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Abstract

For a property P and a sub-property P ′, we say that P is P ′-partially testable with q queries
if there exists an algorithm that distinguishes, with high probability, inputs in P ′ from inputs
ε-far from P , using q queries. Some natural properties require many queries to test, but can be
partitioned into a small number of subsets for which they are partially testable with very few
queries, sometimes even a number independent of the input size.

For properties over {0, 1}, the notion of being thus partitionable ties in closely with Merlin-
Arthur proofs of Proximity (MAPs) as defined independently in [15]; a partition into r partially-
testable properties is the same as a Merlin-Arthur system where the proof consists of the identity
of one of the r partially-testable properties, giving a 2-way translation to an O(log r) size proof.

Our main result is that for some low complexity properties a partition as above cannot exist,
and moreover that for each of our properties there does not exist even a single sub-property
featuring both a large size and a query-efficient partial test, in particular improving the lower
bound set in [15]. For this we use neither the traditional Yao-type arguments nor the more recent
communication complexity method, but open up a new approach for proving lower bounds.

First, we use entropy analysis, which allows us to apply our arguments directly to 2-sided
tests, thus avoiding the cost of the conversion in [15] from 2-sided to 1-sided tests. Broadly
speaking we use “distinguishing instances” of a supposed test to show that a uniformly random
choice of a member of the sub-property has “low entropy areas”, ultimately leading to it having
a low total entropy and hence having a small base set.

Additionally, to have our arguments apply to adaptive tests, we use a mechanism of “re-
arranging” the input bits (through a decision tree that adaptively reads the entire input) to
expose the low entropy that would otherwise not be apparent.

We also explore the possibility of a connection in the other direction, namely whether the
existence of a good partition (or MAP) can lead to a relatively query-efficient standard property
test. We provide some preliminary results concerning this question, including a simple lower
bound on the possible trade-off.

The positive trade-off result is through the construction of a “universal tester” that works
the same for all properties admitting a restricted test. Our tester is very related to the notion
of sample-based testing (for a non-constant number of queries) as defined by Goldreich and Ron
in [14]. In particular it partially addresses some of the questions raised by [14].
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1 Introduction

Property Testing deals with randomized approximation algorithms that operate under low informa-
tion situations. Formally, we deal with objects from some universe U parametrized by an integer n,
usually Σn where Σ is some finite alphabet; with a notion of distance between two objects in U , usu-
ally the Hamming distance; and with a notion of a query to an object in U , usually corresponding
to retrieving xi for an index i ∈ {1, . . . , n}.
Definition 1.1 (Testable property). Let P ⊆ {0, 1}n. We say that P is testable with q queries
if there exists an algorithm A that gets as input a parameter ε > 0 and query access to an input
string x ∈ {0, 1}n and outputs accept or reject such that:

• If x ∈ P , then A accepts with probability at least 2/3.

• If d(x, P ) > ε, then A rejects with probability at least 2/3.

If furthermore all queries performed to the input can be decided before any of them are made, then
the algorithm is non-adaptive, and otherwise it is adaptive. If we require that whenever x ∈ P ,
then the algorithm accepts with probability 1, then the algorithm is 1-sided, and otherwise it is
2-sided.

Property Testing was first addressed by Blum, Luby and Rubinfeld [7], and most of its general
notions were first formulated by Rubinfeld and Sudan [25]. The first investigated properties were
mostly of an algebraic nature, such as the property of a Boolean function being linear. The first
investigation of combinatorial properties and the formal definition of testability was by Goldreich,
Goldwasser and Ron [13]. Since then Property Testing has attracted significant attention. For
surveys see [10, 22, 23].

When proving that testing a property requires many queries, one might ask “how strong is
this requirement?”, which can be illustrated with an example. Alon et. al. [3] studied the testa-
bility of formal languages, and proved that the language L = {uuRvvR|u, v ∈ {0, 1}∗} requires
at least Ω(

√
n) queries to test (formally, the property L ∩ {0, 1}n requires that many queries to

test). Informally, one may say that the “reason” for this language being untestable is the dif-
ficulty in guessing the length of uuR. This can be made formal by considering the languages
Li = {uuRvvR|u, v ∈ {0, 1}∗, |u| = i}, which form a partition of L. A simple sampling algorithm
can perform O(ε−1) queries to an input and distinguish between inputs in Li and inputs ε-far from L.
It is also important to note that |L∩{0, 1}n| = 2Θ(n), but its partition L0∩{0, 1}n, . . . , Ln∩{0, 1}n
is only to a number of subsets linear in n.

This phenomenon is not unique to the language considered by Alon et. al. Another example is
that of graph isomorphism, first considered in the property testing framework by Alon et. al. [2]
(and later by Fischer and Matsliah [11]), and shown to require at least Ω(n) queries to test. In
this setting we consider a pair of unknown graphs given by their adjacency matrices, and we are
charged with distinguishing the case where they are isomorphic from the case where more than εn2

of their edges must be changed to make them isomorphic. In this case, the size of the property
is 2Θ(n2), and we can partition the property into n! properties {Pπ|π ∈ Sn}, each defined by
Pπ = {(G1, G2)|π(G1) = G2}, such that a sampling algorithm can perform O(ε−1) queries to an
input and distinguish between inputs in Pπ and inputs ε-far from the original property.

Thus it is tempting to ask whether this is a general phenomenon. Can any property P be
partitioned into k = |P |o(1) properties P1, . . . , Pk such that the task of distinguishing inputs in Pi
from inputs far from P can be performed with a number of queries that depends only on ε?
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This question has a strong connection, in fact a near-equivalence, with the notion of a MAP as
defined by an independent work of Gur and Rothblum [15]. They define a MAP (Merlin-Arthur
proof of Proximity) as a testing algorithm that first read a “proof string” in whole, and uses it
to test the given input. The requirement is that an input in P will have some corresponding
proof that causes high probability acceptance, while for ε-far inputs for every proof there will be a
high probability rejection. The connection to our framework is that the proof corresponds to the
representation of the alleged i such that the input is in Pi, making the required proof length equal
to dlog ke for the optimal k.

The main result of the present paper is to prove that this is not always the case. In fact, there
exist properties for which any such partition must be to a number of subsets exponential in n (and
equivalently does not admit a MAP with an o(n) proof size for testing with a number of queries
independent of n).

To prove this result we in fact show the non-existence of a strictly weaker testing scenario, that
would correspond to being able to test just for the biggest Pi in the alleged partition.

Definition 1.2 (Partially testable property). Let P ⊆ {0, 1}n and P ′ ⊆ P . We say that P is
P ′-partially testable with q queries if there exists an algorithm A that gets as input a parameter
ε > 0 and query access to an input string x ∈ {0, 1}n and outputs accept or reject such that:

• If x ∈ P ′, then A accepts with probability at least 2/3.

• If d(x, P ) > ε, then A rejects with probability at least 2/3.

If furthermore all queries performed to the input can be decided before any of them are made, then
the algorithm is non-adaptive, and else it is adaptive.

Obviously, if P is testable with q queries, then for any subset P ′ ⊆ P it is P ′-partially testable
with the same number of queries. On the other hand, for any property P and any element x ∈ P ,
we have that P is {x}-partially testable with O(ε−1) queries.

The partitions described above are in fact partitions of P into subsets P1, . . . , Pk such that P
is Pi-partially testable for every 1 ≤ i ≤ k. If there exists such a partition into not too many sets,
then there must be at least one set that is relatively large. Our main result shows that there exists
a property P for which all subsets P ′ ⊆ P such that P is P ′-partially testable are small. In fact,
all linear codes with large dual distance define such properties.

Theorem 1.3. Let C ⊆ {0, 1}n be a linear code of size |C| ≤ 2
1
64
n and dual distance Γ. For every

C ′ ⊆ C, if C is C ′-partially testable with q adaptive queries, then |C ′| ≤ |C|2−Θ(Γ/q).

We will first prove, as a warm-up, a weak version of Theorem 1.3 in Section 4 which will apply
for q non-adaptive queries and imply the bound |C ′| ≤ |C|2−Θ(Γ/q3). This proof will use some of
the key ideas that will later manifest in the proof of the theorem in its full generality in Section 5.

Remark 1.4. Theorem 1.3 holds for every property P which is Γ-wise independent. The only use
of the linearity of C is in that dual distance Γ implies Γ-wise independence (see Theorem 3.9).

An important question is the existence of codes with strong parameters. A random linear code C
will have Γ = Θ(n) and |C| = 2Θ(n) with high probability (this is implied by the Gilbert-Varshamov
bound [12, 26]; MacWilliams et. al. [19] showed that this can also be obtained by codes which are
self-dual and thus also have good distance), and thus by Theorem 1.3 we will have that for any
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C ′ ⊆ C such that C is C ′-partially testable with q queries, |C ′| ≤ |C|2−Θ(n/q). For a constant q,
this implies that partial testability will only be possible with exponentially small subsets. The best
explicit (and low uniform decision complexity) construction known to us is that of [1], which gives
|C| = 2Θ(n) with Γ = Θ(n/ log n), and thus the bound becomes |C ′| ≤ nO(1)|C|2−Θ(n/q), which is
polynomially worse than the non-explicit bound, but is still a strong upper bound on the size of
C ′.

Theorem 1.3 implies that there exist properties P that require a lot of queries to test, and that
every partition of P into subsets P1, . . . , Pk such that P is Pi-partially testable for every 1 ≤ i ≤ k
requires that k will be very big. One might ask if we can prove a converse. That is, if P can be
tested with a few queries, can we find such a partition with a small k?

Open Problem 1.5. Let P be a property testable with r queries. Is it true that we can partition
P into subsets P1, . . . , Pk such that P is Pi-partially testable with O(1) queries for every 1 ≤ i ≤ k
and k is bounded by some moderate function of r? What can be said about the converse direction?

Regarding this problem, that can also be phrased as whether there exists a general trade-off
between testing hardness and partitionability to easily partially testable properties. We present
some preliminary results that revolve around the much stricter notion of proximity oblivious testing:

Definition 1.6. A non-adaptive, 1-sided proximity-oblivious q-test for a property P with detection
function ρ(ε) is an algorithm that makes q non-adaptive queries to the input (i.e. the queries are
all made before the answers to them are received), and based on those answers accepts or rejects
the input in a way that satisfies the following:

• If the input satisfies P then the algorithm accepts with probability 1.

• If the input is ε-far from P , then the algorithm rejects with probability at least ρ(ε).

Note that the algorithm is given the input length n in advance, but is not given ε. A partial
proximity-oblivious q-test is defined in the analogous manner.

The simplest conceivable proximity-oblivious test would be a 2-test, making only 2 queries.
Such tests exist for example in some monotonicity testing scenarios. We prove that partitionability
into properties that are 2-testable implies a sublinear query test (that is not proximity-oblivious)
for the entire property.

Theorem 1.7. Let P1, P2, . . . , Pk ⊆ {0, 1}n be properties such that for every i ∈ {1, . . . , k}, Pi
has a 1-sided error proximity-oblivious 2-tester with detection function ρ(ε). If ε > 0 is such that
ρ(ε/2) > 0, then for n large enough, as a polynomial function of 1/ρ(ε/2), there is a one-sided error
non-adaptive ε-tester for P =

⋃k
i=1 Pi with query complexity Õ(n2/3ε−1) · log(k) This is also true if

for every Pi we only require a 1-sided error proximity-oblivious Pi-partial 2-test for P .

The converse of the above immediately gives an observation interesting enough to state by itself.

Corollary 1.8. If a property P requires Ω(nβ) many queries for some fixed β > 2/3, then there is
no way to partition P into polynomially many properties (even not necessarily disjoint) admitting
a 1-sided proximity-oblivious 2-tests (or even the corresponding partial tests).
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Theorem 1.7 is proved using a special test that we call a universal test, that works by selecting
every index i for querying with probability Õ(n−1/3ε−1) · log(k), independently of other indexes.
We prove in Theorem 6.8 below that such a kind of test will work for any property admitting a
proximity oblivious 2-test, regardless of how that 2-test works. This universal test is very close to
what is defined as a sampling based test in a new work [14] of Goldreich and Ron. In particular, our
proof yields the following corollary, which partially addresses a question from [14] about whether
proximity oblivious tests are translatable to sample-based ones:

Corollary 1.9. Let P be a property that has a 1-sided error proximity-oblivious 2-tester with
detection function ρ(ε). If ε > 0 is such that ρ(ε/2) > 0, then for n large enough, as a polynomial
function of 1/ρ(ε/2), there is a 1-sided error sample based test (see [14], Definition 2.3) with query
complexity Õ(n2/3ε−1) · log(k).

For proximity oblivious q-tests with q > 2 the situation is more complex, and we can only prove
an analog of Theorem 6.8 (and by it Theorem 1.7) where the power of n in the query complexity
depends (rather badly) on both q and ρ(ε/2).

To formulate the theorem achieving this, we say that a set R of indexes is a witness against the
input for a property P , if the restriction of the input to R is such that it cannot be the restriction
of any member of P (or alternatively, this restriction cannot be extended to an alternate input that
satisfies P ).

Definition 1.10. For γ ∈ (0, 1), the γ-universal sampler selects a set R ⊆ [n] where, for every
i ∈ [n], Pr[i ∈ R] = n−γ.

We prove that the above sampling technique, essentially that of a sample-based tester as in
[14], is indeed a core of a “universal test” for any property that has a (possibly “unknown”) 1-sided
proximity-oblivious q-test.

Theorem 1.11. For every property P with a proximity oblivious q-test with detection function ρ(ε)
there exists γ depending on q and ρ(ε/2) (for every ε), so that for n large enough and every ε-far
input over {0, 1}n, the γ-universal sampler finds a witness against it with probability 1− o(1).

Its immediate corollary (through standard probability amplification and union bound) gives us a
sub-linear query complexity test for any property decomposable into not too many (sub-exponential
number of) properties where each of them has a proximity oblivious test, as long as they have the
same detection function ρ(ε).

Corollary 1.12. If P =
⋃`
i=1 Pi is a property such that every Pi has an oblivious 1-sided error

(proximity oblivious) q-test, all with the same detection function ρ(ε) (but not necessarily the same
test), then for n large enough the following is a test for P with O(log(`)n1−γ) query complexity,
where we use the γ of Theorem 1.11:

Select a set R ⊆ [n] that is the union of 2 log(`) sets, each chosen according to the γ-universal
sampler. If |R| > 4 log(`)n1−γ then accept immediately, and otherwise query the input on all indexes
of R, reject if R is a Pi-witness against the input for every i ∈ [`], and accept otherwise.

Finally, we prove a result in the other direction, hinting that maybe some role for proximity
oblivious testing is essential. Using a very simple construction we prove the following:
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Theorem 1.13. For every fixed k there is a property P , so that 1/5k-testing P (even adaptively)
requires Ω(n1−1/k) queries, while P is still decomposable to at most nk−1 many properties so that
each of them is even ε-testable in itself with O(1/ε) many queries for every ε; in fact each of them
will have a proximity-oblivious 1-sided k-test with the detection function ρ(ε) = O(kε).

Until now we discussed the relation of Theorem 1.3 to the impossibility of decomposing a
property to testable ones. However, there may be use in its stronger statement of not having
even one large sub-property for which there exists an efficient test. The proof of Theorem 1.3
immediately gives the following corollary.

Corollary 1.14. Suppose that P is a property for which |P | ≤ 2
1
64
n, and C is any linear code with

dual distance Γ so that |P ∩C| ≥ |C|2−Γ/q. Then P requires at least Θ(q) many queries to test (or
even P ∩ C-partially test).

We conclude this part of the introduction with an open question for which we cannot yet scratch
the surface. Theorem 1.3 implies that for some properties, k might be as big as 2Θ(n/q). It is not
clear whether this value of k can always be obtained. The trivial upper bound for every property
is by partitioning into 2n−q subsets of size 2q. Are there properties for which this is required?

Open Problem 1.15. Does there exist a property P such that for every P ′ ⊆ P where P is
P ′-partially testable with q queries we also have |P ′| ≤ |P |2Θ(q)−Θ(n)?

In [15] there is a non-constructive proof (by counting the number of possible algorithms) that
there is a property that is not partitionable to less than 2Θ(n)−Θ(q) properties admitting partial
tests with q queries, which would result from a property as above.

1.1 Related work

The notion of partial testability, while not defined before, is implicit in previous works on PCPs
(Probabilistically Checkable Proofs). The long code tester of Hȧstad [16] accepts inputs which are
codewords in the long code, and rejects inputs which are far from being k-juntas. Since codewords
in the long code are junta, this is an instance where the fact that k-juntas are long code-partially
testable is used to construct PCPs.

Our notion of a partition is similar to existing notions in computational complexity. For a
partition P = P1 ∪ P2 ∪ . . . ∪ Pk where for every 1 ≤ i ≤ k, P is Pi-partially testable, the
designation of Pi can be seen as a “proof” that a certain x is in P . If x ∈ P , then there exists some
Pi such that x ∈ Pi and therefore a Pi-partial tester for P will accept it with high probability. If x
is ε-far from P , then all Pi-partial testers for P will reject it with high probability.

This is similar to the notion of a Probabilistically Checkable Proof of Proximity (PCPP), first
introduced by Ben-Sasson et. al. [5]. PCPPs are to property testing as NP is to P. A q query
PCPP for a property P ⊂ U is an algorithm that gets as input x ∈ U and a proof of proximity
π ∈ {0, 1}l. The algorithm must perform at most q queries to x and π and fulfill the requirement
that if x ∈ P then there exists a proof π that causes the algorithm to accept with high probability,
but when x is ε-far from P then for any proof π the algorithm rejects with high probability. In our
setting, the algorithm is allowed free access to a proof of length l = log(k), but we expect l to be
sublinear in the size of x. In particular, the property we analyze here cannot have a PCPP with
a sublinear length proof. Note that a proof can always be seen as designating a specific subset of
the property — the subset of inputs for which this proof is useful.
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Rothblum et. al. [24] introduced the notion of an Interactive Proof of Proximity (IPP). In an
IPP for a property P , the tester can also communicate with a prover in addition to querying
the input x. If x ∈ P then the prover has a strategy that will cause the tester to accept with
high probability. When x is ε-far from P , the prover cannot make the tester accept with high
probability. Rothblum et. al. show that all languages in NC admit such a protocol with

√
n query

and communication complexity and polylog(n) communication rounds. Protocols of this kind are
only interesting for the case where the communication complexity is sublinear, or else the prover
may just give the input to the tester.

Independently of the present work, Gur and Rothblum [15] weakened the IPP model to create
Merlin-Arthur Proofs of Proximity (MAP). Gur and Rothblum define a MAP as a proof-system for
a property P where for an input x and a proof π the verifier reads the entire proof π and queries q
bits from the input x. If x ∈ P , then there exists a proof π such that the verifier accepts with high
probability, and if x is far from P , then for every proof π the verifier rejects with high probability.
Since we can trivially set π = x, the only interesting cases are where the length of π is sublinear.

The notion of a MAP with q queries and proofs of length ` for a property P is equivalent to
the existence of k = 2` sets P1, . . . , Pk such that P = P1 ∪ P2 ∪ . . . ∪ Pk where for every 1 ≤ i ≤ k,
P is Pi-partially testable with q queries.

Gur and Rothblum give several constructions of properties where a MAP with a sublinear length
proof greatly reduces query complexity. Gur and Rothblum also introduce the Tensor Sum family
of properties, for which they prove that for every constant α > 0 there exists an instantiation
of Tensor Sum such that any MAP for it that performs q queries must require a proof of length

Ω
(
n1−α

q

)
. This bound is slightly weaker than the implication for decomposability of Theorem 1.3

proved in the present paper for our property (however, their property is not a high dual-distance
code so our result would not apply directly). There is no known bound on the size of a sub-property
of the Tensor Sum properties admitting a partial test, only on decomposability.

Their lower bound is proved by an extension of the communication complexity technique of
Brody et. al. [6] to Merlin-Arthur communication complexity. First proving a lower bound for
1-sided testing this way, they then use a general conversion technique (at some cost to both proof
length and query complexity, see below) to 2-sided testing. Their proof technique is fitting for the
MAP setting, but does not apply to partial testing in general. Gur and Rothblum also prove that
this trade-off is almost optimal for the Tensor Sum properties.

Additionally, Gur and Rothblum show separations between the power of MAPs and that of IPPs
and PCPPs. For their proofs they also show that 2-sidedness may only give a MAP a polylog(n)
factor improvement in proof length and query complexity over a 1-sided algorithm. Their result
implies a connection also between 1-sided and 2-sided partial testability, though not one that would
preserve O(1)-query partial testability.

Regarding the testing versus proof length trade-off question, they show it for the very simple
case of “proof-oblivious” testers, i.e. algorithms that make their queries before reading the alleged
proof. By contrast, the main difficulty in proving our preliminary trade-off result is exactly that
the tests for different Pi could have differing query distributions (even that each of them in itself
is proximity oblivious).

Another angle to our methods related to the above trade-off comes from the very recent work of
Goldreich and Ron [14]. Their work is centered on what they call sample-based algorithms, which
are testing algorithms that select all their queries uniformly and independently at random. For a
number of queries that is a fixed power of n where n is large enough, this is virtually identical to
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the way our universal tests work, where every index is independently chosen to be queried with
some fixed probability. Indeed they raised the question whether any property that is testable by
a proximity-oblivious q-test can also be tested by a sublinear complexity sample-based test, and
we give a partial positive answer, for 1-sided error tests ([14] also defines 2-sided error proximity
oblivious q-tests, which we do not analyze here).

2 Plan of the paper

The first major part of the paper is devoted to proving the partial testability lower bound, which
is the most “mature” result. After the general preliminaries in Section 3, a warmup proof against
non-adaptive testing is found in Section 4, and then additional ideas are incorporated to provide a
proof against adaptive testing in Section 5.

The second major part deals with converting proximity-oblivious tests to universal ones that
scale well when the property is only decomposable. The conversion from a partition into (proximity-
oblivious) 2-testable properties to a test of the whole property is in Section 6, while Section 7 gives
the (more expansive) conversion for q-testable properties.

Finally, Section 8 contains a property that requires relatively many queries to test for itself,
while being partitionable into not too many highly testable properties. For the most part, the
sections following the preliminaries can be read individually (Section 7 mildly uses some notions
from Section 6).

The rest of this section is devoted to an informal description of the main ideas behind the proofs.

2.1 General themes for the partially untestable property

For the proofs of our main result we develop new techniques that are in some ways more flexible
than the traditional use of Yao’s method for proving property testing lower bounds. We believe
that these techniques hold promise for other lower bound situations where using Yao’s method
seems to hit a wall.

As with Yao’s method, we contrast the behavior of a supposed test when it is run over an
input chosen according to some distribution over “yes” instances, with its behavior when it is run
over an input chosen according to some distribution over “no” instances. However, while in the
traditional method these two distributions are chosen based only on the property (and should work
against all possible algorithms of a given class), here the distributions are in fact tailor made for
the specific analyzed algorithm. Note that special care must be taken in the definition of such an
input distribution. It may not depend on the “real-time” behavior of the algorithm (i.e. it may
not adapt itself to the identity of the random queries that the algorithm has made), and is instead
constructed based only on the description of the algorithm.

The second theme is the use of Shannon entropy. Our goal here is to prove that if C is
C ′-partially testable, then C ′ cannot be too large. For achieving this we assume that a testing
algorithm exists, and then contrast a uniformly random choice of a word in C ′ with another word
chosen from a “dangerous” distribution over words far from C. The assumption that the test in
fact distinguishes the two distributions allows us to show that a uniformly random choice of a word
in C ′ has low entropy, and hence C ′ must be small. Using entropy instead of direct counting is
crucial to using our main method for obtaining a bound against 2-sided error tests, rather than
only 1-sided error ones.
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A third theme used in the proof against adaptive algorithms is that of first parsing the input
through a specially constructed injective mapping, called a “reader”, which is crucial to “exposing”
low-entropy portions in this setting. We are in fact considering not just one input distribution, but
several of them as the reader is constructed.

2.2 Proving a bound against non-adaptive algorithms

The bound against non-adaptive algorithms showcases many of the general themes. A supposed
C ′-partial test with q queries is in essence a distribution over query sets of size q, such that with
high probability the chosen query set is one that highlights a difference between members of C ′ and
inputs far from being in C. As a toy example, assume first that the test is additionally 1-sided,
and “well-spread” with respect to the probabilities of querying any particular index. In this case,
for every ε-far input, the high probability of finding a forbidden substructure (as this is the only
way a 1-sided test can reject) translates to having many disjoint q-tuples of indexes where in each
of them there is a value that a member of C ′ cannot take (as a hypothetical forbidden structure
must exist). This would give a cross product bound on the size of C ′.

As our tests are not necessarily “well-spread”, we will construct a specialized distribution that
depends on the specific testing algorithm (but is independent of any particular running instance).
For handling 2-sided tests we use a feature of entropy that allows for bounds analogous to combi-
natorial cross product bounds, namely the subadditivity of the entropy measure.

To construct a “dangerous” distribution over words far from being in C, we first take note of the
“heavy” indexes, which are those bits of the input that are with high probability part of the query
subset of the investigated testing algorithm. There will be only few of those, and our distribution
over far words would be that of starting with a restriction of a uniformly random word in C ′ to
the set of heavy indexes, and augmenting it with independently and uniformly chosen values to all
other input bits. When contrasted with the uniform distribution over all members of C ′, we obtain
that there must be many query sets that show a distinction between the two distributions over the
non-heavy indexes with respect to the heavy ones. This means that the values of the non-heavy
indexes in each such query set do not behave like a uniformly independent choice, and thus have
a corresponding entropy (conditioned on the heavy index bits) that is significantly less than the
maximal possible entropy. Having many such query sets in essence means that we can find many
such sets that are disjoint outside the heavy indexes, which in turn leads to an entropy bound by
virtue of subadditivity (when coupled with general properties of linear codes).

2.3 Proving a bound against adaptive algorithms

An adaptive algorithm cannot be described as a distribution over query sets, but rather as a
distribution over small decision trees of height q that determine the queries. Therefore low-entropy
index sets cannot be readily found (and in fact do not always exist). To deal with this we employ
a new technique, that allows us to “rearrange” the input in a way that preserves entropy, but now
admits disjoint low-entropy sets.

This new construction is a reader, which in essence is an adaptive algorithm that reads the
entire input bit by bit (without repetitions). As this adaptive algorithm always eventually reads
the entire input, it defines a bijection between the input to be read and the “reading stream”, i.e.
the sequence of values in the order that the reader has read them.
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The construction of this reader is fully based on the description of the q-query adaptive algorithm
that C ′-partially tests for C (again we assume that such an algorithm exists). In fact we contrast
the uniform distribution over members of C ′ with not one but many possible distributions over
inputs far from C. At every stage we obtain that, as long as our reader has not yet read a large
portion of the input, the adaptive test can provide a decision tree over the yet-unread bits that
shows a difference between a uniformly random member of C ′ (conditioned on the values of the
bits already read) and an independently uniform random choice of values for the unread bits. Our
reader will be the result of “concatenating” such decision trees as long as there are enough unread
bits. Thus in the “reading stream” we have sets of q consecutive bits, each with low entropy (as it
is distinguishable from independently uniform values). When there are not enough unread bits left,
we read all remaining bits arbitrarily, and use general properties of codes to bound the entropy on
that final chunk.

The method of constructing a reader not only allows us to do away with the exponential penalty
usually associated with moving from non-adaptive to adaptive algorithms, but we additionally
obtain better bounds for non-adaptive algorithms as well. This is because a reader can do away
also with the penalty of moving from the situation of having many low-entropy query sets to having
a family of sets disjoint outside the heavy indexes, in essence by constructing the reader for the
uniform distribution over C ′ based on not one but many “dangerous” input distributions.

2.4 Testing decomposable properties through universal testing

Suppose that a property P defined over {0, 1}n is decomposable to properties P1, . . . , Pk, so that
each of them is in itself ε-testable with q(ε)-queries for every ε > 0 (the same arguments work
also for partial testability, but we restrict the discussion here to proper testability for the sake of
explanation). How can we test for all of P at once? The simplest way would be to juxtapose the
individual tests for every Pi, which would give a test with O(kq log(k)) many queries (accounting
also for the necessary probability amplification). However, in our discussion here k rises too fast
with n, so we would like the dependence on it to be at most polylogarithmic, even at the cost of
replacing the “base complexity” k with a value that depends (sublinearly) on n.

If the tests for all Pi “behave the same”, i.e. have the same query distribution, then instead
of querying for every test individually we can do the querying once and feed it to all the tests,
and then indeed get a test with O(q log(k)) many queries. This is essentially what is done in the
preliminary result from [15]. Our goal here is to replace the original test with a “universal” test
that would work for any property for which an original test with the specified parameters exist,
and then use it instead of the original individual tests.

In our first preliminary result we construct such a test whose number of queries is bounded by
a fixed power of n, but only if every Pi was testable by the very restricted notion of a 1-sided non-
adaptive proximity-oblivious test with 2 queries. Such tests allow for a combinatorial viewpoint
through their underlying graphs (where an edge connects two indexes i, j ∈ {1, . . . , n} if with
positive probability the test query set is {i, j}). This allows for some analysis of the probability
of picking a “rejecting edge” when every index (“vertex”) is picked and queried with probability
n−β for an appropriate constant β. The hard part in the proof is when the test has some “heavy
indexes”, corresponding to high degree vertices.

Our second result handles proximity-oblivious q-tests for any fixed q, but unlike the first result,
also the power of n in the resulting test depends on ε. We essentially make sure that the sampling is
“forceful” enough so that any small “erroneous fragment” of the input cannot “propagate” much if
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it is altered (the test will detect all possible alterations with large propagations, so such alterations
will be forbidden). This in turn allows us to analyze 1/ρ(ε/2) many ε/2-far inputs derived from
the original input, showing that unless the universal test works, they cannot be all rejected by the
original test. This is what causes a dependency on ρ(ε/2) of the power of n.

2.5 A non-testable property that is decomposable to testable ones

In the introduction, the property of being a concatenation of two palindromes was mentioned as
one that requires Ω(

√
n) many queries to test, while being decomposable to O(n) many testable

properties (in fact properties admitting a proximity oblivious 2-test). The basic idea from this
property is carried over to the properties constructed here. A parity condition ensures that instead
of having to correlate two strings (an alleged palindrome and its reverse), we would have to correlate
k strings, increasing the bound from Ω(

√
n) to Ω(n1−1/k). As these k strings are allowed to “slide”

relative to each other, the number of properties that we decompose to would be O(nk−1), each one
corresponding to a fixing of the locations of the strings.

3 Preliminaries

Below we introduce the reader to some basic definitions and results regarding entropy and the dual
distance of codes. We refer the reader who is interested in a more thorough introduction of entropy
to [8, Chapter 2].

First, we introduce a standard notion of distance between distributions.

Definition 3.1 (Total variation distance). Let p and q be two distributions over the domain D.
The total variation distance between p and q is defined to be dTV (p, q) = 1

2

∑
i∈D |p(i)− q(i)|.

We now introduce the notion of the entropy of a random variable, the entropy of a random
variable conditioned on another one, and two well-known lemmas.

Definition 3.2 (Entropy). Let X be a random variable over the domain D. The entropy of X is
defined to be H[X] = −

∑
i∈D Pr[X = i] log(Pr[X = i]).

Definition 3.3 (Conditional entropy). Let X and Y be random variables over the domain D. The
entropy of X conditioned on Y is defined to be H[X|Y ] =

∑
y∈D Pr[Y = i]H[X|Y = y].

Lemma 3.4 (The chain rule). Assume that X and Y are random variables. The entropy of the
combined state determined by both random variables is denoted H[X,Y ]. This quantity obeys the
chain rule H[X,Y ] = H[X|Y ] +H[Y ].

Lemma 3.5 (Subadditivity). If X and Y are random variables, then H[X,Y ] ≤ H[X] +H[Y ].

The total variation distance is not a natural fit to the context of entropy. A more fitting notion
of distance between distributions is divergence (also known as the Kullback-Liebler divergence [17]).

Definition 3.6 (Divergence). Let p and q be two distributions over D. The divergence of q from

p is defined to be D(p‖q) =
∑

i∈D p(i) log
(
p(i)
q(i)

)
.

Fortunately, divergence and total variation distance are related via Pinsker’s inequality. This
was originally proved with worse bounds by Pinsker [20] and seen many subsequent improvements,
the current definitive version being that of Reid and Williamson [21].
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Lemma 3.7 (Pinsker’s inequality). Assume that p and q are two distributions over the domain
D. The total variation distance between p and q is related to the divergence of q from p by the

inequality
√

1
2D(p||q) ≥ dTV (p, q).

We will actually be using a simpler corollary of it.

Lemma 3.8 (Corollary of Pinsker’s inequality). Assume that X is a random variable distributed
according to p over D, and denote the uniform distribution over D by pu. The entropy of X is related
to its total variation distance from the uniform distribution by H[X] ≤ log(|D|)− 2(dTV (p, pu))2.

Proof.

H[X] = −
∑
i∈D

Pr[X = i] log(Pr[X = i])

= −
∑
i∈D

Pr[X = i] log(Pr[X = i] · 1

|D|
· |D|)

= −
∑
i∈D

Pr[X = i] log(
1

|D|
)−

∑
i∈D

Pr[X = i] log(Pr[X = i] · |D|)

= log(|D|)−D(p‖pu) ≤ log(|D|)− 2(dTV (p, pu))2

Where the last step follows from Pinsker’s inequality.

Let x ∈ {0, 1}n and J ⊆ [n]. We use x[J ] to denote the restriction of x to the indices in J .
That is, the vector < xj >j∈J . When C ⊆ {0, 1}n we use C[J ] = {x[J ]|x ∈ C}.

Let C ⊆ {0, 1}n. We denote by U(C) the uniform distribution over C. In accordance with the
notation above, when X ∼ U(C), X[J ] denotes the random variable obtained by drawing uniformly
from C and then restricting to the indices in J . As a shorthand we use U(C)[J ] for the distribution
of X[J ]. We use UJ(C) to denote the result of first drawing a vector x according to U(C), and then
replacing x [[n] \ J ] with a uniformly random vector in {0, 1}n−|J |. In particular, in many cases we
will take C to be a singleton, in which case we drop the curly braces and denote this probability
distribution by UJ(x).

We will make inherent use of the following result, which can be found e.g. in [18, Chapter 1,
Theorem 10].

Lemma 3.9. Let C be a linear code with dual distance Γ. If J ⊆ [n] is such that |J | < Γ and
X ∼ U(C), then X[J ] is distributed uniformly over {0, 1}|J |.

We will also need the fact that a mostly random input is far from a code with high probability.

Lemma 3.10. Let C ⊆ {0, 1}n such that |C| ≤ 2
1
64
n, ε < 1/8, and let J ⊆ [n] be such that

|J | ≤ n/2. X ∼ UJ(C) is ε-far from C with probability 1 − o(1). Furthermore, this is still true
when conditioned on any value of X[J ].

Proof. By Chernoff bounds, the probability that a random element X ∼ UJ(C) will agree with

c ∈ C in more than (1− ε)n coordinates is at most exp

(
− n(1/4− ε)2

)
. Taking the union bound

over all c ∈ C gives us |C| · exp

(
− n(1/4− ε)2

)
= o(1). Since this calculation assumes that X[J ]

always agrees with c[J ], it holds when conditioned on any value of X[J ].
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Finally, we will also need to use Lemma 3.9 to help us calculate the entropy of uniform random
variables in codes.

Lemma 3.11. Let C be a code with dual distance Γ, J ⊆ [n] such that |J | ≤ Γ, C ′ ⊆ C and
X ∼ U(C ′). Then H[X|X[J ]] ≤ log |C| − |J |. Furthermore, this is true when conditioned on any
particular value of X[J ].

Proof. We can partition C according to the values of the bits in J :

C =
⋃

z∈{0,1}|J|
{c ∈ C|c[J ] = z}

By Lemma 3.9, all sets on the right hand side are of size 2−|J ||C|. Obviously, for all z ∈ {0, 1}|J |,
we have {c′ ∈ C ′|c′[J ] = z} ⊆ {c ∈ C|c[J ] = z}, simply because C ′ ⊆ C. Thus for every x ∈ C ′[J ],
we have that

H[X|X[J ] = x] ≤ log |{c′ ∈ C ′|c′[J ] = z}| ≤ log |{c ∈ C|c[J ] = z}|.

This completes the “furthermore” part of the lemma. To obtain the non-conditioned version,
note that by the definition of conditional entropy,

H[X|X[J ]] = Ex∼U(C′)[J ]H[X|X[J ] = x] ≤ log
(

2−|J ||C|
)

= log |C| − |J |.

We note (and use throughout) that trivially H[X|X[J ]] = H[X[{1, . . . , n} \ J ]|X[J ]].

4 Nonadaptive lower bound

In this section we prove Theorem 1.3 for the case of a non-adaptive tester and with slightly worse
quantitative bounds. For the rest of this section, set C ⊂ {0, 1}n to be a code with dual distance

Γ and |C| ≤ 2
1
64
n. Set ε < 1/8 and assume that C is C ′-partially testable for C ′ ⊆ C with q

non-adaptive queries.
Next we define a non-adaptive tester for a property. This definition is consistent with the

standard one.

Definition 4.1 (Non-adaptive property tester). A non-adaptive ε-tester for a code C ⊆ {0, 1}n
with query complexity q(ε, n) is defined by a collection of query sets {Qi}i∈I of size q together with
a predicate πi for each query set and a distribution µ over I which satisfies:

• If x ∈ C, then with probability at least 2/3 an i ∈ I is picked such that πi(x[Qi]) = 1.

• If d(x,C) > ε, then with probability at least 2/3 an i ∈ I is picked such that πi(x[Qi]) = 0.

For a C ′-partial tester the first item must hold only for x ∈ C ′.

Set a non-adaptive tester for C ′, and let {Qi}i∈I be its query sets.
We will be interested only in those query sets which are useful for telling a random element in

C ′ from a mostly random element in {0, 1}n.
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Definition 4.2 (J-Discerning query set). Let J ⊆ [n] be such that |J | ≤ n/2. A query set Qi is a
J-discerning set if dTV (U(C ′)[Qi], UJ(C ′)[Qi]) ≥ 1/8.

Next we prove that a tester must have a lot of such good query sets.

Lemma 4.3. Set J ⊆ [n] such that |J | ≤ n/2. With probability at least 1/9 the query set Qi picked
by the tester is a J-discerning set.

Proof. Assume the contrary, that is, that with probability greater than 8/9 the query set Qi picked
by the tester is such that dTV (U(C ′)[Qi], UJ(C ′)[Qi]) < 1/8.

Thus for every such Qi,

| Pr
U(C′)[Qi]

[tester accepts]− Pr
UJ (C′)[Qi]

[tester accepts]| < 1/8.

For the case where the query set picked is not discerning, which occurs with probability smaller
than 1/9, we have no bound (better than 1) on the difference in probability.

Overall, over the randomness of the tester,

| Pr
U(C′)

[tester accepts]− Pr
UJ (C′)

[tester accepts]| < 8/9 · 1/8 + 1/9 = 2/9.

But by the correctness of the tester and Lemma 3.10, we arrive at PrU(C′)[tester accepts] ≥ 2/3
and PrUJ (C′)[tester accepts] ≤ 1/3, a contradiction.

We will later want to construct a collection of J-discerning sets disjoint outside of a small fixed
portion of the input. Towards this end we prove that J-discerning sets show difference between an
element in C ′ and a mostly random element in {0, 1}n even when we only look outside of J .

Lemma 4.4. Assume that Qi is a J-discerning set, draw Z ∼ U(C ′)[J ] and then draw X ∼
U(C ′)[Qi] conditioned on X[J ] = Z. With probability at least 1/15 (taken over the choice of Z),
the distribution of X[Qi \ J ] is 1/16-far from U({0, 1}|Qi\J |).

Proof. First note that the distance between U(C ′)[Qi] and UJ(C ′)[Qi] is the expectation over Z of
the distance of X[Qi \ J ] from U({0, 1}|Qi\J |), conditioned on X[J ] = Z. By definition, that is at
least 1/8. By simple probability bounds, with probability at least 1/15, Z is such that the distance
of X[Qi \ J ] from U({0, 1}|Qi\J |) conditioned on X[J ] = Z is at least 1/16.

However, total variation distance is not very handy for counting. We now use Lemma 3.8 to
transform our total variation bounds into “entropy loss” bounds.

Lemma 4.5. If Qi is a J-discerning set and X ∼ U(C ′)[Qi], then H[X[Qi \ J ]|X[J ]] ≤ |Qi \ J | −
0.0005.

Proof. Let L ⊆ {0, 1}|J | be the set of values z ∈ {0, 1}|J | such that when drawing X ∼ U(C ′)[Qi]
conditioned on X[J ] = z, the distribution of X[Qi \ J ] is 1/16-far from U({0, 1}|Qi\J |).

Since the entropy is non-negative, we can upper bound

H[X[Qi \J ]|X[J ]] ≤
∑
z∈L

Pr
Z∼U(C′)[J ]

[Z = z]H[[Qi \J ]|X[J ] = z] +
∑

z∈{0,1}J\L

Pr
Z∼U(C′)[J ]

[Z = z]|Qi \J |.
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To treat the first summand on the right hand side, we invoke Lemma 3.8 to obtain

H[[Qi \ J ]|X[J ] = z] ≤ |Qi \ J | − 0.007.

Overall we get∑
z∈L

Pr
Z∼U(C′)[J ]

[Z = z]H[[Qi \ J ]|X[J ] = z] +
∑

z∈{0,1}J\L

Pr
Z∼U(C′)[J ]

[Z = z]|Qi \ J | ≤ |Qi \ J | − 0.0005.

Next, we would try to cover the indices in [n] with as many discerning sets as possible. We
will need these sets to be disjoint outside a not-too-big set, so that the “entropy loss” could be
aggregated. This set of “bad” indices will be the set of bits read by the tester with the highest
probability.

Definition 4.6. Define B = {k ∈ [n]|PrQ∼µ[k ∈ Q] ≥ 2q
Γ }.

Observation 4.7. |B| ≤ Γ/2 ≤ n/2. Therefore Lemma 3.10 holds with J = B.

Now we can prove that we can find many B-discerning sets which are disjoint outside of B.

Lemma 4.8. There exists a set ID such that:

• For all i ∈ ID, Qi is a B-discerning set

• For all i, j ∈ ID, Qi \B and Qj \B are disjoint

D = ∪i∈ID(Qi \B) satisfies Γ/2 ≥ |D| ≥ Γ
18q2 . Additionally, |ID| ≥ Γ

18q3 .

Proof. We construct the set ID greedily. Suppose that we have discerning sets covering k bits that
are disjoint outside of B. Choose a set randomly using the tester’s distribution conditioned on it
being B-discerning. By Lemma 4.3, this increases the probability of every query set, and every bit
to be in a query set, by at most 9. By the definition of B, if we choose a query set randomly using
the tester’s distribution, the probability that it intersects our already covered bits outside of B is

at most 92q2

Γ k. As long as this number is smaller than 1, such a set exists. Therefore, as long as
k < Γ

18q2 we have a set to add, leading to the bound. To get the upper bound on |D| we can just
stop the process before D gets too big.

The lower bound on the size of ID follows from the lower bound on the size of D.

Finally, we are ready to calculate the entropy of a uniformly random codeword from C ′. We
use the chain rule to split this into calculating the entropy of the bits in B, the entropy of the bits
in D conditioned on the bits of B, and the entropy of everything else conditioned on the bits in
D ∪B.

Lemma 4.9. If X ∼ U(C ′), then H[X] ≤ log |C| − 0.0005 Γ
18q3

Proof. First, by the chain rule for entropy and the fact that D \B = D,

H[X] = H[X|X[D ∪B]] +H[X[D]|X[B]] +H[X[B]]
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We proceed by bounding each element in the sum. First, trivially:

H[X[B]] ≤ |B|

Next, invoke Lemma 3.11 for D ∪B, since |D ∪B| ≤ Γ. This gives us:

H[X|X[D ∪B]] ≤ log |C| − |D ∪B|

Now, recall that ∪i∈ID(Qi \ B) = D. Since these sets are disjoint outside of B, we employ
subadditivity to get:

H[X[D \B]|X[B]] ≤
∑
i∈ID

H[X[Qi \B]|X[B]]

Now, since these are all B-discerning sets, by Lemma 4.5 we know that for all i ∈ ID we have that
H[X[Qi \B]|X[B]] ≤ |Qi \B| − 0.0005. By Lemma 4.8 we know that |ID| ≥ Γ

18q3 . Summing up we
get: ∑

i∈ID

H[X[Qi \B]|X[B]] ≤ |D| − 0.0005|ID|

≤ |D| − 0.0005
Γ

18q3

That is,

H[X[D]|X[B]] ≤ |D| − 0.0005
Γ

18q3

Summing everything up we get the statement of the lemma.

From this it follows that:

Theorem 4.10 (Weak form of the main theorem). Let C ′ ⊆ C, if C is C ′-partially testable with q
non-adaptive queries, then

|C ′| = 2H[X] ≤ |C|2−0.0005 Γ
18q3 .

5 Adaptive lower bound

In this section we prove Theorem 1.3 in its full generality. We start by introducing the mechanism
of a reader, which allows us to separate the adaptivity and randomness of the algorithm.

Definition 5.1 (Reader). A k-reader r is a sequence r0, r1, . . . , rk−1, where ri : {0, 1}i → {1, . . . , n}
satisfy for all i < j and y ∈ {0, 1}j that ri(y[{1, . . . , i}]) 6= rj(y).

Given an input x ∈ {0, 1}n, the reader defines a sequence of its bits. This is the reading of x.

Definition 5.2 (Reading). Given x ∈ {0, 1}n and a k-reader r, the reading Rr(x) of x according to r
is a sequence y1, . . . , yk defined inductively by yi+1 = xri(y1,...,yi). We define ri(x) to be ri(y1, . . . , yi).
The set of unread bits Ur(x) is the subset of {1, . . . , n} that did not appear as values of r1, . . . , rk
in the reading.

We can now define an adaptive tester as a distribution over readers and decision predicates.
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Definition 5.3 (Adaptive tester). An adaptive ε-tester for a code C ⊆ {0, 1}n with query com-
plexity q = q(ε, n) is defined by a collection of q-readers {ri}i∈I together with predicates πi for each
reader, and a distribution µ over I which satisfies:

• For all x ∈ C, Pri∼µ
[
πi(Rri(x)) = 1

]
≥ 2/3.

• For all x ∈ {0, 1}n such that d(x,C) > ε, Pri∼µ
[
πi(Rri(x)) = 0

]
≥ 2/3.

Part of the usefulness of readers is that if we can construct a reader that reads the entire input,
then reading the property C ′ through it preserves its size.

Observation 5.4. If r is an n-reader, then the function mapping every x ∈ {0, 1}n to its reading
Rr(x) is a bijection.

Proof. Suppose that x′ 6= x, and let i ∈ {1, . . . , n} be the least index such that xri(x) 6= x′ri(x).

Such an i must exist since r reads all bits, and x′ 6= x. Note that ri(x) = ri(x
′), since it is the

first bit read to be different (and thus y1, . . . , yi = y′1, . . . , y
′
i). Thus xri(x) 6= x′ri(x′) and therefore

Rr(x) 6= Rr(x′).

In light of the above, we will construct an n-reader and bound the size of C ′ when permuted by
its reading. However, while the end product of the construction is an n-reader, the intermediate
steps might not be k-readers for any k. Thus we need to introduce a more general notion.

Definition 5.5 (Generalized reader). A generalized reader r is a sequence r0, r1, . . . , rn−1 where
ri : {0, 1}i → {1, . . . , n} ∪ {?} satisfy for all i < j and y ∈ {0, 1}j one of the following

• ri(y[{1, . . . , i}]) ∈ {1, . . . , n} \ rj(y)

• ri(y[{1, . . . , i}]) = rj(y) = ?

Given a generalized reader r, a terminal sequence in it is y ∈ {0, 1}i such that ri(y1, . . . , yi) = ?,
while ri−1(y1, . . . , yi−1) 6= ? or i = 0.

If we fix a certain x ∈ {0, 1}n, a generalized reader defines a sequence of non-repeating indices
that at some point may degenerate to a constant sequence of ?. Note that every k-reader naturally
defines a generalized reader by setting all undefined functions to map everything to ?.

It is useful to think of a (possibly generalized) reader as a decision tree. With a generalized
reader, we will often want to continue the branches of the tree with another reader. This operation
is called grafting. We start with the notion of a 0-branch and a 1-branch.

Definition 5.6 (0-branch, 1-branch). Let r be a (possibly generalized) reader. The 0-branch of r is
the reader r′ defined by r′i(y1, . . . , yi) = ri+1(0, y1, . . . , yi). Similarly, the 1-branch of r is the reader
r′′ defined by r′′i (y1, . . . , yi) = ri+1(1, y1, . . . , yi).

We can now define grafting, and will do so recursively. Informally, grafting a reader t onto r at
y means that at every ? in the decision tree of r that can be reached after reading y, we continue
the reading according to t. That is, this is the process of appending a decision tree t to another
decision tree r given a certain history of reads y.

Definition 5.7 (Grafting). Let r and t be generalized readers and y ∈ {0, 1}i be a terminal sequence
in r. The grafting of t onto r on the branch y is a new reader rt,y defined as follows.
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• If t0 ∈ {r0(y1, . . . , yi), . . . , ri−1(y1, . . . , yi)}, graft the yt0-branch of t onto r at y1, . . . , yi.

• If t0 /∈ {r0(y1, . . . , yi), . . . , ri−1(y1, . . . , yi)}, set ri(y1, . . . , yi) = t0, call the new reader r′, and
graft the 0-branch of t onto r′ at y0, . . . , yi, 0 and the 1-branch of t onto t at y0, . . . , yi, 1.

Repeat the above recursively, with the base case being the grafting of an identically ? reader onto r
by not changing anything.

Note that the grafting of a generalized reader onto another results in a generalized reader. Note
that it is also possible that rt,y = r when all bits that t may read were already read by r according
as y.

To introduce the notion of a reader that discerns a random input from an input from C ′, we
will first need to formulate a notion of executing a reader, which is inherently adaptive, on a partly
random input.

Definition 5.8 (J-Simulation of a reader). Let r be a q-reader, J ⊆ [n] and y ∈ {0, 1}|J |. The J-
simulation of r on y is the distribution S(r, y, J) over {0, 1}q defined to be Rr(x) where x[J ] = y[J ],
and all bits of x outside of J are picked independently and uniformly at random from {0, 1}.

We now introduce the notion of a reader that discerns a random input from an input from C ′.

Definition 5.9 (J-Discerning reader). Let r be a (possibly generalized) reader, J ⊆ [n] and y ∈
{0, 1}|J |. Let x be a uniform random variable in {c ∈ C ′|c[J ] = y}. We say that r is a J-discerning
reader for y if dTV (Rr(x), S(r, y, J)) ≥ 1/8.

Next, we prove that many readers are indeed discerning.

Lemma 5.10. Set J ⊆ [n] such that |J | ≤ n/2 and y ∈ {0, 1}|J |. With probability at least 1/9 the
q-reader r picked by the tester is J-discerning for y.

Proof. Let r be a reader that is not J-discerning for y. Let B ∼ UJ(y) and G ∼ U({c ∈ C ′|c[J ] =
y}). Denote by πr the predicate associated with r. By our assumption,

|Pr[πr(Rr(B)) = 1]− Pr[πr(Rr(G)) = 1]| < 1/8.

Now assume that with probability greater than 8/9, the q-reader picked is not J-discerning for
y. Now consider the difference in acceptance probability when drawing a reader according to µ.

| Pr
r∼µ

[πr(Rr(B)) = 1]− Pr
r∼µ

[πr(Rr(G)) = 1]| < 8/9 · 1/8 + 1/9 = 2/9.

But by Lemma 3.10 and the correctness of the tester, Prr∼µ[πr(Rr(B)) = 1] ≤ 1/3, and by the
correctness of the tester Prr∼µ[πr(Rr(G)) = 1] ≥ 2/3, a contradiction.

A common operation will be to graft a discerning reader with additional arbitrary bits. This
does not cause a discerning reader to stop being one.

Definition 5.11. Let r and s be generalized readers. We say that r contains s if for every x ∈
{0, 1}n, the sequence of non-? elements in Rs(x) is a prefix of Rr(x).

Note that in particular, whenever we graft s onto r along some branch, we obtain a reader
which contains r.
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Lemma 5.12. Let r and s be generalized readers such that r contains s. Let J ⊆ [n] and y ∈
{0, 1}|J |. If s is a J-discerning reader for y, then so is r.

Proof. Let B ∼ UJ(y) and G ∼ U({c ∈ C ′|c[J ] = y}). Consider Rr(B). Its outcomes can be
partitioned according to their Rs(B) prefixes. Thus the probability of every event defined by values
of Rr(B) can be written as a weighted sum of the probabilities of events defined by values of Rs(B).
The same is true for Rr(G) and Rs(G). Therefore dTV (Rr(x), S(r, y, J)) ≥ dTV (Rs(x), S(s, y, J)).

To prove that a uniform choice in C ′ does not have high entropy we graft discerning readers
one onto the other. We will want to make sure that all the branches of the decision tree are of the
same height throughout the grafting, and thus we define the notion of a padded grafting.

Definition 5.13 (q-Padded grafting). Let r be a generalized reader, t be a q-reader and y ∈ {0, 1}i
be a terminal sequence in r. The q-padded grafting of t onto r on the branch y is defined by
the following process. First, let r′ be the grafting of t onto r at the branch y. Now perform the
following repeatedly: Let z1, . . . , zj with j < q be such that r′i+j−1(y1, . . . , yi, z1, . . . , zj−1) 6= ? but
r′i+j(y1, . . . , yi, z1, . . . , zj) = ? (or j = 0 and r′i(y1, . . . , yi) = ?). Let k be an arbitrary index not
in {r′0, . . . , r′i+j−1(y1, . . . , yi, z1, . . . , zj−1)}, and redefine r′i+j(y1, . . . , yi, z1, . . . , zj) = k. Repeat this
process as long as such z1, . . . , zj with j < q exist.

The above is basically grafting additional arbitrary reads, so that the end-result will always read
exactly q bits after reading the sequence y1, . . . , yi. The next observation together with Lemma
5.12 implies that q-padded grafting of a J-discerning reader is equivalent to a grafting of some other
J-discerning reader.

Observation 5.14. Let r be a generalized reader, t a q-reader and y ∈ {0, 1}i a terminal sequence
in r. There exists a reader s containing t such that the q-padded grafting of t onto r at y is equivalent
to the grafting of s onto r at y.

Now we can finally prove the main lemma, by performing repeated q-padded grafting of dis-
cerning readers one onto another.

Lemma 5.15. If X ∼ U(C ′), where C is C ′-partially testable with q queries, then H[X] ≤ log |C|−
b 1

32Γ/qc

Proof. Let us construct an n-reader and consider the entropy of C ′ when permuted by this reader.
Start with a 0-reader r0. Let s be a ∅-discerning q-reader for the empty word, which must exist

since the adaptive tester must pick one with positive probability. Set r1 to be the grafting of s onto
r0 on the branch of the empty word.

Assume that we have constructed the jq-reader rj . If jq ≥ Γ, graft a reader that reads all
remaining bits arbitrarily onto rj on all branches. Else, perform the following for all branches
y ∈ {0, 1}jq to obtain rj+1 (noting that they are all terminal sequences in rj):

• If there is no member of C ′ with the reading Rrj(y), perform a q-padded grafting of an

arbitrary q-reader onto rj at the branch y,

• If such a member exists, let s be a {rj1(y), rj2(y), . . . , rjjq(y)}-discerning reader for y. Perform

a q-padded grafting of s onto rj at the branch y.
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Now let r be the resulting n-reader, let rR(C′) be the image of C ′ under the reading of r, and
let X ∼ U(rR(C′)). By Observation 5.4, the distribution of X is the same as starting with a
uniformly random member of C ′ and then taking its reading according to r. By the chain rule
H[X] = H[X[{1, . . . ,Γ}]] +H[X|X[{1, . . . ,Γ}]].

Note that in the case of a word from C ′, the maximal j in the construction is equal to Γ/q. By
the chain rule we may write

H[X[{1, . . . ,Γ}]] =

Γ/q∑
i=1

H[X[{(i− 1)q + 1, . . . , iq − 1}]|X[{1, . . . , (i− 1)q − 1}]]

and since each sequence of q bits is from the grafting of a reader which is discerning with respect
to all the previous ones, we may apply Lemma 3.8 to obtain

H[X[{1, . . . ,Γ}]] =

Γ/q∑
i=1

H[X[{(i− 1)q + 1, . . . , iq − 1}]|X[{1, . . . , (i− 1)q − 1}]]

≤
Γ/q∑
i=1

(
q − 1

32

)
≤ Γ− Γ/q · 1

32

.
By Lemma 3.11, H[X|X[{1, . . . ,Γ}]] ≤ log |C| − Γ, so by summing it all up we get H[X] ≤

log |C| − Γ/q · 1
32 .

This gives us Theorem 1.3 in its full generality, as it implies that |C ′| = 2H[X] ≤ 2−Γ/32q · |C|.

6 Properties with a proximity oblivious 2-testable decomposition

For simplicity of presentation all the proofs here are for a property P which is decomposable to
properties P1, . . . , P` that in themselves admit a proximity oblivious 2-test rather than just a Pi-
partial test for P . A sketch on how to extend this to the more general setting is found at the end
of this section.

Definition 6.1 (P -witness). Let P ⊆ {0, 1}n be a property and w ∈ {0, 1}n. A P -witness against
w is a set Q ⊆ [n] such that for every w′ ∈ {0, 1}n, if w′i = wi for every i ∈ Q, then w′ 6∈ P .

The family of witness sets for a specific w is closed to supersets. Note that any 1-sided q-
test essentially rejects only if their query set is a witness. A proximity oblivious 1-sided test
is a non-adaptive one which is also independent of the proximity parameter ε, essentially just a
probability distributions over query sets of a fixed size q. This means that the following definition
of a proximity-oblivious test is in fact equivalent to Definition 1.6 from the introduction.

Definition 6.2 (proximity oblivious test by witnesses). A proximity oblivious 1-sided q-test with
the detection function ρ(ε) is a probability distributions over query sets of a fixed size q, so that for
every ε-far input w (for every ε) the probability of obtaining a witness against w is at least ρ(ε).
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Definition 6.3 (universal sampler). For parameters ε, η ∈ (0, 1), the (ε, η)-universal sampler selects
a set R ⊆ [n] where, for every i ∈ [n], Pr[i ∈ R] = α3n−1/3, with the parameter α = 8ε−1 log ε−1 ·
log η−1 · log n.

Let P1, P2, . . . , P` ⊆ {0, 1}n be properties, each having an oblivious one-sided error 2-tester with
the same detection function ρ(ε). Given oracle access to input w ∈ {0, 1}n, the ε-universal algorithm
for

⋃`
i=1 Pi, selects a set R ⊆ [n] according to the (ε, 1/4`)-universal sampler. If |R| > 2α3n2/3,

then it accepts immediately, and otherwise it queries the input on all indices of R, rejects if R is a
Pi-witness against w for every i ∈ [`], and accepts otherwise.

Lemma 6.4 (implying Theorem 1.7). Let P1, P2, . . . , P` ⊆ {0, 1}n be properties such that for every
i ∈ [`], Pi has a one-sided error oblivious 2-tester with detection function ρ(ε). If ε > 0 is such
that ρ(ε/2) > 0, then for n large enough (as a polynomial function of 1/ρ(ε/2)) the ε-universal
algorithm for

⋃`
i=1 Pi is a one-sided error non-adaptive ε-tester for

⋃`
i=1 Pi with query complexity

bound O(n2/3(ε−1 log ε−1 · log η−1 · log n)3).

To arrive at the theorem, we first need to “thin out” the possible test queries.

Definition 6.5 (ε-trap). A set Q of size-2 subsets of [n] is called an ε-trap for a property P , if for
every word w ∈ {0, 1}n that is ε-far from P , there is some set Q ∈ Q which is a P -witness against
w.

Lemma 6.6. If P has a one-sided error oblivious 2-tester with the detection function ρ(ε), then
for every ε it has an ε-trap Q with |Q| ≤ 9n/ρ(ε).

Proof. This is immediate from running the 2-tester 9n/ρ(ε) many times (so with positive probability
it will happen that every possible ε-far word is rejected by some iteration of it), and then setting
Q to be the set of all query sets drawn in these iterations.

We will also use as usual the following triviality.

Observation 6.7. For n larger than some universal constant, the ε-universal test will execute the
“immediate accept” step (due to R being too large) with probability less than 1/12.

Lemma 6.4 and hence Theorem 1.7 now follows by first obtaining Q1, . . . ,Q` as ε/2-traps
for P1, . . . , P` respectively, and then using the union bound for the respective applications of the
following statement, which is in some ways the “true theorem” of this section.

Theorem 6.8. Let ε > 0, η > 0, Q be an ε/2-trap for a property P , and w be ε-far from P . For n
larger than some polynomial function of |Q|/n, the set R produced by the (ε, η)-universal sampler
is a P -witness against w with probability exceeding 1− η.

Observation 6.9.

1. (1− α3n−1/3)εn/4 < η2−2εn2/3
/3,

2. (1− α3n−1/3)α
−2n1/3

< η/3n,

3. e−εα(α−4) < η.

From here on we fix P to be a property, Q to be its ε/2-trap, and w ∈ {0, 1}n to be ε-far from P .
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Definition 6.10 (degree). For every i ∈ [n] and Q′ ⊆ Q, we define degQ′(i) = |{Q ∈ Q′ | i ∈ Q}|.

Definition 6.11 (Ww, Lw and Mw). For every w ∈ {0, 1}n

1. Ww is the set of all members of Q that are witnesses against w, and for every i ∈ [n], W i
w is

the set of all members of Ww that contain i.

2. Lw =
{
Q ∈ Ww

∣∣∣∃j ∈ Q s.t. degWw
(j) > α−2n1/3

}
3. Mw =Ww \ Lw.

Definition 6.12 (the⇒ notation). Let (i, a), (j, b) ∈ [n]×{0, 1} be distinct. We write (i, a)⇒ (j, b)
if Q has no witness against some w′ ∈ {0, 1}n such that w′j = ¬b while Q has a witness against
every w∗ ∈ {0, 1}n such that w∗i = a and w∗j = ¬b.

Definition 6.13 (viable sub-string). Let B ⊂ [n] be a set of indexes and σB : B → {0, 1}. σB is a
viable sub-string if there exist no h ∈ [n], a ∈ {0, 1} and i, j ∈ B, that are not necessarily distinct,
such that (i, σB(i)) ⇒ (h, a) and (j, σB(j)) ⇒ (h,¬a), or (i, σB(i)) ⇒ (h, a) and Q has a witness
against every w∗ ∈ {0, 1}n such that w∗h = a.

Definition 6.14 (witness against sub-string). Let B ⊂ [n] and σB : B → {0, 1} be a viable sub-
string. i ∈ [n] is a witness against σB in w ∈ {0, 1}n, if i ∈ B and wi 6= σB(i), or if there exists
j ∈ B such that (j, σB(j))⇒ (i,¬wi).

Definition 6.15 (InfσB , σInf
B ). Let B ⊂ [n] and σB : B → {0, 1} be a viable sub-string. We define

InfσB to be the set containing all the possible witnesses against σB. We define σInf
B : InfσB → {0, 1}

so that for every i ∈ B and j ∈ InfσB , if (i, σB(i))⇒ (j, a), then a = σInf
B (j).

Lemma 6.16. Let B ⊂ [n], σB be a viable sub-string. For every w∗ ∈ {0, 1} such that w∗i = σInf
B (i),

for every i ∈ InfσB , all of the members of Ww∗ are disjoint from InfσB .

Proof. Assume for the sake of contradiction that the lemma does not hold. If there exists a member
of Ww∗ that is contained in InfσB , then σB is not a viable sub-string and hence the contradiction.
If Ww∗ has a member {i, j} such that i ∈ InfσB and j 6∈ InfσB , then there exists h ∈ B such that
(h, σB(h)) ⇒ (j,¬w∗j ) (we take the h for which (h, σB(h)) ⇒ (i, w∗i )). This is a contradiction to
the definition of InfσB as containing all such j.

Lemma 6.17. Let w be 3ε/4-far from P. If Ww ⊆ 2B, then InfσB contains at least εn/4 witnesses
against σB for any viable sub-string σB : B → {0, 1}.

Proof. Assume for the sake of contradiction that InfσB contains less than εn/4 witnesses against
σB. Let w∗ ∈ {0, 1} be such that w∗i = σInf

B (i) if i ∈ InfσB and otherwise w∗i = wi. Obviously, w∗

is 3ε/4-far from P .
By Lemma 6.16, Ww∗ does not have any sets that intersect InfσB . Since Ww ⊆ 2B, Ww∗ ∩

2[n]\InfσB = ∅. Thus, Ww∗ = ∅ and hence Q has no witness against w. This is a contradiction to Q
being an 3ε/4-trap for P .

Lemma 6.18. If |
⋃
Q∈Ww

Q| ≤ 2εn2/3, then we have that Pr[R is a witness against w] > 1− η/3,
even if w is only 3ε/4-far from P .
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Proof. Let W =
⋃
Q∈Ww

Q. By assumption, |W | ≤ 2εn2/3. Let σW be a viable sub-string. Since

Ww ⊆ 2W , by Lemma 6.17, there are at least εn/4 witnesses against σW .

The probability that such a witness is not selected is at most (1− α3n−1/3)εn/4 < η2−2εn2/3
/3,

where the inequality is by Observation 6.9. The lemma follows by the union bound over all viable
sub-strings for W .

Lemma 6.19. If |
⋃
Q∈Ww

Q| > 2εn2/3 and |
⋃
Q∈Mw

Q| < εn2/3, then the probability that R is a
witness against w is at least 1− η, for n larger than some polynomial in |Q|/n.

Proof. Observe that |Lw| ≥ εn1/3, because by definition we have
⋃
Q∈Ww

Q =
⋃
Q∈Mw∪Lw Q. Let

Piv ⊆ [n] be the set of all i such that degWw
(i) ≥ α−2n1/3, and σPiv be such that σPiv(i) = ¬wi for

every i ∈ Piv. Note that, for every i ∈ Piv,

Pr[R does not contain ji such that {i, ji} ∈ Ww]

≤ (1− α3n−1/3)α
−2n1/3

< η/3n,

where the last inequality is by Observation 6.9. Consequently, by the union bound

Pr[for every i ∈ Piv, ∃ji ∈ R s.t. {i, ji} ∈ Ww] > 1− η/3.

When the event above indeed occurs, it is only for σ = σPiv (out of any σ : Piv → {0, 1}) that it
may be the case that {ji : i ∈ Piv} is not a witness against σ. In other words, with probability at
least 1− η/3 we obtain the event that R contains witnesses against all possible assignments to Piv,
apart from possibly σPiv. To conclude we partition to two cases that depend on the relationship of
σPiv and w.

If w has at least εn1/3 witnesses against σPiv, then the probability that such a witness is not
selected is less than (1 − α3n−1/3)εn

1/3
< η/3, where the inequality is by Observation 6.9. Thus,

by the union bound, with probability exceeding 1 − η, R is a witness against w (as it contains
witnesses against any possible assignment to Piv).

Assume now that there are less than εn1/3 witnesses against σPiv. Let w∗ ∈ {0, 1}n be such
that if i ∈ InfPiv, then w∗i = σInf

Piv(i), and otherwise w∗i = wi. By the triangle inequality, w∗ is
3ε/4-far from P (for n large enough so that εn1/3 < εn/4). By Lemma 6.16, none of the sets in
Ww∗ intersect InfPiv and hence Ww∗ ⊆Mw Consequently,

|
⋃

Q∈Ww∗

Q| < |
⋃

Q∈Mw

Q| ≤ 2εn2/3.

Thus, by Lemma 6.18, with probability exceeding 1− η, R is a witness against w∗ and so against
w (this case does not even require us to analyze witnesses against the possible assignments to Piv
themselves).

Lemma 6.20. If |
⋃
Q∈Mw

Q| ≥ εn2/3, then Pr[Ww ∩ 2R 6= ∅] > 1− η.

Proof. Let R′ be a random subset of R, where every member of R is in R′ independently with
probability α−2. We observe that, by the definition of R, for every i ∈ [n] independently, we have
that i ∈ R′, with probability αn−1/3. We next prove that Pr[Mw ∩ 2R

′ 6= ∅] > 1− η, since R′ ⊆ R
and Mw ⊆ Ww, this implies the Lemma.
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For every integer i, let d(i) = |{j ∈ [n] | 2i ≤ degMw
(j) < 2i+1}|. Let ∆ be the expected

number of pairs of distinct Q,Q′ ∈Mw ∩ 2R
′

such that Q ∩Q′ 6= ∅. We observe that,

∆ ≤ α3n−1

logn
3
−2 logα∑
i=1

(
2i+1

2

)
d(i).

We observe that, d(i) ≤ |Mw|2−i+1. Plugging this into the above,

∆ < α3n−1

logn
3
−2 logα∑
i=1

21+2i|Mw|2−i+1 ≤ 4α3n−1|Mw|

logn
3
−2 logα∑
i=1

2i ≤ 8αn−
2
3 |Mw|. (1)

For every Q ∈ Mw, let XQ be a random variable that is 1, if Q ⊆ R′ and otherwise 0. Let µ be
the expected value of

∑
Q∈Mw

XQ. Then,

µ =
α2|Mw|
n

2
3

. (2)

Consequently, by (1), (2) and Janson’s inequality [4, Part 8],

Pr[Mw ∩ 2R
′

= ∅] ≤ e−n
− 2

3 |Mw|α(α−4) < e−εα(α−4) < η,

where the second to last inequality follows from |Mw| ≥ εn
2
3 and the last from Observation 6.9.

Proof of Theorem 6.8. An ε-far w must clearly fall under at least one of Lemma 6.18, Lemma 6.19
and Lemma 6.20.

We conclude this section with a sketch of how to generalize the result for a decomposition
admitting only partial sets. The key is in relaxing the definition of a trap. Under the new scheme,
for every i, for a word ε/2-far from P (rather than Pi), the “partial” trap Qi would be required to
contain a witness against Pi. The arguments translate almost verbatim to this setting, only one
must be careful with the definitions such as Definition 6.12 – the exact wording about the (partial)
trap containing a witness against the words under consideration becomes even more important.

7 Properties with proximity oblivious q-tests

For properties with (1-sided, non-adaptive) proximity oblivious q-tests we currently do not know
how to provide a universal test with O(n1−γ) many queries, where γ depends only on q. Here we
present such a universal test where γ depends on both q and ρ(ε/2) (and ε).

In the following we assume knowledge of the definitions and methods of Section 6. We also
assume everywhere that n is large enough for the arguments to follow.

Definition 7.1. For γ ∈ (0, 1), the γ-universal sampler selects a set R ⊆ [n] where, for every
i ∈ [n], Pr[i ∈ R] = n−γ.

Let P1, P2, . . . , P` ⊆ {0, 1}n be properties, each having an oblivious one-sided error q-tester
with the same detection function ρ(ε). Given oracle access to input w ∈ {0, 1}n, the γ-universal
algorithm for

⋃`
i=1 Pi selects a set R ⊆ [n] that is the union of 2 log(`) sets, each chosen according

to the γ-universal sampler. If |R| > 4 log(`)n1−γ then it accepts immediately, and otherwise it
queries the input on all indexes of R, rejects if R is a Pi-witness against w for every i ∈ [`], and
accepts otherwise.
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The main result that we prove here is the following:

Theorem 7.2. For every property P with a proximity oblivious q-test with detection function ρ(ε)
there exists γ depending on q and ρ(ε/2) (for every ε), so that for n large enough and every ε-
far input over {0, 1}n, the γ-universal sampler finds a witness against it with probability 1 − o(1).
Therefor (by amplification and union bound) the γ-universal test is indeed an ε-test for

⋃`
i=1 Pi for

large enough n.

We will make crucial use of sunflowers.

Definition 7.3. A sunflower with center A is a family of subsets B1, . . . , Bt ⊆ {1, . . . , n} so that
every Bi contains A, and B1, . . . , Bt are disjoint outside of A (a completely disjoint family is a
sunflower with center A = ∅).

Lemma 7.4 (sunflower theorem, Erdös and Rado [9]). Any family of at least s = q!tq+1 sets whose
sizes are at most q contains a sub-family of size t which is a sunflower.

In the following q would be the (constant) number of queries of the proximity-oblivious test,
and t would be some power of n, so our required s would essentially be another power of n.

We next define fragments.

Definition 7.5 (fragments and violations). A fragment ξ = (A, v) consists of a subset A ⊆
{1, . . . , n} and a function v : A→ {0, 1}. The special case where A = ∅ is called the null fragment.

A fragment ξ1 = (A1, v1) contains ξ2 = (A2, v2) if A2 ⊆ A1 and the restriction of v1 to A2 is
v2; in this case the difference fragment ξ3 = (A3, v3) = ξ1 \ ξ2 is defined where A3 = A1 \ A2 and
v3 is the restriction of v1 to A3.

A fragment ξ = (A, v) is said to be violated by the input w if the restriction of w to A is v.

It will be easier for us to redefine proximity oblivious tests as distributions over fragments.

Definition 7.6 (fragment version of a q-test). A proximity oblivious q-test for P is a distribution
µ over a set Ξ of fragments of sizes bounded by q (some members of Ξ could be with probability 0)
satisfying the following:

• If w satisfies P then no fragment is violated (not even probability 0 ones).

• If w is ε-far from P then the probability of picking a violated fragment is at least ρ(ε).

When moving from a q-test as in the original definition of finding a witness against w, to a
q-test as per the above definition, the original ρ(ε) might be divided by up to 2q (every original
query set is converted to all corresponding fragments that are possible witnesses against the input).

We next define how fragments can be “shortened” sometimes, through either queries or logic.

Definition 7.7 (witnesses and refutations). A witness for a fragment ξ is a containing fragment
ξ′, so that the difference ξ′ \ ξ is violated by the input w (ξ itself does not have to be violated by w).

A refutation for a fragment ξ is a set Ξ of fragments, one of which containing ξ, so that no
possible input that satisfies the entire set Ξ may satisfy ξ.

Note that in particular a set Ξ is a refutation of the null fragment if and only if it is unsatisfiable.
Our main tool of analyzing the universal sampler is the following:
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Definition 7.8 (R-reduction of a test). Given a q-test for a property P , as a distribution µ over
a set Ξ of fragments, and a set of queries R ⊆ {1, . . . , n}, the R-reduction of the test is the result
of the following process.

1. For every i ∈ R, we add the corresponding violated fragment (i,¬w(i)), where w is the input,
to Ξ, for the time being with probability 0 (this is essentially “adding the query i”).

2. We add to Ξ (still with probability 0) every fragment for which there is a refutation in Ξ (note
that, because of the previous item, this also includes fragments for which there is a witness
whose corresponding difference was indeed verified to violate w through R).

3. For every fragment ξ ∈ Ξ which contains another fragment in ξ′ ∈ Ξ (and is hence made
“redundant” by it), we remove ξ from Ξ. If µ(ξ) was non-zero, we modify µ by adding this
probability to the contained ξ′ (we can pick any arbitrary ξ′ which is not in itself contained
in yet another member of Ξ).

The R-reduction in itself is not necessarily a test for P . It may reject members of P , and it
may even contain the null fragment (when that happens Ξ will contain only the null fragment and
with probability 1; this in particular means that R is a witness for the property against the input,
i.e., the input’s restriction to R is not extensible to any possible string satisfying P ).

On the other hand, the following is immediate.

Observation 7.9. For every possible R, the R-reduction of the test is still a probability distribution
over fragments. Moreover, for every possible input w, the probability of rejection (obtaining a
violating fragment) by the R-reduction is at least the corresponding probability by the original test.

Our main argument for Theorem 1.11 lies in the following: We prove that certain events con-
cerning R and the resulting R-reduction of the test occur with probability 1 − o(1). Given those
events, we prove that if the null fragment is not in the resulting Ξ, then it may not be the case
that all ε/2-far inputs are rejected with probability ρ(ε/2) by the original test (we will construct
too many “disjoint” inputs).

In the following, γ (of the universal sampler) will be chosen small enough as a function of
all other parameters that will be defined. In the following we also view the universal sampler as
consisting of q rounds, where in every round, every index is chosen with probability n−2γ (n is
assumed large enough for this assumption to be viable).

First we define the following with respect to a β that will be chosen later (γ will depend on β).

Definition 7.10 (sunflowers of fragments and fragment generations). The family of fragments
ξ1 = (A1, v1), . . . , ξt = (At, vt) is called a sunflower with center ξ = (A, v) if A1, . . . , At is a
sunflower (of sets) with center A, and additionally the restriction of every vi to A is v.

Given a q-test with the set of fragments Ξ, all members of Ξ are said to be generation 0. By
induction, a fragment is said to be generation i if it is the center of a sunflower of nβ fragments
whose generation is at most i − 1 and which are all witnesses for it, or it has a refutation using
fragments whose generation is at most i (and unless the fragment is already of a smaller generation).

Fragments which do not have a designated generation by the above are said to be generation ∞.

We will only be interested in fragments of generation up to q due to this simple observation.

Observation 7.11. A generation i fragment for i < ∞ has length at most q − i, so in particular
all finite generations are at most q.
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A central claim is the following:

Lemma 7.12. Let R =
⋃q
j=1Rj be the result of q rounds where in each round every index i

is independently chosen to be in Rj with probability n−2γ. With probability 1 − o(1), after the

j’th round, the
⋃j
k=1Rk-reduction of the test contains all generation j fragments or sub-fragments

thereof. This is when γ is chosen to be β/(4q).

Proof. This is proved by induction. The base is j = 0 (the ∅-reduction of the test will still have all
the original fragments, or sub-fragments thereof if there were meaningful refutations).

Let us assume that the
⋃j−1
k=1Rk-reduction of the test includes all generation j− 1 fragments or

sub-fragments thereof. For a generation j fragment ξ = (A, v) that is the center of a sunflower of
witnesses, first let ξ′ = (A′, v′) be any member thereof. The probability that Rj contains A′ \A is

at least n−2qγ . Note that when this happens, ξ or a sub-fragment thereof will be in the
⋃j
k=1Rk-

reduction as required.
Now there are at least nβ members of the sunflower, and the events of each difference to be

included in Rj are all independent (as this is a sunflower). Therefor the probability of none of the

events happening is at most (1− n−2qγ)n
β
< exp(−nβ−2qγ), which is o(n−1−q) taking γ = β/(4q).

Noting that there are not more than n1+q fragments in all, we are done for all such flower centers
by a union bound.

The case where the generation j fragment has a refutation by other generation j fragments
is immediate, once we know that all fragments that are generation j through being a center of a
sunflower are included.

This claim in turns motivates the following definition.

Definition 7.13. Given a test (as a distribution over a set of fragments Ξ) and an input w, the
generational reduction thereof is the result of the following process:

1. We add to Ξ (with probability 0) every fragment which is of generation i for some i <∞ (and
hence i ≤ q).

2. For every fragment ξ ∈ Ξ which contains another fragment in ξ′ ∈ Ξ (and is hence made
“redundant” by it), we remove ξ from Ξ. If µ(ξ) was non-zero, we modify µ by adding this
probability to the contained ξ′ (we can pick any arbitrary ξ′ which is not in itself contained
in yet another member of Ξ).

Again the following is straightforward.

Observation 7.14. The generational reduction of the test is still a probability distribution over
fragments. Moreover, for every possible input w, the probability of rejection (obtaining a violating
fragment) by the generational reduction is at least the corresponding probability by the original test.

It is important for us to note the following, as the generational reduction has a better structure
than just any randomized R-reduction obtained through sampling.

Lemma 7.15. With probability 1 − o(1), the R-reduction of the test is also a reduction of the
generational reduction of the test.

Proof. This is equivalent to Lemma 7.12 for j = q, because it means that with probability 1− o(1)
there will be witnesses in R to all finite generation fragments, recalling also Observation 7.11.
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In particular, if the generational reduction has the null fragment in its set of fragments, then
with probability 1−o(1) the γ-universal testing algorithm will reject the property. To complete the
components required for the proof of Theorem 1.11, we will assume that the null fragment is not
in this reduction (i.e. it is of generation ∞, which is equivalent to R not being a witness against
the input) and reach a contradiction. At this point we use the sunflower theorem.

Lemma 7.16. Let ΞR denote the set of fragments of the generational reduction of the test, and
assume that it does not contain the null fragment. For n large enough, there exists no fragment
(regardless of whether it is violated itself) that is contained in more than n(q+2)β members of ΞR
that are witnesses against it.

Proof. If ξ = (A, v) was such a fragment, and ξ1 = (A1, v1), . . . , ξt = (At, vt) were (containing)
members of ΞR for t = n(q+2)β that witness it, then (for n such that nβ > q!) by Lemma 7.4
there would have been a sunflower of sets Aj1 , . . . , Ajt for t = nβ, whose center is some set A′ that
contains A. Now the restrictions of vj1 , . . . , vjt to A′ are all identical: Over A these are identical to
v, and over A′ \A these are identical to the restriction of w to this set. Let v′ denote the common
restriction of vj1 , . . . , vjt to A′. ξj1 , . . . , ξjt are now also a sunflower of fragments, all witnesses to
their center ξ′ = (A′, v′). This would have meant that ξ′ is a fragment of some finite generation,
which is a contradiction to ΞR already corresponding to the generational reduction of the test.

In particular (through the null fragment), the above means that there are no more than n(q+2)β

members of ΞR that are violated by w. However, ΞR in itself could still be very large, for example
it could contain many fragments that would be violated by the bit-wise negation of w.

In the following, we assume that w is an ε-far word for which the generational reduction does
not contain the null fragment. We then do the following construction.

Definition 7.17. Assume that ΞR does not contain the null fragment (and is hence satisfiable).
We define by induction the following sequences, where w0 = w, Ξ0 = 0 and B0 = ∅. We let w∗ be
any word that violates no member of ΞR.

• Ξi is the set of the members of ΞR that are violated by wi−1.

• Bi = Bi−1 ∪
⋃
{A : ξ = (A, v) ∈ Ξi}.

• wi is identical to w∗ over Bi and identical to w outside of it.

We are interested in w0, . . . , wr, Ξ1, . . . ,Ξr+1 and B1, . . . , Br for r = 1/ρ(ε/2). The following
lemma gives us their required properties.

Lemma 7.18. Assume that R is not a witness, and equivalently ΞR does not contain the null
fragment. All of the following hold for n large enough.

• The sets Ξi are all disjoint.

• |Ξ1| ≤ n(q+2)β and |B1| ≤ qn(q+2)β.

• |Ξi| ≤ n(q+2)β|Bi−1|q and |Bi| ≤ |Bi−1|+ qn(q+2)β|Bi−1|q for i > 1.

• |Bk| ≤ n(5q)kβ for k > 1.

27



Proof. The first item is because Ξi cannot contain any fragment whose respective set is inside Bi−1

(because wi−1 is identical to w∗ there), or any fragment whose respective set is not contained in Bi
(because of how Bi was defined), and we have successive containment Bi−1 ⊆ Bi.

The second item is from the discussion after Lemma 7.16, noting also that all members of ΞR
are of length bounded by q.

The third item is by Lemma 7.16 again. We note that violated fragments of ΞR here can only
come from witnesses in ΞR for fragments inside Bi−1, and there are less than |Bi−1|q relevant
fragments (all possible restrictions of w∗ to subsets of size at most q of Bi−1).

The fourth item is by basic numeric induction.

Now we finally have all the components for proving Theorem 1.11.

Proof of Theorem 1.11. We take β = 1
2(5q)−r (where r = 1/ρ(ε/2) and n to be large enough so that

n−1/2 ≤ ε/2). By Lemma 7.15, with probability 1−o(1) the R-reduction of the test will include also
its generational reduction. To conclude we prove that such an R is necessarily a witness against the
input. Let us assume on the contrary that the R-reduction (and hence the generational reduction)
does not contain the null fragment.

We refer to the construction of Definition 7.17. The choice of parameters above and Lemma
7.18 ensure that |Br| ≤ εn/2, and so all the inputs w0, . . . , wr are ε/2-close to w and hence are
ε/2-far from the property. Hence the original q-test and its generational reduction have to reject
each of those inputs with probability at least ρ(ε/2). However, this means that in ΞR there are
r + 1 disjoint subsets Ξ1, . . . ,Ξr+1 where each of which is assigned a probability of at least ρ(ε/2)
by the generational reduction, which is the contradiction to the sum of all probabilities being 1.

8 Highly decomposable properties

We prove here Theorem 1.13. The property that we will pick to show it will be the following one
of being k-paritic.

Definition 8.1. A binary string w = (w1, . . . , wn) ∈ {0, 1}n is called k-paritic if there exist
i1, . . . , ik for which i1 = 1, ij + n/2k ≤ ij+1 for all 1 ≤ j < k and ik + n/2k ≤ n, such that

for every 0 ≤ r < n/2k we have
⊕k

j=1wij+r = 0.

For fixed i1, . . . , ik as above, we let Pi1,...,ik denote the property of satisfying
⊕k

j=1wij+r = 0 for
every 0 ≤ r < n/2k (for these particular i1, . . . , ik).

Theorem 1.13 then immediately follows from Lemma 8.2 and Lemma 8.5 below.

Lemma 8.2. The property of being k-paritic is decomposable to at most nk−1 many properties, so
that each of them has a proximity-oblivious 1-sided k-test with detection function ρ(ε) = O(kε).

Proof. We decompose the property of being k-paritic to the properties Pi1,...,ik (as in Definition
8.1) where i1, . . . , ik are any indexes such that i1 = 1, ij + n/2k ≤ ij+1 for all 1 ≤ j < k and
ik + n/2k ≤ n (note that these properties need not be disjoint). There are less than nk−1 such
properties (i1 has one value and every other ij clearly can have less than n possible values), and
clearly their union is the property of being k-paritic.

The proximity-oblivious k-test for every property Pi1,...,ik is done by taking a uniformly drawn

value from {0, . . . , n/2k} for r, and checking that the parity requirement
⊕k

j=1wij+r = 0 is satisfied
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(which uses k queries). To get at the O(kε) bound on the detection function, we note that for w
to be ε-far from Pi1,...,ik , at least εn values of the possible n/2k values for r must be such that⊕k

j=1wij+r = 1, so the probability to get such a value for r is εn
n/2k = O(kε).

Before continuing we show that being k-paritic is not too dense.

Lemma 8.3. For every fixed k, a uniformly random member of 0, 1n (each bit being chosen uni-
formly and independently) is 1/10k-far from being k-paritic with probability 1− o(1).

Proof. First we consider a property Pi1,...,ik for specific i1, . . . , ik as in Definition 8.1. For every

0 ≤ r < n/2k, the probability for
⊕k

j=1wij+r = 1 is exactly 1
2 , and these events are completely

independent for different values of r. Hence by a straightforward large deviation inequality with
probability at least 1−2n/10k it holds that we have a setR ⊂ {0, . . . , dn/2ke−1} of size at least n/10k
so that for every r ∈ R we have

⊕k
j=1wij+r = 1. When this occurs the word w = (w1, . . . , wn) is

clearly 1/10k-far from Pi1,...,ik .
The lemma now follows from a union bound over all properties Pi1,...,ik (whose number is less

than nk−1, see the proof of Lemma 8.2).

We will also use a traditional Yao’s argument. The following is similar to the form that appears
in [10] (but was developed earlier).

Lemma 8.4. Suppose that DP and DN are two distributions over {0, 1}. For an index set Q ⊂
{1, . . . , n} of size q a word v ∈ {0, 1}q, let α(Q, v) be the probability that a word w ∈ {0.1} drawn
according to DP agrees with v over Q (i.e., that setting i1, . . . , iq to be the members of Q in sorted
order, we have wij = vj for all 1 ≤ j ≤ q). Define β(Q, v) similarly with DN instead of DP .

If for every Q of size q and every v ∈ {0, 1}q we have that α(Q, v) ≤ (1 − η)β(Q, v), then no
algorithm making up to q queries can distinguish with probability more than η (even an adaptive
one and in a 2-sided manner) between the case where w was drawn according to DP and the case
where it was drawn according to DN .

The following now concludes the proof of Theorem 1.13

Lemma 8.5. For any fixed k, The property of being k-paritic in itself cannot be 1/5k-tested using
o(n1−1/k) many queries (even not by 2-sided adaptive algorithms).

Proof. Here we use Yao’s method as per outlined in [10] (but developed earlier). We will assume
that n = 2kl for some integer l, as the move from this to general n involves simple padding. We
define two distributions.

• The distribution DP starts by first choosing uniformly and independently 2l(j − 1) + 1 ≤
ij ≤ 2l(j − 1) + l for every 1 ≤ j ≤ k. Then we take w ∈ {0, 1}n to be a uniformly random
member of Pi1,...,ik , the corresponding property defined in the proof of Lemma 8.2 (out of the
2n−l members thereof).

• The distribution DN is just the uniform distribution over {0, 1}n.

It is clear that an input drawn according to DP is always k-paritic. Also, by Lemma 8.3 we have
that with probability 1− o(1) an input drawn according to DN is 1/5k-far from being k-paritic.

Also note that for every v ∈ {0, 1}q and an index set Q ⊆ {1, . . . , n} of size q, the probability of
a word w drawn according to DN to agree with v over Q is exactly 2−q. To complete the argument,
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by Lemma 8.4 it remains to show that for every v ∈ {0, 1}q and every Q ⊆ {1, . . . , n} of size q
where q = o(n1−1/k), the probability for such an agreement is at least (1− o(1))2−q.

Let E be the event that there is no 0 ≤ r < l for which {j1 + r, . . . , jk + r} ⊂ Q. Conditioned
on E, the probability of w to agree with v over Q is exactly 2−q, so it remains to show that E
occurs with probability 1 − o(1). Let s1, . . . , sk be members of Q. The only case where there can
be a positive probability for the equalities i1 + r = s1, . . . , ik + r = sk is if 2l(j − 1) + 1 ≤ sj ≤ 2lj
for every 1 ≤ j ≤ k, and also in this case the probability for all equalities to occur is bounded by
l1−k = (2k/n)k−1 (by a union bound argument over the l possible values for r).

The number of possible eligible k-tuples s1, . . . , sk in Q is at most (q/k)k. By the union bound
the probability for E not to occur is then bounded by (2q/n)k−1(q/k). For a fixed k, if q = o(n1−1/k)
then this probability bound evaluates to o(1), concluding the proof.

It would be interesting to find out whether there exists a property decomposable into a relatively
small number of testable properties that in itself requires a linear number of queries to test. The
following standard proposition shows that for being k-paritic our lower bounds are about as far
they go.

Proposition 8.6. The property of being k-paritic is testable by a non-adaptive 1-sided test, making
O(n1−1/k(log(n)/ε)1/k) queries and detecting ε-far inputs with constant probability,

Proof. We will use the following algorithm:

• Choose a query set Q by choosing for every 1 ≤ j ≤ n independently whether j ∈ Q, where
this occurs with probability (10kn−1 log(n)/ε)1/k.

• If |Q| > 2n(10kn−1 log(n)/ε)1/k then accept the input without making any queries (by a large
deviation inequality this occurs with probability o(1)).

• Otherwise, make all the queries in Q, and accept the input if and only if there exists a k-
paritic word u ∈ {0, 1}n whose restriction to Q agrees with all queries made to the input word
w.

Clearly, if the input word w is k-paritic then it will always be accepted, either arbitrarily in
the second step or by u = w in the third step. It now remains to prove that ε-far words are
rejected with high probability. The second step assures that the number of queries is always at
most 2n(10kn−1 log(n)/ε)1/k = O(n1−1/k(log(n)/ε)1/k) (rather than being so only with probability
1− o(1)).

We may safely ignore the case where there is acceptance in the second step as it occurs with
probability o(1), and henceforth analyze the algorithm as if this step was removed from it. We
start by analyzing the property Pi1,...,ik for specific i1, . . . , ik as in Definition 8.1. If w is ε-far from
Pi1,...,ik , then there is a set R ⊂ {0, . . . , dn/2ke − 1} of size at least εn so that for every r ∈ R we

have
⊕k

j=1wij+r = 1. For every fixed r ∈ R, the probability to query its corresponding witness of

not being in Pi1,...,ik , i.e. the probability for {i1 + r, . . . , ik + r} ∈ Q, is 10kn−1 log(n)/ε.
The above means that for the specific property Pi1,...,ik , the probability of not detecting a witness

for the input not being in it is at most (1− 10kn−1 log(n)/ε)εn < exp(−10k log(n)) = o(nk−1). All
that remains to do is to perform a union bound over all properties Pi1,...,ik , whose union is the
property of being k-paritic (see Lemma 8.2 and its proof), to see that with probability 1− o(1) our
query set is such that there is no k-paritic word u whose restriction to Q agrees with the queries
made to w.
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