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Abstract

We study the problem of answering k-way marginal queries on a database D ∈ ({0, 1}d)n,
while preserving differential privacy. The answer to a k-way marginal query is the fraction of
the database’s records x ∈ {0, 1}d with a given value in each of a given set of up to k columns.
Marginal queries enable a rich class of statistical analyses on a dataset, and designing efficient
algorithms for privately answering marginal queries has been identified as an important open
problem in private data analysis. For any k, we give a differentially private online algorithm
that runs in time

poly
(
n,min

{
exp

(
d1−Ω(1/

√

k)
)
, exp

(
d/ log0.99 d

)})

per query and answers any (adaptively chosen) sequence of poly(n) k-way marginal queries with
error at most ±0.01 on every query, provided n & d0.51. To the best of our knowledge, this is
the first algorithm capable of privately answering marginal queries with a non-trivial worst-case
accuracy guarantee for databases containing poly(d, k) records in time exp(o(d)). Our algorithm
runs the private multiplicative weights algorithm (Hardt and Rothblum, FOCS ’10) on a new
approximate polynomial representation of the database.

We derive our representation for the database by approximating the OR function restricted
to low Hamming weight inputs using low-degree polynomials with coefficients of bounded L1-
norm. In doing so, we show new upper and lower bounds on the degree of such polynomials,
which may be of independent approximation-theoretic interest. First, we construct a polynomial
that approximates the d-variate OR function on inputs of Hamming weight at most k such that

the degree of the polynomial is at most d1−Ω(1/
√

k) and the L1-norm of its coefficient vector is
d0.01. Then we show the following lower bound that exhibits the tightness of our approach: for
any k = o(log d), any polynomial whose coefficient vector has L1-norm poly(d) that pointwise
approximates the d-variate OR function on all inputs of Hamming weight at most k must have

degree d1−O(1/
√

k).
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1 Introduction

Consider a database D ∈ ({0, 1}d)n in which each of the n(= |D|) rows corresponds to an individ-
ual’s record, and each record consists of d binary attributes. The goal of privacy-preserving data
analysis is to enable rich statistical analyses on the database while protecting the privacy of the
individuals. In this work, we seek to achieve differential privacy [DMNS06], which guarantees that
no individual’s data has a significant influence on the information released about the database.

One of the most important classes of statistics on a dataset is its marginals. A marginal query
is specified by a set S ⊆ [d] and a pattern t ∈ {0, 1}|S|. The query asks, “What fraction of the
individual records in D has each of the attributes j ∈ S set to tj?” A major open problem in
privacy-preserving data analysis is to efficiently release a differentially private summary of the
database that enables analysts to answer each of the 3d marginal queries. A natural subclass of
marginals are k-way marginals, the subset of marginals specified by sets S ⊆ [d] such that |S| ≤ k.

Privately answering marginal queries is a special case of the more general problem of privately
answering counting queries on the database, which are queries of the form, “What fraction of indi-
vidual records in D satisfy some property q?” Early work in differential privacy [DN03,BDMN05,
DMNS06] showed how to privately answer any set of counting queries Q approximately by per-
turbing the answers with appropriately calibrated noise, ensuring good accuracy (say, within ±.01
of the true answer) provided |D| & |Q|1/2.

However, in many settings data is difficult or expensive to obtain, and the requirement that
|D| & |Q|1/2 is too restrictive. For instance, if the query set Q includes all k-way marginal queries
then |Q| ≥ dΘ(k), and it may be impractical to collect enough data to ensure |D| & |Q|1/2, even
for moderate values of k. Fortunately, a remarkable line of work initiated by Blum et al. [BLR08]
and continuing with [DNR+09, DRV10, RR10, HR10, HLM12, GRU12, JT12], has shown how to
privately release approximate answers to any set of counting queries, even when |Q| is exponentially
larger than |D|. For example, the online private multiplicative weights algorithm of Hardt and
Rothblum [HR10] gives accurate answers to any (possibly adaptively chosen) sequence of queries Q
provided |D| &

√
d log |Q|. Hence, if the sequence consists of all k-way marginal queries, then the

algorithm will give accurate answers provided |D| & k
√
d. Unfortunately, all of these algorithms

have running time at least 2d per query, even in the simplest setting where Q is the set of 2-way
marginals.

Given this state of affairs, it is natural to seek efficient algorithms capable of privately releasing
approximate answers to marginal queries even when |D| ≪ dk. The most efficient algorithm known
for this problem, due to Thaler, Ullman, and Vadhan [TUV12] (building on the work of Hardt,

Rothblum, and Servedio [HRS12]) runs in time dO(
√
k) and releases a summary from which an

analyst can compute the answer to any k-way marginal query in time dO(
√
k).

Even though |D| can be much smaller than |Q|1/2, a major drawback of this algorithm and
other efficient algorithms for releasing marginals (e.g. [GHRU11,CKKL12,HRS12,FK13,DNT13])
is that the database still must be significantly larger than Θ̃(k

√
d), which we know would suffice

for inefficient algorithms. Recent experimental work of Hardt, Ligett, and McSherry [HLM12]
demonstrates that for some databases of interest, even the 2d-time private multiplicative weights
algorithm is practical, and also shows that more efficient algorithms based on adding independent
noise do not provide good accuracy for these databases. Motivated by these findings, we believe
that an important approach to designing practical algorithms is to achieve a minimum database
size comparable to that of private multiplicative weights, and seek to optimize the running time of
the algorithm as much as possible. In this paper we give the first algorithms for privately answering
marginal queries for this parameter regime.
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Reference Running Time per Query Database Size

[DN03,DN04,BDMN05,DMNS06] O(1) Õ(dk/2)

[HR10,GRU12] 2O(d) Õ(k
√
d)

[HRS12,TUV12] dO(
√
k) dO(

√
k)

[DNT13] dO(k) Õ(d⌈k/2⌉/2)
This paper 2O(d/ log0.99 d) kd0.5+o(1)

This paper 2d
1−Ω(1/

√
k)

Õ(kd.51)

Table 1: Summary of prior results on differentially private release of k-way marginals with error
±0.01 on every marginal. Note that the running time ignores dependence on the database size,
privacy parameters, and the time required to evaluate the query non-privately.

1.1 Our Results

In this paper we give faster algorithms for privately answering marginal queries on databases of
size Õ(d0.51/ε), which is nearly the smallest a database can be while admitting any differentially
private approximation to marginal queries [BUV13].

Theorem 1.1. There exists a constant C > 0 such that for every k, d, n ∈ N, k ≤ d, and every
ε, δ > 0, there is an (ε, δ)-differentially private online algorithm that, on input a database D ∈
({0, 1}d)n, runs in time

poly
(
n,min

{
exp

(
d1−1/C

√
k
)
, exp

(
d/ log0.99 d

)})

per query and answers any sequence Q of (possibly adaptively chosen) k-way marginal queries on
D up to an additive error of at most ±0.01 on every query with probability at least 0.99, provided
that n ≥ Cd0.51 log |Q| log(1/δ)/ε.

When k is much smaller than d, it may be useful to view our algorithm as an offline algorithm for
releasing answers to all k-way marginal queries. This offline algorithm can be obtained simply by
requesting answers to each of the dΘ(k) distinct k-way marginal queries from the online mechanism.
In this case we obtain the following corollary.

Corollary 1.2. There exists a constant C > 0 such that for every k, d, n ∈ N, k = O(d/ log d), and
every ε, δ > 0, there is an (ε, δ)-differentially private offline algorithm that, on input a database
D ∈ ({0, 1}d)n, runs in time

poly
(
n,min

{
exp

(
d1−1/C

√
k
)
, exp

(
d/ log0.99 d

)})

and, with probability at least 0.99, releases answers to every k-way marginal query on D up to an
additive error of at most ±0.01, provided that n ≥ Ckd0.51 log(1/δ)/ε.

Here
( d
≤k

)
:=
∑k

i=0

(d
i

)
, and the number of k-way marginals on {0, 1}d is bounded by a poly-

nomial in this quantity. See Table 1 for a comparison of relevant results on privately answering
marginal queries.

Remarks.

1. When k = Ω(log2 d), the minimum database size requirement can be improved to n ≥
Ckd0.5+o(1) log(1/δ)/ε, but we have stated the theorems with a weaker bound for simplic-
ity. (Here C > 0 is a universal constant and the o(1) is with respect to d.)
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2. Our algorithm can be modified so that instead of releasing approximate answers to each k-
way marginal explicitly, it releases a summary of the database of size Õ(kd0.01) from which
an analyst can compute an approximate answer to any k-way marginal in time Õ(kd1.01).

A key ingredient in our algorithm is a new approximate representation of the database using
polynomial approximations to the d-variate OR function restricted to inputs of Hamming weight
at most k. For any such polynomial, the degree determines the runtime of our algorithm, while
the L1-weight of the coefficient vector determines the minimum required database size. Although
low-degree low L1-weight polynomial approximations to the OR function have been studied in the
context of approximation theory and learning theory [STT12], our setting requires an approximation
only over a restricted subset of the inputs. When the polynomial needs to approximate the OR
function only on a subset of the inputs, is it possible to reduce the degree and L1-weight (in
comparison to [STT12]) of the polynomial?

Our main technical contribution addresses this variant of the polynomial approximation prob-
lem. We believe that our construction of such polynomials (Theorem 1.3) as well as the lower
bound (Theorem 1.4) could be of independent approximation-theoretic interest. The following the-
orem shows a construction of polynomials that achieve better degree and L1-weight in comparison
to [STT12] for small values of k. Let ORd : {−1, 1}d → {−1, 1} denote the OR function on d
variables with the convention that −1 is TRUE, and for any vector x ∈ {−1, 1}d, let |x| denote the
number of coordinates of x equal to −1.
Theorem 1.3. Let k ∈ [d]. For some constant C > 0, there exists a polynomial p such that

(i) |p(x)−ORd(x)| ≤ 1/400 for every x ∈ {−1, 1}d : |x| ≤ k,

(ii) the L1-weight of the coefficient vector of p is at most d0.01, and

(iii) the degree of p is at most

min

{
d
1− 1

C
√

k ,
d

log0.995 d

}
.

The degree bound of d/ log0.995 d in the above theorem follows directly from techniques devel-

oped in [STT12], while the degree bound of d
1− 1

C
√

k requires additional insight. We also show a
lower bound to exhibit the tightness of our construction.

Theorem 1.4. Let k = o(log d), and let p be a real d-variate polynomial satisfying |p(x)−ORd(x)| ≤
1/6 for all x ∈ {−1, 1}d with |x| ≤ k. If the L1-weight of the coefficient vector of p is dO(1), then

the degree of p is at least d1−O(1/
√
k).

We note that our algorithmic approach for designing efficient private data release algorithms
would work equally well if we have any small set of functions whose low-L1-weight linear combi-
nations approximate disjunctions restricted to inputs of Hamming weight at most k. Our lower
bound limits the applicability of our approach if we choose to use low-degree monomials as the
set of functions. We observe that this also rules out several natural candidates that can them-
selves be computed exactly by a low-weight polynomial of low-degree (e.g., the set of small-width
conjunctions). There is some additional evidence from prior work that low-degree monomials may
be the optimal choice: if we only care about the size of the set of functions used to approximate
disjunctions on inputs of Hamming weight at most k, then prior work shows that low-degree mono-
mials are indeed optimal [She11] (see also Section 5 in the full version of [TUV12]). It remains an
interesting open question to determine whether this optimality still holds when we restrict the L1

weight of the linear combinations used in the approximations to be poly(d).
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1.2 Techniques

For notational convenience, we focus on monotone k-way disjunction queries. However, our results
extend straightforwardly to general non-monotone k-way marginal queries via simple transforma-
tions on the database and queries. A monotone k-way disjunction is specified by a set S ⊆ [d] of
size k and asks what fraction of records in D have at least one of the attributes in S set to 1.

Following the approach introduced by Gupta et al. [GHRU11] and developed into a general
theory in [HRS12], we view the problem of releasing answers to conjunction queries as a learning
problem. That is, we view the database as specifying a function fD : {−1, 1}d → [0, 1], in which
each input vector s ∈ {−1, 1}d is interpreted as the indicator vector of a set S ⊆ {1, . . . , d},
with si = −1 iff i ∈ S, and fD(s) equals the evaluation of the conjunction query specified by
S on the database D. Then, our goal is to privately learn to approximate the function fD; this
is accomplished in [HRS12] by approximating fD succinctly with polynomials and learning the
polynomial privately. Polynomial approximation is central to our approach as well, as we explain
below.

We begin with a description of how the parameters of the online learning algorithm deter-
mine the parameters of the online differentially private learning algorithm. We consider the “IDC
framework” [GRU12]—which captures the private multiplicative weights algorithm [HR10] among
others [RR10,GRU12, JT12]—for deriving differentially private online algorithms from any online
learning algorithm that may not necessarily be privacy preserving.

Informally, an online learning algorithm is one that takes a (possibly adaptively chosen) sequence
of inputs s1, s2, . . . and returns answers a1, a2, . . . to each, representing “guesses” about the values
fD(s1), fD(s2), . . . for the unknown function fD. After making each guess ai, the learner is given
some information about the value of fD(si). The quantities of interest are the running time required
by the online learner to produce each guess ai and the number of “mistakes” made by the learner,
which is the number of rounds i in which ai is “far” from fD(si). Ultimately, for the differentially
private algorithm derived in the IDC framework, the notion of far will correspond to the accuracy,
the per query running time will essentially be equal to the running time of the online learning
algorithm, and the minimum database size required by the private algorithm will be proportional
to the square root of the number of mistakes.

We next describe the well-known technique of deriving faster online learning algorithms that
commit fewer mistakes using polynomial approximations to the target function. Indeed, it is well-
known that if fD can be approximated to high accuracy by a d-variate polynomial pD : {−1, 1}d → R
of degree t and L1-weight at most W , where the weight is defined to be the sum of the absolute
values of the coefficients, then there is an online learning algorithm that runs in time poly

((
d
≤t

))

and makes O(W 2d) mistakes. Thus, if t≪ d, the running time of such an online learning algorithm
will be significantly less than 2d and the number of mistakes (and thus the minimum database size
of the resulting private algorithm) will only blow up by a factor of W .

Consequently, our goal boils down to constructing the best possible polynomial representation
pD for any database D – one with low-degree, low-L1-weight such that |pD(s) − fD(s)| is small
for all vectors s ∈ {−1, 1}d corresponding to monotone k-way disjunction queries. To accomplish
this goal, it is sufficient to construct a low-degree, low-L1-weight polynomial that can approximate
the d-variate OR function on inputs of Hamming weight at most k (i.e., those that have −1 in at
most k indices). Such problems are well-studied in the approximation-theory literature, however
our variant requires polynomials to be accurate only on a restricted subset of inputs. In fact,
the existence of a polynomial with degree d/ log0.99 d and L1-weight d

o(1) that approximates the
d-variate OR function on all inputs follows from the work of Servedio et al. [STT12]. We improve
these bounds for small values of k by constructing an approximating polynomial that has degree
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d1−Ω(1/
√
k) and L1-weight d

0.01.
We also prove a new approximation-theoretic lower bound for polynomials that seek to ap-

proximate a target function for a restricted subset of inputs. Specifically, we show that for any
k = o(log d), any polynomial p of weight poly(d) that satisfies |p(s) − OR(s)| ≤ 1/6 for all inputs

s ∈ {−1, 1}d of Hamming weight at most k must have degree d1−O(1/
√
k). We prove our lower

bound by expressing the problem of constructing such a low-weight, low-degree polynomial p as a
linear program, and exhibiting an explicit solution to the dual of this linear program. Our proof is
inspired by recent work of Sherstov [She09,She11,She12b] and Bun-Thaler [BT13].

1.3 Related Work

Other Results on Privately Releasing Marginals. In work subsequent to our result, Dwork
et al. [DNT13] show how to privately release marginals in a very different parameter regime. Their
algorithm is faster than ours, running in time poly(

( d
≤k

)
), and has better dependence on the error

parameter. However, their algorithm requires that the database size is Ω̃(d⌈k/2⌉/2) for answering
with error ±0.01. This size is comparable to the optimal Ω̃(k

√
d) only when k ≤ 2. In contrast,

our algorithm has nearly-optimal minimum database size for every choice of k.
While we have focused on accurately answering every k-way marginal query, or more generally

every query in a sequence of marginal queries, several other works have considered more relaxed
notions of accuracy. These works show how to efficiently release a summary of the database from
which an analyst can efficiently compute an approximate answer to marginal queries, with the
guarantee that the average error of a marginal query is at most .01, when the query is chosen from
a particular distribution. In particular, Feldman and Kothari [FK13] achieve small average error
over the uniform distribution with running time and database size Õ(d2); Gupta et al. [GHRU11]
achieve small average error over any product distribution with running time and minimum database
size poly(d); finally Hardt et al. [HRS12] show how to achieve small average error over arbitrary

distributions with running time and minimum database size 2Õ(d1/3). All of these results are based
on the approach of learning the function fD.

Several works have also considered information theoretic bounds on the minimum database
size required to answer k-way marginals. Kasiviswanathan et al. [KRSU10] showed that |D| ≥
min{1/α2, dk/2/α} is necessary to answer all k-way marginals with error ±α. De [De12] extended
this result to hold even when accuracy ±α can be violated for a constant fraction of k-way marginals.
In our regime, where α = Ω(1), their results do not give a non-trivial lower bound. In forthcoming
work, Bun, Ullman, and Vadhan [BUV13] have proven a lower bound of |D| ≥ Ω̃(k

√
d), which is

nearly optimal for α = Ω(1).

Relationship with Hardness Results for Differential Privacy. Ullman [Ull13] (building on
the results of Dwork et al. [DNR+09]), showed that any 2o(d)-time differentially private algorithm
that answers arbitrary counting queries can only give accurate answers if |D| & |Q|1/2, assuming
the existence of exponentially hard one-way functions. Our algorithms have running time 2o(d) and
are accurate when |D| ≪ |Q|1/2, and thus show a separation between answering marginal queries
and answering arbitrary counting queries.

When viewed as an offline algorithm for answering all k-way marginals, our algorithm will
return a list of values containing answers to each k-way marginal query. It would in some cases
be more attractive if we could return a synthetic database, which is a new database D̂ ∈ ({0, 1}d)n̂
whose rows are “fake”, but such that D̂ approximately preserves many of the statistical properties
of the database D (e.g., all the marginals). Some of the previous work on counting query release
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has provided synthetic data [BCD+07,BLR08,DNR+09,DRV10,HLM12].
Unfortunately, Ullman and Vadhan [UV11] (building on [DNR+09]) have shown that no differ-

entially private sanitizer with running time poly(d) can take a database D ∈ ({0, 1}d)n and output
a private synthetic database D̂, all of whose 2-way marginals are approximately equal to those
of D, assuming the existence of one-way functions. They also showed that under certain strong
cryptographic assumptions, there is no differentially private sanitizer with running time 2d

1−Ω(1)
can

output a private synthetic database, all of whose 2-way marginals are approximately equal to those
of D. Our algorithms indeed achieve this running time and accuracy guarantee when releasing
k-way marginals for constant k, and thus it may be inherent that our algorithms do not generate
synthetic data.

Relationship with Results in Approximation Theory. Servedio et al. [STT12] focused on
developing low-weight, low-degree polynomial threshold functions (PTFs) for decision lists, mo-
tivated by applications in computational learning theory. As an intermediate step in their PTF
constructions, they constructed low-L1-weight, low-degree polynomials that approximate the OR
function on all Boolean inputs. Our construction of lower-weight, lower-degree polynomials that
approximate the OR function on low Hamming weight inputs is inspired by and builds on Servedio
et al.’s construction of approximations that are accurate on all Boolean inputs.

The proof of our lower bound is inspired by recent work that has established new approximate
degree lower bounds via the construction of dual solutions to certain linear programs. In particular,
Sherstov [She09] showed that approximate degree and PTF degree behave roughly multiplicatively
under function composition, while Bun and Thaler [BT13] gave a refinement of Sherstov’s method
in order to resolve the approximate degree of the two-level AND-OR tree, and also gave an explicit
dual witness for the approximate degree of any symmetric Boolean function. We extend these lower
bounds along two directions: (1) we show degree lower bounds that take into account the L1-weight
of the coefficient vector of the approximating polynomial, and (2) our lower bounds hold even when
we only require the approximation to be accurate on inputs of low Hamming weight, while prior
work only considered approximations that are accurate on all Boolean inputs.

Some prior work has studied the degree of polynomials that point-wise approximate partial
Boolean functions [She12b,She12a]. Here, a function f : Y → R is said to be partial if its domain
Y is a strict subset of {−1, 1}d, and a polynomial p is said to ǫ-approximate f if

1. |f(x)− p(x)| ≤ ǫ for all x ∈ Y , and

2. |p(x)| ≤ 1 + ǫ for all x ∈ {−1, 1}d \ Y .

In contrast, our lower bounds apply even in the absence of Condition 2, i.e., when p(x) is allowed
to take arbitrary values on inputs in {−1, 1}d \ Y .

Finally, while our motivation is private data release, our approximation theoretic results are
similar in spirit to recent work of Long and Servedio [LS13], who are motivated by applications in
computational learning theory. Long and Servedio consider halfspaces h defined on inputs of small
Hamming weight, and (using different techniques very different from ours) give upper and lower
bounds on the weight of these halfspaces when represented as linear threshold functions.

Organization. In Section 3, we describe our private online algorithm and show that it yields
the claimed accuracy given the existence of sufficiently low-weight polynomials that approximate
the d-variate OR function on inputs of low Hamming weight. The results of this section are a
combination of known techniques in differential privacy [RR10,HR10,GRU12] and learning theory
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(see e.g., [KS04]). Readers familiar with these literatures may prefer to skip Section 3 on first
reading. In Section 4, we give our polynomial approximations to the OR function, both on low
Hamming weight Boolean inputs and on all Boolean inputs. Finally, in Section 5, we state and
prove our lower bounds for polynomial approximations to the OR function on restricted inputs.

2 Preliminaries

2.1 Differentially Private Sanitizers

Let a database D ∈ ({0, 1}d)n be a collection of n rows x(1), . . . , x(n) from a data universe {0, 1}d.
We say that two databases D,D′ ∈ ({0, 1}d)n are adjacent if they differ only on a single row, and
we denote this by D ∼ D′.

Let A : ({0, 1}d)n →R be an algorithm that takes a database as input and outputs some data
structure in R. We are interested in algorithms that satisfy differential privacy.

Definition 2.1 (Differential Privacy [DMNS06]). An algorithm A : ({0, 1}d)n → R is (ε, δ)-
differentially private if for every two adjacent databases D ∼ D′ ∈ ({0, 1}d)n and every subset
S ⊆ R,

Pr [A(D) ∈ S] ≤ eε Pr
[
A(D′) ∈ S

]
+ δ.

Since a sanitizer that always outputs ⊥ satisfies Definition 2.1, we focus on sanitizers that
are accurate. In particular, we are interested in sanitizers that give accurate answers to counting
queries. A counting query is defined by a boolean predicate q : {0, 1}d → {0, 1}. Abusing notation,
we define the evaluation of the query q on a database D ∈ ({0, 1}d)n to be q(D) = 1

n

∑n
i=1 q(x

(i)).
Note that the value of a counting query is in [0, 1]. We use Q to denote a set of counting queries.

For the purposes of this work, we assume that the range of A is simply R|Q|. That is, A outputs
a list of real numbers representing answers to each of the specified queries.

Definition 2.2 (Accuracy). The output of A(D), a = (aq)q∈Q, is α-accurate for the query set Q if

∀q ∈ Q, |aq − q(D)| ≤ α

A sanitizer is (α, β)-accurate for the query set Q if for every database D, A(D) outputs a such that
with probability at least 1 − β, the output a is α-accurate for Q, where the probability is taken
over the coins of A.

We remark that the definition of both differential privacy and (α, β)-accuracy extend straight-
forwardly to the online setting. Here the algorithm receives a sequence of ℓ (possibly adaptively
chosen) queries from Q and must give an answer to each before seeing the rest of the sequence.
Here we require that with probability at least 1−β, every answer output by the algorithm is within
±α of the true answer on D. See e.g., [HR10] for an elaborate treatment of the online setting.

2.2 Query Function Families

Given a set of queries of interest, Q (e.g., all marginal queries), we think of the database D as spec-
ifying a function fD mapping queries q to their answers q(D). We now describe this transformation
more formally:

Definition 2.3 (Q-Function Family). Let Q = {qy}y∈YQ⊆{−1,1}m be a set of counting queries on a

data universe {0, 1}d, where each query is indexed by an m-bit string. We define the index set of
Q to be the set YQ = {y ∈ {−1, 1}m | qy ∈ Q}.
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We define the Q-function family FQ = {fx : {−1, 1}m → [0, 1]}x∈{0,1}d as follows: For every

possible database row x ∈ {0, 1}d, the function fx : {−1, 1}m → [0, 1] is defined as fx(y) = qy(x).
Given a database D ∈ ({0, 1}d)n we define the function fQ,D : {−1, 1}m → [0, 1] where fQ,D(y) =
1
n

∑n
i=1 fx(i)(y). When Q is clear from context we will drop the subscript Q and simply write fx,

fD, and F .

When Q is the set of all monotone k-way disjunctions on a database D ∈ ({0, 1}d)n, the queries
are defined by sets S ⊆ [d] , |S| ≤ k. In this case, we represent each query by the d-bit −1/1
indicator vector yS of the set S, where yS(i) = −1 if and only if i ∈ S. Thus, yS has at most k

entries that are −1. Hence, we can take m = d and YQ =
{
y ∈ {−1, 1}d |∑d

j=1 1{yi=−1} ≤ k
}
.

2.3 Low-Weight Polynomial Approximations

Given an m-variate real polynomial p : {−1, 1}m → R,

p(y) =
∑

S⊆[m]

cS ·
∏

i∈S
yi,

we define the degree, weight w(·) and non-constant weight w∗(·) of the polynomial as follows:

deg(p) := max{|S| : S ⊆ [m], cS 6= 0},
w(p) :=

∑

S⊆[m]

|cS |, and

w∗(p) :=
∑

S⊆[m],S 6=∅
|cS |.

We use
([m]
≤t

)
to denote {S ⊆ [m] | |S| ≤ t} and

(m
≤t

)
=
∣∣∣
([m]
≤t

)∣∣∣ =
∑t

j=0

(m
j

)
.

We will attempt to approximate the functions fx : {−1, 1}m → {0, 1} on all the indices in YQ
by a family of polynomials with low degree and low weight. Formally and more generally:

Definition 2.4 (Restricted Approximation by Polynomials). Given a function f : Y → R, where
Y ⊆ Rm, and a subset Y ′ ⊆ Y , we denote the restriction of f to Y ′ by f |Y ′ . Given an m-variate
real polynomial p, we say that p is a γ-approximation to the restriction f |Y ′ , if |f(y) − p(y)| ≤ γ
∀y ∈ Y ′. Notice there is no restriction whatsoever placed on p(y) for y ∈ Y \ Y ′.

Given a family of m-variate functions F = {fx : Y → R}x∈{0,1}d , where Y ⊆ Rm, a set Y ′ ⊆ Y
we use F|Y ′ = {fx|Y ′}x∈{0,1}d to denote the family of restricted functions. Given a family P of
m-variate real polynomials, we say that the family P is a γ-approximation to the family F|Y ′ if for
every x ∈ {0, 1}d, there exists px ∈ P that is a γ-approximation to fx|Y ′ .

Let Hm,k = {x ∈ {−1, 1}m :
∑m

i=1(1−xi)/2 ≤ k} denote the set of inputs of Hamming weight at
most k. We view the d variate OR function, ORd as mapping inputs from {−1, 1}d to {−1, 1}, with
the convention that −1 is TRUE and 1 is FALSE. Let Pt,W (m) denote the family of all m-variate
real polynomials of degree t and weight W . For the upper bound, we will show that for certain
small values of t and W , the family Pt,W (d) is a γ-approximation to the family of all disjunctions
restricted to Hd,k.

Fact 2.5. If Q is the set of all monotone k-way disjunctions on a database D ∈ ({0, 1}d)n, F is its
function family, and Y = Hd,k is its index set, then Pt,W (d) is a γ-approximation to the restriction
F|Y if and only if there is a degree t polynomial of weight O(W ) that γ-approximates ORd|Hd,k

.
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The fact follows easily by observing that for any x ∈ {0, 1}d, y ∈ {−1, 1}d,

fx(y) =
∨

i∈x
1{yi=−1} =

1−ORd(y
x1
1 , . . . , y

xd
d )

2
.

For the lower bound, we will show that any collection of polynomials with small weight that is
a γ-approximation to the family of disjunctions restricted to Hm,k should have large degree. We
need the following definitions:

Definition 2.6 (Approximate Degree). Given a function f : Y → R, where Y ⊆ Rm, the γ-
approximate degree of f is

degγ(f) := min{d : ∃ real polynomial p that is a γ-approximation to f , deg(p) = d}.

Analogously, the (γ,W )-approximate degree of f is

deg(γ,W )(f) := min{d : ∃ real polynomial p that is a γ-approximation to f , deg(p) = d, w(p) ≤W}.

It is clear that degγ(f) = deg(γ,∞)(f).
We let w∗(f, t) denote the degree-t non-constant margin weight of f , defined to be:

w∗(f, t) := min{w∗(p) : ∃ real polynomial p s.t. deg(p) ≤ t, f(y)p(y) ≥ 1 ∀ y ∈ Y }.

The above definitions extend naturally to the restricted function f |Y ′ .

Our definition of non-constant margin weight is closely related to the well-studied notion of the
degree-t polynomial threshold function (PTF) weight of f (see e.g., [She11]), which is defined as
minpw(p), where the minimum is taken over all degree-t polynomials p with integer coefficients, such
that f(x) = sign(p(x)) for all x ∈ {−1, 1}d. Often, when studying PTF weight, the requirement
that p have integer coefficients is used only to ensure that p has non-trivial margin, i.e. that
|p(x)| ≥ 1 for all x ∈ {−1, 1}d; this is precisely the requirement captured in our definition of non-
constant margin weight. We choose to work with margin weight because it is a cleaner quantity to
analyze using linear programming duality; PTF weight can also be studied using LP duality, but
the integrality constraints on the coefficients of p introduces an integrality gap that causes some
loss in the analysis (see e.g., Sherstov [She11, Theorem 3.4] and Klauck [Kla11, Section 4.3]).

3 From Low-Weight Approximations to Private Data Release

In this section we show that low-weight polynomial approximations imply data release algorithms
that provide approximate answers even on small databases. The main goal of this section is to
prove the following theorem.

Theorem 3.1. Given α, β, ε, δ > 0, and a family of linear queries Q with index set Y ⊆ {−1, 1}m.
Suppose for some t ≤ m, W > 0, the family of polynomials Pt,W (m) (α/4)-approximates the
function family FQ|Y . Then there exists an (ǫ, δ)-differentially private online algorithm that is
(4α, β)-accurate for any sequence of ℓ (possibly adaptively chosen) queries from Q on a database
D ∈ ({0, 1}d)n, provided

n ≥ 128W log (ℓ/β) log (4/δ)

α2ε

√
log

(
2

(
m

≤ t

)
+ 1

)
.

The private algorithm has running time poly
(
n,
(m
≤t

)
, logW, log (1/α), log(1/β), log(1/ε), log(1/δ)

)
.
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We note that the theorem can be assembled from known techniques in the design and analysis
of differentially private algorithms and online learning algorithms. We include the proof of the
theorem here for the sake of completeness, as to our knowledge they do not explicitly appear in the
privacy literature.

We construct and analyze the algorithm in two steps. First, we use standard arguments to
show that the non-private multiplicative weights algorithm can be used to construct a suitable
online learning algorithm for fQ,D whenever fQ,D can be approximated by a low-weight, low-degree
polynomial. Here, a suitable online learning algorithm is one that fits into the IDC framework of
Gupta et al. [GRU12]. We then apply the generic conversion from IDCs to differentially private
online algorithms [RR10,HR10,GRU12] to obtain our algorithm.

3.1 IDCs

We start by providing the relevant background on the iterative database construction framework.

An IDC will maintain a sequence of functions f
(1)
D , f

(2)
D , . . . that give increasingly good approxi-

mations to the fQ,D. In our case, these functions will be low-degree polynomials. Moreover, the
mechanism produces the next approximation in the sequence by considering only one query y(t)

that “distinguishes” the real database in the sense that |f (t)(y(t))− fD(y(t))| is large.

Definition 3.2 (IDC [RR10,HR10,GRU12]). Let Q = {qy}y∈YQ⊆{−1,1}m be a family of counting
queries indexed by m-bit strings. Let U be an algorithm mapping a function f : YQ → R, a query
y ∈ YQ, and a real number a to a new function f ′. Let D ∈ ({0, 1}d)n be a database and α > 0 be

a parameter. Consider the following game with an adversary. Let f
(1)
D be some function. In each

round t = 1, 2, . . . :

1. The adversary chooses a query y(t) ∈ YQ (possibly depending on f
(t)
D ).

2. If |f (t)D (y(t))− fD(y(t))| > α, then we say that the algorithm has made a mistake.

3. If the algorithm made a mistake, then it receives a value a(t) ∈ R such that |f (t)D (y(t)) −
fD(y

(t))| ≤ α/2 and computes a new function f
(t+1)
D = U(f

(t)
D , y(t), a(t)). Otherwise let

f
(t+1)
D = f

(t)
D .

If the number of rounds t in which the algorithm makes a mistake is at most B for every
adversary, then U is a iterative database construction for Q with mistake bound B.

Theorem 3.3 (Variant of [GRU12]). For any α > 0, and any family of queries Q, if there is an
iterative database construction for Q with mistake bound B, then there is an (ε, δ)-differentially
private online algorithm that is (4α, β)-accurate for any sequence of ℓ (possibly adaptively chosen)
queries from Q on a database D ∈ ({0, 1}d)n, so long as

n ≥ 32
√
B log(ℓ/β) log(4/δ)

αε
.

Moreover, if the iterative database construction, U, runs in time TU, then the private algorithm
has running time poly(n, TU, log(1/α), log(1/β), log(1/ε), log(1/δ)) per query.

The IDC we will use is specified in Algorithm 1. The IDC will use approximations f
(t)
D in the

form of low-degree polynomials of low-weight, and thus we need to specify how to represent such a
function. Specifically, we will represent a polynomial p as a vector p of length 2

(
m
≤t

)
+ 1 with only
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non-negative entries. For each coefficient S ∈
([m]
≤t

)
, the vector will have two components pS , p¬S .

(Recall that
([m]
≤t

)
:= {S ⊆ [m] | |S| ≤ t}.) Intuitively these two entries represent the positive part

and negative part of the coefficient cS of p. There will also be an additional entry p0 that is used to
ensure that the L1-norm of the vector is exactly 1. Given a polynomial p ∈ Pt,W with coefficients
(cS), we can construct this vector by setting

pS =
max{0, cS}

W
p¬S =

max{0,−cS}
W

and choosing p0 so that ‖p‖1 = 1. Observe that p0 can always be set appropriately since the weight
of p is at most W .

Similarly, we want to associate queries with vectors so that we can replace the evaluation of the
polynomial p on a query y with the inner product W 〈p, y〉. We can do so by defining the vector y
of length 2

(
m
≤t

)
+ 1 such tha y0 = 0, yS =

∏
i∈S yi and y¬S = −∏i∈S yi.

Fact 3.4. For every m-variate polynomial p of degree at most t and weight at most W , and every
query y ∈ {−1, 1}m, W 〈p, y〉 = p(y).

Algorithm 1 The Multiplicative Weights Algorithm for Low-Weight Polynomials.

UMW
α (p(t), y(t), a(t)):

Let η ← α/4W .
If: p(t) = ∅ then: output

p(t) =
1

2
(m
≤t

)
+ 1

(1, . . . , 1)

(representing the constant 0 polynomial).
Else if: a(t) < W 〈p(t), y(t)〉

Let r(t) = y(t)

Else:
Let r(t) = −y(t)

Update: For all I ∈
{
0,
([m]
≤t

)
,¬
([m]
≤t

)}
let

p
(t+1)
I ← exp(−ηr(t)I ) · p(t)I

p(t+1) ← p(t+1)

‖p(t+1)‖1

Output p(t+1).

We summarize the properties of the multiplicative weights algorithm in the following theorem:

Theorem 3.5. For any α > 0, and any family of linear queries Q if Pt,W (α/4)-approximates the
restriction F|Y then Algorithm 1 is an iterative database construction for Q with mistake bound B
for

B = B(W,m, t, α) =
16W 2 log

(
2
(
m
≤t

)
+ 1
)

α2
.

Moreover, U runs in time poly
((m

≤t

)
, logW, log(1/α)

)
.
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Proof. Let D ∈ ({0, 1}d)n be any database. For every round t in which U makes a mistake, we
consider the tuple (p(t), y(t), â(t)) representing the information used to update the approximation
in round t. In order to bound the number of mistakes, it will be sufficient to show that after
B ≤ 16W 2 log(2

(
m
≤t

)
+ 1)/α2, the vector p(t) is such that

∀y ∈ YQ, |W 〈p(t), y〉 − fD(y)| ≤ α.

That is, after making B mistakes p(t) represents a polynomial that approximates fD on every query,
and thus there can be no more than B makes.

First, we note that there always exists a polynomial pD ∈ Pt,W such that

∀y ∈ YQ, |pD(y)− fD(y)| ≤
α

4
. (1)

The assumption of our theorem is that for every x(i) ∈ D, there exists px(i) ∈ Pt,W such that

∀y ∈ YQ, |px(i)(y)− fx(i)(y)| ≤ α

4
.

Thus, since fD = 1
n

∑n
i=1 fx(i), the polynomial pD = 1

n

∑n
i=1 px(i) will satisfy (1). Note that

pD ∈ Pt,W , thus if we represent pD as a vector,

∀y ∈ YQ, |W 〈pD, y〉 − fD(y)| ≤
α

4
.

Given the existence of pD, we will define a potential function capturing how far p(t) is from pD.
Specifically, we define

Ψt := KL(pD||p(t)) =
∑

I∈
{
0,([m]

≤t),¬(
[m]
≤t)

}
pD,I log

(
pD,I

p
(t)
I

)

to be the KL divergence between pD and the current approximation p(t). Note that the sum iterates
over all 2

(
m
≤t

)
+ 1 indices in p. We have the following fact about KL divergence.

Fact 3.6. For all t: Ψt ≥ 0, and Ψ0 ≤ log
(
2
(
m
≤t

)
+ 1
)
.

We will argue that after each mistake the potential drops by at least α2/16W 2. Note that
the potential only changes in rounds where a mistake was made. Because the potential be-
gins at log

(
2
(
m
≤t

)
+ 1
)
, and must always be non-negative, we know that there can be at most

B(α) ≤ 16W 2 log
(
2
(m
≤t

)
+ 1
)
/α2 mistakes before the algorithm outputs a (vector representation

of) a polynomial that approximates fD on YQ.
The following lemma is standard in the analysis of multiplicative-weights based algorithms.

Lemma 3.7.
Ψt −Ψt+1 ≥ η

(
〈p(t), r(t)〉 − 〈pD, r(t)〉

)
− η2
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Proof.

Ψt −Ψt+1 =
∑

I∈
{
0,([m]

≤t),¬(
[m]
≤t)

}
pD,I log

(
p
(t+1)
I

p
(t)
I

)

= −η〈pD, r(t)〉 − log




∑

I∈
{
0,([m]

≤t),¬(
[m]
≤t)

}
exp(−ηr(t)I )p

(t)
I




≥ −η〈pD, r(t)〉 − log




∑

I∈
{
0,([m]

≤t),¬(
[m]
≤t)

}
p
(t)
I (1 + η2 − ηr(t)I )




≥ η
(
〈p(t), r(t)〉 − 〈pD, r(t)〉

)
− η2

The rest of the proof now follows easily. By the conditions of an iterative database construction
algorithm, |â(t)− fD(y(t))| ≤ α/2. Hence, for each t such that |W 〈p(t), y(t)〉− fD(y(t))| ≥ α, we also
have that W 〈p(t), y(t)〉 > fD(y

(t)) if and only if W 〈p(t), y(t)〉 > â(t).
In particular, if r(t) = y(t), then W 〈p(t), y(t)〉 −W 〈pD, y(t)〉 ≥ α/2. Similarly, if r(t) = −y(t),

then W 〈pD, y(t)〉 −W 〈p(t), y(t)〉 ≥ α. Here we have utilized the fact that |pD(y) − fD(y)| ≤ α/4.
Therefore, by Lemma 3.7 and the fact that η = α/4W :

Ψt −Ψt+1 ≥
α

4W

(
〈p(t), r(t)〉 − 〈pD, r(t)〉

)
− α2

16W 2
≥ α

4W

( α

2W

)
− α2

16W 2
=

α2

16W 2

Theorem 3.1 follows immediately from Theorems 3.3 and 3.5.

4 Upper Bounds

Fact 2.5 and Theorem 3.1 show that in order to develop a differentially private mechanism that can
release all k-way marginals of a database, it is sufficient to construct a low-weight polynomial that
approximates the ORd, on all Boolean inputs of Hamming weight at most k. This is the purpose
to which we now turn.

The ORd function is easily seen to have an exact polynomial representation of constant weight
and degree d (see Fact 4.3 below); however, an approximation with smaller degree may be achieved
at the expense of larger weight. The best known weight-degree tradeoff, implicit in the work of
Servedio et al. [STT12], can be stated as follows: there exists a polynomial p of degree t and
weight (d log (1/γ)/t)(d(log 1/γ)2/t) that γ-approximates the function ORd on all Boolean inputs, for
every t larger than

√
d log (1/γ). Setting the degree t to be O(d/ log0.99 d) yields a polynomial of

weight at most d0.01 that approximates the ORd function on all Boolean inputs to any desired
constant accuracy. On the other hand, Lemma 8 of [STT12] can be shown to imply that any
polynomial of weight W that 1/3-approximates the ORd function requires degree Ω(d/ logW ),
essentially matching the O(d/ log.99 d) upper bound of Servedio et al. when W = dΩ(1).

However, in order to privately release k-way marginals, we have shown that it suffices to con-
struct polynomials that are accurate only on inputs of low Hamming weight. In this section, we give
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a construction that achieves significantly improved weight degree trade-offs in this setting. In the
next section, we demonstrate the tightness of our construction by proving matching lower bounds.

We construct our approximations by decomposing the d-variate OR function into an OR of
OR’s, which is the same approach taken by Servedio et al. [STT12]. Here, the outer OR has fan-in
m and the inner OR has fan-in d/m, where the subsequent analysis will determine the appropriate
choice of m. In order to obtain an approximation that is accurate on all Boolean inputs, Servedio
et al. approximate the outer OR using a transformation of the Chebyshev polynomials of degree√
m, and compute each of the inner OR’s exactly.
For k ≪ log2 d, we are able to substantially reduce the degree of the approximating polynomial,

relative to the construction of Servedio et al., by leveraging the fact that we are interested in
approximations that are accurate only on inputs of Hamming weight at most k. Specifically, we
are able to approximate the outer OR function using a polynomial of degree only

√
k rather than√

m, and argue that the weight of the resulting polynomial is still bounded by a polynomial in d.
We now proceed to prove the main lemmas. For the sake of intuition, we begin with weight-

degree tradeoffs in the simpler setting in which we are concerned with approximating the ORd

function over all Boolean inputs. The following lemma, proved below for completeness, is implicit
in the work of [STT12].

Lemma 4.1. For every γ > 0 and m ∈ [d], there is a polynomial of degree t = O((d/
√
m) log(1/γ))

and weight W = mO(
√
m log(1/γ)) that γ-approximates the ORd function.

Our main contribution in this section is the following lemma that gives an improved polynomial
approximation to the ORd function restricted to inputs of low Hamming weight.

Lemma 4.2. For every γ > 0, k < d and m ∈ [d] \ [k], there is a polynomial of degree t =

O(d
√
k log(1/γ)/m) and weight W = mO(

√
k log(1/γ)) that γ-approximates the ORd function re-

stricted to inputs of Hamming weight at most k.

For any constant γ, one may take m = dO(1/
√
k) in the lemma (here the choice of constant

depends on the constants in Fact 4.4) and obtain a polynomial of degree d1−Ω(1/
√
k) and weight

d0.01.
Our constructions use the following basic facts.

Fact 4.3. The real polynomial pd : {−1, 1}d → R

pd(x) = 2


∑

S⊆[d]

2−d
∏

i∈S
xi


− 1 = 2

d∏

i=1

(
1 + xi

2

)
− 1

computes ORd(x) and has weight w(pd) ≤ 3.

Fact 4.4. [see e.g., [TUV12]] For every k ∈ N and γ > 0, there exists a univariate real polynomial
p =

∑tk
i=0 cix

i of degree tk such that

1. tk = O(
√
k log(1/γ)),

2. for every i ∈ [tk], |ci| ≤ 2O(
√
k log(1/γ)),

3. p(0) = 0, and

4. for every x ∈ [2k], |p(x)− 1| ≤ γ/2.
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Proof of Lemma 4.1. We can compute ORd(y) as a disjunction of disjunctions by partitioning the
inputs y1, . . . , yd into blocks of size d/m and computing:

ORm(ORd/m(y1, . . . , yd/m), . . . ,ORd/m(yd−d/m+1, . . . , yd)).

In order to approximately compute ORd(y), we compute the inner disjunctions exactly using the
polynomial pd/m given in Fact 4.3 and approximate the outer disjunction using the polynomial from
Fact 4.4. Let

Z(y) = pd/m(y1, . . . , yd/m) + · · · + pd/m(yd−d/m+1, . . . , yd).

Setting k = m in Fact 4.4, let qm be the resulting polynomial of degree O(
√
m log(1/γ)) and weight

O(m
√
m log (1/γ)). Our final polynomial is

1− 2qm(m− Z(y)).

Note thatm−Z(y) takes values in {0, . . . ,m} and is 0 exactly when all inputs y1, . . . , yd are FALSE.
It follows that our final polynomial indeed approximates ORd to additive error γ on all Boolean
inputs.

We bound the degree and weight of this polynomial in y. By Fact 4.3, the inner disjunc-
tions are computed exactly using degree d/m and weight at most 3. Hence, the total degree is
O(
√
m log(1/γ) · d/m). To bound the weight, we observe that the outer polynomial qm(·) has at

most T = mO(
√
m log(1/γ)) terms where each one has degree at most Douter = O(

√
m log(1/γ)) and

coefficients of absolute value at most couter = 2O(
√
m log (1/γ)). Expanding the polynomials for Z(y),

the weight of each term incurs a multiplicative factor of cinner ≤ 3Douter = 3O(
√
m log 1/γ) so the total

weight is at most cinner · couter · T = mO(
√
m log 1/γ).

Proof of Lemma 4.2. Again we partition the inputs y1, . . . , yd into blocks of size d/m and view the
disjunction as:

ORm(ORd/m(y1, . . . , yd/m), . . . ,ORd/m(yd−d/m+1, . . . , yd)).

Once again, we compute the inner disjunctions exactly using the polynomial from Fact 4.3. Let

Z(y) = pd/m(y1, . . . , yd/m) + · · · + pd/m(yd−d/m+1, . . . , yd).

If the input y has Hamming weight at most k, then Z(y) also takes values in {m, . . . ,m − 2k}.
Thus, we may approximate the outer disjunction using a polynomial of degree O(

√
k log(1/γ)) from

Fact 4.4. Our final polynomial is:
1− 2qk(m− Z).

The bound on degree and weight may be obtained as in the previous lemma.

4.1 Proof of upper bound theorems

We first present the proof of Theorem 1.3.

Proof of Theorem 1.3. Taking m = O
(
(log d/ log log d)2

)
in Lemma 4.1 and m = dO(1/

√
k) in

Lemma 4.2, it follows that for some constant C > 0, the d-variate disjunction restricted to Hd,k is
(1/400)-approximated by a d-variate real polynomial of degree t and weight W where

t = min

{
d
1− 1

C
√

k ,
d

log0.995 d

}
and W = d0.01.
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Proof of Theorem 1.1. By Theorem 1.3, we have a polynomial p that (1/400)-approximates the
function ORd|Hd,k

. Moreover, p has weight W <= d0.01 and degree

t ≤ min

{
d
1− 1

C
√

k ,
d

log0.995 d

}
.

Thus, by Fact 2.5, we have a family of polynomials Pt,W (d) that (1/400)-approximates the function
family FQ|Hd,k

. We have the ingredients needed to apply Theorem 3.1. Taking α = 1/100, β =
1/100 gives the conclusion.

Remark 1 in the Introduction follows from using a slightly different choice of m in Lemma 4.1,
namely m = O(log2 d/ log3 log d).

To obtain the summary of the database promised in Remark 2, we request an answer to each
of the k-way marginal queries B(1/400) times. Doing so, will ensure that we obtain a maximal
database update sequence, and it was argued in Section 2.1 that the polynomial resulting from any
maximal database update sequence accurately answers every k-way marginal query. Finally, we
obtain a compact summary by randomly choosing Õ(kd0.01) samples from the normalized coefficient
vector of this polynomial to obtain a new sparse polynomial that accurately answers every k-way
marginal query (see e.g. [BS92]). Our compact summary is this final sparse polynomial.

5 Lower Bounds

In this section, we address the general problem of approximating a block-composed function G =
F (. . . , f(.), . . .), where F : {−1, 1}k → {−1, 1}, f : Y → {−1, 1}, Y ⊆ Rd/k over inputs restricted to
a set Y ⊆ Y k using low-weight polynomials. We give a lower bound on the minimum degree of such
polynomials. In our main application, G will be ORd, and Y will be the set of all d-dimensional
Boolean vectors of Hamming weight at most k.

Our proof technique is inspired by the composition theorem lower bounds of [She09, Theorem
3.1], where it is shown that the γ-approximate degree of the composed function G is at least
the product of the γ-approximate degree of the outer function and the PTF degree of the inner
function. Our main contribution is a generalization of such a composition theorem along two
directions: (1) we show degree lower bounds that take into account the L1-norm of the coefficient
vector of the approximating polynomial, and (2) our lower bounds hold even when we require
the approximation to be accurate only on inputs of low Hamming weight, while prior work only
considered approximations that are accurate on all Boolean inputs.

Our main theorem is stated below. In parsing the statement of the theorem, it may be helpful
to think of G = ORd, Y = Hd,k, the set of all d-dimensional Boolean vectors of Hamming weight
at most k, f = ORd/k, F = ORk, Y = {−1, 1}d/k , and H = Hd/k,1. This will be the setting of
interest in our main application of the theorem.

Theorem 5.1. Let Y ⊂ Rd/k be a finite set and γ > 0. Given f : Y → {−1, 1} and F : {−1, 1}k →
{−1, 1} such that deg2γ(F ) = D, let G : Y k → {−1, 1} denote the composed function defined by

G(Y1, . . . , Yk) = F (f(Y1), . . . , f(Yk)). Let Y ⊆ Y k. Suppose there exists H ⊆ Y such that for every
(Y1, . . . , Yk) ∈ Y k \ Y there exists i ∈ [k] such that Yi ∈ Y \H. Then, for every t ∈ Z+,

deg(γ,W )(G|Y ) ≥
1

2
tD for every W ≤ γ2−kw∗(f |H , t)

D
2 .

We will derive the following corollary from Theorem 5.1. Theorem 1.4 follows immediately from
Corollary 5.2 by considering any k = o(log d).
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Corollary 5.2. Let k ∈ [d]. Then, there exists a universal constant C > 0 such that

deg(1/6,W )(ORd|Hd,k
) = Ω

(
d√
k
· W

− 1

C
√

k

2
√
k/C

)
for every W ≤ 1

6.2k

(
d

k

)C
√
k

.

Intuition underlying our proof technique. Recall that our upper bound in Section 4 worked
as follows. We viewed ORd as an “OR of ORs”, and we approximated the outer OR with a
polynomial p of degree degouter chosen to be as small as possible, and composed p with a low-
weight but high-degree polynomial computing each inner OR. We needed to make sure the weight
Winner of the inner polynomials was very low, because the composition step potentially blows the
weight up to roughly W

degouter
inner . As a result, the inner polynomials had to have very high degree,

to keep their weight low.
Intuitively, we construct a dual solution to a certain linear program that captures the intuition

that any low-weight, low-degree polynomial approximation to ORd must look something like our
primal solution, composing a low-degree approximation to an “outer” OR with low-weight approx-
imations to inner ORs. Moreover, our dual solution formalizes the intuition that the composition
step must result in a massive blowup in weight, from Winner to roughly W

degouter
inner .

In more detail, our dual construction works by writing ORd as an OR of ORs, where the outer
OR is over k variables, and each inner ORs is over d/k variables. We obtain our dual solution
by carefully combining a dual witness Γ to the high approximate degree of the outer OR, with a
dual witness ψ to the fact that any low-degree polynomial with margin at least 1 for each inner
OR, must have “large” weight, even if the polynomial must satisfy the margin constraint only on
inputs of Hamming weight 0 or 1. This latter condition, that ψ must witness high non-constant
margin weight even if restricted to inputs of Hamming weight 0 or 1, is essential to ensuring that
our combined dual witness does not place any “mass” on irrelevant inputs, i.e. those of Hamming
weight larger than k.

5.1 Duality Theorems

In the rest of the section, we let χS(x) =
∏

i∈S xi for any given set S ⊆ [d]. The question of
existence of a weight W polynomial with small degree that γ-approximates a given function can be
expressed as a feasibility problem for a linear program. Now, in order to show the non-existence
of such a polynomial, it is sufficient to show infeasibility of the linear program. By duality, this
is equivalent to demonstrating the existence of a solution to the corresponding dual program. We
begin by summarizing the duality theorems that will be useful in exhibiting this witness.

Theorem 5.3 (Duality Theorem for (γ,W )-approximate degree). Fix γ ≥ 0 and let f : Y →
{−1, 1} be given for some finite set Y ⊂ Rd. Then, deg(γ,W )(f) ≥ t+1 if and only if there exists a
function Ψ : Y → R such that

1.
∑

y∈Y |Ψ(y)| = 1,

2.
∑

y∈Y Ψ(y)f(y)−W · |∑y∈Y Ψ(y)χS(y)| > γ for every S ⊆ [d], |S| ≤ t.
Proof. By definition, deg(γ,W )(f) ≤ t if and only if ∃(λS)S⊆[d],|S|≤t :

∑

S⊆[d],|S|≤t

|λS | ≤W, and
∣∣∣∣∣∣
f(y)−

∑

S⊆[d],|S|≤t

λSχS(y)

∣∣∣∣∣∣
≤ γ ∀ y ∈ Y.
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By Farkas’ lemma, deg(γ,W )(f) ≤ t if and only if ∄ Ψ : Y → R such that

1

W

∑

y∈Y
(f(y)Ψ(y)− γ|Ψ(y)|) >

∣∣∣∣∣∣

∑

y∈Y
χS(y)Ψ(y)

∣∣∣∣∣∣
∀ S ⊆ [d], |S| ≤ t.

The dual witness that we construct to prove Theorem 5.1 is obtained by combining a dual
witness for the large non-constant margin weight of the inner function with a dual witness for the
large approximate degree for the outer function. The duality conditions for these are given below.
The proof of the duality condition for the case of γ-approximate degree is well-known, so we omit
the proof for brevity.

Theorem 5.4 (Duality Theorem for γ-approximate degree). [She11, Š08,BT13] Fix γ ≥ 0 and let
f : Y → {−1, 1} be given, where Y ⊂ Rd is a finite set. Then, degγ(f) ≥ t+ 1 if and only if there
exists a function Γ : Y → R such that

1.
∑

y∈Y |Γ(y)| = 1,

2.
∑

y∈Y Γ(y)p(y) = 0 for every polynomial p of degree at most t, and

3.
∑

y∈Y Γ(y)f(y) > γ.

Theorem 5.5 (Duality Theorem for non-constant margin weight). Let Y ⊂ Rd be a finite set, let
f : Y → {1,−1} be a given function and w > 0. The non-constant margin weight w∗(f, t) ≥ w if
and only if there exists a distribution µ : Y → [0, 1] such that

1.
∑

y∈Y µ(y)f(y) = 0

2.
∣∣∣
∑

y∈Y µ(y)f(y)χS(y)
∣∣∣ ≤ 1

w for every S ⊆ [d], |S| ≤ t.

Proof. Let S = {S ⊆ [d] : |S| ≤ t}, S = S \{∅}. By definition, w∗(f, t) is expressed by the following
linear program:

min
∑

S∈S
|λS |

f(y)
∑

S∈S
λSχS(y) ≥ 1 ∀ y ∈ Y.

The above linear program can be restated as follows:

min
∑

S∈S
αS

αS + λS ≥ 0 ∀ S ∈ S,
αS − λS ≥ 0 ∀ S ∈ S,

f(y)
∑

S∈S
λSχS(y) ≥ 1 ∀ y ∈ Y, and

αS ≥ 0 ∀ S ∈ S.
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The dual program is expressed below:

max
∑

y

µ(y)

u1(S) + u2(S) ≤ 1 ∀ S ∈ S,
∑

y∈Y
µ(y)f(y)χS(y) + u1(S)− u2(S) = 0 ∀ S ∈ S,

∑

y∈Y
µ(y)f(y) = 0,

µ(y) ≥ 0 ∀ y ∈ Y, u1(S), u2(S) ≥ 0 ∀ S ∈ S.

By standard manipulations, the above dual program is equivalent to

max
∑

y

µ(y)

|
∑

y∈Y
µ(y)χS(y)f(y)| ≤ 1 ∀ S ∈ S
∑

y∈Y
µ(y)f(y) = 0,

µ(y) ≥ 0 ∀ y ∈ Y

Finally, given a distribution µ′ satisfying the hypothesis of the theorem, one can obtain a
dual solution µ to show that w∗(f, t) ≥ w by taking w−1 = maxS∈S |

∑
y∈Y µ

′(y)χS(y)f(y)| and
setting µ(y) = wµ′(y) ∀ y ∈ Y . In the other direction, if w∗(f, t) ≥ w, then we have a dual
solution µ satisfying the above dual program such that

∑
y∈Y µ(y) = w∗(f, t). By setting µ′(y) =

µ(y)/w∗(f, t) ∀ y ∈ Y , we obtain the desired distribution.

5.2 Proof of Theorem 5.1

Our approach to exhibiting a dual witness as per Theorem 5.3 is to build a dual witness by
appropriately combining the dual witnesses for the “hardness” of the inner and outer functions.
Our method of combining the dual witnesses is inspired by the technique of [She09, Theorem 3.7].

Proof of Theorem 5.1. Let w = w∗(f |H , t). We will exhibit a dual witness function Ψ : Y → R
corresponding to Theorem 5.3 for the specified choice of degree and weight. For y ∈ Y k, let
Yi = (y(i−1)(d/k)+1, . . . , yid/k). By Theorem 5.5, we know that there exists a distribution µ : H → R
such that

∑

y∈H
µ(y)f(y) = 0, (2)

∣∣∣∣∣∣

∑

y∈H
µ(y)f(y)χS(y)

∣∣∣∣∣∣
≤ 1

w
∀ S ⊆

[
d

k

]
, |S| ≤ t (3)

We set µ(y) = 0 for y ∈ Y \H.
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Since deg2γ(F ) = D, by Theorem 5.4, we know that there exists a function Γ : {−1, 1}k → R
such that

∑

x∈{−1,1}k
|Γ(x)| = 1, (4)

∑

x∈{−1,1}k
Γ(x)p(x) = 0 for every polynomial p of degree at most D, and (5)

∑

x∈{−1,1}k
Γ(x)F (x) > 2γ. (6)

Consider the function Ψ : Y k → R defined as Ψ(y) = 2kΓ(f(Y1), . . . , f(Yk))
∏k

i=1 µ(Yi). By the
hypothesis of the theorem, we know that if (Y1, . . . , Yk) ∈ Y k \Y, then there exists i ∈ [k] such that
Yi ∈ Y \H and hence µ(Yi) = 0 and therefore Ψ(Y1, . . . , Yk) = 0.

1.

∑

y∈Y
|Ψ(y)| =

∑

y∈Y
2k|Γ(f(Y1), . . . , f(Yk))|

k∏

i=1

µ(Yi)

= 2kEy∼Φ(|Γ(f(Y1), . . . , f(Yk))|)

where y ∼ Φ denotes y chosen from the product distribution Φ : Y k → [0, 1] defined by
Φ(y) =

∏
i∈[k] µ(Yi). Since

∑
y∈Y µ(y)f(y) = 0, it follows that if Yi is chosen with probability

µ(Yi), then f(Yi) is uniformly distributed in {−1, 1}. Consequently,
∑

y∈Y
|Ψ(y)| = 2kEz∼U{−1,1}k(|Γ(z1, . . . , zk)|) = 1.

The last equality is by using (4).

2. By the same reasoning as above, it follows from (6) that

∑

y∈Y
Ψ(y)G(y) =

∑

z∈{−1,1}k
Γ(z)F (z) > 2γ.

3. Fix a subset S ⊆ [d] of size at most tD/2. Let Si = S ∩ {(i− 1)(d/k) + 1, . . . , id/k} for each
i ∈ [k]. Consequently, χS(y) =

∏k
i=1 χSi(Yi).

Now using the Fourier coefficients Γ̂(T ) of the function Γ, we can express

Γ(z1, . . . , zk) =
∑

T⊆[k]

Γ̂(T )
∏

i∈T
zi =

∑

T⊆[k],
|T |≥D

Γ̂(T )
∏

i∈T
zi

since Γ̂(T ) = 0 if |T | < D by (5). Hence,

Ψ(y) = 2k
∑

T⊆[k],
|T |≥D

Γ̂(T )
∏

i∈T
f(Yi)µ(Yi) ·

∏

i∈[k]\T
µ(Yi)
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Therefore,
∑

y∈Y Ψ(y)χS(y)

=
∑

y∈Y
Ψ(y)

∏

i∈[k]
χSi(Yi)

= 2k
∑

y∈Y



∑

T⊆[k],
|T |≥D

Γ̂(T )
∏

i∈T
f(Yi)µ(Yi) ·

∏

i∈[k]\T
µ(Yi)



∏

i∈[k]
χSi(Yi)

= 2k
∑

T⊆[k],
|T |≥D

Γ̂(T )
∑

y∈Y



∏

i∈T
f(Yi)µ(Yi) ·

∏

i∈[k]\T
µ(Yi)

∏

i∈[k]
χSi(Yi)




= 2k
∑

T⊆[k],
|T |≥D

Γ̂(T )
∑

Y1,...,Yk∈H


∏

i∈T
f(Yi)µ(Yi)χSi(Yi) ·

∏

i∈[k]\T
µ(Yi)χSi(Yi)


 .

Rearranging, we have
∑

y∈Y Ψ(y)χS(y) =

2k
∑

T⊆[k],
|T |≥D

Γ̂(T )
∏

i∈T


∑

Yi∈H
f(Yi)µ(Yi)χSi(Yi)


 ∏

i∈[k]\T


∑

Yi∈H
µ(Yi)χSi(Yi)


 . (7)

Now, we will bound each product term in the outer sum by w−D/2. We first observe that for
every i ∈ [k],

∑

x∈H
µ(x)χSi(x) ≤

∑

x∈H
µ(x) = 1.

If |Si| ≤ t, by (3) ∣∣∣∣∣
∑

x∈H
f(x)µ(x)χSi(x)

∣∣∣∣∣ ≤
1

w
.

If |Si| > t, then ∣∣∣∣∣
∑

x∈H
f(x)µ(x)χSi(x)

∣∣∣∣∣ ≤
∑

x∈H
µ(x) = 1.

Since
∑k

i=1 |Si| ≤ tD/2, it follows that |Si| ≤ t for more than k −D/2 indices i ∈ [k]. Thus,
for each T ⊆ [k] such that |T | ≥ D, there are at least D/2 indices i ∈ T such that |Si| ≤ t.
Hence, ∣∣∣∣∣∣

∑

y∈Y
Ψ(y)χS(y)

∣∣∣∣∣∣
≤ 2kw−D

2

∑

T⊆[k],|T |≥D

∣∣∣Γ̂(T )
∣∣∣ ≤ 2kw−D

2 .

Here, the last inequality is because |Γ̂(T )| ≤ 2−k from (4).

From 1, 2 and 3, we have

∑

y∈Y
Ψ(y)G(y)−W max

S⊆[d],|S|≤ tD
2

∣∣∣∣∣∣

∑

y∈Y
Ψ(y)χS(y)

∣∣∣∣∣∣
> γ
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if W ≤ γ2−kwD/2.

We now derive Corollary 5.2. We need the following theorems on the approximate degree and
the non-constant margin weight of the ORd function.

Theorem 5.6 (Approximate degree of ORd). [Pat92] deg1/3(ORd) = Θ(
√
d).

Lemma 5.7 (Non-constant margin weight of ORd). w
∗(ORd|Hd,1

, t) ≥ d/t.
Proof. The function

µ(x) =

{
1/2 if x = (1, . . . , 1),

1/2d if x ∈ Hd,1 \ {(1, . . . , 1)}.
acts as the dual witness in Theorem 5.5.

Proof of Corollary 5.2. We use Theorem 5.1 in the following setting. Let Y = {−1, 1}d/k , the
inner function f : Y → {−1, 1} be ORd/k and the outer function F : {−1, 1}k → {−1, 1} be ORk,

Y = Hd,k and H = Hd/k,1. By a simple counting argument, if (Y1, . . . , Yk) ∈ {−1, 1}d \Hd,k, then

there exists i ∈ [k] such that Yi ∈ {−1, 1}d/k \ Hd/k,1. Further, by Theorem 5.6, we know that

deg1/3(F ) = Θ(
√
k) and by Claim 5.7, we know that w∗(f |H , t) ≥ d/kt. Therefore, by Theorem

5.1, we have that, for every t ∈ Z+,

deg1/6,W (ORd|Hd,k
) = Ω

(
t
√
k
)

for every W ≤ 1

6
2−k

(
d

kt

)C
√
k

.

We obtain the conclusion by taking t = ⌊(d/k)(6W2k)−1/C
√
k⌋. Since W ≤ (1/6)2−k(d/k)C

√
k, it

follows that t ≥ 1 and hence is a valid choice for t in applying Theorem 5.1.

Comparison to [STT12]. As described in the beginning of Section 4, Lemma 8 of the work
of Servedio et al. [STT12] can be shown to imply that any polynomial p of weight W that 1/3-
approximates the ORd function on all Boolean inputs requires degree Ω(d/ logW ).1 The proof
in [STT12] relies on a Markov-type inequality that bounds the derivative of a univariate polynomial
in terms of its degree and the size of its coefficients. The proof of this Markov-type inequality is
non-constructive and relies on complex analysis.

Here, we observe that our dual witness construction used to prove Corollary 5.2 also yields a
general lower bound on the tradeoffs achievable between the weight and degree of the approximating
polynomial p, even when we require p to be accurate only on inputs of Hamming weight at most
O(logW ) (see Theorem 5.8). The methods of Servedio et al. do not yield any non-trivial lower
bound on the degree in this setting. We also believe our proof technique is of interest in comparison
to the methods of Servedio et al. as it is constructive (exhibiting an explicit dual witness for the
lower bound) and avoids the use of complex analysis.

Theorem 5.8. Any polynomial p of weight W that 1/6-approximates the ORd function on all
Boolean inputs requires degree d/2O(

√
logW ).

Proof. As p is accurate on the entire Boolen hypercube, it is accurate on inputs of Hamming weight
at most logW . The theorem follows by setting k = logW in the statement of Corollary 5.2.

1More precisely, [STT12, Lemma 8] as stated shows that if the coefficients of a univariate polynomial P each
have absolute value at most W , and 1/2 ≤ maxx∈[0,1] |P (x)| ≤ R, then maxx∈[0,1] |P

′(x)| = O(deg(P ) · R · (logW +
log deg(P ))), where P ′(x) denotes the derivative of P at x, and deg(P ) denotes the degree of P . By inspection of the
proof, it is easily seen that if the L1-norm of the coefficients of P is bounded by W , then the following slightly stronger
conclusion holds: maxx∈[0,1] |P

′(x)| = O(deg(P ) · R · logW ). When combined with the symmetrization argument
of [STT12], this stronger conclusion implies: any polynomial p of weight W that 1/3-approximates the ORd function
on all Boolean inputs requires degree Ω(d/ logW ).
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6 Discussion

We gave a differentially private online algorithm for answering k-way marginal queries that runs
in time 2o(d) per query, and guarantees accurate answers for databases of size poly(d, k). More
precisely, we showed that if there exists a polynomial of degree t and weight W approximating
the d-variate OR function on Boolean inputs of Hamming weight at most k, then a variant of the
private multiplicative weights algorithm can answer k-way marginal queries in time roughly

(
d
t

)

per query and guarantee accurate answers on databases of size roughly W
√
d. To this end, we

gave a new construction showing the existence of polynomial approximations to the OR function
on inputs of low Hamming weight. Specifically, we showed that polynomials of weight d0.01 and

degree d1−Ω(1/
√
k) exist.

Practical Considerations. Our algorithm for answering k-way marginals is essentially the same
as in [HR10] except for using a different set of base functions (specifically, the set of all low-degree
parities), which leads to an efficiency gain. We note that our algorithm degrades smoothly to the
private multiplicative weights algorithm as the degree of the promised polynomial approximation
increases, and never gives a worse running time. This behavior suggests that our algorithm may
lead to practical improvements even for relatively small values of d, for which the asymptotic
analysis does not apply. In such cases one might use an alternative but similar analysis that shows
the existence of a polynomial of degree kd1−c/k and weight dc (for any 0 < c < k) that exactly
computes the d-variate OR function on inputs of Hamming weight at most k. Such a polynomial
may be obtained as in our construction, by breaking the d-variate OR function into an OR of
ORs, and using a degree k polynomial defined via polynomial interpolation, instead of Chebyshev
polynomials, to approximate the outer OR on inputs of Hamming weight at most k. This variant
does achieve asymptotic properties not shared by the algorithm of Theorem 1.1, owing to the fact
that it uses exact rather than approximate representations of the database: for any constant k, this
variant also runs in time exp

(
d1−Ω(1)

)
, and achieves worst-case additive error o(1) for sufficiently

large databases, i.e., for n & Õ(dc).

Relationship with [NTZ13, DNT13]. As we mentioned in the introduction, in subsequent
work, Dwork et al. [DNT13] show how to privately release marginals in a very different parameter
regime from what we consider here. Although their algorithm is quite different from ours, there
are some important similarities. Their algorithm is based on a recent algorithm of Nikolov et. al.
[NTZ13] for answering arbitrary counting queries. This algorithm proceeds as follows. First, it adds
noise O(|Q|1/2/|D|) to the answer to every query to obtain a vector of noisy answers. The noise is
sufficient to ensure differential privacy. Second, it “projects” the vector of noisy answers onto the
convex body K consisting of all vectors of answers that are consistent with some real database.
Surprisingly, the projection step will improve the accuracy. In fact, Nikolov et al. [NTZ13] show
that the projected answers will be accurate even for very small databases. However current best
algorithms for projecting on the body K require time 2O(d) for an arbitrary set of queries.

Dwork et al. [DNT13] show that for the set of k-way marginals there is a convex body L such that
the projection into L can be computed in time poly(

(
d
≤k

)
) and L approximates K well enough to

achieve accuracy on smaller databases than would be achievable with independent noise (however,
these databases still have size dΩ(k)). Our approximation of fD by low-weight polynomials of degree
t = o(d) can be shown to imply a polytope L′ with 2o(d) vertices—which is sufficient to imply that
projection can be computed in time 2o(d)—that approximates K well enough to achieve accuracy
on databases of nearly optimal size (i.e., size roughly kd0.51). Thus our approximation-theoretic
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approach is relevant for understanding the capabilities and limitations of algorithms in the Nikolov
et al. [NTZ13] framework.

Future Directions. Our lower bounds show that our polynomial approximation to the ORd

function on inputs of Hamming weight k is essentially the best possible; in particular, we cannot
hope to substantially improve the running time on poly(d, k) size databases by giving approximating
polynomials with better weight and degree bounds. This also rules out several natural candidates
that can themselves be computed exactly by a low-weight polynomial of low-degree (e.g., the set
of small-width conjunctions).

However, we do not know if it is possible to do better by using different feature spaces (other
than the set of all low-degree monomials) to approximate all disjunctions over d variables. There
is some additional evidence from prior work that low-degree monomials may be the optimal choice:
if the parameter of significance is the size of the set of functions used to approximate disjunctions
on inputs of Hamming weight at most k, then low-degree monomials are indeed optimal [She11]
(see also Section 5 in the full version of [TUV12]). It would be interesting to determine whether
this optimality still holds when we restrict the L1 weight of the linear combinations used in the
approximations to be poly(d).

Acknowledgments. We thank Salil Vadhan for helpful discussions about this work.
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