
Attribute-Efficient Evolvability of Linear Functions

Elaine Angelino∗

Harvard University
elaine@eecs.harvard.edu

Varun Kanade†

UC Berkeley
vkanade@eecs.berkeley.edu

August 31, 2018

Abstract

In a seminal paper, Valiant (2006) introduced a computational model for evolution to ad-
dress the question of complexity that can arise through Darwinian mechanisms. Valiant views
evolution as a restricted form of computational learning, where the goal is to evolve a hypothesis
that is close to the ideal function. Feldman (2008) showed that (correlational) statistical query
learning algorithms could be framed as evolutionary mechanisms in Valiant’s model. P. Valiant
(2012) considered evolvability of real-valued functions and also showed that weak-optimization
algorithms that use weak-evaluation oracles could be converted to evolutionary mechanisms.

In this work, we focus on the complexity of representations of evolutionary mechanisms. In
general, the reductions of Feldman and P. Valiant may result in intermediate representations
that are arbitrarily complex (polynomial-sized circuits). We argue that biological constraints
often dictate that the representations have low complexity, such as constant depth and fan-in
circuits. We give mechanisms for evolving sparse linear functions under a large class of smooth
distributions. These evolutionary algorithms are attribute-efficient in the sense that the size of
the representations and the number of generations required depend only on the sparsity of the
target function and the accuracy parameter, but have no dependence on the total number of
attributes.

∗This author is supported in part by a grant from the National Library of Medicine (4R01LM010213-04) and NSF
grant CCF-09-64401
†This author is supported by a Simons Postdoctoral Fellowship.

1

ar
X

iv
:1

30
9.

41
32

v2
 [

cs
.L

G
]

 3
 A

pr
 2

01
4

1 Introduction

Darwin’s theory of evolution through natural selection has been a cornerstone of biology for over
a century and a half. Yet, a quantitative theory of complexity that could arise through Darwinian
mechanisms has remained virtually unexplored. To address this question, Valiant introduced a
computational model of evolution [28]. In his model, an organism is an entity that computes a
function of its environment. There is a (possibly hypothetical) ideal function indicating the best
behavior in every possible environment. The performance of the organism is measured by how
close the function it computes is to the ideal. An organism produces a set of offspring, that may
have mutations that alter the function computed. The performance (fitness) measure acting on
a population of mutants forms the basis of natural selection. The resources allowed are the most
generous while remaining feasible; the mutation mechanism may be any efficient randomized Turing
machine, and the function represented by the organism may be arbitrary as long as it is computable
by an efficient Turing machine.

Formulated this way, the question of evolvability can be asked in the language of computational
learning theory. For what classes of ideal functions, C, can one expect to find an evolutionary
mechanism that gets arbitrarily close to the ideal, within feasible computational resources? Dar-
winian selection is restrictive in the sense that the only feedback received is aggregate over life
experiences. Valiant observed that any feasible evolutionary mechanism could be simulated in
the statistical query framework of Kearns [19]. In a remarkable result, Feldman showed that in
fact, evolvable concept classes are exactly captured by a restriction of Kearns’ model, where the
learning algorithm is only allowed to make performance queries, i.e., it produces a hypothesis and
then makes a query to an oracle that returns the (approximate) performance of that hypothesis
under the distribution [9].1 P. Valiant studied the evolvability of real-valued functions and showed
that whenever the corresponding weak optimization problem, i.e., approximately minimizing the
expected loss, can be solved by using a weak evaluation oracle, such an algorithm can be converted
into an evolutionary mechanism [29]. This implies that a large class of functions – fixed-degree real
polynomials – can be evolved with respect to any convex loss function.

Direct evolutionary mechanisms, not invoking the general reductions of Feldman and P. Valiant,
have been proposed for certain classes in restricted settings. Valiant showed that the class of dis-
junctions is evolvable using a simple set of mutations under the uniform distribution [28]. Kanade,
Valiant and Vaughan proposed a simple mechanism for evolving homogeneous linear separators
under radially symmetric distributions [17]. Feldman considered a model where the ideal func-
tion is boolean but the representation can be real-valued, allowing for more detailed feedback. He
presents an algorithm for evolving large margin linear separators for a large class of convex loss
functions [11]. P. Valiant also showed that with very simple mutations, the class of fixed-degree
polynomials can be evolved with respect to the squared loss [29].

Current understanding of biology (or lack thereof) makes it difficult to formalize a notion of
naturalness for mutations in these frameworks; in particular, it is not well understood how muta-
tions to DNA relate to functional changes in an organism. That said, the more direct algorithms
are appealing due to the simplicity of their mutations. Also, the “chemical computers” of organ-
isms may be slow, and hence, representations that have low complexity are attractive. In general,
Feldman’s generic reduction from statistical query algorithms may use arbitrarily complex repre-
sentations (polynomial-sized circuits), depending on the specific algorithm used. In the remainder
of the introduction, we first describe a particular class of biological circuits, transcription networks,
that motivate our study. We then frame the evolutionary question in the language of computational

1Feldman calls these correlational statistical queries, because when working with boolean functions with range
{−1, 1}, the performance of any hypothesis is its correlation with the ideal function.

2

gene
TFDNA

mRNA

mRNA

Transcription

Translation

RNAp

folded
protein

incomplete
amino acid chain

ribosome

mRNA

(a) (b)

Figure 1: (a) Schematic of transcription (top) and translation (bottom). Here, a transcription
factor (TF) binds to DNA close to a gene in a way that increases gene expression by encouraging
RNA polymerase (RNAp) to transcribe the gene and so produce mRNA. The mRNA is then
translated by ribosomes to produce sequences of amino acids that ultimately fold into proteins.
Only a small number of transcription factors directly regulate any gene. Note that a transcription
factor’s action can also decrease gene expression. For a more complete picture, see e.g., [1].
(b) Topology of the transcription network of respiration and redox reactions in yeast. X → Y
represents that transcription factor X regulates the expression of Y . Note that this real network
has cycles. Adapted from [23].

learning theory, summarize our contributions and discuss related work.

1.1 Representation in Biology

Biological systems appear to function successfully with greatly restricted representation classes. The
nature of circuits found in biological systems may vary, but some aspects – such as sparsity – are
common. Specifically, the interacting components in many biological circuits are sparsely connected.
Biological circuits are often represented as networks or graphs, where the vertices correspond to
entities such as neurons or molecules and the edges to connections or interactions between pairs
of entities. For example, both neural networks [31] and networks of metabolic reactions in the
cell [30, 14] have been described by “small-world” models, where a few “hub” nodes have many
edges but most nodes have few edges (and consequently, the corresponding graphs have small
diameter). An associated property observed in biological networks is modularity : a larger network
of interacting entities is composed of smaller modules of (functionally related) entities [12]. Both
the “small-world” description and modularity of biological networks are consistent with the more
general theme of sparsity.

We focus on transcription networks, which are a specific class of networks of interacting genes
and proteins that are involved in the production of new protein. Alon provides an accessible and
mathematical introduction to transcription networks and other biological circuits [1]; below and
in Figure 1(a), we present a simplified account that motivates this work. Genes are transcribed
to produce mRNA, which is then translated into sequences of amino acids that ultimately fold

3

into proteins.2 In a transcription network, a gene’s transcription may be regulated by a set of
proteins called transcription factors. These transcription factors may increase or decrease a gene’s
transcription by physically binding to regions of DNA that are typically close to the gene. In natural
systems, only a small number of transcription factors regulate any single gene, and so transcription
networks are sparsely connected. For example, Balaji et al. studied a yeast transcription network
of 157 transcription factors regulating 4,410 genes. They observed this network to have 12,873
interactions (edges) where each gene was regulated on average by about 2.9 transcription factors,
the distribution of in-degrees was well-described by an exponential fit, and only about 45 genes had
an in-degree of 15 or greater [3].

The number of transcription factors varies from hundreds in a bacterium to thousands in a
human cell. Some transcription factors are always present in the cell and can be thought of as
representing a snapshot of the environment [1]. For example, the presence of sugar molecules in
the environment may cause specific transcription factors to be activated, enabling them to regulate
the production of other proteins. One of these proteins could be an end-product, such as an enzyme
that catalyzes a metabolic reaction involving the sugar. Alternatively, the transcription factor could
regulate another transcription factor that itself regulates other genes – we view this as intermediate
computation – and may participate in further “computation” to produce the desired end-result.

While transcription networks may include cycles (loops), here for simplicity we focus on sys-
tems that are directed acyclic graphs, and the resulting computation can be viewed as a circuit.
We illustrate a small, real transcription network in Figure 1(b). These circuits are by necessity
shallow due to a temporal constraint, that the time required for sufficient quantities of protein to
be produced is of the same order of magnitude as cell-division time.3 For example, Luscombe et
al. measured the shortest path length (in number of intermediate nodes) between transcription
factors and regulated genes corresponding to terminal nodes (leaves) in a yeast transcription net-
work. In the static network, the mean such path length was 4.7 and the longest path involved 12
intermediate transcription factors [21].

1.2 Our Contributions

First, our contribution is conceptual. We believe that the study of evolvability from a computational
standpoint will benefit by understanding the representation complexity required to evolve a certain
concept class. Motivated by the previous discussion, in the case of transcription networks, it appears
essential that the representation used be a constant depth and fan-in (boolean or arithmetic) circuit.
Of course, any function that can be represented by such a circuit can depend only on a constant
number of input variables. We ask the question, when we restrict attention to functions in a given
class that depend only on a constant number of variables, when can evolution succeed?

Second, we show that the class of sparse linear functions, those that depend only on a constant
number of variables, under a large class of smooth distributions, can be evolved using sparse linear
functions as representations, when the performance is measured using squared error. The number

2In reality, this is a dynamical system where the rates of production are important. Note that this process need
not be linear: a gene (mRNA transcript) can be transcribed (translated) multiple times, not only in series but also in
parallel fashion. We also ignore other epigenetic effects, i.e., molecular modifications to DNA that do not change its
sequence but alter gene expression, e.g., the addition of methyl groups to nucleotides in a way that physically blocks
transcription.

3Other kinds of networks, such as signaling networks, operate by changing the shapes of proteins. The fact that
these transformations are rapid may allow for much larger depth. Note that fast conformational changes govern how
transcription factors directly process information from the environment in order to regulate gene expression. In our
example, a sugar molecule binds to a transcription factor and changes its shape in a way that alters its ability to
bind to DNA.

4

of variables used by the representations is larger than the number of variables in the ideal function
and depends on the smoothness parameter of the distribution. According to our notion of ∆-
smooth G-nice distributions (Defn. 2), the density function of a smooth distribution is obtained
by convolution of an arbitrary density with a product measure on [−

√
3∆,
√

3∆]n (alternatively,
drawing a point from the smooth distribution is equivalent to drawing a point from an arbitrary
distribution and adding a (noise) vector from a product distribution).

A linear function is represented by a weighted arithmetic circuit with only one addition gate
(alternatively, by a depth-two circuit with a layer of multiplication gates and some constant inputs).4

Also, the number of generations required for evolution to succeed depends polynomially on the
sparsity k of the target linear function, the smoothness parameter ∆ of the distribution and the
inverse of the target accuracy ε, and has no dependence on the dimension n of the input space. The
number of mutations explored at each generation depends polynomially in n and 1/ε. Thus, our
result shows attribute-efficient evolvability of sparse linear functions, in the sense of Littlestone [20].
For the precise statement, see Theorem 1 in Section 3.1.

Valiant also proposed a stronger selection mechanism – when natural selection aggressively
selects the (almost) best mutation, rather than merely a beneficial one – called evolution by opti-
mization. Our second result requires a much stronger distributional assumption – the correlation
corr(xi, xj) ≤ 1/(2k) – where k is the sparsity of the target linear function (see Defn. 3). Under
such distributions, we show that under evolution by optimization, sparse linear functions can be
evolved by representations with the same sparsity. The mechanism we propose and its analysis is
inspired by the greedy orthogonal matching pursuit algorithms in signal processing [7, 27]. Unlike
the previous evolutionary algorithm, this one requires initialization, i.e., the evolutionary process
begins with the 0 function. As in the previous case, the number of generations required depends
polynomially on the sparsity k of the target linear function, the inverse of the accuracy parameter
ε, but has no dependence on the total number of attributes n. The precise statement appears as
Theorem 2 in Section 3.2.

Related Work

The question of proper vs. improper learning has been studied in computational learning theory.
A separation between the two kinds is known, unless NP = RP. However, most interesting PAC-
learnable classes can be learned using thresholds of low-degree polynomials, and do not seem
to require the full generality of polynomial-sized circuits.5 In this context, Valiant’s disjunction
algorithm under the uniform distribution [28], Kanade et al.’s algorithm for homogeneous half-
spaces under radially symmetric distributions [17], and P. Valiant’s algorithm for linear (polynomial)
functions using squared loss [29], are proper evolutionary mechanisms, i.e., the representation used
is from the same class as the ideal function. In the first two cases, it is straightforward to show
that if the target depends only on a constant number of variables, the evolutionary mechanism
also succeeds using representations that depend only on a constant number of variables. Thus,
attribute-efficient evolution can be achieved.

The problem of learning sparse linear functions has been studied under various names in several
fields for many applications, e.g., recovering sparse solutions to (underdetermined) linear systems of
equations [4], or recovering sparse representations with a redundant dictionary [22, 8]; compressive
sampling or compressed sensing for sparse signal reconstruction [5]; optimization with regularization

4There is a natural tradeoff between fan-in and depth, that may be useful, depending on which is the more severe
constraint.

5For example, the classes of k-CNF, k-term DNF, decision lists and low-rank decision trees, can all be represented
as PTFs.

5

or sparsity-inducing penalties in machine learning [2]; sparse coding for learning an overcomplete
basis [25], or for denoising in image and video processing [8]. This area is too vast to review here;
Bruckstein et al. have an excellent survey [4]. Learning the sparsest linear function is equivalent to
finding the sparsest solution to a system of linear equations (assuming there is no noise in the data).
In general, this problem is NP-hard and the currently best-known approximation factor depends
on the norm of the pseudo-inverse of the matrix [24]. Thus, some assumption on the distribution
seems necessary. Our evolution based on optimization algorithm (Section 3.2) is essentially the
greedy orthogonal matching pursuit algorithm of Tropp [27] and Donoho et al. [7], cast in the
language of evolvability; these algorithms are also known in statistical modeling as forward stepwise
regression [6, 13].

Finally, the question of attribute-efficient regression in the PAC (or SQ) model is a natural one.
Here, the goal would be to design a polynomial time algorithm for producing an ε-accurate linear
function, with sample complexity that is polynomial in the sparsity k of the target function and
the inverse of the target accuracy ε, and only polylogarithmic in n, the total number of attributes.
Under mild boundedness assumptions on the distribution, this can be achieved by setting up an
L1-regularized optimization problem; the output classifier may not be sparse in light of the NP-
hardness result mentioned above. We note that under the distributional assumption made in this
paper, finding the sparsest linear function that fits the data is also easy in the PAC/SQ setting, since
the solution to the optimization problem in this case is unique. The focus in our work is different,
namely showing that simple evolutionary mechanisms can succeed, while using representations that
are themselves sparse linear functions at all times.

Organization

In Section 2, we give an overview of Valiant’s evolution model and describe the concept classes
and class of distributions considered in this paper. Section 3 contains the mechanisms for evolving
sparse linear functions. We conclude in Section 4 with some discussion and directions for future
work.

2 Model and Preliminaries

We first provide an overview of the evolvability framework of Valiant [28]. The description here
differs slightly from Valiant’s original formulation and includes some subsequent extensions (for
more details the reader is referred to [28, 9, 10, 29, 16]).

2.1 Valiant’s Evolvability Framework

Let X denote a set of instances, e.g., X = Rn or X = {0, 1}n. We assume that the representation
length of each x ∈ X is captured by the parameter n. To avoid excessive notation, we will keep
this size parameter implicit in our description of the model. Let D be a distribution over X. Each
x ∈ X can be thought of as the description of an environmental setting, the inputs to any circuit
of an organism. D denotes the distribution over the possible environmental settings an organism
may experience in a lifetime. Let f : X → Y (typically Y = R or Y = {0, 1}) denote the ideal
function, the best behavior in each possible environmental setting.

6

Representations

A creature is a string representation that encodes an efficiently computable function r : X → Y ,
i.e., there is an efficient Turing Machine that, given the description string 〈r〉 and x ∈ X, outputs
r(x).

In this work, our focus is characterizing different evolutionary mechanisms based on the com-
plexity of representations used. The complexity of a representation is measured by the function it
computes. Let H : X → Y be a class of functions. For R ⊆ {0, 1}∗, we say that R represents H, if
there is a map, σ : R→ H, and if there exists an efficient Turing machine that, given input r ∈ R
and x ∈ X, outputs (σ(r))(x). Henceforth, by abuse of notation we will use r to denote both the
representation and the function it computes, σ(r).

Evolutionary Algorithms

The performance of a representation r is measured using a loss function ` : Y ×Y → R+, such that
`(y, y) = 0. For a function g : X → Y , define the expected loss with respect to the ideal function
f : X → Y , under distribution D, as Lf,D(g) = Ex∼D[`(g(x), f(x))].6 The goal of evolution is
to reach some representation r∗ such that Lf,D(r∗) < ε. In the following discussion, we use the
notation: f the ideal function, ε the target accuracy, D the target distribution over X and Lf,D(g)
the expected loss function.

Mutator: A mutator Mut(r, ε), for a set of representations R, is a polynomial-time randomized
Turing machine that takes as input a representation r ∈ R and accuracy parameter ε and outputs
a multiset Neigh(r, ε) ⊆ R. The running time requirement on Mut also ensures that |Neigh(r, ε)| is
polynomially bounded.

Selection: (Natural) Selection is based on the empirical performance of each representation. Let
s : R × [0, 1] → N be a sample size function. First, the mutation algorithm, Mut(r, ε), is run to
produce multiset Neigh(r, ε). Then, an i.i.d. sample 〈xi〉si=1 is drawn from the distribution D over
X, where s = s(r, ε). Denote the empirical performance of each r′ ∈ Neigh(r, ε) ∪ {r} as

L̂f,D(r′) =
1

s

s∑
i=1

`(r′(xi), f(xi))

Finally, let t : R × [0, 1] → R be a tolerance function. Two possible selection mechanisms are
considered.

1. Selection based on beneficial and neutral mutations (BN-Sel): Let

Bene = {r′ ∈ Neigh(r, ε) | L̂f,D(r′) ≤ L̂f,D(r)− t(r, ε)}

denote the set of beneficial mutations and let

Neut = {r′ ∈ Neigh(r, ε) | |L̂f,D(r′)− L̂f,D(r)| < t(r, ε)}

denote the neutral mutations, with respect to tolerance function t. Both Bene and Neut are
treated as multisets (the multiplicity of any representation is the same as that in Neigh(r, ε)).
Selection operates as follows: if Bene 6= ∅, r′ is randomly selected from Bene as the surviving
creature at the next generation. If Bene = ∅ and Neut 6= ∅, then r′ is selected randomly from
Neut as the surviving creature at the next generation. Otherwise, ⊥ is produced signifying
failure of evolution.

6This definition does not require the expected loss to be bounded, but we will mainly be interested in situations
when that is the case.

7

2. Selection based on optimization (Opt-Sel): Let ôpt = min
r′∈Neigh(r,ε)

L̂f,D(r′). If ôpt >

L̂f,D(r) + t(r, ε), then ⊥ is produced signifying failure of evolution. Otherwise, consider the

multiset, Best = {r′ ∈ Neigh(r, ε) | L̂f,D(r′) ≤ ôpt + t(r, ε)}, and then r′ is chosen from Best
randomly as the surviving creature at the next generation.

Thus, while the selection rule BN-Sel only chooses some beneficial (or at least neutral) mutation,
Opt-Sel aggressively picks the (almost) best mutation from the available pool.

We denote by r′ ← Sel[R,Mut, s, t](r, ε) the fact that r′ is the surviving creature in the next
generation after one mutation and selection operation on the representation r and accuracy pa-
rameter ε. Here, Sel may be one of the two selection rules described above. For Sel to be feasible
we require that the size function s is polynomially bounded (in n and 1/ε) and that the inverse of
the tolerance function t is polynomially sandwiched, i.e., there exists polynomials p1(n, 1/ε) and
p2(n, 1/ε) such that 1/p1(n, 1/ε) ≤ t(r, ε) ≤ 1/p2(n, 1/ε) for every r ∈ R and ε > 0.

Evolutionary Algorithm: An evolutionary algorithm EA is a tuple (R,Mut, s, t, Sel). When EA
is run starting from r0 ∈ R with respect to distribution D over X, ideal function f : X → Y , loss
function ` and parameter ε, a sequence r0, r1, r2, . . . is produced, where ri ← Sel[R,Mut, s, t](ri−1, ε).
If ri = ⊥ for some i, we consider evolution as halted and rj = ⊥ for j > i. We say that EA succeeds
at generation g, if g is the smallest index for which the expected loss Lf,D(rg) ≤ ε.

Definition 1 (Evolvability [28]). We say that a concept class C is evolvable with respect to loss
function ` and selection rule Sel, under a class of distributions D using a representation class H,
if there exists a representation scheme R ⊆ {0, 1}∗, such that R represents H, and there exists an
evolutionary algorithm EA = (R,Mut, s, t, Sel), such that for every D ∈ D, every f ∈ C, every
ε > 0, and every r0 ∈ R, with probability at least 1 − ε, EA run starting from r0 with respect to
f,D, `, ε, produces rg for which Lf,D(rg) < ε. Furthermore, the number of generations g required
for evolution to succeed should be bounded by a polynomial in n and 1/ε.

Remark 1. If the evolutionary algorithm succeeds only for a specific starting representation r0, we
say C is evolvable with initialization.

Remark 2. If the functions in concept class C depend only on k variables, we say the evolutionary
algorithm is attribute-efficient, if the size function, s, is polylogarithmic in n, and polynomial in k
and 1/ε, and the number of generations, g, is polynomial in k and 1/ε, but does not depend on n.

The definition presented above varies slightly from the definition of Valiant, in the sense that
we explicitly focus on the complexity of representations used by the evolutionary algorithm. As
discussed in the introduction, we focus on concept classes where each function depends on few
(constant) input variables.7

2.2 Sparse Linear Functions

Our main result in this paper concerns the class of sparse linear functions. We represent a linear
function from Rn → R by a vector w ∈ Rn, where x 7→ w · x. For a vector w ∈ Rn, sparsity(w) is
the number of non-zero elements of w.

For any 0 ≤ l < u and integer k, define the class of linear functions:

Linkl,u = {x 7→ w · x | sparsity(w) ≤ k,∀i, wi = 0 or l ≤ |wi| ≤ u}
7These functions have been referred to as juntas in the theory literature. We avoid using this nomenclature as we

restrict our attention to specific functional forms, such as linear functions, with k relevant variables.

8

Thus, Linkl,u is the class of k-sparse linear functions, where the “influence” of each variable is upper
and lower bounded.8

Let D be a distribution over Rn. For w,w′ ∈ Rn, define the inner product 〈w,w′〉 = Ex∼D[(w ·
x)(w′ · x)], where w · x =

∑n
i=1wixi denotes the standard dot product in Rn. In this paper, we use

‖w‖ to denote
√
〈w,w〉 (and not

√∑
iw

2
i). To avoid confusion, whenever necessary, we will refer

to the quantity
√∑

iw
2
i explicitly if we mean the standard Euclidean norm.

Distribution Classes

We use two classes of distributions for our results in this paper. We define them formally here.

Smooth Bounded Distributions: We consider the class of smooth bounded distributions over
Rn. The concept of smoothed analysis of algorithms was introduced by Spielman and Teng [26]
and recently the idea has been used in learning theory [15, 18]. We consider distributions that are
bounded and have 0 mean. Formally, distributions we consider are defined as:

Definition 2 (∆-Smooth G-Nice Distribution). A distribution D is a ∆-smooth G-nice distribution
if it is obtained as follows. Let D̃ be some distribution over Rn, and let Una denote the uniform
distribution over [−a, a]n. Then D = D̃ ∗ Un√

3∆
is obtained by the convolution of D̃ with Un√

3∆
.9

Furthermore, D satisfies the following:

1. ED[x] = 0

2. For all i, ED[x2
i] ≤ 1

3. For every x in the support of D,
∑n

i=1 x
2
i ≤ G2

Incoherent Distributions: We also consider incoherent distributions.10 For a distribution D
over Rn, the coherence is defined as maxi,j corr(xi, xj), where corr(xi, xj) is the correlation between
xi and xj . Again, we consider bounded distributions with zero mean. We also require the variance
to be upper and lower bounded in each dimension. Formally, the distributions we consider are
defined as:

Definition 3 (µ-Incoherent (∆, G)-Nice Distribution). A distribution D is a µ-incoherent (∆, G)-
nice distribution if the following hold:

1. ED[x] = 0

2. For all i, ∆2 ≤ ED[x2
i] ≤ 1

3. For all i, j, maxi,j corr(xi, xj) ≤ µ

4. For all x in the support of D,
∑n

i=1 x
2
i ≤ G2

8We do not use the word “influence” in the precise technical sense here.
9We could perform convolution with a spherical Gaussian distribution, however, this would make the resulting

distribution unbounded. All results in this paper hold if we work with sub-Gaussian distributions and consider
convolution with a spherical Gaussian distribution with variance ∆2. In this case, we would be required to use
Chebychev’s inequality rather than Hoeffding’s bound to show that the empirical estimate is close to the expected
loss with high probability.

10This terminology is adapted from incoherence of matrices, e.g., see [4].

9

We say a linear function represented by w ∈ Rn is W -bounded if
∑n

i=1w
2
i ≤ W 2. We use the

notation w(x) = w · x. Suppose f, w are W -bounded linear functions, and distribution D is such
that for every x in the support of D,

∑n
i=1 x

2
i ≤ G2. We consider the squared loss function, which

for y, y′ ∈ R is `(y′, y) = (y′ − y)2. Then, for any x in the support of D, `(f(x), w(x)) ≤ 4W 2G2.
Thus, standard Hoeffding bounds imply that if 〈xi〉si=1 is an i.i.d. sample drawn from D, then

Pr

[∣∣∣∣∣1s
s∑
i=1

`(w(xi), f(xi))− Lf,D(w)

∣∣∣∣∣ ≥ τ
]
≤ 2 exp

(
− sτ2

8W 2G2

)
(1)

Finally, for linear functions w (x 7→ w · x), let NZ(w) = {i | wi 6= 0} denote the non-zero
variables in w, so sparsity(w) = |NZ(w)|. Then, we have the following Lemma. The proof appears
in Appendix A.1.

Lemma 1. Let D be a ∆-smooth G-nice distribution (Defn. 2), let w ∈ Rn be a vector and consider
the corresponding linear function, x 7→ w · x. Then the following are true:

1. For any 1 ≤ i ≤ n, w2
i ≤

〈w,w〉
∆2 .

2. There exists an i such that w2
i ≤

〈w,w〉
|NZ(w)|∆2 .

3 Evolving Sparse Linear Functions

In this section, we describe two evolutionary algorithms for evolving sparse linear functions. The
first evolves the class Linkl,u under the class of ∆-smooth G-nice distributions (Defn. 2), using the

selection rule BN-Sel. The second evolves the class Link0,u under the more restricted class of (1/2k)-
incoherent (∆, G)-nice distributions (Defn. 3), using the selection rule Opt-Sel. We first define the
notation used in the rest of this section.

Notation: D denotes the target distribution over X = Rn, f denotes the ideal (target) function.
The inner product 〈·, ·〉 and 2-norm ‖ · ‖ of functions are with respect to the distribution D. [n]
denotes the set {1, . . . , n}. For S ⊆ [n], fS denotes the best linear approximation of f using the
variables in the set S; formally,

fS = argmin
w∈Rn : wi=0 ∨ i∈S

‖f − w‖2

Finally, recall that for w ∈ Rn, NZ(w) = {i | wi 6= 0} and sparsity(w) = |NZ(w)|. A vector w
represents a linear function, x 7→ w · x. The vector ei has 1 in coordinate i and 0 elsewhere and
corresponds to the linear function x 7→ xi. Thus, in this notation, corr(xi, xj) = 〈ei, ej〉/(‖ei‖‖ej‖).
The accuracy parameter is denoted by ε.

3.1 Evolving Sparse Linear Functions Using BN-Sel

We present a simple mechanism that evolves the class of sparse linear functions Linkl,u with respect
to ∆-smooth G-nice distributions (see Defn. 2). The representation class also consists of sparse
linear functions, but with a greater number of non-zero entries than the ideal function. We also
assume that a linear function is represented by w ∈ Rn, where each wi is a real number. (Handling
the issues of finite precision is standard and is avoided in favor of simplicity.) Define the parameters
K = 5184(k/∆)4(u/l)2 and B = 10uk/∆. Formally, the representation class is:

R = {w | sparsity(w) ≤ K,wi ∈ [−B,B]}

10

The important point to note is that the parameters K and B do not depend on n, the total number
of variables.

Next, we define the mutator. Recall that the mutator is a randomized algorithm that takes as
input an element r ∈ R and accuracy parameter ε, and outputs a multiset Neigh(r, ε) ⊆ R. Here,
Neigh(r, ε) is populated by m independent draws from the following procedure, where m will be
specified later (see the proof of Theorem 1). Starting from w ∈ R, define the mutated representation
w′, output by the mutator, as:

1. Scaling: With probability 1/3, choose γ ∈ [−1, 1] uniformly at random and let w′ = γw.

2. Adjusting: With probability 1/3, do the following. Pick i ∈ NZ(w) = {i | wi 6= 0} uniformly
at random. Let w′ denote the mutated representation, where w′j = wj for j 6= i, and choose
w′i ∈ [−B,B] uniformly at random.

3. With the remaining 1/3 probability, do the following:

(a) Swapping: If |NZ(w)| = K, choose i1 ∈ NZ(w) uniformly at random. Then, choose
i2 ∈ [n] \ NZ(w) uniformly at random. Let w′ be the mutated representation, where
w′j = wj for j 6= i1, i2. Set w′i1 = 0 and choose w′i2 ∈ [−B,B] uniformly at random. In
this case, sparsity(w′) = sparsity(w) = K with probability 1, and hence w′ ∈ R.

(b) Adding: If |NZ(w)| < K, choose i ∈ [n] \ NZ(w) uniformly at random. Let w′ be the
mutated representation, where w′j = wj for j 6= i, and choose w′i ∈ [−B,B] uniformly at
random.

Recall that f ∈ Linkl,u denotes the ideal (target) function and D is the underlying distribution
that is ∆-smooth G-nice (see Defn. 2). Since we are working with the squared loss metric, `(y′, y) =
(y′ − y)2, the expected loss for any w ∈ R is given by Lf,D(w) = ‖f − w‖2 = 〈f − w, f − w〉. We
will show that for any w ∈ R, if ‖f −w‖2 > ε, with non-negligible (inverse polynomial) probability,
the above procedure produces a mutation w′ that decreases the expected loss by at least some
inverse polynomial amount. Thus, by setting the size of the neighborhood m large enough, we can
guarantee that with high probability there will always exist a beneficial mutation.

To simplify notation, let S = NZ(w). Recall that fS denotes the best approximation to f using
variables in the set S; thus, ‖f − w‖2 = ‖f − fS‖2 + ‖fS − w‖2. At a high level, the argument
for proving the success of our evolutionary mechanism is as follows: If ‖fS − w‖2 is large, then a
mutation of the type “scaling” or “adjusting” will get w closer to fS , reducing the expected loss.
(The role of “scaling” mutations is primarily to ensure that the representations remain bounded.)
If ‖fS −w‖2 is small and S 6= NZ(f), there must be a variable in NZ(f) \S, that when added to w
(possibly by swapping), reduces the expected loss. Thus, as long as the representation is far from
the evolutionary target, a beneficial mutation is produced with high probability.

More formally, let w′ denote a random mutation produced as a result of the procedure described
above. We will establish the desired result by proving the following claims.

Claim 1. If ‖w‖ ≥ 2‖fS‖, then with probability at least 1/12, Lf,D(w′) ≤ Lf,D(w)−‖fS−w‖2/12.
In particular, a “scaling” type mutation achieves this.

Claim 2. When ‖w‖ ≤ 2‖fS‖, then with probability at least ∆‖fS − w‖/(6K2B), Lf,D(w′) ≤
Lf,D(w)− 3∆2‖fS − w‖2/(4|S|2). In particular, an “adjusting” type mutation achieves this.

Claim 3. When ‖fS − w‖ ≤ l2∆2/(4KB), but NZ(f) 6⊆ S, then with probability at least ∆‖f −
w‖/(6KBnk), Lf,D(w′) ≤ Lf,D(w)−∆2‖f −w‖2/(16k2). In particular, a mutation of type “swap-
ping” or “adding” achieves this.

11

Note that when NZ(f) ⊆ S, then fS = f . Thus, in this case when Lf,D(w) = ‖fS − w‖2 ≤ ε, the
evolutionary algorithm has succeeded.

The proofs of the above Claims are provided in Appendix A.2. We now prove our main result
using the above claims.

Theorem 1. Let D be the class of ∆-smooth G-nice distributions over Rn (Defn. 2). Then
the class Linkl,u is evolvable with respect to D, using the representation class LinK0,B, where K =
O((k/∆)4(u/l)2) and B = O(uk/∆), using the mutation algorithm described in this section, and
the selection rule BN-Sel. Furthermore, the following are true:

1. The number of generations required is polynomial in (u/l), 1/ε, 1/∆, and is independent of
n, the total number of attributes.

2. The size function s, the number of points used to calculate empirical losses, depends polylog-
arithmically on n, and polynomially on the remaining parameters.

Proof. The mutator is as described in this section. Let

p = min

{
1

12
,

l2∆3

24K3B2
,

∆
√
ε

6KBnk

}
,

and let

α = min

{
l4∆4

192K2B2
,

3l4∆6

64K4B2
,
ε∆2

16k2

}
.

Now, by Claims 1, 2 and 3, if ‖f − w‖2 ≥ ε, then the mutator outputs a mutation that decreases
the squared loss by α with probability at least p.

Recall that K = 5184(k/∆)4(u/l)2 and B = 10uk/∆. Now, let g = 20KG2B2/α (recall that
G2 is the bound on

∑
i x

2
i for x in the support of the distribution). We will show that evolution

succeeds in at most g generations. Note that g has no dependence on n, the number of attributes,
and polynomial dependence on the remaining parameters. Define m = p−1 ln(2g/ε), and at each
time step we have that |Neigh(w, ε)| = m. Note that together with the observation above, this
implies that except with probability ε/2, for 1 ≤ i ≤ g, if wi is the representation at time step i,
Neigh(wi, ε) contains a mutation that decreases the loss by at least α, if Lf,D(wi) ≥ ε.

Now, let t = 3α/5 be the tolerance function, set τ = α/5 and let s = (200gKG2B2/α2) ln(4m/ε)
be the size function. Note that

∑
iw

2
i ≤ KB2 for w ∈ R (this also holds for f , since k < K and

u < B). If 〈xi〉si=1 is an i.i.d. sample drawn from D, for each w̄ of the mg representations
that may be considered in the neighborhoods for the first g time steps, using (1), it holds that
|L̂f,D(w̄) − Lf,D(w̄)| ≤ τ simultaneously except with probability ε/2 (by a union bound). Thus,
allowing for failure probability ε, we assume that we are in the case when the neighborhood always
has a mutation that decreases the expected loss by α (whenever the expected loss of the current
representation is at least ε) and that all empirical expected losses are τ -close to the true expected
losses.

Now let w be the representation at some generation such that Lf,D(w) ≥ ε, let w′ ∈ Neigh(w, ε)

such that Lf,D(w′) ≤ Lf,D(w) − α. Then, it is the case that L̂f,D(w′) ≤ L̂f,D(w) − 3α/5 (when
τ = α/5). Hence, for tolerance function t = 3α/5, for the selection rule using BN-Sel, w′ ∈ Bene.
Consequently Bene 6= ∅. Hence, the representation at the next generation is chosen from Bene. Let
w̃ be the chosen representation. It must be the case that L̂f,D(w̃) ≤ L̂f,D(w) − t. Thus, we have
Lf,D(w̃) ≤ Lf,D(w)− α/5. Hence, the expected loss decreases at least by α/5.

12

Note that at no point can the expected loss be greater than 4KG2B2 for any representation in
R. Hence, in at most 20KG2B2/α generations, evolution reaches a representation with expected
loss at most ε. Note the only parameter introduced which has an inverse polynomial dependence
on n is p. This implies that s only has polylogarithmic dependence on n. This concludes the proof
of the theorem.

Remark 3. We note that the same evolutionary mechanism works when evolving the class Link0,u,
as long as the sparsity K of the representation class is allowed polynomial dependence on 1/ε, the
inverse of the accuracy parameter. This is consistent with the notion of attribute-efficiency, where
the goal is that the information complexity should be polylogarithmic in the number of attributes,
but may depend polynomially on 1/ε.

3.2 Evolving Sparse Linear Functions Using Opt-Sel

In this section, we present a different evolutionary mechanism for evolving sparse linear functions.
This algorithm essentially is an adaptation of a greedy algorithm commonly known as orthogonal
matching pursuit (OMP) in the signal processing literature (see [7, 27]). Our analysis requires
stronger properties on the distribution: we show that k-sparse linear functions can be evolved with
respect to 1/(2k)-incoherent (∆, G)-nice distributions (Defn. 3). Here, the selection rule used is
selection using optimization (Opt-Sel).11 Also, the algorithm is guaranteed to succeed only with
initialization from the 0 function. Nevertheless, this evolutionary algorithm is appealing due to its
simplicity and because it never uses a representation that is not a k-sparse linear function.

Recall that f ∈ Link0,u is the ideal (target) function.12 Let

R = {w | sparsity(w) ≤ k,wi ∈ [−B,B]},

where B = 10uk/∆. Now, starting from w ∈ R, define the action of the mutator as follows (we
will define the parameters λ and m later in the proof of Theorem 2):

1. Adding: With probability λ, do the following. Recall that NZ(w) denotes the non-zero entries
of w. If |NZ(w)| < k, choose i ∈ [n] \ NZ(w) uniformly at random. Let w′ be such that
w′j = wi for j 6= i, and choose w′i ∈ [−B,B] uniformly at random. If NZ(w) = k, let w′ = w.
Then, the multiset Neigh(w, ε) is populated by m independent draws from the procedure just
described.

2. With probability 1− λ, do the following:

(a) Identical: With probability 1/2, output w′ = w.

(b) Scaling: With probability 1/4, choose γ ∈ [−1, 1] uniformly at random and let w′ = γw.

(c) Adjusting: With probability 1/4, do the following. Pick i ∈ NZ(w) uniformly at random.
Let w′ be such that w′j = wj for j 6= i, and choose w′i ∈ [−B,B] uniformly at random.

Then, the multiset Neigh(w, ε) is populated by m independent draws from the procedure just
described.

11Valiant showed that selection using optimization was equivalent to selection using beneficial and neutral mu-
tations [28]. However, this reduction uses representation classes that may be somewhat complex. For restricted
representation classes, it is not clear that such a reduction holds. In particular, the necessary ingredient seems to be
polynomial-size memory.

12Here, we no longer need the fact that each coefficient in the target linear function has magnitude at least l.

13

One thing to note in the above definition is that the mutations produced by the mutator at
any given time are correlated, i.e., they are all either of the kind that add a new variable, or all
of the kind that just manipulate existing variables. At a high level, we prove the success of this
mechanism as follows:

1. Using mutations of type “scaling” or “adjusting,” a representation that is close to the best in
the space, i.e., fS , is evolved.

2. When the representation is (close to) the best possible using current variables, adding one of
the variables that is present in the ideal function, but not in the current representation, results
in the greatest reduction of expected loss. Thus, selection based on optimization would always
add a variable in NZ(f). By tuning λ appropriately, it is ensured that with high probability,
candidate mutations that add new variables are not chosen until evolution has had time to
approach the best representation using existing variables.

To complete the proof we establish the following claims.

Claim 4. If ‖fS−w‖ ≤
√
ε/2k, then if S (NZ(f), there exists i ∈ NZ(f)\S and −B < a < b < B,

such that for any γ ∈ [a, b], Lf,D(w+γei) ≤ Lf,D(w)−ε/(4k2) and for any j 6∈ NZ(f), β ∈ [−B,B],
Lf,D(w + βej) ≥ Lf,D(w + γei) + ε/(4k3). Furthermore, b− a ≥

√
(k + 1)ε/k2.

Claim 5. Conditioned on the mutator not outputting mutations that add a new variable, with
probability at least min{1/16, ‖fS −w‖/(16k2B)}, there exists a mutation that reduces the squared
loss by at least ‖fS − w‖2/(12k2).

The proofs of Claims 4 and 5 are not difficult and are provided in Appendix A.3. Based on the
above claims we can prove the following theorem:

Theorem 2. Let D be the class of 1/(2k)-incoherent (∆, G)-nice distributions over Rn (Defn. 3).
Then, the class Link0,u is evolvable with respect to D by an evolutionary algorithm, using the mutation

algorithm described in this section, selection rule Opt-Sel, and the representation class R = Link0,B,
where B = 10uk/∆. Furthermore, the following are true:

1. The number of generations g is polynomial in 1/ε, k, 1/∆, but independent of the dimension n.

2. The size function s, the number of points used to calculate the empirical losses, depends
polylogarithmically on n and polynomially on the remaining parameters.

Proof. The proof is straightforward, although a bit heavy on notation; we provide a sketch here.
The mutator is as described in this section. Let

p = min

{
1

16
,

√
ε

64k3B
,

√
(k + 1)ε

k2

}
,

and let
α = min

{ ε

4k3
,

ε

192k4

}
=

ε

192k4
.

Also, let τ = α/5 and let t = 3α/5 be the tolerance function.
First, we show that between the “rare” time steps when the mutator outputs mutations that

add a new variable, evolution has enough time to stabilize (reach close to local optimal) using
existing variables. To see this, consider a sequence of coin tosses, where the probability of heads is
λ and the probability of tails is 1− λ. Let Yi be the number of tails between the (i− 1)th and ith

14

heads. Except with probability ε/(4(k + 1)), Yi > ε/(4(k + 1)λ) by a simple union bound. Also,
by Markov’s inequality, except with probability ε/(4(k + 1)), Yi < 4(k + 1)/(ελ). Thus, except
with probability ε/2, we have ε/(4(k + 1)λ) ≤ Yi ≤ 4(k + 1)/(ελ) for i = 1, 2, . . . , k + 1. Let
g = 4(k + 1)2/(ελ) + (k + 1). This ensures that, except with probability ε/2, after g time steps, at
least (k+ 1) time steps where the mutator outputs mutations of type “adding” have occurred, and
the first k of these occurrences are all separated by at least ε/(4(k+ 1)λ) time steps of other types
of mutations.

Also, let m = p−1 ln(4g/ε) and let s = (200gkG2B2/α2) ln(4m/ε) be the size function. These
values ensure that for g generations, except with probability ε/2, the mutator always produces a
mutation that had probability at least p of being produced (conditioned on the type of mutations
output by the mutator at that time step), and that for all the representations concerned, |L̂f,D(w)−
Lf,D(w)| ≤ τ , where τ = α/5. Thus, allowing the process to fail with probability ε, we assume that
none of the undesirable events have occurred.

We will show that the steps with mutations other than “adding” are sufficient to ensure that
evolution reaches the (almost) best possible target with the variables available to it. In particular, if
the set of available variables is S, the representation w reached by evolution will satisfy ‖fS−w‖2 ≤
ε/(2k2). For now, suppose that this is the case.

We claim by induction that evolution never adds a “wrong” variable, i.e., one that is not
present in the target function f . The base case is trivially true, since the starting representation
is 0. Now suppose, just before a “heads” step, the representation is w, such that S = NZ(w)
and ‖fS − w‖ ≤ ε/(2k2). The current step is assumed to be a “heads” step, thus the mutator
has produced mutations by adding a new variable. Then, using Claim 4, we know that there is a
mutation w′ in Neigh(w, ε) such that Lf,D(w′) < Lf,D(w) − ε/(4k2) (obtained by adding a correct

variable). Since α < ε/(4k2) and τ = α/5, it must be the case that L̂f,D(w′) ≤ L̂f,D(w) − 3α/5.
This ensures that the set Best, for selection rule Opt-Sel is not empty. Furthermore, we claim
that no mutation that adds an irrelevant variable can be in Best. Suppose w′′ is a mutation
that adds an irrelevant variable; according to Claim 5, Lf,D(w′′) > Lf,D(w′) + α, and hence

L̂f,D(w′′) > L̂f,D(w′) + t. This ensures that every representation in Best corresponds to a mutation
that adds some relevant variable. Thus, the evolutionary algorithm never adds any irrelevant
variable.

Finally, note that during a “tails” step (when the mutator produces mutations of types other
than “adding”), as long as ‖fS −w‖2 ≥ ε/(4k2), there exists a mutation that reduces the expected
loss by at least ε2/(192k4) = α. This implies that the set Best is non-empty and for the values
of tolerance t = 3α/5 and τ = α/5, any mutation from the set Best reduces the expected loss by
at least α/5. (This argument is identical to the one in Theorem 1.) Since the maximum loss is
at most 4kB2G2 for the class of distributions and a representation w from the set R; in at most
20kB2G2/α steps, a representation satisfying Lf,D(w) ≤ ε/(4k2) must be reached. Note that once
such a representation is reached, it is ensured that the loss does not increase substantially, since
with probability at least 1/2, the mutator outputs the same representation. Hence, it is guaranteed
that there is always a neutral mutation. Thus, before the next “heads” step, it must be the case
that ‖fS − w‖2 ≤ ε/2k2. If λ is set to εα/(80k(k + 1)B2G2), the evolutionary algorithm using the
selection rule Opt-Sel succeeds.

It is readily verified that the values of g and s satisfy the claims in the statement of the
theorem.

15

4 Conclusion and Future Work

In this work, we provided simple evolutionary mechanisms for evolving sparse linear functions,
under a large class of distributions. These evolutionary algorithms have the desirable properties
that the representations used are themselves sparse linear functions, and that they are attribute-
efficient in the sense that the number of generations required for evolution to succeed is independent
of the total number of attributes.

Strong negative results are known for distribution-independent evolvability of boolean functions,
e.g., even the class of conjunctions is not evolvable [11]. However, along the lines of this work, it
is interesting to study whether under restricted classes of distributions, evolution is possible for
simple concept classes, using representations of low complexity. Currently, even under (biased)
product distributions, no evolutionary mechanism is known for the class of disjunctions, except via
Feldman’s general reduction from CSQ algorithms. Even if the queries made by the CSQ algorithm
are simple, Feldman’s reduction uses intermediate representations that randomly combine queries
made by the algorithm, making the representations quite complex.

A natural extension of our current results would be to study fixed-degree sparse polynomials.
Another interesting direction is to study circuits with sigmoidal or other non-linear filters on the
gates, which arise naturally in molecular systems. The suitable class of boolean functions to
study is low-weight threshold functions, which includes disjunctions and conjunctions. The class
of smooth bounded distributions may be an appropriate starting place for studying evolvability of
these classes. For example, is the class of low-weight threshold functions evolvable under smooth
distributions, or at least log-concave distributions?

Acknowledgments

We would like to thank Leslie Valiant for helpful discussions and comments on an earlier version of
this paper. We are grateful to Frank Solomon for discussing biological aspects related to this work.

References

[1] Uri Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chap-
man and Hall/CRC, Boca Raton, FL, 2006.

[2] Francis R. Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization
with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–106,
2012.

[3] S. Balaji, Madan M. Babu, Lakshminarayan M. Iyer, Nicholas M. Luscombe, and L. Aravind.
Comprehensive analysis of combinatorial regulation using the transcriptional regulatory net-
work of yeast. Journal of Molecular Biology, 360(1):213–227, 2006.

[4] Alfred M. Bruckstein, David L. Donoho, and Michael Elad. From sparse solutions of systems
of equations to sparse modeling of signals and images. SIAM Review, 51(1):34–81, 2009.

[5] E. J. Candes and M. B. Wakin. An introduction to compressive sampling. IEEE Signal
Processing Magazine, 25(2):21–30, 2008.

[6] Cuthbert Daniel and Fred S. Wood. Fitting Equations to Data: Computer Analysis of Multi-
factor Data. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition, 1999.

16

[7] David L. Donoho, Michael Elad, and Vladimir N. Temlyakov. Stable recovery of sparse over-
complete representations in the presence of noise. IEEE Transactions on Information Theory,
52(1):6–18, 2006.

[8] M. Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and
Image Processing. Springer, 2010.

[9] Vitaly Feldman. Evolution from learning algorithms. In Proceedings of the Symposium on the
Theory of Computation (STOC), 2008.

[10] Vitaly Feldman. Robustness of evolvability. In Proceedings of the Conference on Learning
Theory (COLT), 2009.

[11] Vitaly Feldman. Distribution-independent evolution of linear threshold functions. In Proceed-
ings of the Conference on Learning Theory (COLT), 2011.

[12] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to modular cell
biology. Nature, 402(6761 Suppl):C47–C52, 1999.

[13] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer New York Inc., New York, NY, USA, 2001.

[14] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi. The large-scale organization
of metabolic networks. Nature, 407(6804):651–654, 2000.

[15] Adam Tauman Kalai, Alex Samorodnitsky, and Shang-Hua Teng. Learning and smoothed
analysis. In Proceedings of IEEE Conference on the Foundations of Computer Science (FOCS),
2009.

[16] Varun Kanade. Computational Questions in Evolution. PhD thesis, Harvard University, 2012.

[17] Varun Kanade, Jennifer Wortman Vaughan, and Leslie G. Valiant. Evolution with drifting
targets. In Proceedings of the Conference on Learning Theory (COLT), 2010.

[18] Daniel M. Kane, Adam Klivans, and Raghu Meka. Learning halfspaces under log-concave
densities: Polynomial approximations and moment matching. In Proceedings of the Conference
on Learning Theory (COLT), 2013.

[19] Michael Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–
1006, 1998.

[20] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Mach. Learn., 2(4):285–318, 1988.

[21] Nicholas M. Luscombe, M. Madan Babu, Haiyuan Yu, Michael Snyder, Sarah A. Teichmann,
and Mark Gerstein. Genomic analysis of regulatory network dynamics reveals large topological
changes. Nature, (7006):308–312.

[22] Stphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way.
Academic Press, 3rd edition, 2008.

[23] Douglas B. Murray, Ken Haynes, and Masaru Tomita. Redox regulation in respiring Saccha-
romyces cerevisiae. Biochimica et Biophysica Acta, 1810(10):945–958, 2011.

17

[24] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput., 24(2):227–
234, 1995.

[25] Bruno A. Olshausen and David J. Fieldt. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research, 37:3311–3325, 1997.

[26] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3), 2004.

[27] Joel A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transac-
tions on Information Theory, 50(10):2231–2242, 2004.

[28] Leslie G. Valiant. Evolvability. Journal of the ACM, 56(1):3:1–3:21, 2009.

[29] Paul Valiant. Evolvability of real-valued functions. In Proceedings of Innovations in Theoretical
Computer Science (ITCS), 2012.

[30] Andreas Wagner and David A. Fell. The small world inside large metabolic networks. Pro-
ceedings of the Royal Society of London. Series B: Biological Sciences, 268(1478):1803–1810,
2001.

[31] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393(6684):440–442, 1998.

18

A Omitted Proofs

A.1 Proofs from Section 2.2

Proof of Lemma 1. Note that for any x ∼ D, we can write x = x̃+ η, where x̃ is drawn from some
smooth bounded distribution, and η is drawn from the uniform distribution over [−

√
3∆,
√

3∆]n.
Note that η and x̃ are independent, and all components of η are independent. First, we observe
that E[x2

i] = E[(x̃i + ηi)
2] ≥ E[η2

i] = ∆2. Now, consider the following:

〈w,w〉 = E

(n∑
i=1

wixi

)2

= E

(n∑
i=1

wi(x̃i + ηi)

)2

= E

(n∑
i=1

wix̃i

)2
+ 2E

[(
n∑
i=1

wix̃i

)(
n∑
i=1

wiηi

)]
+ E

(n∑
i=1

wiηi

)2

≥
n∑
i=1

w2
iE[η2

i] Since ηi are all independent

≥
n∑
i=1

w2
i ∆

2 Since E[η2
i] = ∆2 by definition

=
∑

i∈NZ(w)

w2
i ∆

2

The conclusions of the Lemma follow easily by looking at the above expression.

A.2 Proofs from Section 3.1

Proof of Claim 1. We show that in this case, a “scaling” mutation achieves the desired result.

Restricted to the direction w, the best approximation to fS is 〈f
S ,w〉
‖w‖2 w. We have that∥∥∥∥〈fS , w〉‖w‖2

w

∥∥∥∥ ≤ ‖fS‖ ≤ ‖w‖2

Hence, if 〈fS , w〉 > 0, for γ ∈ [1/4, 3/4] (and similarly if 〈fS , w〉 < 0 for γ ∈ [−3/4,−1/4]), we
have that

‖fS − γw‖2 = ‖fS − w‖2 + 2(1− γ)〈fS − w,w〉+ (1− γ)2‖w‖2

≤ ‖w − fS‖2 − (1− γ)‖w‖2 + (1− γ)2‖w‖2

= ‖w − fS‖2 − (γ − γ2)‖w‖2

Finally, by observing that for γ ∈ [1/4, 3/4], γ − γ2 ≥ 3/16 and that by the triangle inequality,
‖w‖ ≥ (2/3)‖fS − w‖ when ‖w‖ ≥ 2‖fS‖, we obtain

‖fS − γw‖2 ≤ ‖fS − w‖2 − 1

12
‖fS − w‖2

19

We note that Lf,D(w′) = ‖f − fS‖2 + ‖fS − γw‖2 and Lf,D(w) = ‖f − fS‖2 + ‖fS − w‖2. An
appropriate value of γ is chosen with probability at least 1/4, and combined with the probability
of choosing a scaling mutation we get the desired result.

Proof of Claim 2. Here, we appeal to a mutation that adjusts the relative weights of the variables
within the set S = NZ(w). Consider the vector fS − w, and note that NZ(fS − w) ⊆ S. Let
rS = fS − w denote the residual, which lies in the space spanned by S. Now consider

‖rS‖2 = 〈rS , rS〉 =
∑
i∈S

rSi 〈ei, rS〉

Here, ei is the unit vector representing the linear function x 7→ ei · x = xi. Therefore, there must
exist an i for which the following is true:

rSi 〈ei, rS〉 ≥
‖rS‖2

|S|

We appeal to Lemma 1 (part 1), which implies that |rSi | ≤
√
〈rS , rS〉/∆2 = ‖rS‖/∆, to conclude

that

|〈ei, rS〉| ≥ ‖r
S‖∆
|S|

Let β = 〈ei,rS〉
‖ei‖2 and suppose w′ = w + γei for γ ∈ [β − |β|/2, β + |β|/2]. We then have

‖fS − (w + γei)‖2 = ‖fS − w‖2 − 2γ〈fS − w, ei〉+ γ2‖ei‖2

Recall that fS −w = rS and note that 〈ei, rS〉 and γ have the same sign. This, combined with the
above equation, gives

‖fS − (w + γei)‖2 = ‖fS − w‖2 − (2|γ||β| − γ2)‖ei‖2

Finally, note that for |γ| ∈ [|β|/2, 3|β|/2], −2|γ||β|+ γ2 ≤ −3|β|2/4, hence, the above equation and
the fact that ‖ei‖ ≤ 1 together yield

‖fS − (w + γei)‖2 ≤ ‖fS − w‖2 − 3

4
β2‖ei‖2 ≤ ‖fS − w‖2 − 3

4

‖fS − w‖2∆2

|S|2

Note that a suitable mutation w′ = w + γei is obtained with probability at least |β|/(6KB)
(1/3 for choosing the right type of mutation, 1/K for the correct choice of variable, and |β|/(2B)
for the choosing the correct value of wi). Also note that |β| ≥ ∆‖fS − w‖/|S| ≥ ∆‖fS − w‖/K.
For this to be a valid mutation, we also need to verify the fact that wi + γ ∈ [−B,B], which is
ensured by our choice of B. To see this, note that ‖w‖ ≤ 2‖fS‖ ≤ 2‖f‖ (the last part is because
fS is a projection of f onto a lower dimensional space). Thus, by Lemma 1 (part 1), wi ≤ 2‖f‖/∆.
Also, |β| = |〈ei, rS〉|/‖ei‖2 ≤ ‖rS‖/‖ei‖ = ‖fS − w‖/E[x2

i] ≤ 3‖f‖/∆. Thus, if B > 13‖f‖/(2∆),
then |wi + γ| < B and the mutation will be a valid one. Note that the maximum value of ‖f‖
for f ∈ Linkl,u is uk. Thus, our choice of B = 10uk/∆ is sufficient. This completes the proof of
Claim 2.

20

Proof of Claim 3. Finally, we show that if ‖fS − w‖ is very small, but NZ(f) 6⊆ S, then it must
be the case that a “swapping” or “adding” mutation is beneficial. We focus on the swapping
case, i.e., when |S| = K; the adding step is a special case of this. First, we observe that if there
exists i ∈ NZ(f) such that i 6∈ S, then by using Lemma 1 (part 1), it must be the case that
‖f − w‖2 ≥ (fi − wi)2∆2 = f2

i ∆2 ≥ l2∆2. Let r = f − w denote the residual. Then, consider the
following:

〈r, r〉 =
∑

i∈NZ(f)\S

ri〈ei, r〉+
∑
i∈S

ri〈ei, r〉

Note that for all i ∈ S, 〈ei, f − fS〉 = 0, since fS is the projection of f onto the space spanned
by the variables in S. Hence, if rS = fS − w, the residual within the space spanned by S, then
r = f − fS + rS . Thus, we have 〈ei, r〉 = 〈ei, rS〉 ≤ ‖rS‖. Using this we get,

〈r, r〉 ≤
∑

i∈NZ(f)\S

ri〈ei, r〉+ ‖rS‖
∑
i∈S
|ri|

Now, even by a very crude estimate, |ri| = |fi − wi| ≤ 2B, and hence by the condition in the
statement of Claim 3, that ‖rS‖ = ‖fS−w‖ ≤ l2∆2/(4KB), together with the previous observation
that 〈r, r〉 = ‖r‖2 = ‖f − w‖2 ≥ l2∆2, we have that

1

2
〈r, r〉 ≤

∑
i∈NZ(f)\S

ri〈ei, r〉

We now appeal to Lemma 1 (part 1), which shows that |ri| ≤ ‖r‖/∆, and conclude that there exists
an i for which

|〈ei, r〉| ≥ ‖r‖∆
2k

The crucial observation is that |NZ(f)| ≤ k < K. Let β = 〈r,ei〉
‖ei‖2 . Finally, Lemma 1 (part 2) implies

that there exists an i′ for which w2
i′ ≤ ‖w‖2/K. We consider the mutation, w′ = w + γei − wi′ei

′

for γ ∈ [β − |β|/2, β + |β|/2]. Then, we have

‖f − (w + γei − wi′ei
′
)‖2 = ‖f − (w + γei)‖2 − 2wi′〈f − (w + γei), ei

′〉+ w2
i′‖ei

′‖2 (2)

We bound the first term on the right hand side of the above expression and then the latter two.

‖f − (w + γei)‖2 = ‖r‖2 − 2γ〈r, ei〉+ γ2‖ei‖2

= ‖r‖2 − (2γβ − γ2)‖ei‖2

As in the proof of Claim 2, for |γ| ∈ [|β|/2, 3|β|/2], we have that −2γβ + γ2 ≤ −3β2/4. Hence,

‖f − (w + γei)‖2 ≤ ‖r‖2 − 3

4
β2 (3)

To bound the remaining two terms in (2), recall that f −w = f −fS + rS and that 〈f −fS , ei′〉 = 0
(since i′ ∈ S). Thus, we get that

−2wi′〈f − (w + γei), ei
′〉+ w2

i′‖ei
′‖2 ≤ 2|wi′ ||〈rS + γei, ei

′〉|+ w2
i′‖ei

′‖2

21

Using the fact that ‖rS‖ ≤ γ, |wi′ | < γ (which can be verified by the setting of K below), |〈ei, ei′〉| ≤
1 and ‖ei′‖ ≤ 1, we obtain

−2wi′〈f − (w + γei), ei
′〉+ w2

i′‖ei
′‖2 ≤ 6|wi′ ||γ| (4)

Recall that |wi′ | ≤ ‖w‖/
√
K. Also ‖w‖ ≤ ‖fS‖+‖rS‖ ≤ 2‖fS‖ ≤ 2‖f‖ ≤ 2uk, where we have used

the fact that ‖rS‖ is small. Combining (2), (3), (4), the fact that |wi| ≤ 2uk/
√
K and |γ| ≤ 3|β|/2,

we get

‖f − (w + γei − wi′ei
′
)‖2 ≤ ‖r‖2 − 3

4
β2 + 18|β|uk/

√
K

Finally, we note that when K > 5184(k/∆)4(u/l)2, the above equation ensures that the expected
loss drops by at least β2/4. The probability of choosing a swapping operations is 1/3, of subse-
quently choosing the correct pair is at least 1/(nK), and subsequently choosing the correct value
of wi is at least |β|/(2B). A simple calculation proves the statement of the claim.

A.3 Proofs from Section 3.2

Proof of Claim 4. Since S ⊆ NZ(f), the residual r = f − w is such that NZ(r) ⊆ NZ(f). Consider
i ∈ NZ(r) that maximizes |ri| · ‖ei‖. Then, we have:∣∣∣∣〈ei, r〉‖ei‖

∣∣∣∣ ≥ |ri|〈ei, ei〉‖ei‖
−

∑
j∈NZ(r),j 6=i

|rj |〈ei, ej〉
‖ei‖

≥ |ri| · ‖ei‖ −
1

2k

∑
j∈NZ(r),j 6=i

|rj | · ‖ej‖ (5)

≥ |ri| · ‖ei‖ ·
k + 1

2k
,

where in the last two steps we used the fact that corr(xi, xj) = 〈ei, ej〉/(‖ei‖‖ej‖) ≤ 1/(2k) and
that |NZ(r) \ {i}| ≤ k − 1. On the other hand, for any i′ 6∈ NZ(r), we have∣∣∣∣∣〈ei

′
, r〉

‖ei′‖

∣∣∣∣∣ ≤ ∑
j∈NZ(r)

|rj〈ei
′
, ej〉|

‖ei′‖

≤ 1

2k

∑
j∈NZ(r)

|rj | · ‖ej‖ ≤
1

2
|ri| · ‖ei‖ (6)

Here, again in the last two steps, we have used the fact that corr(xi′ , xj) ≤ 1/(2k) and that |ri| ·‖ei‖
is the largest such term.

First, we claim that if ‖r‖2 ≥ ε, then the i that maximized |ri| · ‖ei‖ must be from the set
NZ(f) \ S. (Note that ‖r‖2 = ‖f − w‖2 = Lf,D(w), so if ‖r‖2 ≤ ε, evolution has reached its
goal.) By the triangle inequality,

∑
i∈NZ(r) |ri| · ‖ei‖ ≥ ‖r‖ ≥

√
ε. Hence, it must be the case that

|ri| ·‖ei‖ ≥
√
ε/k. For contradiction, assume that i ∈ S. Then, since fS is the projection of f in the

space spanned by S, we have 〈ei, r〉 = 〈ei, fS −w〉, since r = f − fS + fS −w and 〈ei, f − fS〉 = 0.
But, by the assumption of the claim, |〈ei, r〉| ≤ ‖ei‖ · ‖fS − w‖ ≤ ‖ei‖ ·

√
ε/(2k), and by (5), we

know that |〈ei, r〉| ≥ ‖ei‖ · (|ri| · ‖ei‖) · (k + 1)/(2k) > ‖ei‖ · ‖r‖/(2k) ≥ ‖ei‖ ·
√
ε/(2k). Thus, it

cannot be the case that i ∈ S.

22

Let w′ = w + γei. Then,

‖f − (w + γei)‖2 − ‖f − w‖2 = −2γ〈f − w, ei〉+ γ2‖ei‖2

≤ −‖ei‖2
(
|γ| · |ri| ·

k + 1

k
− |γ|2

)
Now suppose γ satisfies 1− δ ≤ (2|γ|k)/(|ri|(k+ 1)) ≤ 1 + δ, then using the fact that the quadratic
function on the RHS is maximized at |γ| = (k + 1)|ri|/(2k), we have

‖f − (w + γei)‖2 − ‖f − w‖2 ≤ −‖ei‖2 · r
2
i

4
· (k + 1)2

k2
· (1− δ2) (7)

Note that for any i′ 6∈ S, the “best” representation of the form w+βei
′
is when β = 〈ei′ , r〉/‖ei′‖2,

and the corresponding reduction in squared loss is (〈ei′ , r〉)2/‖ei′‖2. Thus, for any i′ 6= i, we have

‖f − (w + βei
′
)‖2 − ‖f − w‖2 ≤ −〈e

i′ , r〉2

‖ei′‖2

≤ −r
2
i

4
‖ei‖2 Using (6)

Setting δ =
√

1/(k + 1) completes the proof of the claim. To see that b − a ≥
√

(k + 1)ε/k2,
notice that any γ, such that |γ| ∈ [(1− δ)((k + 1)/(2k))|ri|, (1− δ)((k + 1)/(2k))|ri|], achieves the
claimed reduction in squared loss. Since |ri| · ‖ei‖ ≥

√
ε/k, we have that |ri| ≥

√
ε/k. Hence,

b− a ≥ 2δ((k + 1)/2k)(
√
ε/k) ≥

√
(k + 1)ε/k2, for δ =

√
1/(k + 1).

Proof of Claim 5. The proof follows along the lines of the proofs of Claims 1 and 2. First, suppose
that ‖w‖ ≥ 2‖fS‖. In this case, we claim that for γ ∈ [1/2, 3/4], the mutation γw reduces the
squared loss by at least ‖fS −w‖2/12. This analysis is completely identical to that in Claim 1 and
hence is omitted. The only difference is that the probability that such a mutation is selected is 1/16,
conditioned on the event that the mutator chooses mutations that don’t add an extra variable.

Next, we assume that ‖w‖ ≤ 2‖fS‖. Let rS = fS−w. Now, as in the proof of Claim 4, consider
i ∈ NZ(rS) (recall that NZ(rS) = S) that maximizes |rSi | · ‖ei‖. Then, the following is true:∣∣∣∣〈ei, rS〉‖ei‖

∣∣∣∣ ≥ |rSi | 〈ei, ei〉‖ei‖
−

∑
j∈S,j 6=i

|rSj |
〈ei, ej〉
‖ei‖

≥ |rSi | · ‖ei‖ −
1

2k

∑
j∈S,j 6=i

|rSj | · ‖ej‖

≥ |rSi | · ‖ei‖ ·
k + 1

2k
(8)

where in the last two steps we used the fact that corr(xi, xj) ≤ 1/(2k) and that |rSj | · ‖ej‖ is
maximized for j = i, and the fact that |S| ≤ k. Also, by the triangle inequality, we know that∑

j∈S |rSj | · ‖ej‖ ≥ ‖rS‖; hence, by definition of i, we have that |rSi | · ‖ei‖ ≥ ‖rS‖/k. Now, let

β = 〈ei, rS〉/‖ei‖2, and for γ ∈ [β − |β|/2, β + |β|/2], consider the mutation w + γei. We have,

‖fS − (w + γei)‖2 − ‖fS − w‖2 = −2γ〈ei, rS〉+ γ2‖ei‖2

= −‖ei‖2(2|γ||β| − |γ|2)

≤ −3

4
‖ei‖2β2 For γ ∈ [β − |β|/2, β + |β|/2]

≤ − 3

16

‖rS‖2

k2
Using (8) and the defn. of β

23

In order for w + γei to be a valid mutation, we need to check that |wi| + 3|β|/2 < B. To see
this, observe the following:

‖w‖2 ≥
∑

j∈NZ(w)

w2
j‖ej‖2 −

∑
j1<j2;j1,j2∈NZ(w)

2|wj1wj2 ||〈ej1 , ej2〉|

≥
∑

j∈NZ(w)

w2
j‖ej‖2 −

1

k

∑
j1<j2

|wj1wj2 |‖ej1‖‖ej2‖

≥ 1

2

∑
j∈NZ(w)

w2
j‖ej‖2 +

1

2k

∑
j1<j2

(|wj1 |‖ej1‖ − |wj2 |‖ej2‖)2

≥ 1

2

∑
j∈NZ(w)

w2
j‖ej‖2

Hence, by a fairly loose analysis, |wi| ≤ 2‖w‖/∆ ≤ 4‖f‖/∆ ≤ 4uk/∆ (since ‖ei‖ ≥ ∆ for the
class of distributions defined in Defn. 3). Also |β| = |〈ei, rS〉|/‖ei‖2 ≤ ‖rS‖/‖ei‖ ≤ 3‖f‖/∆ (since
‖rS‖ ≤ ‖fS‖+ ‖w‖ ≤ 3‖fS‖ ≤ 3‖f‖). It’s easy to see that |wi|+ (3/2)|β| ≤ B, for B = 10uk/∆.

Finally, note that conditioned on the mutator choosing a mutation that doesn’t add new vari-
ables, the probability of choosing such a mutation is at least |β|/(8Bk) (1/4 for choosing a mutation
of type “adjusting”, 1/k for choosing the appropriate variable to adjust and |β|/(2B) for choosing
the correct value). Combining the claims for mutations of the “scaling” and “adjusting” types and
taking the appropriate minimum values proves the statement of the claim.

24

	1 Introduction
	1.1 Representation in Biology
	1.2 Our Contributions

	2 Model and Preliminaries
	2.1 Valiant's Evolvability Framework
	2.2 Sparse Linear Functions

	3 Evolving Sparse Linear Functions
	3.1 Evolving Sparse Linear Functions Using BN-Sel
	3.2 Evolving Sparse Linear Functions Using Opt-Sel

	4 Conclusion and Future Work
	A Omitted Proofs
	A.1 Proofs from Section ??
	A.2 Proofs from Section ??
	A.3 Proofs from Section ??

