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ABSTRACT
We study the Chance-Constrained Integer Feasibility Prob-
lem, where the goal is to determine whether the random
polytope

P (A, b) = {x ∈ Rn : Aix ≤ bi, i ∈ [m]}

obtained by choosing the constraint matrix A and vector
b from a known distribution is integer feasible with prob-
ability at least 1 − ε. We consider the case when the en-
tries of the constraint matrix A are i.i.d. Gaussian (equiv-
alently are i.i.d. from any spherically symmetric distribu-
tion). The radius of the largest inscribed ball is closely
related to the existence of integer points in the polytope.

We find that for m up to 2O(
√
n) constraints (rows of A),

there exist constants c0 < c1 such that with high probabil-
ity (ε = 1/poly(n)), random polytopes are integer feasible if
the radius of the largest ball contained in the polytope is at
least c1

√
log (m/n); and integer infeasible if the largest ball

contained in the polytope is centered at (1/2, . . . , 1/2) and

has radius at most c0
√

log (m/n). Thus, random polytopes
transition from having no integer points to being integer fea-
sible within a constant factor increase in the radius of the
largest inscribed ball. Integer feasibility is based on a ran-
domized polynomial-time algorithm for finding an integer
point in the polytope.

Our main tool is a simple new connection between integer
feasibility and linear discrepancy. We extend a recent al-
gorithm for finding low-discrepancy solutions to give a con-
structive upper bound on the linear discrepancy of random
Gaussian matrices. By our connection between discrepancy
and integer feasibility, this upper bound on linear discrep-
ancy translates to the radius bound that guarantees integer
feasibility of random polytopes.
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1. INTRODUCTION
Integer Linear Programming (IP) is a general and pow-

erful formulation for combinatorial problems [29, 23]. One
standard variant is the integer feasibility problem: given a
polytope P ∈ Rn specified by linear constraints Ax ≤ b,
find an integer solution in P or report that none exists.
The problem is NP-hard and appears in Karp’s original list
[15]. Dantzig [10] suggested the possibility of IP being a
complete problem even before the Cook-Levin theory of NP-
completeness. The best-known rigorous bound on the com-
plexity of general IP is essentially nO(n) from 1987 [14] with
only small improvements in the constant in the exponent
since then [13, 9].

While IP in its general form is intractable, several special
instances are very interesting and not yet well-understood.
One such simple and natural family of instances is ran-
domly generated IP instances, where the constraints describ-
ing random polytopes are drawn from a distribution. The
class of optimization problems defined by such probabilistic
constraints is known as Chance-Constrained Programming
in Operations Research and their continuous optimization
versions have been well-studied [7, 22, 26]. In its general
form, a Chance-Constrained Linear Program (CCLP) with
a joint probabilistic constraint is given by: max{cTx : A′x ≤
b′,Pr (Ax ≤ b) ≥ 1 − ε} for some chosen confidence param-
eter ε as required in the application. Here the probability
is over the random choice of (A, b). CCLPs are powerful in
modeling uncertainty in the availability of the resources and
have found applications in supply chain management, circuit
manufacturing, energy production, telecommunications, etc.
[26, 27].

In this paper, we address the Chance-Constrained Integer
Feasibility problem, where the goal is to determine whether
the random polytope {x : Ax ≤ b} obtained by choosing
A and b from a known distribution is integer feasible with
probability at least 1− ε, We assume the constraint matrix



A is chosen randomly while the choice of b is deterministic,
and ε is taken to be inverse polynomial in the dimension.

Random instances have been studied for several combina-
torial problems e.g., random-SAT [4, 5, 8, 3, 11], random
knapsack [1], and various other graph problems on random
graphs [2]. Chance-constrained subset-sum IP was first stud-
ied by Furst and Kannan [12]. Their results were general-
ized to multi-row IP by Pataki et al. [25]. They showed
that if each entry in the constraint matrix A is chosen in-
dependently and uniformly at random from the discrete set
{1, 2, . . . ,M}, then with high probability, a certain reformu-
lation of such random IP instances can be solved efficiently
by the branch-and-bound algorithm provided thatM is suffi-
ciently large. These and other models for chance-constrained
programs [28, 19, 18, 32] address the finite-case scenario in
which the number of possible outcomes of (A, b) is finite. In
contrast, here we addresse the continuous scenario.

Model for random IPs. A random IP instance in our
model is described by a random constraint matrix A ∈ Rm×n
and an RHS vector b. Formally, we obtain random IP in-
stances by generating random polytopes P (n,m, x0, R) =
{x ∈ Rn : Aix ≤ bi ∀ i ∈ [m]} as follows: pick a random
m × n matrix A with i.i.d. entries from the Gaussian dis-
tribution N(0, 1); and a vector b such that the hyperplane
corresponding to each constraint is at distance at least R
from x0, i.e., denoting the i’th row of A as Ai,

bi −Aix0
‖Ai‖

≥ R

or

bi ≥ Aix0 +R‖Ai‖.

Figure 1: A Random IP instance P (n,m, x0, R) with
facet normals being random unit vectors Ai and each
facet at distance at least R from x0.

An equivalent geometric interpretation for our model of
random polytopes is the following (see Figure 1): we re-
call that if each row of the constraint matrix A is a unit
vector, then they describe the normals to the facets of the
polytope P = {x : Ax ≤ b}. Thus, the random polytopes
P (n,m, x0, R) in our model are obtained using m facets

whose normal vectors are independent uniform random unit
vectors in Rn and such that each facet is at distance R from
the point x0.

The condition that all facets are at distance at least R
from x0 is equivalent to the condition that P (n,m, x0, R)
contains a ball of radius R centered at x0. We study the in-
teger feasibility of P (n,m, x0, R) for every x0 as a function
of the radius R. As R increases, intuitively it is more likely
that the polytope contains an integer point.

Contributions. We show a phase-transition phenomenon
regarding integer feasibility of random polytopes with re-
spect to the radius used to generate these polytopes — we
show an upper bound on R needed to guarantee integer fea-
sibility with high probability for every x0 ∈ Rn; we show a
lower bound that guarantees integer infeasibility with high
probability for a fixed x0 = (1/2, . . . , 1/2); our upper and
lower bounds differ by a constant factor when m is at most

2O(
√
n). We show our upper bound via an efficient algo-

rithm to find an integer feasible solution in the feasibility
regime. This is an application of a recent constructive proof
in discrepancy theory [17].

Alternatively, our results can be reinterpreted to bear re-
semblance to the well-known random SAT threshold: con-
sider random polytopes in n-dimensions obtained by picking
m random tangential hyperplanes to a ball of “constant” ra-
dius centered at x0. If m ≤ c0n, then random polytopes
are integer feasible for every x0 with high probability and
if m ≥ c1n, then random polytopes are integer infeasible
for x0 = (1/2, . . . , 1/2). Thus, integer feasibility of random
polytopes exhibits a phase transition-like behavior when the
number of hyperplanes increases beyond a constant times
the number of variables, closely resembling the behaviour of
random k-SAT.

Our main conceptual (and simple) contribution is a new
sufficient condition to guarantee integer feasibility of arbi-
trary polytopes. The idea is that a polytope is likely to con-
tain an integer point if it contains a large ball. In fact, any
polytope in n-dimensional space that contains a Euclidean
ball of radius at least

√
n/2 is integer feasible. We refine

this radius r(A) of the largest inscribed ball that guarantees
integer feasibility as a function of the constraint matrix A
describing the polytope. This refined radius function is help-
ful in deriving bounds on the radius of the largest inscribed
ball that guarantees integer feasibility of random polytopes.

For R = Ω(
√

logm) and x0 = (1/2, ...1/2), there is a triv-
ial algorithm: pick a random 0/1 vector. Most such vectors
will be feasible in P (n,m, x0, R). But with smaller R, and
arbitrary centers x0, only an exponentially small fraction of
nearby integer vectors might be feasible, so such direct sam-
pling/enumeration would not give a feasible integer point.
We use a more careful sampling technique for smaller R. As
mentioned earlier, this is a straightforward extension of a
recent algorithm for finding low discrepancy solutions [17].

1.1 Results
Our main theorem is stated as follows.



Theorem 1. Let 1000n ≤ m ≤ 2n and

R0 =

√
1

6
log

m

n
,

R1 = 384

(√
log

m

n
+

√
logm log (mn) log (m/ logm)

n

)
.

Then,

1. there exists a randomized polynomial time algorithm
that with probability at least 1− (4/m3)− 2me−n finds
an integer point in the random polytope P (n,m, x0, R)
for any x0 ∈ Rn and R ≥ R1,

2. with probability at least 1− 2−n − 2me−n, the random
polytope P (n,m, x0 = (1/2, . . . , 1/2), R) does not con-
tain an integer point if R ≤ R0.

We remark that these results continue to hold in the equiv-
alent random polytope model P (n,m, x0, R) obtained using
random matrices A whose rows are chosen i.i.d. from any
spherically symmetric distribution.

Remarks.

1. For m = 2O(
√
n), the second term in R1 is of the same

order as the first and so R0 and R1 are within a con-
stant factor of each other. Thus, in this case, the
transition between infeasibility and feasibility happens
within a constant factor increase in the radius.

2. When m = cn for some sufficiently large constant
c, our theorem shows that a constant radius ball in-
scribed in random polytopes is sufficient to guarantee
integer feasibility with high probability (as opposed to
the
√
n/2 radius ball needed in the case of arbitrary

polytopes).

Underlying the above theorem is a simple yet powerful
connection between the radius of the largest inscribed ball
that guarantees integer feasibility and the linear discrepancy
of the constraint matrix. If the radius is at least the linear
discrepancy of the normalized constraint matrix (each row
is normalized to a unit vector), then the polytope contains
an integer point.

The linear discrepancy of a matrix A ∈ Rm×n is defined
as follows [20, 30, 31]:

lin-disc(A) := max
x0∈[0,1]n

min
x∈{0,1}n

‖A(x− x0)‖∞ .

Proposition 1. Every polytope

Px0(A) = {x ∈ Rn| |Ai(x− x0)| ≤ bi for i ∈ [m]}

where bi ≥ lin-disc(A) contains an integer point for any
x0 ∈ Rn.

We elaborate on Proposition 1 in Section 1.2. To apply this
connection to random IPs, we bound the linear discrepancy
of Gaussian matrices.

Theorem 2. Let A ∈ Rm×n be a random matrix with
i.i.d. entries from N(0, σ2), where 2n ≤ m ≤ 2n. There
exists an algorithm that takes a point x0 ∈ Rn as input and

outputs a point x ∈ Zn by rounding each coordinate of x0
either up or down such that, for every i ∈ [m],

|Ai(x− x0)| ≤ 192σ

(√
n log

m

n

+

√
logm log (mn) log

m

logm

)
.

with probability at least 1−(4/m3). Moreover, the algorithm
runs in expected time that is polynomial in n and m.

In terms of classical discrepancy theory, Theorem 2 is
equivalent to a bound of O (σR1

√
n) on the linear discrep-

ancy of random Gaussian matrices. The integer feasibility
in Theorem 1 (part 1) follows from Theorem 2 by choos-
ing σ2 = 1 and observing that with probability at least
1 − 2me−n, all m random Gaussian vectors in n-dimension
have length O(

√
n).

1.2 The Discrepancy Connection
To understand this connection, we begin with a simpler

problem where x0 = 0 and our goal is to find a point in
the polytope with all coordinates in {−1, 1} (as opposed to
integer points). Given a matrix A ∈ Rm×n, and a real pos-
itive value r, consider the polytope P (A, r) = {x ∈ Rn :
|Aix| ≤ r ∀ i ∈ [m]}. The discrepancy of a matrix A is de-
fined to be the least r so that the polytope P (A, r) contains
a −1/1 point. This is equivalent to the classical definition
of discrepancy [20, 30, 31]:

disc(A) := min
x∈{−1,+1}n

‖Ax‖∞ .

The following proposition is an immediate consequence of
this definition.

Proposition 2. The polytope P (A, disc(A)) = {x ∈ Rn :
|Aix| ≤ disc(A) ∀ i ∈ [m]} contains a point with all −1/1
coordinates.

To see this, observe that the point x ∈ {−1,+1}n that
minimizes discrepancy is in fact contained in the polytope
P (A,disc(A)). Thus, if we can evaluate the discrepancy of
the constraint matrix A, then by verifying whether the in-
finity norm of the RHS vector is at least disc(A), we have an
easy heuristic to verify if the polytope contains a −1/1 point.
Hence, if each row of A is a normalized unit vector, then the
polytope Ax ≤ b contains a −1/1 point if it contains a ball
of radius at least disc(A) centered at the origin.

The related notion of linear discrepancy helps in provid-
ing a sufficient condition for integer feasibility (as opposed
to −1/1 feasibility) of arbitrary polytopes. Proposition 1,
similar to Proposition 2, is an immediate consequence of the
definition of linear discrepancy. This is because, by linear
transformation, we may assume that x0 is in the fundamen-
tal cube defined by the standard basis unit vectors. Thus, if
each row of the matrix A ∈ Rm×n is a unit vector, then the
linear discrepancy of the constraint matrix gives a radius for
the largest inscribed ball that guarantees integer feasibility
of polytopes described by the constraint matrix A.

The approach suggested by Proposition 1 to verify inte-
ger feasibility of arbitrary polytopes requires the computa-
tion of linear discrepancy of arbitrary matrices. The related
problem of computing the discrepancy of arbitrary matrices
even to within an approximation factor of

√
n is known to be

NP-hard [6]. In recent work, Nikolov, Talwar and Zhang [24]



have shown that hereditary discrepancy, which is an upper
bound on linear discrepancy (see Theorem 4 below), can
be efficiently computed to within an approximation factor
of poly(logm, logn); this could potentially be useful as a
heuristic to verify integer feasibility (approximately).

In order to understand the integer feasibility of random
polytopes using this approach, we seek a bound on the linear
discrepancy of random matrices that holds with high prob-
ability. We obtain such a tight bound for random matri-
ces algorithmically by extending a recent constructive algo-
rithm that minimizes discrepancy [17] to an algorithm that
minimizes linear discrepancy. Our infeasibility threshold is
also based on discrepancy — we begin with a lower bound
on the discrepancy of random matrices, which excludes any
0/1 point from being a feasible solution for P (n,m, x0 =
(1/2, . . . , 1/2), R0), and then extend this to exclude all inte-
ger points.

2. PRELIMINARIES

2.1 Related Work
The central quantity that leads to all known bounds on

discrepancy and linear discrepancy in the literature is hered-
itary discrepancy defined as follows:

herdisc(A) := max
S⊆[n]

disc(AS)

where AS denotes the submatrix of A containing columns
indexed by the set S. For a matrix A ∈ Rm×n and any
S ⊆ [n], let AiS denote the i’th row vector Ai restricted to
the coordinates in S. The best known bound on discrepancy
of arbitrary matrices is due to Spencer [30].

Theorem 3. [30] For any matrix A ∈ Rm×n, any subset

S ⊆ [n], there exists a point z ∈ {−1,+1}|S| such that for
every i ∈ [m],∣∣∣AiSz∣∣∣ ≤ 11

√
|S| log

2m

|S| max
k∈[m], j∈S

|Akj |.

Lovász, Spencer and Vesztergombi [16] showed the fol-
lowing relation between hereditary discrepancy and linear
discrepancy.

Theorem 4. [16] For any matrix A,

lindisc(A) ≤ herdisc(A).

2.2 Concentration Inequalities
We will use the following well-known tail bounds.

Lemma 3. Let Y be a random variable drawn from the
Gaussian distribution N(0, σ2). For any λ > 0,

Pr (Y ≤ λσ) ≤ min

{
1−

√
1

2π

(
λ

λ2 + 1

)
e−

λ2

2 , λ

√
1

2π

}
.

Lemma 4. Let Y be a random variable drawn from the
Gaussian distribution N(0, σ2). For any λ ≥ 1,

Pr (|X| ≥ λσ) ≤ 2e−
λ2

4 .

Lemma 5. Let X1, . . . , Xn be independent random vari-
ables each drawn from the Gaussian distribution N(0, σ2).
For any λ ≥ 1,

Pr

|∑
j∈[n]

X2
j − nσ2| ≥ cλ

√
nσ2

 ≤ 2e−λ
2

for an absolute constant c.

Lemma 6. [21] Let X1, . . . , Xn be independent random
variables each drawn uniformly from {−1,+1}. For a fixed
set of vectors a1, . . . , am ∈ Rn, a fixed subset S ⊆ [n], and
any λ ≥ 0,

Pr

(
|
∑
j∈S

aijXj | ≥ λ

)
≤ 2e

− λ2

2
∑
j∈S a

2
ij .

3. LINEAR DISCREPANCY OF RANDOM
MATRICES

Our first step towards an algorithm to identify an inte-
ger point in random polytopes is an algorithm to find small
linear discrepancy solutions for random Gaussian matrices.
The main goal of this section is to prove the bound on linear
discrepancy of Gaussian matrices (Theorem 2).

Implications of known bounds. It is tempting to use
known concentration inequalities in conjunction with Spencer’s
result (Theorem 3) to bound the hereditary discrepancy of
Gaussian matrices; this would in turn lead to a bound on the
linear discrepancy of Gaussian matrices by Theorem 4. In
this setting, each entry Aij is from N(0, σ2). Using standard
concentration for |Aij | and a union bound to bound the max-
imum entry |Aij | leads to the following weak bound: with
high probability, the polytope P = {x ∈ Rn| |Ai(x− x0)| ≤
bi for i ∈ [m]} with bi = Ω(σ

√
n logmn log (2m/n)) con-

tains an integer point for any x0 ∈ Rn. This is too weak for
our purpose (recall that

√
n radius ball in arbitrary poly-

topes already guarantees integer feasibility and our goal is
to guarantee integer feasibility with smaller inscribed ball in
random polytopes).

Our Strategy. Our overall strategy to bound discrepancy
is similar to that of Spencer’s: As a first step, show a partial
coloring with low discrepancy – i.e., for any subset U ⊆ [n],

there exists a point z ∈ {0,−1,+1}|U| with at least |U |/2
non-zero coordinates such that |AUi z| is small. Next for any
S ⊆ [n], repeatedly use the existence of this partial vector

to derive a vector x ∈ {−1, 1}|S| with small discrepancy –
start with x = 0, U = S and use z to fix at least half of the
coordinates of x to +1 or −1; then take U to be the set of
coordinates that are set to zero in the current x and use z to
fix at least half of the remaining coordinates of x to +1 or
−1; repeat this until all coordinates of x are non-zero. Since
at most |U |/2 coordinates are set to zero in each round of
fixing coordinates, this might repeat at most log |S| ≤ logn
times. The total discrepancy is bounded by the sum of the
discrepancies incurred in each round of fixing. Thus, the
goal is to bound the discrepancy incurred in each partial
coloring round.



The discrepancy incurred for the i’th constraint by the
partial coloring can be bounded as follows1:

|AiU z| ≤ 4 ‖AiU ‖

√
log

2m

|U | ∀ i ∈ [m], U ⊆ [n]. (1)

Bounding discrepancy of partial vector. The discrep-
ancy bound for the i’th constraint given in (1) depends on
the length of the vector AiU . We describe a straightforward
approach that does not lead to tight bounds.

Approach 1. It is straightforward to obtain ‖AiU ‖ ≤
2σ
√
|U | logmn with high probability for random Gaussian

vectors Ai using well-known upper bound on the maximum
coefficient of AiU . This leads to an upper bound of

8σ

√
|S| log (mn) log

2m

|S|

on the discrepancy of AS . Although this bound on the dis-
crepancy of AS is good enough when the cardinality of S is
smaller than some threshold, it is too large for large sets S.
E.g., when S = [n], this gives a total discrepancy of at most

O(σ
√
n log (mn) log (2m/n)).

New Approach. In order to obtain tighter bounds, we
bound the length of partial vectors AiU when each entry
in the vector is from N(0, σ2) (as opposed to bounding the
maximum coefficient). Using Lemma 5, we will show that

‖AiU ‖ = O

(
σ
√
|U |
(

log
en

|U |

) 1
4

)
for every U ⊆ [n] of size larger than logm with probability at
least 1−1/m5. Consequently, the total discrepancy incurred
while the number of coordinates to be fixed is larger than
logm is bounded by a geometric sum which is at most

O

(
σ

√
n log

m

n

)
.

When the number of coordinates to be fixed is less than
logm, we use Approach 1 to bound the length of partial
vectors, which in turn implies the required bound on the
total discrepancy.

3.1 Bounding lengths of Gaussian subvectors

Lemma 7. Let A ∈ Rm×n be a matrix whose entries are
drawn i.i.d. from the Gaussian distribution N(0, σ2). Then,
with probability at least 1− 1/(mn)3,

‖AiS‖ ≤ 2σ
√
|S| logmn ∀S ⊆ [n], ∀i ∈ [m].

Proof. By Lemma 4 and union bound over the choices
of i ∈ [m], j ∈ [n], all entries |Aij | ≤ 2σ

√
logmn with prob-

ability at least 1 − 1/(mn)3. Now, the squared length is at

1This is an improvement on the bound shown by Spencer:

|AiSz| = O
(

maxi∈[m],j∈S |Aij |
√
|S| log 2m

|S|

)
which can be

recovered from (1). The proof of (1) is identical to the proof
of Spencer’s bound except for a stronger concentration in-
equality. We avoid the non-constructive proof for simplicity
of presentation; we use an alternative algorithmic proof that
follows from Lovett-Meka’s partial coloring algorithm (see
Lemma 9).

most the squared maximum entry multiplied by the number
of coordinates.

Next we obtain a bound on the length of AiS when |S| is
large.

Lemma 8. Let A ∈ Rm×n be a matrix whose entries are
drawn i.i.d. from N(0, σ2) where m ≤ 2n. Then,

Pr (∃S ⊆ [n], |S| ≥ logm, ∃i ∈ [m] :

‖AiS‖2 ≥ 2σ2|S|

√
log

(
en

|S|

)
+

1

|S| logm

)

≤ 1

m5
.

Proof. Let

λs := 2

√
s log

(en
s

)
+ logm.

Fix a subset S ⊆ [n] of size |S| = s and i ∈ [m]. Then, by
Lemma 5, we have that, for any λs ≥ 1

Pr

(
‖AiS‖2 ≥ sσ2

(
1 +

λs
2
√
s

))
≤ 2e−λ

2
s .

Hence,

Pr (∃S ⊆ [n], |S| = s, ∃i ∈ [m] :

‖AiS‖2 ≥ sσ2

(
1 +

λs
2
√
s

))

≤ 2e−λ
2
s ·

(
n

s

)
·m ≤ 2e−λ

2
s ·
(en
s

)s
·m

≤ 2e−λ
2
s+s log

en
s

+logm ≤ 2e−3(s log ens +logm).

Therefore,

Pr (∃S ⊆ [n], |S| ≥ logm,∃i ∈ [m] :

‖AiS‖2 ≥ |S|σ2

(
1 +

λ|S|

2
√
|S|

))
= Pr (∃s ∈ {logm, . . . , n},∃S ⊆ [n], |S| = s, ∃i ∈ [m] :

‖AiS‖2 ≥ sσ2

(
1 +

λs
2
√
s

))

≤
n∑

s=logm

2e−3(s log ens +logm) =

(
2

m3

) n∑
s=logm

e−3s log en
s

≤
(

2n

m3

)
e
−3 logm log en

logm ≤ 1

m5
.

The last but one inequality is because the largest term
in the sum is e−3 logm log (en/ logm). The last inequality is
because n ≥ logm.

Now, substituting for λs, we observe that

σ2|S|

(
1 +

λ|S|

2
√
|S|

)
≤ 2σ2|S|

√
log

(
en

|S|

)
+

1

|S| logm.



3.2 Algorithmic Linear Discrepancy
Our algorithm is essentially a variation of Lovett-Meka’s

algorithm for constructive discrepancy minimization [17].
Lovett-Meka [17] provide a constructive partial coloring al-
gorithm matching Spencer’s bounds. The main difference
in their approach from that of Spencer’s is that, the partial
coloring algorithm outputs a fractional point z ∈ [−1, 1]|U|

such that at least |U |/2 coordinates are close to being 1 or
−1. After at most log |S| rounds, all coordinates are close
to being 1 or −1; a final randomized rounding step increases
the total discrepancy incurred only by a small amount.

Their partial coloring algorithm can easily be extended
to minimize linear discrepancy as opposed to discrepancy.
In each partial coloring round, their algorithm starts with
a point x ∈ [−1, 1]n and performs a random walk to arrive
at a vector y such that the discrepancy overhead incurred
by y (i.e., |Ai(y − x)|) is small. Further, at least half of
the coordinates of x that are far from 1 or −1 are close
to 1 or −1 in y. This can be extended to an algorithm
which, in each phase, starts with a point x ∈ [0, 1]n, and
performs a random walk to arrive at a vector y such that
the discrepancy overhead incurred by y (i.e., |Ai(y − x)|) is
small. Further, at least half of the coordinates of x that are
far from 0 or 1 are close to 0 or 1 in y. The functionality
of such a partial coloring algorithm is summarized in the
following lemma. In the rest of this section, given x ∈ [0, 1]n,
δ ∈ R, let B(x) := {j ∈ [n] : δ < x(j) < 1− δ}.

Lemma 9. [17] Given x ∈ [0, 1]n, δ ∈ (0, 0.5], A1, . . . , Am ∈
Rn, c1, . . . , cm ≥ 0 such that

∑m
i=1 exp(−c2i /16) ≤ |B(x)|/16,

there exists a randomized algorithm which with probability at
least 0.1 finds a point y ∈ [0, 1]n such that

1. |Ai(y − x)| ≤ ci||AiB(x)||2 ∀ i ∈ [m],

2. |B(y)| ≤ |B(x)|/2

3. If j ∈ [n] \B(x), then y(j) = x(j).

Moreover, the algorithm runs in time

O((m+ n)3δ−3 log (nm/δ)).

We denote the algorithm specified in Lemma 9 as Edge-
Walk. To minimize the linear discrepancy of random Gaus-
sian matrices, we repeatedly invoke the Edge-Walk algo-
rithm. We repeat each invocation until it succeeds, so our
algorithm is a Las Vegas algorithm. Each successful call
reduces the number of coordinates that are far from being
integer by at least a factor of 1/2. Thus, we terminate in
at most logn successful calls to the algorithm. Further, the
total discrepancy overhead incurred by x is at most the sum
of the discrepancy overhead incurred in each successful call.
The sum of the discrepancy overheads will be bounded us-
ing Lemmas 7 and 8. Finally, we do a randomized rounding
to obtain integer coordinates from near-integer coordinates.
By standard Chernoff bound, the discrepancy incurred due
to randomized rounding will be shown to be small.

Proof of Theorem 2. Without loss of generality, we
may assume that x0 ∈ [0, 1]n and our objective is to find
x ∈ {0, 1}n with low discrepancy overhead. We use Algo-
rithm Round-IP given in Figure 1. We will show that, with
probability at least 1− 4/m3, it outputs a point z ∈ {0, 1}n

Algorithm 1 Algorithm Round-IP

Input: Point x0 ∈ Rn, matrix A ∈ Rm×n where each
Aij ∼ N(0, σ2).
Output: An integer point
z.

1. Initialize. x = x0−bx0c, δ = 1/8 logm, B(x) := {j ∈
[n] : δ < x(j) < 1 − δ}, ci = 8

√
log (m/|B(x)|) for every

i ∈ [m].
2. While(|B(x)| > 0)
(i) Edge-Walk. y ← Edge-Walk(x, δ, A1, . . . , Am,
c1, . . . , cm).
(ii) Verify and repeat. B(y) := {j ∈ [n] : δ < y(j) <

1− δ}. If |B(y)| > |B(x)|/2 or |Ai(y − x)| > ci||AiB(x)||2
for some i ∈ [m], then return to (i).
(iii) Update. x ← y, B(x) = {j ∈ [n] : δ < x(j) <

1− δ}, ci = 8
√

log (m/|B(x)|) ∀ i ∈ [m].
3. Randomized Rounding. For each j ∈ [n] set

z(j) =

{
dx0(j)e with probability x(j),

bx0(j)c with probability 1− x(j).

4. Output z.

such that

|Ai(z − x0)| ≤ 192σ

(√
n log

m

n

+

√
logm log (mn) log

m

logm

)
.

Let x denote the vector at the end of Step 2 in Algo-
rithm Round-IP and let xk denote the vector x in Algo-
rithm Round-IP after k successful calls to the Edge-Walk
algorithm. By a successful call, we mean that the call passes
the verification procedure 2(ii) without having to return to
2(i). Let Sk = B(xk). We first observe that after k −
1 successful calls to the Edge-Walk subroutine, we have∑m
i=1 exp(−c

2
i /16) ≤ |Sk|/16 by the choice of cis. By Lemma

9, the discrepancy overhead incurred in the k’th successful
call to the Edge-Walk subroutine is

|Ai(xk − xk−1)| ≤ 8
∥∥∥AiSk∥∥∥√log

m

|Sk|
.

Consequently, the total discrepancy is bounded by the
sum of the discrepancy overhead incurred in each run. The
discrepancy overhead incurred in the k’th successful run,
where k : |Sk| ≥ logm, is at most

8σ

√
2|Sk| log

m

|Sk|

(
log

en

|Sk|
+

1

|Sk|
logm

) 1
4

≤ 16σ

√
|Sk| log

m

|Sk|

(
log

en

|Sk|

) 1
4

with probability at least 1−(1/m5). This is using the bound
on the length of Ai

Sk by Lemma 8.
Let k1 be the largest integer such that |Sk1 | > logm.

Thus, with probability at least 1− (1/m5), the discrepancy
overhead incurred after k1 successful calls to the Edge-Walk



subroutine is at most

D1 := 16σ

log n
logm∑
k=0

√
n2−k

(
log

m

n2−k

)√
log

e

2−k

≤ 96σ

√
n log

m

n
.

The upper bound on D1 follows from the following inequal-
ities (by setting A = m/n),√(

log
A

2−k

)√
log

e

2−k

≤
(√

logA+
√
k log 2

)
(1 + k log 2)

1
4 ∀ A ≥ 1, (2)

∞∑
k=0

√
2−k (logA) (1 + k log 2)

1
4 ≤ 5

√
logA, (3)

∞∑
k=0

√
2−k · k log 2 (1 + k log 2)

1
4 ≤ 2(log 2)3/4

∞∑
k=0

√
2−kk3/4

≤ 10. (4)

By Lemma 9, the discrepancy overhead incurred in the
k’th successful call to the Edge-Walk subroutine, where k :
|Sk| ≤ logm, is

|Ai(xk − xk−1)| ≤ 8
∥∥∥AiSk∥∥∥√log

m

|Sk|

≤ 16σ

√
n2−k log (mn) log

m

n2−k

with probability at least 1 − 1/(mn)3. Here, the second
inequality is by using Lemma 7 and |Sk| ≤ n2−k. Since each
successful call to the Edge-Walk subroutine reduces B(x) by
at least half, the number of successful Edge-Walk subroutine
calls is at most logn.

Thus, with probability at least 1− 1/(mn)3, the discrep-
ancy overhead incurred by Step 2 in successful rounds k :
|Sk| ≤ logm is at most

D2 :=

logn∑
k=log n

logm

16σ

√
n2−k log (mn) log

m

n2−k

Now, using the inequalities (2), (3) and (4),

D2 ≤ 32σ

√
logm log (mn) log

m

logm
.

Hence, with probability at least (1−1/m5)(1−1/(mn)3),
at the end of Step 2, we obtain a point x such that x ∈ [0, 1]n

and x(j) ≥ 1− δ or x(j) ≤ δ for every j ∈ [n] and the total
discrepancy overhead is bounded as follows:

max
i∈[m]

|Ai(x− x0)| ≤ D1 +D2

≤ 96σ

(√
n log

m

n

+

√
logm log (mn) log

m

logm

)
.

Next we show that the randomized rounding performed
in Step 3 incurs small discrepancy. Consider a coordinate

j ∈ [n] that is rounded. Then,

E (z(j)− x(j)) = 0,

Var (z(j)− x(j)) ≤ δ,

and thus,

∆2
i := Var

(
n∑
j=1

Aij(z(j)− x(j))

)
≤ ||Ai||2δ.

Therefore, for i ∈ [m], by Chernoff bound,

Pr

(
|
n∑
j=1

Aij(z(j)− x(j))| ≥ 4∆i

√
logm

)
≤ 2

m8
.

Hence, by union bound, we get that

|Ai(z − x)| ≤ 4∆i

√
logm ≤ 4 ‖Ai‖

for every i ∈ [m] with probability at least 1 − 1/m7. Now,
applying Lemma 5, with λ =

√
logm and using the condi-

tion that logm ≤ n, we get that |Ai(z − x)| ≤ 2σ
√
n with

probability at least (1−1/m5)(1−1/m7) ≥ 1−2/m5. Thus,

|Ai(z − x0)| ≤ |Ai(z − x)|+ |Ai(x− x0)|

≤ 192σ

(√
n log

m

n

+

√
logm log (mn) log

m

logm

)
∀ i ∈ [m]

with probability at least (1−1/m5)(1−1/(mn)3)(1−2/m5) ≥
1− 4/m3.

Finally, we compute the running time of the algorithm.
Each call to the Edge-Walk subroutine succeeds with prob-
ability 0.1. Hence, the expected number of calls to the Edge-
Walk subroutine is at most 10 logn. Since each call to the
Edge-Walk subroutine takes

O((m+ n)3 log3m log (nm logm))

time, the expected number of calls is O(logn) and the num-
ber of steps before each call is O(m+n), the total number of
steps is at most O((m+n)4 logn log3m log (nm logm)).

4. INFEASIBILITY RADIUS
The upper bound R1 for the radius in Theorem 1 will

follow from the linear discrepancy bound given in Theorem
2. For the lower bound, we show the following result for
Gaussian matrices.

Lemma 10. For m ≥ 1000n, let A ∈ Rm×n be a matrix
whose entries are chosen i.i.d. from the Gaussian distribu-
tion N(0, σ2). Let x0 := (1/2, . . . , 1/2) ∈ Rn. Then,

Pr

(
∃ x ∈ Zn : Ai(x− x0) ≤ σ

2

√
n log

m

n
∀i ∈ [m]

)
≤ 1

2n
.

We first show a lower bound on the radius necessary for
the random polytope P (n,m, 0, R) to contain an integer
point with all nonzero coordinates. Lemma 10 will follow
from the choice of x0.



Lemma 11. For m ≥ 1000n, let A ∈ Rm×n be a matrix
whose entries are chosen i.i.d. from the Gaussian distribu-
tion N(0, σ2). Then,

Pr (∃ x ∈ Zn : |xj | > 0 ∀ j ∈ [n],

Aix ≤ σ
√
n log

m

n
∀i ∈ [m]

)
≤ 1

2n
.

Proof. For each r > 0, we define the set

Ur := Zn ∩ {x : ‖x‖ = r, |xj | > 0 ∀j ∈ [n]}.

We will show that with probability at least 1−2−n (over the
choices of the matrix A), there does not exist x ∈ ∪r≥0Ur
satisfying all the m inequalities. We first observe that Ur is
non-empty only if r ≥

√
n. Fix r ≥

√
n and a point x ∈ Ur.

Now, for i ∈ [m], since each Aij is chosen from N(0, σ2),
the dot product Aix is distributed according to the normal
distribution N(0, r2σ2). Let

Px := Pr

(
Aix ≤ σ

√
n log

m

n
∀ i ∈ [m]

)
,

Pr := Pr

(
∃x ∈ Ur : Aix ≤ σ

√
n log

m

n
∀ i ∈ [m]

)
.

By union bound,

Pr ≤
∑
x∈Ur

Px ≤ |Ur|max
x∈Ur

Px.

We will obtain an upper bound on Px that depends only on
r. To bound the size of the set Ur, we observe that every
point in Ur is an integer point on the surface of a sphere of
radius r centered around the origin and hence is contained in
an euclidean ball of radius r+ 1 centered around the origin.
Thus, |Ur| can be bounded by the volume of the sphere of
radius r + 1 ≤ 2r centered around the origin:

|Ur| ≤ vol (2rB0) ≤

(
2r

√
2πe

n

)n
≤
(

10r√
n

)n
.

Next we bound Pr. We have two cases.

Case 1. Let r ∈
[√

n,
√
n log (m/n)

]
. Since Aix is dis-

tributed according to N(0, r2σ2), by Lemma 3,

Pr

(
Aix ≤ σ

√
n log

m

n

)
≤ 1− 1√

2π

(
r
√
n log m

n

r2 + n log m
n

)
·
( n
m

) n
2r2 .

Since each Aij is chosen independently, we have that

Px =

m∏
i=1

Pr

(
Aix ≤ σ

√
n log

m

n

)

<

(
1− 1√

2π

(
r
√
n log m

n

r2 + n log m
n

)
·
( n
m

) n
2r2

)m

≤ e
− 1√

2π

(
r
√
n log m

n

r2+n log m
n

)
·( nm )

n
2r2 ·m

.

Therefore, by union bound, it follows that

Pr ≤ e
− 1√

2π

(
r
√
n log m

n

r2+n log m
n

)
·( nm )

n
2r2 ·m+n log 10r√

n

≤ e−n log 10r√
n ≤

(√
n

10r

)n
.

Case 2. Let r >
√
n log (m/n). Since Aix is distributed

according to N(0, r2σ2), by Lemma 3, we have that

Pr

(
Aix ≤ σ

√
n log

m

n

)
≤ 1

r

√
1

2π
n log

m

n
≤ 4

5r

√
n log

m

n
.

The random variables A1x, . . . , Amx are independent and
identically distributed. Therefore,

Px =

m∏
i=1

Pr

(
|Aix| ≤ σ

√
n log

m

n

)

≤
(

4

5r

√
n log

m

n

)m
.

Hence, by union bound,

Pr ≤ e
−n
(
m
n

log

(
5r

4
√
n log m

n

)
−log 10r√

n

)

≤ e
−n
(
m
2n

log

(
5r

4
√
n log m

n

))

≤

(
4
√
n log m

n

5r

)m
2

.

Finally,

Pr

(
∃x ∈ ∪r≥√nUr : Aix ≤ σ

√
n log

m

n
∀i ∈ [m]

)
=
∑
r≥
√
n

Pr

=
∑

r∈[
√
n,
√
n log m

n ]

Pr +
∑

r>
√
n log m

n

Pr

≤ 1

10n

∫ ∞
r=
√
n

(√
n

r

)n
dr

+

(
4

5

)m
2
∫ ∞
r=
√
n log m

n

(√
n log m

n

r

)m
2

dr

≤ 1

10n
·
√
n

n− 1
+

(
4

5

)m
2

·

(
2
√
n log m

n

m− 2

)

≤ 1

2n
(since m ≥ 1000n).

Proof of Lemma 10. There exists x ∈ Zn such that

Ai(x− x0) ≤ σ

2

√
n log

m

n
∀i ∈ [m]

if and only if there exists x ∈ Zn ∩ {x ∈ Rn : |xj | ≥ 1 ∀ j ∈
[n]} such that

Aix ≤ σ
√
n log

m

n
∀i ∈ [m].

The result follows by Lemma 11.



5. PROOF OF THRESHOLD RADIUS
We now have all the ingredients needed prove Theorem 1.

Proof of Theorem 1. Let P = {x ∈ Rn : aix ≤ bi ∀ i ∈
[m]}, where each ai is chosen from a spherically symmetric
distribution. Then αi = ai/ ‖ai‖ for i ∈ [m] is distributed
randomly on the unit sphere. A random unit vector αi can
be obtained by drawing each coordinate from the Gaus-
sian distribution N(0, σ2 = 1/n) and normalizing the re-
sulting vector. Thus, we may assume αi = Ai/ ‖Ai‖ where
each coordinate Aij is drawn from the Gaussian distribution
N(0, 1/n). Here, we show that the probability that there ex-
ists a vector Ai that gets scaled by more than a constant is
at most 2me−n/96.

Taking σ2 = 1/n in Lemma 5, we have

Pr

(
∃i ∈ [m] : | ‖Ai‖2 − 1| > 1

2

)
≤ 2me−n.

Hence, with probability at least 1− 2me−n/96, we have that√
1/2 ≤ ‖Ai‖ ≤

√
3/2 for every i ∈ [m]. We now show the

upper and lower bounds.

1. Since P contains a ball of radius R1, it follows that
P ⊇ Q where

Q = {x ∈ Rn| |αi(x− x0)| ≤ R1 for i ∈ [m]}.

Using Theorem 2 and σ2 = 1/n, we know that there
exists a randomized algorithm that takes as input A
and x0 and outputs an integer point x ∈ Zn such that
for every i ∈ [m]

|Ai(x− x0)| ≤ 192

(√
log

m

n

+

√
logm log (mn)

n
log

m

logm

)
.

with probability at least 1− (4/m3). Thus, with prob-
ability at least 1− (4/m3)− 2me−n, we obtain x ∈ Zn
satisfying

|αi(x− x0)| = |Ai(x− x0)|
‖Ai‖

≤ 384

(√
log

m

n

+

√
logm log (mn)

n
log

m

logm

)
for every i ∈ [m]. Thus we have an integer point in
the polytope Q and hence, an integer point in P .

2. For x0 = (1/2, . . . , 1/2), let

P = {x ∈ Rn :

Ai(x− x0) ≤ ‖Ai‖
√

1

6
log

m

n
∀i ∈ [m]

}
.

Then, P contains a ball of radius R0 centered around
x0 and hence is an instance of the random polytope
P (n,m, x0, R0). Further, with probability at least 1−
2me−n, P is contained in

Q =

{
x ∈ Rn : Ai(x− x0) ≤ 1

2

√
log

m

n
∀i ∈ [m]

}
.

By Lemma 10, with probability at least 1 − 2−n, we
have that Q ∩ Zn = ∅. Thus, with probability at least
1− 2−n − 2me−n, we have that P ∩ Zn = ∅.

6. OPEN QUESTIONS
Propositions 1 and 2 hold for arbitrary constraint matri-

ces describing the polytope. Are these observations useful
for solving IP formulations of combinatorial optimization
problems for families of instances? A concrete question is
whether we can efficiently compute discrepancy or linear dis-
crepancy for a reasonably general family of matrices.

Another open question is the complexity of integer linear
optimization on random polytopes as given by our model,
with an arbitrary, or even a random objective direction. Our
work only addresses integer feasibility.

A natural question that arises there exists a sharp feasi-
bility threshold R∗ for the radius, i.e., with high probability,
the random polytope P (n,m, 0, R) is integer infeasible (for
a nonzero integer point) if R ≤ R∗ and is integer feasible if
R > R∗.

Finally, it would be interesting to explore similar phase
transition phenomena when the rows of the matrix A are
sparse, a setting that can be viewed as a geometric analog
of random k-satisfiability.
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