proof already imply bounds on the
smoothed min-entropyHε

∞. Specifically, in Lemma 4.4, we actually lower-bound the collision entropy
H2(S, T |Z1,...,m = z1,...,m), where Z1,...,m represents the measurement outcomes of the first m qubits
measured by the adversary, where m ≈ (0.7067)k. This directly implies a lower-bound on the
smoothed min-entropy Hε

∞(S, T |Z1,...,m = z1,...,m), using a standard argument.7

4.3 Correctness for honest parties

First, we show that the honest strategies for recovering either s or t (as described above) do succeed
with high probability. Without loss of generality, suppose we want to recover s. Let S and T
be random variables, distributed independently and uniformly on {0, 1}k. We are given the state
|E(S, T )〉, and we measure each qubit in the basis {

∣∣βπ/8
〉
,
∣∣β5π/8

〉
}. Let Z be the random variable

containing the string of measurement outcomes, i.e., Z takes values in {0, 1}n.
We decode Z as follows: we output any string t ∈ {0, 1}k such that dH(C(t), Z) ≤ r, where dH

denotes the Hamming distance, and r is a parameter that we will set below. If there are multiple
candidate strings t, we pick one of them in some arbitrary fashion. Let Ŝ be the random variable
containing the output of this procedure.

Observe that Z is the output of a binary symmetric channel BSC(pe) applied to the string C(S),
where the error probability pe is given by

pe := sin2(π/8) ≈ 0.1464. (84)

Recall that the channel BSC(pe) has capacity 1− h(pe) ≈ 0.3991, where h(p) is the binary entropy
function,

h(p) := −p lg(p)− (1− p) lg(1− p). (85)

Also, note that the expected number of errors introduced by the channel is npe.
This suggests that we should set the parameters k and r as follows:

k := n(1− h(pe)− θ), (86)

r := n(pe + τ), (87)

where 0 < θ ≪ 1 and 0 < τ ≪ 1 are small constants.
We prove the following statement, which is essentially Shannon’s noisy coding theorem for the

binary symmetric channel, using an argument from [39]. This shows that, when we choose θ and τ
appropriately, then with high probability over the choice of the random code C, Pr[Ŝ = S] is close
to 1.

Proposition 4.2. Fix any constants λ ≥ 1, 0 < τ ≤ 1
2 − pe ≈ 0.3536, and θ > τh′(pe) ≈ (2.5431)τ .

Then for all sufficiently large n, the following statement holds: with probability ≥ 1 − 1
λ (over the

choice of C), we have

Pr[Ŝ = S] ≥ 1− λ
[
e−2τ2n + 2−n(θ−τh

′(pe))
]
≥ 1− λe−Ω(n). (88)

Proof: See Appendix D.

7In particular, for any θ ≥ 0, if we set ε = 2−θ , then Hε
∞(X) ≥ H2(X)− θ; this follows from Markov’s inequality.
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4.4 Security against 1-pass LOCC adversaries using 2-outcome measure-

ments

In this section we will upper-bound the amount of information that can be extracted from our OTM
devices by any 1-pass LOCC adversary using 2-outcome measurements. We use the collision entropy
technique to analyze the first few steps taken by the adversary; then we use the entropy chaining
technique to prove bounds on the adversary’s subsequent steps. To deal with the correlations among
the states |E(s, t)〉, we will use large deviation bounds for sums of locally dependent random variables
[40, 37].

Theorem 4.3. Let M be the set of all 1-pass LOCC strategies that use 2-outcome measurements.
Then, with probability ≥ 1− e−Ω(n) (over the choice of C and D), the following statement holds:

∀M ∈ M, I(Z;S, T ) ≤ (1.9190)k+O(
√
n logn), (89)

where Z denotes the output of the strategy M. Equivalently, we can write:

∀M ∈ M, H(S, T |Z) ≥ (0.081)k −O(
√
n logn). (90)

Proof: First, let L be an ε-net for the set of single-qubit measurements with 2 outcomes where all
POVM elements have rank 1, as described in Lemma 2.2; and set ε = 1/(200n). Let M′ be the set
of all strategies that use measurements chosen from the set L. By Lemmas 2.1 and 2.4, any strategy
in M can be approximated by one in M′.

We will analyze the first m steps of any strategy in M
′, where

m := ⌊k/ lg(8/3)⌋ ≈ (0.7067)k. (91)

We will show the following bound:

Lemma 4.4. With probability ≥ 1− e−Ω(n) (over the choice of C and D),

∀M ∈ M
′, ∀z1,...,m ∈ {0, 1}m, H2(S, T |Z1,...,m = z1,...,m) ≥ 2k −m lg(32 )− lg(O(n lg n)), (92)

where Z1,...,m denotes the output of the first m steps of the strategy M, H2 denotes the Renyi collision
entropy, and lg(32 ) ≈ 0.5850.

Remark: Equation (92) is equivalent to the following statement:

for all subsets of qubits A ⊂ [n], of size |A| = m,
for all possible measurement outcomesMA, that can be obtained by measuring the qubits

in A (using measurements chosen from the set L),
H2(S, T |MA) ≥ 2k −m lg(32 )− lg(O(n lg n)).

Recall that a measurement outcome MA is uniquely represented by a rank-1 POVM element of the
formMA =

⊗
i∈AMi, where each Mi is a POVM element acting on qubit i, that corresponds to one

possible outcome of some measurement in the set L.

Proof (of Lemma 4.4): First, we will show that, for every A and MA, Pr[MA] is approximately
tr(MA)/2

m. Secondly, we will show that, for every A and MA,
∑

u Pr[MA|S = s, T = t]2 is small.
(To show these claims, we will use large-deviation bounds for every fixed choice of A and MA,
followed by the union bound over all A and MA.) Finally, we will combine these two claims to get
a lower-bound on H2(S, T |MA).

First, fix some subset of qubits A ⊂ [n], of size |A| = m, and fix some measurement outcome
MA. Let ρ be the mixed state presented to the adversary, ρ := 4−k

∑
s,t∈{0,1}k |E(s, t)〉〈E(s, t)|, and

let ρA be the reduced state on the subset A,

ρA := tr[n]\A(ρ) = 4−k
∑

s,t∈{0,1}k

|E(s, t)A〉〈E(s, t)A|, where |E(s, t)A〉 :=
⊗

a∈A

∣∣αC(s)aD(t)a

〉
. (93)
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Recall that MA is a tensor product of rank-1 operators acting on single qubits. Moreover, since the
adversary uses single-qubit measurements with 2 outcomes, each measurement outcome is a rank-1
projector. So tr(MA) = 1, and MA can be written in the form

MA = |ψA〉〈ψA|, where |ψA〉 =
⊗

a∈A
|ψa〉, |ψa〉 ∈ C

2, 〈ψa|ψa〉 = 1. (94)

We will use Bernstein’s inequality for locally dependent random variables [40] to lower-bound the
quantity

Pr[MA] = tr(MAρA) = 4−k
∑

s,t∈{0,1}k

|〈ψA|E(s, t)A〉|2. (95)

For convenience, let us define the random variables

H :=
∑

s,t∈{0,1}k

Hst, Hst := |〈ψA|E(s, t)A〉|2. (96)

We can calculate their expectation values:

ECDHst =
∏

a∈A
ECD[|〈ψa|E(s, t)a〉|2] = 2−m, (97)

hence ECDH = 4k2−m. We can also bound their variances:

VarCDHst ≤ ECD[H
2
st] =

∏

a∈A
ECD[|〈ψa|E(s, t)a〉|4] ≤ (38 )

m, (98)

where in the last step we re-used the argument shown in equations (62)-(66) in the proof of Lemma
3.5.

We claim that the dependency graph Γ of the random variables Hst (s, t ∈ {0, 1}k) has chromatic
number χ(Γ) ≤ 2k. To see this, note that two vertices (s, t) and (s′, t′) in Γ are adjacent if and
only if s = s′ or t = t′. We can color the vertices of Γ as follows: assign each vertex (s, t) the color

specified by the string s ⊕ t ∈ {0, 1}k (where ⊕ denotes bitwise XOR). It is easy to check that this
is a legal coloring, which uses 2k colors.

Using Bernstein’s inequality for locally dependent random variables [40], we get that for all τ > 0,

Pr
CD

[H ≤ ECDH − τ ] ≤ exp

(
− 8τ2

25 · 2k(4k(38 )m + 1
3τ)

)

≤ exp

(
− 8τ2

25 · 2kmax {2 · (32 )k(83 )k−m, 23τ}

)

= max

{
exp

(
− 4τ2

25 · 3k(83 )k−m
)
, exp

(
− 12τ2

25 · 2kτ

)}
.

(99)

Now set
τ := 4k2−mk−1 = 2k2k−mk−1, (100)

which implies

Pr
CD

[H ≤ 4k2−m(1 − k−1)] ≤ max
{
exp(− 4

25 (
4
3 )
k(32 )

k−mk−2), exp(− 12
252

k−mk−1)
}
. (101)

Now take the union bound over all subsets A ⊂ [n] of size |A| = m, and all measurement outcomes
MA that correspond to measurements chosen from the set L and performed on the qubits in the set A.
(There are

(
n
m

)
< 2n such sets, and (2|L|)m ≤ (O(1/ε2))m ≤ (O(n2))m ≤ 2O(n lgn) such measurement

outcomes.) So, with probability ≥ 1−2O(n lgn) ·max
{
exp(− 4

25 (
4
3 )
k(32 )

k−mk−2), exp(− 12
252

k−mk−1)
}

(over the choice of C and D), we have that:

for all subsets A of size m, and all measurement outcomes MA,

H ≥ 4k2−m(1− k−1), and hence, Pr[MA] ≥ 2−m(1− k−1).
(102)
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Recall that m ≤ (0.7061)k, and k ≈ (0.3991)n; this implies that the failure probability is doubly-
exponentially small in n.

Next, fix some subset of qubits A ⊂ [n], |A| = m, and some measurement outcome MA =
|ψA〉〈ψA|, as before. We will now upper-bound the quantity

F :=
∑

s,t∈{0,1}k

Fst, where Fst := Pr[MA|S = s, T = t]2 = |〈ψA|E(s, t)A〉|4. (103)

First, note that ECD Fst ≤ (38 )
m and ECD F ≤ 4k(38 )

m, by the same argument shown in equations
(62)-(66) in the proof of Lemma 3.5. In addition, since 0 ≤ Fst ≤ 1, we have that VarCD Fst ≤
ECD(F

2
st) ≤ ECD Fst ≤ (38 )

m.
Now Bernstein’s inequality for locally dependent random variables [40] implies that, for all τ > 0,

Pr
CD

[F > ECD F + τ ] ≤ exp

(
− 8τ2

25 · 2k(4k(38 )m + 1
3τ)

)
. (104)

Recall that m ≤ k/ lg(83 ), and note that this implies 2k(38 )
m ≥ 1. Now set

τ = τ14
k(38 )

m, for any τ1 ≥ 1. (105)

This implies 4k(38 )
m + 1

3τ ≤ (1 + 1
3 )τ14

k(38 )
m = 4

3τ . Substituting into the above equation, we get

Pr
E
[F > 4k(38 )

m(1 + τ1)] ≤ exp(− 6
25τ12

k(38 )
m) ≤ exp(− 6

25 τ1). (106)

Now take the union bound over all subsets A ⊂ [n] of size |A| = m, and all measurement outcomes
MA that correspond to measurements chosen from the set L and performed on the qubits in the set
A. Then, with probability ≥ 1− 2O(n lgn) exp(− 6

25τ1), we have that:

for all subsets A of size m, and all measurement outcomes MA, F ≤ 4k(38 )
m(1 + τ1). (107)

By setting τ1 := Θ(n lgn), we can make the failure probability exponentially small in n.
Finally, we will combine equations (102) and (107), to get a lower bound on H2(S, T |MA). For

any A and MA, we write

2−H2(S,T |MA) =
∑

s,t∈{0,1}k

Pr[S = s, T = t|MA]
2

= Pr[MA]
−24−2k

∑

s,t∈{0,1}k

Pr[MA|S = s, T = t]2

= Pr[MA]
−24−2kF

≤ [2−m(1− k−1)]−24−2k4k(38 )
m(1 + τ1)

= 4−k(32 )
m 1+τ1

(1−k−1)2 .

(108)

This implies

H2(S, T |MA) ≥ 2k −m lg(32 )− lg(1 + τ1) + 2 lg(1− k−1)

≥ 2k −m lg(32 )− lg(O(n lg n)).
(109)

This completes the proof of Lemma 4.4. �

We now return to the proof of Theorem 4.3. Consider any measurement strategy M ∈ M′, and
let Z be its output. We will upper-bound the amount of information extracted during the first m
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steps, using Lemma 4.4:

I(S, T ;Z1,...,m) = H(S, T )−H(S, T |Z1,...,m)

≤ H(S, T )−
∑

z1,...,m

Pr[Z1,...,m = z1,...,m]H2(S, T |Z1,...,m = z1,...,m)

≤ 2k − [2k −m lg(32 )− lg(O(n lg n))]

= m lg(32 ) + lg(O(n lg n))

= k lg(3/2)
lg(8/3) + lg(O(n lg n)).

(110)

Next, we will analyze the subsequent steps of the adversary. First, let us fix some subset of qubits
A ⊂ [n], of size |A| = m, and some measurement outcome MA; these represent past actions of the
adversary during its first m steps. We will then upper-bound the amount of information gained by
the adversary in the next m̃ steps, conditioned on MA. Finally, we will use the union bound to show
that this result holds simultaneously for all choices of A and MA.

To simplify the notation, let us define h := H2(S, T |MA), and pst := Pr[S = s, T = t|MA]; so we
have ∑

s,t∈{0,1}k

p2st ≤ 2−h. (111)

Note that h and pst depend only on the qubits in the set A; so they only depend on those random
variables C(s)a and D(t)a with a ∈ A. As shown above, with probability ≥ 1 − e−Ω(n) (over this
subset of the random variables C and D),

h ≥ 2k −m lg(32 )− lg(O(n lg n)). (112)

We will look at the next m̃ steps of the adversary, and we set

m̃ := ⌊h− k⌋ ≥ k −m lg(32 )− lg(O(n lg n)). (113)

More precisely, we let M̃ be the set of all possible measurement strategies that an adversary in M′

may follow for the next m̃ steps, after having received measurement outcome MA on the first m
steps. We let Z̃ := (Zm+1, . . . , Zm+m̃) be the output of the adversary on the next m̃ steps. Note
that this depends only on the qubits outside the set A; so it only depends on those random variables
C(s)a and D(t)a with a /∈ A. We refer to this subset of random variables as C̃ and D̃. We show the
following lemma:

Lemma 4.5. Fix a particular subset of qubits A and a particular measurement outcome MA, as
described above. Let t0 > 0 and u ≥ 1. With probability ≥ 1− exp(−2t20)− 2 · 2−u2

(over the choice
of C̃ and D̃), the following statement holds:

∀M ∈ M̃, I(Z̃;S, T |MA) <
m̃

2
+
t0m̃

2m̃/2
+ u ·O(

√
logn). (114)

Proof: We want to upper-bound the quantity

I(Z̃;S, T |MA) = H(Z̃|MA)−H(Z̃|S, T,MA). (115)

We know that H(Z̃|MA) ≤ m̃, since the adversary uses 2-outcome measurements. We now want to

lower-bound H(Z̃|S, T,MA). For any M ∈ M̃, we define

QM := H(Z̃|S, T,MA), (116)

which is a random variable depending on C̃ and D̃. Note that we can write

QM =
∑

s,t∈{0,1}k

pstH(Z̃|S = s, T = t,MA). (117)
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Let µM := EC̃D̃ QM; we will prove a lower bound for µM below. We will then use entropy chaining
(Lemma C.1) to lower-bound the quantity

inf
M∈M̃

(QM − µM). (118)

First, we evaluate µM. Using the same argument as in the proof of Theorem 3.3, we get that

µM ≥ m̃/2. (119)

We now show several technical facts which are needed in order to apply the entropy chaining
argument (Lemma C.1). First, fix some particular strategy M0 ∈ M̃. We will show that QM0 is
tightly concentrated around its mean. Observe that QM0 is a sum of 4k random variables, and recall
that their dependency graph Γ has chromatic number χ(Γ) ≤ 2k. Using Hoeffding’s inequality for
locally dependent random variables [40, 37], we get that

Pr
C̃D̃

[QM0 < µM0 − t] ≤ exp
(
− 2t2

2k
∑

st(pstm̃)2

)
= exp

(
−2t2 · 2m̃

m̃2

)
(∀t > 0), (120)

or equivalently

Pr
C̃D̃

[
QM0 < µM0 −

t0m̃

2m̃/2

]
≤ exp(−2t20), (∀t0 > 0). (121)

Next, we show that when two strategies M and M′ are “similar,” the random variables QM
and QM′ are positively correlated. In particular, suppose that M and M′ behave identically for
the first ℓ steps. Let Z̃1,...,m̃ and Z̃ ′

1,...,m̃ be the output of these two strategies; then (Z̃1,...,ℓ, U) and

(Z̃ ′
1,...,ℓ, U) have the same distribution. So we can write

QM −QM′ = H(Z̃ℓ+1,...,m̃|Z̃1,...,ℓ, S, T,MA)−H(Z̃ ′
ℓ+1,...,m̃|Z̃ ′

1,...,ℓ, S, T,MA)

=
∑

s,t∈{0,1}k

pst[H(Z̃ℓ+1,...,m̃|Z̃1,...,ℓ, S = s, T = t,MA)−H(Z̃ ′
ℓ+1,...,m̃|Z̃ ′

1,...,ℓ, S = s, T = t,MA)],

(122)

which again is a sum of 4k locally-dependent random variables. By Hoeffding’s inequality (with local
dependencies),

Pr
C̃D̃

[QM −QM′ − µM + µM′ ≥ t] ≤ exp
(
− 2t2

2k
∑

st(pst · 2(m̃− ℓ))2

)
= exp

(
− t2 · 2m̃
2(m̃− ℓ)2

)
. (123)

We can rewrite this bound in terms of a metric d that measures the “distance” between strategies.
We define d as follows: 8

d(M,M′) :=
√
2 · 2−m̃/2(m̃− ℓ(M,M′)), where (124)

ℓ(M,M′) := max {ℓ | 0 ≤ ℓ ≤ m̃, and M and M′ behave identically on steps 1, 2, . . . , ℓ}. (125)

We then have

Pr
C̃D̃

[QM −QM′ − µM + µM′ ≥ t] ≤ exp
(
− t2

d(M,M′)2

)
. (126)

Next, we bound the covering numbers of M̃ with respect to the metric d, and we bound the
integral appearing in Lemma C.1 (“Dudley’s entropy integral”). Using the same argument as in the
proof of Theorem 3.3, we get that

S ≤ O(
√

logn). (127)

8Note that d is indeed a metric: It is easy to see that d(M,M′) ≥ 0, with equality iff M = M′. Also, clearly
d(M,M′) = d(M′,M). It remains to show that d(M,M′′) ≤ d(M,M′) + d(M′,M′′). We consider two cases. On one
hand, if M′ satisfies ℓ(M,M′) ≤ ℓ(M,M′′) or ℓ(M′,M′′) ≤ ℓ(M,M′′), then the claim follows immediately. On the
other hand, if M′ satisfies ℓ(M,M′) > ℓ(M,M′′) and ℓ(M′,M′′) > ℓ(M,M′′), then this is impossible, since M and
M′′ do not agree at step ℓ(M,M′′) + 1; hence this case cannot occur.
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Finally, using Lemma C.1, we have that: for all t0 > 0 and u ≥ 1, with probability ≥ 1 −
exp(−2t20)− 2 · 2−u2

, the following holds:

∀M ∈ M̃, QM − µM > − t0m̃

2m̃/2
− uS. (128)

This implies

∀M ∈ M̃, QM >
m̃

2
− t0m̃

2m̃/2
− u · O(

√
logn). (129)

Hence

∀M ∈ M̃, I(Z̃;S, T |MA) <
m̃

2
+
t0m̃

2m̃/2
+ u ·O(

√
logn). (130)

This proves the claim. �

We now return to the proof of Theorem 4.3. We take the union bound over all subsets A ⊂ [n] of
size |A| = m, and all measurement outcomes MA that correspond to measurements chosen from the
set L and performed on the qubits in the set A. Then, with probability ≥ 1− 2O(n lgn) · exp(−2t20)−
2O(n lgn) · 2 · 2−u2

, we have that:

for all subsets A of size m, and all measurement outcomes MA,

I(Z̃;S, T |MA) <
m̃

2
+
t0m̃

2m̃/2
+ u ·O(

√
logn).

(131)

By setting t0 := Θ(
√
n logn) and u := Θ(

√
n logn), we can make the failure probability exponentially

small in n.
Hence, for any measurement strategy M ∈ M′, with output Z, and any sequence of measurement

outcomes z1,...,m, we have

I(Zm+1,...,m+m̃;S, T |Z1,...,m = z1,...,m) <
m̃

2
+O(

√
n logn), (132)

and hence

I(Zm+1,...,m+m̃;S, T |Z1,...,m) <
m̃

2
+O(

√
n logn). (133)

Finally, we consider the remaining steps of the adversary. Using Holevo’s inequality [33] (see the
proof of Theorem 3.4), we get that

I(Zm+m̃+1,...,n;S, T |Z1,...,m+m̃) ≤ n−m− m̃. (134)

Combining equations (110), (133) and (134), we get that

I(Z;S, T ) ≤ m lg(32 ) + lg(O(n lg n)) + 1
2m̃+O(

√
n logn) + n−m− m̃

= n−m lg(43 )− 1
2m̃+O(

√
n logn).

(135)

From equations (86), (91) and (113), we have that

n ≤ k
1−h(pe) +O(

√
n) ≈ (2.5056)k +O(

√
n), (136)

m = ⌊ k
lg(8/3)⌋ ≈ ⌊(0.7067)k⌋, (137)

m̃ ≥ k −m lg(32 )− lg(O(n lg n))

≥ k − k lg(3/2)
lg(8/3) − lg(O(n lg n))

≈ (0.5866)k− lg(O(n lg n)).

(138)

Combining these bounds, we get that

I(Z;S, T ) ≤ (1.9190)k+O(
√
n logn), (139)

as desired. �
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A Facts about LOCC measurement strategies

Lemma A.1. (restatement of Lemma 2.1) Let M be any 1-pass LOCC strategy in the isolated qubits
model, which uses q-outcome measurements and returns output Z. Then there exists M′, a 1-pass
LOCC strategy in the isolated qubits model, which uses q-outcome measurements and returns output
Z ′, and has the following additional properties:

1. I(Z ′;U) ≥ I(Z;U) (when playing the state discrimination game shown above).
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2. In every measurement performed by M′, the POVM elements all have rank 1.

Proof: We will construct the strategy M′ as follows. Consider what the strategy M does at step
a, given some prior history z<a. Any POVM element Ma(z<a, ζ) that has rank > 1 can be written
in the form αI + β|ϕ〉〈ϕ|, where α > 0, β ≥ 0. We now construct a new POVM measurement, by
replacing Ma(z<a, ζ) with two operators αI and β|ϕ〉〈ϕ|. This new measurement can simulate the
original measurement, by identifying the measurement outcomes αI and β|ϕ〉〈ϕ| with the original
measurement outcome ζ.

In this way, one can replace each measurement in M with a measurement that consists of at
most q POVM elements that have rank 1, and at most q POVM elements that are multiples of
I. This strategy is equivalent to a probabilistic mixture of strategies, where each strategy uses
measurements with at most q POVM elements, each of which has rank 1. By convexity of the
mutual information I(Z;U) (as a function of the conditional distribution Pr[Z = z|U = u], keeping
the marginal distribution Pr[U = u] fixed), there must be a pure strategyM′ that achieves I(Z ′;U) ≥
I(Z;U), and uses measurements with at most q POVM elements, each of which has rank 1. �

Lemma A.2. (restatement of Lemma 2.2) Let q = 2. For any 0 < ε ≤ 1, there exists an ε-net
L for S, with respect to the metric t, that has cardinality |L| ≤ C/ε2 (where C is some numerical
constant). Equivalently, we have N(S, t, ε) ≤ C/ε2.

Proof: When q = 2, we can write the set S and the metric t in a simpler form:

S = {(|ϕ〉〈ϕ|, I − |ϕ〉〈ϕ|) s.t. |ϕ〉 ∈ C
2, 〈ϕ|ϕ〉 = 1}, (140)

t
(
(|ϕ〉〈ϕ|, I − |ϕ〉〈ϕ|), (|θ〉〈θ|, I − |θ〉〈θ|)

)
= ‖|ϕ〉〈ϕ| − |θ〉〈θ|‖. (141)

Let B := {|ϕ〉〈ϕ| s.t. |ϕ〉 ∈ C2, 〈ϕ|ϕ〉 = 1}, and note that

N(S, t, ε) ≤ N(B, ‖·‖, ε). (142)

It follows from standard arguments 9 that N(B, ‖·‖, ε) ≤ O(1/ε2). �

Lemma A.3. (restatement of Lemma 2.3) Let q ≥ 2. For any 0 < ε ≤ 1, there exists an ε-net L
for S, with respect to the metric t, that has cardinality |L| ≤ (C/ε)3q (where C is some numerical
constant). Equivalently, we have N(S, t, ε) ≤ (C/ε)3q.

Proof: Observe that S ⊂ (S ′
1)
q, where S ′

1 := {M ∈ C2×2 | 0 �M � I, rank(M) = 1}. This implies:
10

N(S, t, ε) ≤ N(S ′
1, ‖·‖, ε/2)q. (143)

Next, let B := {|ϕ〉〈ϕ| s.t. |ϕ〉 ∈ C2, 〈ϕ|ϕ〉 = 1}. Note that we can write S ′
1 = {λM | λ ∈ [0, 1], M ∈ B}.

This implies: 11

N(S ′
1, ‖·‖, ε/2) ≤ N([0, 1], |·|, ε/4)N(B, ‖·‖, ε/4). (144)

It is easy to see that N([0, 1], |·|, ε/4) ≤ O(1/ε), and it follows from standard arguments 12 that
N(B, ‖·‖, ε/4) ≤ O(1/ε2). �

9Let B2 = {|ϕ〉 ∈ C
2, 〈ϕ|ϕ〉 = 1}. We claim that, for all ε ≤ 1, N(B, ‖·‖, ε) ≤ N(B2, ‖·‖2, ε/3). This follows be-

cause, for any |ϕ〉〈ϕ|, |ϕ′〉〈ϕ′| ∈ B, such that |u〉 := |ϕ′〉 − |ϕ〉 satisfies ‖u‖2 ≤ 1, we can write ‖|ϕ〉〈ϕ| − |ϕ′〉〈ϕ′|‖ =
‖−|u〉〈ϕ| − |ϕ〉〈u| − |u〉〈u|‖ ≤ 2‖u‖2 + ‖u‖22 ≤ 3‖u‖2. Finally, it is easy to see that N(B2, ‖·‖2, ε/3) ≤ O(1/ε2).

10This follows because, given an (ε/2)-net for S ′
1, we can take its q-fold Cartesian product, “round” each point to the

nearest point in S , and get an ε-net for S .
11To see this, let E1 be any (ε/4)-net for [0, 1], and let E2 be any (ε/4)-net for B. We claim that F :=

{λ̃M̃ | λ̃ ∈ E1, M̃ ∈ E2} is an (ε/2)-net for S ′
1. To see this, let λM be any element of S ′

1. Then there exists some
λ̃M̃ ∈ F , such that ‖λM − λ̃M̃‖ ≤ ‖λM − λ̃M‖+ ‖λ̃M − λ̃M̃‖ ≤ |λ − λ̃|+ ‖M − M̃‖ ≤ ε/4 + ε/4 = ε/2.

12Let B2 = {|ϕ〉 ∈ C
2, 〈ϕ|ϕ〉 = 1}. We claim that, for all ε ≤ 1, N(B, ‖·‖, ε/4) ≤ N(B2, ‖·‖2, ε/12). This follows

because, for any |ϕ〉〈ϕ|, |ϕ′〉〈ϕ′| ∈ B, such that |u〉 := |ϕ′〉 − |ϕ〉 satisfies ‖u‖2 ≤ 1, we can write ‖|ϕ〉〈ϕ| − |ϕ′〉〈ϕ′|‖ =
‖−|u〉〈ϕ| − |ϕ〉〈u| − |u〉〈u|‖ ≤ 2‖u‖2 + ‖u‖22 ≤ 3‖u‖2. Finally, it is easy to see that N(B2, ‖·‖2, ε/12) ≤ O(1/ε2).
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Lemma A.4 (restatement of Lemma 2.4). Let M be any 1-pass LOCC strategy in the isolated qubits
model, which uses q-outcome measurements, where all POVM elements have rank 1, and which has
output Z. Fix some 0 < ε ≤ 1/(qne), and let L be the ε-net for S defined above. Let M′ be the
strategy that is obtained by duplicating the strategy M, and replacing each measurement M ∈ S with
the best approximating measurement M̃ ∈ L. Let Z ′ be the output of the strategy M′. Then

|I(Z ′;U)− I(Z;U)| ≤ 2qn2ε+ 2η(qnε), (145)

where η(x) := −x lg x.
Proof: For any u ∈ {0, 1}ñ, let Z|U=u be the random variable Z conditioned on the event U = u;
define Z ′|U=u similarly. We will show that Z|U=u and Z ′|U=u have nearly the same distribution,
compared using total variation distance (denoted ∆(·, ·)). To see this, let us define a sequence of
strategies that interpolate between M and M′. For a = 0, 1, 2, . . . , n, we define a strategy M(a)

(whose output is denoted Z(a)) that does the same measurements asM′ for steps 1, 2, . . . , a, and does
the same measurements as M for steps a+ 1, a+ 2, . . . , n. Note that M(0) = M and M(n) = M′,
and we have

∆(Z|U=u, Z
′|U=u) ≤

n−1∑

a=0

∆(Z(a)|U=u, Z
(a+1)|U=u). (146)

We now want to bound

∆(Z(a)|U=u, Z
(a+1)|U=u) =

∑

z∈[q]n

|Pr[Z(a) = z|U = u]− Pr[Z(a+1) = z|U = u]|. (147)

The state of the n qubits is given by |E(u)〉 =
⊗n

a=1

∣∣αE(u)a

〉
; to simplify notation, let us call this

state |ψ〉 = ⊗n
a=1 |ψa〉. We will use the following notation: the strategy M is described by POVM

elements Mi(z≤i), with the choice of which qubit to measure next being specified by Qi(z<i); the
strategy M′ is described by slightly different POVM elements M ′

i(z≤i), and the same qubit choices
Qi(z<i). Then we can write

Pr[Z(a) = z|U = u] =

a∏

i=1

〈
ψQi(z<i)

∣∣M ′
i(z≤i)

∣∣ψQi(z<i)

〉
·

n∏

i=a+1

〈
ψQi(z<i)

∣∣Mi(z≤i)
∣∣ψQi(z<i)

〉
. (148)

Hence

∆(Z(a)|U=u, Z
(a+1)|U=u) =

∑

z∈[q]n

a∏

i=1

〈
ψQi(z<i)

∣∣M ′
i(z≤i)

∣∣ψQi(z<i)

〉
·

∣∣∣
〈
ψQa+1(z<a+1)

∣∣[Ma+1(z≤a+1)−M ′
a+1(z≤a+1)

]∣∣ψQa+1(z<a+1)

〉∣∣∣·
n∏

i=a+2

〈
ψQi(z<i)

∣∣Mi(z≤i)
∣∣ψQi(z<i)

〉

(149)

Now we can use the bound ‖Ma+1(z≤a+1)−M ′
a+1(z≤a+1)‖ ≤ ε, and we can evaluate the sum over

z, using the fact that for any z<i,
∑

zi
Mi(z≤i) = I (and similarly for M ′

i(z≤i)). We get that

∆(Z(a)|U=u, Z
(a+1)|U=u) ≤ qε, (150)

and therefore
∆(Z|U=u, Z

′|U=u) ≤ qnε, (151)

which shows that Z|U=u and Z ′|U=u have nearly identical distributions, as desired.
In the remainder of the proof, we will bound the difference between I(Z;U) and I(Z ′;U). First,

using (the classical case of) Fannes’ inequality [33], and assuming qnε ≤ 1/e, we get that

|H(Z|U = u)−H(Z ′|U = u)| ≤ qn2ε+ η(qnε), (152)
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where η(x) := −x lg x. This implies

|H(Z|U)−H(Z ′|U)| =
∣∣2−ñ

∑

u∈{0,1}ñ

(H(Z|U = u)−H(Z ′|U = u))
∣∣ ≤ qn2ε+ η(qnε). (153)

Next, we can bound the total variation distance between Z and Z ′ as follows:

∆(Z,Z ′) =
∑

z∈[q]n

∣∣2−ñ
∑

u∈{0,1}ñ

(Pr[Z = z|U = u]− Pr[Z ′ = z|U = u])
∣∣

≤ 2−ñ
∑

u∈{0,1}ñ

∆(Z|U=u, Z
′|U=u)

≤ qnε.

(154)

Then, by Fannes’ inequality,
|H(Z)−H(Z ′)| ≤ qn2ε+ η(qnε). (155)

Combining these bounds, we get

|I(Z;U)− I(Z ′;U)| ≤ 2qn2ε+ 2η(qnε), (156)

as desired. �

B High success probability implies high mutual information

Lemma B.1 (restatement of Lemma 3.2). Suppose that Pr[Z = U ] ≥ 1 − ε, and ε is sufficiently
small that 2

√
ε+ 2−ñ ≤ 1/e. Then I(Z;U) ≥ (1 − 5

√
ε)ñ− η(2

√
ε), where η(x) := −x lg x.

Proof: First, we claim that, for most u ∈ {0, 1}ñ, Pr[Z = u|U = u] is close to 1. To see this, suppose

u is chosen uniformly at random in {0, 1}ñ, and define γ(u) := 1 − Pr[Z = u|U = u]. Note that
γ(u) ≥ 0 and

Eu[γ(u)] = 2−ñ
∑

u∈{0,1}ñ

(1 − Pr[Z = u|U = u]) = 1− Pr[Z = U ] ≤ ε. (157)

By Markov’s inequality, for any C ≥ 1, Pru[γ(u) ≥ Cε] ≤ 1
C . Therefore, there exists a subset

S ⊆ {0, 1}ñ of size |S| ≥ 2ñ(1− 1
C ), such that for all u ∈ S,

Pr[Z = u|U = u] > 1− Cε. (158)

We need to choose C such that both 1
C and Cε are small. For concreteness, we set C = 1√

ε
, which

implies that 1
C =

√
ε = Cε.

We now show that H(Z|U) is small. We write H(Z|U) = 2−ñ
∑

u∈{0,1}ñ H(Z|U = u), and we

upper-bound H(Z|U = u). First, consider the case where u ∈ S. We bound the total-variation
distance between the random variables Z|U=u and U |U=u as follows: (note that U |U=u equals u with
probability 1)

∆(Z|U=u, U |U=u) = |Pr[Z = u|U = u]− 1|+
∑

z 6=u
|Pr[Z = z|U = u]− 0|

= 1− Pr[Z = u|U = u] + Pr[Z 6= u|U = u]

= 2(1− Pr[Z = u|U = u])

< 2Cε = 2
√
ε.

(159)

Using Fannes’ inequality [33] (note that 2
√
ε ≤ 1/e), we get that

H(Z|U = u) = |H(Z|U = u)−H(U |U = u)| ≤ 2
√
ε · ñ+ η(2

√
ε). (160)
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Next, consider the case where u /∈ S. Here we use the trivial bound, H(Z|U = u) ≤ ñ. We now
bound H(Z|U) as follows:

H(Z|U) ≤ 2−ñ|S|(2
√
ε · ñ+ η(2

√
ε)) + 2−ñ|Sc|ñ. (161)

The right-hand side is largest when |S| = 2ñ(1−√
ε), so we get

H(Z|U) ≤ (1−
√
ε)(2

√
ε · ñ+ η(2

√
ε)) +

√
ε · ñ

< 3
√
ε · ñ+ η(2

√
ε).

(162)

Next, we observe that, for most z ∈ {0, 1}ñ, Pr[Z = z] is not much smaller than 2−ñ. More
precisely, for all z ∈ S, we have a lower bound:

Pr[Z = z] ≥ 2−ñ Pr[Z = z|U = z] > 2−ñ(1−
√
ε). (163)

We also show a (loose) upper-bound on Pr[Z = z], when z ∈ S, as follows:

Pr[Z = z] = 2−ñ
∑

u∈{0,1}ñ

Pr[Z = z|U = u]

≤ 2−ñ|S \ {z}|
√
ε+ 2−ñ + 2−ñ|Sc|

(164)

The right-hand side is largest when |S| = 2ñ(1−√
ε), so we get

Pr[Z = z] < (1−
√
ε)
√
ε+ 2−ñ +

√
ε

< 2
√
ε+ 2−ñ.

(165)

Finally, we will show that H(Z) is large. First, we write

H(Z) ≥
∑

z∈S
η(Pr[Z = z]). (166)

Note that η(x) := −x lg x is increasing on the interval [0, 1/e]. From the previous paragraph, we
know that for all z ∈ S, we have 2−ñ(1−√

ε) < Pr[Z = z] < 2
√
ε+ 2−ñ < 1/e. So we can write

H(Z) ≥
∑

z∈S
η(2−ñ(1−

√
ε))

= |S|2−ñ(1−
√
ε)(−1) lg(2−ñ(1−

√
ε))

≥ (1−
√
ε)2(ñ− lg(1−

√
ε))

> (1− 2
√
ε)ñ.

(167)

Finally, we combine equations (162) and (167) to get the desired lower bound on I(Z;U) =
H(Z)−H(Z|U). �

C Entropy chaining

We prove a variant of Dudley’s inequality, for bounding the expected supremum of a family of
correlated random variables, E suptXt, using entropy chaining. Our claim is a slight generalization
of the usual statement of Dudley’s inequality, in that it allows the random variables Xt to have
different means; also, we state our result as a tail bound on suptXt, which is stronger than the usual
form of Dudley’s inequality. Nonetheless, the proof is more or less the same as the usual one; see,
e.g., [23].
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Lemma C.1 (Dudley’s inequality tail bound). Let {Xt | t ∈ T} be a family of random variables
taking values in R. Define µt := EXt.

Let d(·, ·) be a metric on the set T , such that the following “increment condition” holds:

Pr[Xs −Xt − µs + µt > u] ≤ exp(−u2/d(s, t)2), ∀s, t ∈ T, ∀u > 0. (168)

(Note that, by exchanging s and t, this also implies a similar bound on the lower tail of Xs −Xt.)
Also, suppose that, for any sequence s1, s2, s3, . . . ∈ T , and any t ∈ T , if limj→∞ d(sj , t) = 0, then
limj→∞ µsj = µt.

Suppose there exist t0 ∈ T and δ, ε > 0, such that Pr[Xt0 − µt0 > δ] ≤ ε. Then we have the
following bound:

Pr[sup
t
(Xt − µt) > δ + uS] ≤ ε+ 2 · 2−u2

, ∀u ≥ 1, (169)

where

S ≤ C0

∫ ∞

0

√
logN(T, d, ε)dε, (170)

C0 is a numerical constant, and N(T, d, ε) is the covering number, i.e., the minimum cardinality of
an ε-net for the set T with respect to the metric d(·, ·).

By applying the same argument to the random variables {−Xt | t ∈ T}, we also have a lower
bound. Suppose there exist t0 ∈ T and δ, ε > 0, such that Pr[Xt0 − µt0 < −δ] ≤ ε. Then:

Pr[inf
t
(Xt − µt) < −δ − uS] ≤ ε+ 2 · 2−u2

, ∀u ≥ 1. (171)

Proof: We use a standard entropy chaining argument [23]. Fix some r ≥ 2, and choose some integer
j0 such that r−(j0+1) < diam(T ) ≤ r−j0 . For all j ≥ j0, we will construct sets Πj ⊂ T and maps
πj : T → Πj that have the following properties:

πj0(t) = t0, ∀t ∈ T, (172)

lim
j→∞

d(πj(t), t) = 0, ∀t ∈ T, (173)

d(πj(t), πj−1(t)) ≤ 2r−(j−1), ∀t ∈ T, ∀j ≥ j0 + 1. (174)

(Intuitively, for each t ∈ T , the sequence of points {πj(t) | j = j0, j0 + 1, j0 + 2, . . .} starts at t0 and
quickly converges to t.) Also note that equation (173) implies that

lim
j→∞

µπj(t) = µt, ∀t ∈ T, (175)

We will construct the sets Πj and maps πj later. In the mean time, note that

Xt −Xt0 =
∑

j≥j0+1

Xπj(t) −Xπj−1(t), (176)

µt − µt0 =
∑

j≥j0+1

µπj(t) − µπj−1(t). (177)

Fix any real numbers aj > 0 (for all j ≥ j0 + 1). (We will choose values for the aj later.) Define
S :=

∑
j≥j0+1 aj , and fix any u > 0. Note that, for any t ∈ T , if

Xπj(t) −Xπj−1(t) ≤ µπj(t) − µπj−1(t) + uaj , ∀j ≥ j0 + 1, (178)

then Xt −Xt0 ≤ µt − µt0 + uS. Moreover, using the increment condition (168), we have that

Pr[Xπj(t) −Xπj−1(t) > µπj(t) − µπj−1(t) + uaj ] ≤ exp(−u2a2j/(2r−(j−1))2). (179)
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Hence, using the union bound, we get that

Pr[∃t ∈ T s.t. Xt −Xt0 > µt − µt0 + uS]

≤ Pr[∃t ∈ T, ∃j ≥ j0 + 1, s.t. Xπj(t) −Xπj−1(t) > µπj(t) − µπj−1(t) + uaj]

≤
∑

j≥j0+1

|Πj ||Πj−1| exp(−u2a2j/(2r−(j−1))2).
(180)

Now set aj := 2r−(j−1)
√

log(2j−j0 |Πj ||Πj−1|), and assume that u2 ≥ 1. Then we have

Pr[∃t ∈ T s.t. Xt −Xt0 > µt − µt0 + uS]

≤
∑

j≥j0+1

|Πj ||Πj−1|(2j−j0 |Πj ||Πj−1|)−u
2

≤
∑

j≥j0+1

2−(j−j0)u2

= 2−u
2

∞∑

a=0

2−au
2

≤ 2−u
2

∞∑

a=0

2−a < 2 · 2−u2

.

(181)

We can rewrite this as Pr[supt∈T (Xt−µt) > Xt0 −µt0 +uS] < 2 ·2−u2

. This now implies the claimed
bound (169); and by applying the same argument to the random variables {−Xt | t ∈ T}, we also
get the bound (171).

It remains to construct the sets Πj and maps πj , and prove the upper bound on S shown in
(170). For each j ≥ j0, we choose the set Πj to be an ε-net for the set T , with ε = r−j , and with
respect to the metric d(·, ·). In particular, we choose Πj to be an ε-net of minimum cardinality, so
that |Πj | = N(T, d, r−j). For notational convenience, we define Nj := |Πj |. In the case of j = j0,
we let Πj0 = {t0}, recalling that diam(T ) ≤ r−j0 . We define πj to be the map that, given any point
t ∈ T , returns the nearest point in Πj ; hence, d(πj(t), t) ≤ r−j . Note that equations (172) and (173)
are satisfied, and (174) follows from the triangle inequality.

We upper-bound S as follows:

S =
∑

j≥j0+1

aj =
∑

j≥j0+1

2r−(j−1)
√
log(2j−j0NjNj−1)

≤
∑

j≥j0+1

2r−(j−1)
(√

(j − j0) log 2 +
√
logNj +

√
logNj−1

)

≤ r−j0
∞∑

j=1

2r−(j−1)
√
j log 2 + (r + 1)

∑

j≥j0
2r−j

√
logNj

= r−j0K(r) + (r + 1)
∑

j≥j0
2r−j

√
logNj,

(182)

where we used the fact that
√
a+ b ≤ √

a +
√
b (for all a, b ≥ 0), and we defined K(r) :=∑∞

j=1 2r
−(j−1)

√
j log 2. Next, recall that diam(T ) > r−(j0+1) ≥ 2r−(j0+2), and hence Nj0+2 ≥ 2. So

we can write

S ≤
(
r2K(r)

2
√
log 2

+ r + 1

) ∑

j≥j0
2r−j

√
logNj. (183)

We will now replace the sum on the right hand side by an integral. Note that, for any ε ≤ r−j , we
have N(T, d, ε) ≥ Nj . So we can write

∫ r−j

r−(j+1)

√
logN(T, d, ε)dε ≥ (1− 1

r )r
−j√logNj , (184)
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and hence

S ≤
(
r2K(r)

2
√
log 2

+ r + 1

)
· 2(1− 1

r )
−1

∫ r−j0

0

√
logN(T, d, ε)dε. (185)

Note that we can extend the integral over the interval [0,∞) without weakening the bound; for when
ε ≥ r−j0 , we have N(T, d, ε) = 1, hence

√
logN(T, d, ε) = 0. Now set r ≥ 2 to be some numerical

constant. This proves equation (170). �

D Shannon’s noisy coding theorem

Proposition D.1. (restatement of Prop. 4.2) Fix any constants λ ≥ 1, 0 < τ ≤ 1
2 − pe ≈ 0.3536,

and θ > τh′(pe) ≈ (2.5431)τ . Then for all sufficiently large n, the following statement holds: with
probability ≥ 1− 1

λ (over the choice of C), we have

Pr[Ŝ = S] ≥ 1− λ
[
e−2τ2n + 2−n(θ−τh

′(pe))
]
≥ 1− λe−Ω(n). (186)

Proof: We can view Pr[Ŝ 6= S] as a random variable depending on the choice of the random code C.
We then calculate EC Pr[Ŝ 6= S].

We can upper-bound Pr[Ŝ 6= S] as follows:

Pr[Ŝ 6= S] ≤ Pr[dH(C(S), Z) > r]+Pr[dH(C(S), Z) ≤ r and ∃t ∈ {0, 1}k s.t. t 6= S, dH(C(t), Z) ≤ r].
(187)

Let Ne be the number of errors introduced by the channel BSC(pe), acting independently on the
n bits of the string C(S). Then Ne = dH(C(S), Z), ENe = npe, and by Hoeffding’s inequality,

Pr[Ne > r] ≤ e−2τ2n. So we have

Pr[Ŝ 6= S] ≤ e−2τ2n + Pr[∃t ∈ {0, 1}k s.t. t 6= S, dH(C(t), Z) ≤ r]

= e−2τ2n + 2−k
∑

s∈{0,1}k

Pr[∃t ∈ {0, 1}k s.t. t 6= S, dH(C(t), Z) ≤ r|S = s]

≤ e−2τ2n + 2−k
∑

s∈{0,1}k

∑

t∈{0,1}k\{s}

Pr[dH(C(t), Z) ≤ r|S = s]

= e−2τ2n + 2−k
∑

s∈{0,1}k

∑

t∈{0,1}k\{s}

∑

z∈{0,1}n

1[dH(C(t), z) ≤ r] Pr[Z = z|S = s].

(188)

We now bound EC Pr[Ŝ 6= S], taking the expectation over the choice of the random code C. Note
that

EC

[
1[dH(C(t), z) ≤ r] Pr[Z = z|S = s]

]
= EC

[
1[dH(C(t), z) ≤ r]

]
EC

[
Pr[Z = z|S = s]

]
, (189)

since C(s) and C(t) are independent random variables (since s 6= t). We have the following bound:

EC [1[dH(C(t), z) ≤ r]] = Pr
C
[dH(C(t), z) ≤ r] = 2−n

⌊r⌋∑

a=0

(
n
a

)
≤ 2−n2nh(r/n), (190)

where we used a tail inequality from [39, p.39] (note that r ≤ n/2, since τ ≤ 1
2 −pe). Hence, plugging

into (188), we get that

EC Pr[Ŝ 6= S] ≤ e−2τ2n + 2k2−n(1−h(r/n)). (191)

Note that h is a concave function, so it satisfies the linear upper-bound h(r/n) = h(pe + τ) ≤
h(pe) + τh′(pe), where h′(pe) ≈ 2.5431. Plugging this in, and using equation (86), we get that

EC Pr[Ŝ 6= S] ≤ e−2τ2n + 2k2−n(1−h(pe)−τh
′(pe))

= e−2τ2n + 2−nθ2nτh
′(pe)

≤ e−Ω(n).

(192)

We then use Markov’s inequality to get the desired result. �
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