A Tool-Supported Approach for Modular Design of
Energy-Aware Software

Steven te Brinke, Somayeh Malakuti,
Christoph Bockisch, Lodewijk
Bergmans, and Mehmet Aksit

University of Twente — Software Engineering
group — Enschede, The Netherlands

{brinkes, malakutis, c.m.bockisch,
bergmans, aksit}@cs.utwente.nl

ABSTRACT

The reduction of energy usage by software-controlled sys-
tems has many advantages, including prolonged battery life
and reduction of greenhouse gas emissions. Thus, being able
to implement energy optimization in software is essential.
This requires a model of the energy utilization—or more
general resource utilization—for each component in the sys-
tem. Optimizer components, then, analyze resource utiliza-
tion of other components in terms of such a model and adapt
their behavior accordingly. We have devised a notation for
Resource-Utilization Models (RUMs) that can be part of a
component’s application programming interface (API) to fa-
cilitate the modular implementation of optimizers. In this
paper, we present tools for extracting such RUMs from com-
ponents with an existing implementation.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces

Keywords

energy-aware software, modularity, model checking, CEGAR,
resource-utilization model, minimal abstraction

1. INTRODUCTION

There is an increasing demand for reducing the energy
usage of systems; many of these systems are software sys-
tems, or use software to control their behavior. Energy is in
fact one of many resources that may need to be managed by
software, and reducing energy consumption cannot be con-
sidered without taking into account the trade-offs with other
resources (e.g., memory and bandwidth usage) and services
(e.g., delivered quality of audiovisual artefacts).

One possibility to reduce resource usage is to extend the
core functionality with optimization logic, which approxi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’14 March 24-28, 2014, Gyeongju, Korea.

Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Shmuel Katz
Technion — Department of Computer Science —
Haifa, Israel .
katz@cs.technion.ac.il

mates the state, and steers the behavior of a system. Our
focus is on the reduction of energy consumption by control-
ling various external hardware components that are energy
intensive. These hardware components are typically rep-
resented by dedicated software components, such as device
drivers, and can in this way also be controlled by software.

As an example, consider a smart phone running a stream-
ing media player application: a significant part of the en-
ergy will be consumed by the network component within
the phone. The overall system’s energy consumption can be
optimized by steering the utilization of the network device
so that it can spend more time in a low-power mode.

To facilitate modular implementation of resource opti-
mization logic, we claim that there is a need for defining the
resource behavior of components at their interface. For this
purpose, we have proposed [22] to use so-called Resource-
Utilization Models (RUMs), which express the relation be-
tween the dynamic behavior of the component and the re-
sources it uses and provides. RUMs are abstractions, ex-
pressed as state transition diagrams expressing transitions
between states of stable energy consumption. In particular,
RUMs explicate internal events leading to state changes.

Considering the RUM as an interface for components also
means that it hides implementation details; therefore, con-
crete implementations can be freely exchanged with others
that adhere to the same RUM. This means that on one hand
the RUMSs of components must be sufficiently detailed to al-
low reasoning about the relevant resource-utilization prop-
erties. On the other hand, it must not be too specific such
that exchanging concrete implementations is hindered.

In this paper, we present requirements for our RUM mod-
els to enable meaningful formal analyses of the resource
consumption of software systems. In particular, we argue
that for the purpose of reasoning about the effectiveness and
correctness of optimizers, it is necessary to give guarantees
about the resource utilization of components. Because defin-
ing RUMs can be complex and during software design, the
implementation of third party components is often available
already, we also present an approach for extracting a RUM
from implemented components, based on the formal method
of counterezample-guided abstraction refinement (CEGAR)
[I0]. Here we come to a (more) formal specification of how
to apply the CEGAR approach, compared to the more in-
tuitive version presented earlier in a workshop paper [4].

This paper is organized as follows. Section B outlines the
approach and specifies which properties are most important

provided resources provided services

MR Q Q9

Resource-aware component

implementation
aYaYe

required services

RUM Resource-Utilization
Model (RUM)

T

required resources

Figure 1: Resource-Aware Component Notation

to be checkable on RUMs and what the requirements for
RUMs are. Section B explains how the tool MAGIC facili-
tates generating RUMs and gives an outlook how they can
be used to model check system configurations. Section @
discusses related work. Section B concludes this paper and
presents future work.

2. DESIGN APPROACH FOR RESOURCE-

AWARE COMPONENT-BASED SOFTWARE

Traditionally, a component is considered as a unit of devel-
opment and deployment, with explicit interfaces specifying
the services that it provides to and the services that it re-
quires from its environment [27, chapter 5]. To be able to
design resource-aware software, components must also have
explicit interfaces specifying the resources that it provides
to and requires from its environment [22]. Additionally,
resource-aware components declare their resource behavior,
i.e., the dynamic relation between resources and services, in
terms of a Resource-Utilization Model (RUM). For example,
RUMs may specify that using a certain service of a compo-
nent increases the availability of a provided resource or puts
a component in a state where it consumes more of a required
resource. The RUM specifies the impact on resources in de-
tail, e.g., the degree to which the availability or consumption
of the resource changes, the end-condition for staying at this
level, or the availability of resources and services in different
situations. Figure [represents our notation of components.

Our notation for RUMSs is based on state machines, be-
cause state machines (a) are declarative, (b) can model the
internal behavior of a component and its relation with the
services provided to and required from the environment, and
(c) can conveniently be extended with resource-utilization
annotations on states as well as state transitions.

Having a notation is not sufficient, we need to guide de-
signers in the level of detail to be included in RUMs. Being
a model at design time means that the RUM of a component
must be an abstraction of the concrete implementation. This
in turn means that the RUM only specifies implementation
details which are relevant for reasoning about the resource
utilization and leaves out irrelevant details. In our design
approach, we propose to determine relevant details by spec-
ifying so-called key properties, which need to be established
for a system. In the following subsection, we elaborate on
the nature of key properties we need to express. Afterwards,
we discuss what characteristics the RUM must have to sup-
port reasoning about models in the desired ways.

2.1 Identifying Key Properties

The key desirable properties, both those relating to the
functionality of the system and those relating to resource
consumption, can be derived from the requirement speci-
fication of the software. Properties of both kinds can be
expressed in terms of the possible execution sequences of
the system, and are commonly specified using a temporal
logic notation [23, 02], although other notations can also
be used, and we do not enter into the precise notation here.
Which key properties can be checked automatically depends
on the formalism in which the properties and the RUM are
expressed. To identify which formalism we need, we must
first identify which kinds of properties we want to check. We
classify multiple kinds of properties into two dimensions:

First dimension: Which execution sequences should be
considered? Properties can specify that they hold (1) for
every execution sequence of the system or (2) for some (i.e.,
at least one) execution sequences.

Second dimension: Is the property (a) a safety property
that should hold in every state of considered executions (and
can be violated in a finite prefix of an execution sequence) or
(b) a liveness property that ensures reaching desired states
in the executions considered (and can only be violated in
(usually infinite) execution sequences that do not reach the
desired states).

The combinations of these two dimensions are enumerated
in the following list, where ® represents a state predicate.

1. For every execution sequence,

(a) @ always holds. (Safety)
(b) @ will eventually hold in the future. (Liveness)

2. For some execution sequence,

(a) @ always holds. (Safety)
(b) @ will eventually hold in the future. (Liveness)

For example, for a media player we can use the property
“music is playing” in place of ®:

la. Throughout every system execution, music always plays
in the media player.

1b. Pressing the play button always results eventually in
playing music.

2a. There are system execution sequences where music is
always playing.

2b. For some execution sequence, pressing the play button
will eventually result in music playing.

Instead of only specifying functional behavior, properties
relating to the amount of resource consumption can also be
specified, using state assertions of the following types:

(i) Min/max. “The current resource consumption is within
a certain range.”

(ii) Total. “The total resource consumption is within a
certain range.” (This is the integral over the current
resource consumption.)

Most critically, we would like to use verification tools to help
find optimal execution sequences for a given sequence of user
requests and system responses, or for a finite family of such
inputs, i.e., (iii) “Provide the sequence for which the total
resource consumption is optimal.” Example properties are:

e The media player always uses less than 1J/s (1a, i)

e For every execution sequence, whenever a full song is
completed, the energy consumed since the song was
requested is less than 10J (1a, ii)

e For some execution sequence, the media player reaches
a state after playing a full song consuming less than
10 J since the song was begun (2b, ii)

Standard temporal logic and model checking do not al-
low directly answering an optimization request of type (iii).
However, the nature of an unsuccessful model check—that it
provides a counterexample when the property does not hold
for the model—can be exploited. For example, when an as-
sertion of the form “For every execution sequence, whenever
three minutes of music have been played, the energy con-
sumption is greater than 10J” is NOT true of the system,
an attempt to model check shows a counterexample where
the energy consumption is less than 10J. In this way, an
optimized computation (e.g., that buffers network data and
works in bursts) can be detected. We intend to explore this
possibility for finding optimizations in future work. In this
paper, we will focus on analyzing systems and optimizations.

For an actual model or implementation, properties 1a, 1b,
i, and ii are most important, because la and 1b provide
guarantees for the model and can be combined with i and ii.
During software design, properties 2a, 2b, i, ii, and iii might
be quite useful, because 2a, 2b, and iii show what the possi-
bilities of the actual model might be and 2a and 2b can be
combined with i and ii. We focus on using actual implemen-
tations, so in this paper we want to be able to verify safety
and liveness properties that hold for all execution sequences.

2.2 Modeling Resource Behavior

In component-based software development, service inter-
faces of a component are abstractions over the actual imple-
mentation of the component, and give guarantees about the
functional requirements that are fulfilled by the component.
Such guarantees facilitate using components without know-
ing their implementations, and enable flexibly changing the
implementations of components, provided that the interfaces
remain intact. Since we consider RUMs as part of the com-
ponent interface, RUMs must also (1) provide abstraction
over the implementation of the component, and (2) provide
guarantees on the resource utilization of components.

2.2.1 Abstraction over component implementation

Since RUMs abstract over the implementation of a com-
ponent, there are two main kinds of abstraction to consider:

Over-abstraction An over-abstraction (also called an over-
approximation) specifies a superset of the possible ex-
ecution sequences of a component. If we verify a prop-
erty that holds for all execution sequences in the over-
abstraction, then it also holds for the execution se-
quences in the actual concrete system. For example, an
over-abstraction can be used to prove an upper bound
of the maximum energy consumption of the actual sys-
tem and a lower bound of the minimum energy con-
sumption. Thus, over-abstractions provide guarantees
of the component.

Under-abstraction An under-abstraction (also called an
underapproximation) specifies a subset of the possi-
ble execution sequences of a component. If we verify
a property for some execution sequence in the under-
abstraction, then that computation is also in the actual

system, and the property holds there too. For example,
an under-abstraction can be used to find an execution
sequence that gives a lower bound of the maximum
energy consumption and an upper bound of the mini-
mum energy consumption of the actual system. Thus,
under-abstractions give possibilities of the component.

2.2.2 Guarantees on component resource utilization

The RUM of a component must provide guarantees about
resource-utilization requirements of that component. As ex-
plained in Section B, in our design method, the resource
utilization requirements are formulated as key properties
that hold for all execution sequences. Checking that these
requirements hold can only be performed on RUMs that
are over-abstractions; it would not be possible if RUMs
were expressed as under-abstractions. This means to fulfill
most of the typical requirements, a RUM must be an over-
abstraction.

2.3 Analyzing Resource Behavior and Select-
ing Optimizer

When a software system is designed following the guide-
lines defined in this section—i.e., using a component model
that specifies RUMs as over-abstractions of the components’
behavior—the resource behavior of the composed system can
be analyzed. The resource behavior of the overall system is
determined by the composition of all the separate RUMs.
Therefore, the designer can analyze the combined RUMs to
understand the resource consumption of the system.

Because the resource utilization is specified for each com-
ponent modularly, it is easily possible to analyze different
compositions and especially to investigate the influence of
alternative variants of single components. More specifically,
it is possible to design multiple alternative optimizer com-
ponents and use the analysis to identify which optimization
results in the least resource consumption under various us-
age scenarios. Based on this analysis, designers can select
a composition for the final system design using the most
suitable one among alternative optimizer components.

As explained in the previous two subsections, it is most
relevant to express guarantees of the resource behavior of
components. The same argumentation holds for analyses of
the composed system. Therefore, it has to be noted that the
combination of the individual RUMs is an over-abstraction
of the composed system, just like each single RUM is an
over-abstraction of a single component. Thus, again, every
property which we can prove to hold for every execution
sequence in the combined RUMs, also holds for every ex-
ecution of the concrete system. This means that we can
perform an analysis of the properties of type la, 1b, i and
ii as specified in Section B, i.e., safety and liveness prop-
erties specifying ranges and totals of resource consumption
for every execution.

3. TOOL SUPPORT

A software system is specified by a composition of compo-
nents, which easily becomes complex, and beyond the capa-
bilities of existing model checkers to handle directly. Thus
it is necessary to create for each desired property an appro-
priate over-abstraction that is much smaller than the full
model, and only includes the information directly needed to
establish the property. Manual analysis of such a composi-
tion and finding the needed over-abstraction is difficult and

error-prone. Therefore, we claim that the analysis must be
automated by means of tools.

This section explains how creating RUMs can be auto-
mated by using the tool MAGIC. However, our method does
not dictate that this tool must be used. To allow use of other
tools that support the same principle, we also explain the
underlying mechanism CEGAR on which the tool is built.

As already seen, we consider a smart phone example run-
ning a streaming media player application: Significant en-
ergy will be consumed by the network component within
the phone. The overall system’s energy consumption can
be optimized by steering the media player to stream the
data in bursts operating at full bandwidth and store it in
a buffer; when the buffer is filled, the network device can
go to powersave mode until the buffer runs empty and an-
other burst data transfer is necessary. For this optimization
to be effective, e.g., it must be possible to predict at which
rate the buffer is emptied depending on the playback rate,
and it must be known how quickly the network device can
switch between powersave and active modes, in addition to
the amount of power consumed in both modes.

3.1 CEGAR

Counterexample-guided abstraction refinement (CEGAR)
is a formal method to—semi-automatically—refine abstract
models based on counterexamples, when a concrete model
is available. It has been implemented in several tools [3, [,
R, [, I4]. In short, the application of CEGAR requires:

e Specified properties that are being checked on abstract
models; a violation of such a property leads to a coun-
terexample.

e A detailed concrete model, from which extra informa-
tion can be added to the abstract model.

CEGAR requires that abstract models are over-abstractions
of the concrete model. When CEGAR refines an abstract
model with details from the concrete model, it ensures that
the refined model is also an over-abstraction of the concrete
model. Thus, CEGAR generates models that are suitable
as RUMs.

Abstract models are refined as follows. First, an initial
abstract model is derived, usually by simple static analy-
sis of the concrete model, but guaranteeing that an over-
abstraction is used. When CEGAR cannot prove a given
property on the abstract model, an abstract counterexam-
ple is produced. This failure to prove the desired property
could be due to two scenarios:

e There is no real error, but the abstract model does not
include enough information about the concrete behav-
ior. In this case, the abstract counterexample pro-
duced for the desired property does not correspond to
an actual error in the concrete system (and it is called
a spurious counterexample) and CEGAR can be used
to automatically refine the abstract model.

e There is a real error, and then an inventive step is
needed. An option is to weaken the specified desired
property. But it may also be the case that an error in
the implementation is found, which must be fixed by
the responsible developer. This step can be guided by
the counterexample, but is not automatic.

Using CEGAR requires (1) simulating the steps of the ab-
stract counterexample to see whether they correspond to any

execution of the concrete system. If not, (2) (minimal) in-
formation can automatically be extracted from the concrete
model to make a refined abstract model in which the previ-
ous counterexample cannot occur, and then the tool should
again attempt to verify the desired property on the refined
abstract model.

The key steps in CEGAR use sophisticated algorithms
from model checking. The simulation requires showing that
no concrete execution that corresponds to the abstract coun-
terexample is possible. At the same time the key informa-
tion that makes the counterexample invalid in the concrete
model must be extracted. This involves finding the core
conjuncts that make a complex boolean expression unsatis-
fiable. This is today usually done by exploiting the progress
made in solvers that determine whether a complex proposi-
tional formula with thousands of conjuncts is satisfiable (a
SAT solver) or solving extensions to richer formulas known
as SMT solvers. The formula constructed is an encoding of
an assertion that the steps in the concrete model and steps
in the abstract counterexample are possible together. When
this is true, the abstract counterexample represents an ac-
tual error in the concrete system. When the check fails, the
SAT (or SMT) solver provides a so-called SAT-core expres-
sion that has the fewest conjuncts showing why the formu-
las cannot be true together (see [for more details). From
this, the minimal information that should be added to the
over-abstraction can be automatically derived, without any
user intervention. This gives a refined model for which the
previous abstract counterexample cannot occur, and then a
new attempt at model checking can be done on that model.

3.1.1 Using CEGAR for deriving RUMs

We experimented with several tools that implement CE-
GAR. Due to technical difficulties with some of the tools,
we have extracted all models with MAGIC.

MAGIC [@, B] is a tool for automatic verification of C
programs against finite state machine (FSM) specifications.
MAGIC follows the CEGAR paradigm and uses C source
code as concrete model. First, MAGIC extracts an initial
finite abstract model from C source code using predicate ab-
straction and theorem proving [8]. Subsequently, this model
is refined until either it contains enough detail to show that
the specification holds, or a real counterexample is discov-
ered. MAGIC either outputs a success message or the found
concrete counterexample.

MAGIC can output all models it creates, which are over-
abstractions of the source code. The last model MAGIC
creates in the success case contains sufficient information to
prove the key property. Thus, we use this model as RUM.
The size of these models created by MAGIC does not di-
rectly depend on the size of the source code, it only depends
on the size of the code that is concerned with relevant prop-
erties. In our example, when reasoning about energy con-
sumption is related to inactivity time, the size of the model
depends on the number of locations where the inactivity
timer is updated, not on how much data is written to the
connection in between.

Figure O shows a state of a model generated by MAGIC.
Such a state contains a set of predicates, which are all true
while the system is in that state. MAGIC uses C code as
notation, so the boolean value true is represented by the
number 1 and the boolean value false by the number 0. The
arrows represent the possible transitions between the states.

v

/PO::temp_Var_14 = inactivity >= t1

~N

tl <1 11300 <energy

tl <= inactivity + 1 11 300 < energy

0<tl
inactivity + 1 <tl
_ i 1<tl && 1)
Figure 2: State of refined model generated by
MAGIC

7200 — oo)
— | 300 <energy

inactivity + 1 <tl

1 <tl
300 < energy
0<tl

PO::temp_var_14 = inactivity >= tl\

300 < energy

inactivity + 1 <tl

inactivity + 1 <tl
1<tl

Figure 3: Excerpt of simplified over-abstraction

3.1.2 Automatically simplifying derived RUMs

Even though the models created by MAGIC only contain
details that are related to the key properties, the models are
larger than the size we envision for RUMs. This is mainly
because MAGIC only wants to keep the models small enough
to perform model checking, but we would ideally keep them
small enough to be human readable, which is much smaller.
Therefore, we post-process the models generated by MAGIC
to reduce their size, using the transformations outlined in
the following paragraphs.

First, we decide which variables we consider important.
For example, when we want to know the relation between
inactivity time t; and energy, the variables inactivity, t1,
and energy are important. For every state, we remove all
predicates that do not contain a variable of interest, to hide
unimportant details of the system. This does not reduce the
number of states, but—in general-—creates many states that
are similar because they have the same predicates.

Second, we simplify the predicates of each state. Using
the CVC3 theorem prover [2] we identify both (1) predi-
cates that are always true because they are implied by other
predicates and (2) parts of disjunctions that are always false
because they contradict other predicates, and remove these
from the predicates. For example, the state shown in Figure
D is equivalent to the rightmost state of Figure B.

Third, we reduce the number of states by merging equiv-
alent states. We do this by calculating the stutter bisimula-
tion quotient [I]. Stutter equivalence considers state changes
invisible if the truth value of the predicates does not change,
that is, if two states have exactly the same predicates. Thus,
the stutter bisimulation quotient is a smaller transition sys-
tem, because it removes such invisible transitions.

3.1.3 Application of CEGAR

The media player application of our example consists of
several components, among which is a Network Manager.
This Network Manager is not designed specifically for the
media player, but is a component that exists already before
the media player is designed. Therefore, it is desirable to au-
tomatically create a RUM for the Network Manager, based
on its source code.

To show that this is possible, we have written a simple
network manager in C. The key property we used is that
as long as the inactivity timer is less than ¢;, the network
manager consumes no more than 300mA. In MAGIC, this
key property K can be defined as follows:

K= (
{inactivity = [$0 < t1 &% energy <= 300]} -> K |
{inactivity = [$0 >= t1]} -> K

).

Property K states that whenever inactivity changes to
a value strictly less than t1, the energy consumption must
be less than 300 mA and afterwards K must hold again. If
inactivity changes to a value greater than ¢;, there is no
requirement except that K must still hold.

MAGIC can indeed prove that this key property holds and
provides us with an over-abstraction of 429 states. We sim-
plify this over-abstraction with a script that performs the
simplifications described in the previous subsection. This
simplification outputs an over-abstraction of 60 states. Thus,
a single key property results in a model that is reasonably
small; nearly small enough to be human readable, and we
are still investigating further simplifications.

3.2 Model Checking RUMs

After creating the RUMs of all components, the resource
utilization of the whole software system is specified by the
composition of these RUMs. This composition consists of
many parallel state charts, which is too large to easily ana-
lyze by hand. Therefore, using a model checker is necessary.

It would be nice if creating RUMs and model checking
them could be performed with the same tool, but unfor-
tunately we have not found a tool that facilitates both.
MAGIC focuses on automatically extracting models, but
does not provide the ability to manually create models for
newly designed components, such as the Media Player com-
ponent. In a technical report [B], we show how UPPAAL can
be used to provide additional analysis of RUMs. Figure @
shows the energy consumptions of three different controllers
of a media player, which were analyzed in UpPPAAL. This
shows that UPPAAL indeed facilitates analyzing energy con-
sumption based on RUMs. However, the RUMs used for this
analysis were created manually; converting RUMs extracted
by MAGIC to UPPAAL is still ongoing work.

4. RELATED WORK

A wide range of techniques and mechanisms are being
proposed for making software green. These are usually dedi-
cated solutions or frameworks for facilitating optimizations,
for example, at the level of operating systems [B0], at the
level of compilers [I3], or at the system level [28]. Recently,
more emphasis is put on modeling and analyzing energy-
consumption at the application level.

The need for reflecting energy consumption of software in
design models is also studied by Sahin et al. [28]. However,

Media Player Energy Consumption
45 T

Media Player
Media Player, Burst Downloads -=-----
40 Media Player, Burst Downloads and Fast Dormancy --------- 4

35+ A

30

20

Power (mWh)

15

10 -

0 50 100 150 200 250
Time (seconds)

Figure 4: Analysis of scenario

in contrast to our approach, no concrete method or tools
are provided to model resource utilization of components,
to (automatically) derive RUMs and to analyze them.

Gotz et al. [T9] propose a model-driven component-based
approach for software systems that can be optimized w.r.t.
their provided quality and energy consumption at runtime.
In this approach, operational modes of components and the
resource utilization in each mode are specified as a state
machine at the interface level. The optimization problem
is defined as an integer linear program (ILP); an ILP solver
determines an optimized configuration of software. We iden-
tify two difficulties in adopting this approach. First, man-
ual identification of components’ resource behavior can be
error-prone, and second, this approach assumes that the im-
plementation of components fulfills their specified resource
utilization, where this may not be the case in reality. We
overcome these by automating the derivation of RUMs from
concrete models (e.g. implementations) by means of key
properties. Since key properties are checked in the models
during the derivation process, it is possible to identify that
the concrete models fulfill the desired resource utilization.

Deriving detailed information about the energy modes
of applications and the amount of energy consumption in
each mode is a challenging task. In our approach, we as-
sumed that information about energy/resource consump-
tion is available in the implementation as annotations over
which we can evaluate key properties. Several approaches,
discussed below, investigate tools to obtain energy models
of software. The accuracy of models depends on the gran-
ularity of instrumentations to obtain energy consumption
information. Hihnel et al. [20] utilizes Running Average
Power Limit (RAPL) energy sensors available in recent In-
tel CPUs to measure the energy consumption of short code
paths (e.g. individual functions). Powerscope [[7] facilitates
profiling the total energy consumed during a certain time
period in each process and/or procedure. Eprof [25, 24| is
a fine-grained energy profiler for smart-phone apps, which
instruments the app source code for tracing the energy con-
sumption of system calls and application calls. As a result
of tracing, Eprof generates a finite state machine depicting
various energy modes and energy consumption of apps.

The above-mentioned approaches profile the energy con-
sumption for a subset of the behavior of applications, i.e.

the behavior that is executed. Hence, the derived energy
models are under-abstractions, and as we discussed in Sec-
tion 2, by adopting under abstractions we cannot provide
guarantees over the overall resource utilization of the ap-
plications. Therefore, these approaches can be regarded as
complementary to ours; we can use the energy models re-
sulting from these approaches to annotate RUMs with more
accurate information about the energy consumption of each
provided /required service of components.

The approach eLens [Z1] combines per-instruction mod-
eling with program analysis to create fine-grained estimates
of energy consumption. However, their approach does not
consider abstractions or existence of various power states.
Therefore, our approach is more suitable for large software
systems, but the fine-grained estimates of eLens might be
usable as energy input for our approach.

Extending software with energy optimization functional-
ity is a typical way to make software energy adaptive [I8,
9, [5]. In contrast to our approach, these approaches fix
the optimization functionality, and do not provide means to
analyze the impact of various optimizers on the overall en-
ergy consumption of software to guide designers to choose
suitable optimizers accordingly.

5. CONCLUSION AND FUTURE WORK

In this paper, we have shown how (formal) tool support
for defining RUMs can be provided. For giving guarantees,
RUMs must be over-abstractions of the actual behavior, so
that model checkers can take all possible execution traces
into account. We have presented how to use the tool MAGIC
and post-process its output to automatically extract RUMs
from existing component implementations.

Our approach generates over-abstractions by formally an-
alyzing source code, which is an advantage over testing-
based approaches. This is because such approaches can only
consider a subset of the possible behavior of software. Thus
they cannot give guarantees as we do.

Our ongoing work is completing the full integration of
abstract models from MAGIC into UppAAL. We already
have intermediate results in transforming the models, mainly
lacking a proper transformation of the timing information
from the MAGIC to the UPPAAL formalism.

In future work, we want to adopt energy profilers to anno-
tate RUMs with more accurate information about the energy
consumption of each state. For this purpose, we will investi-
gate combining our approach based on formal analysis with
test-based approaches, which physically measure the energy
consumption such as JouleUnit [29] or Eprof [25, P4].

The approach presented in this paper focuses on the ex-
traction of RUMs from components with existing implemen-
tations. We want to research integrating this approach into
a full design method which also includes creating RUMs
for newly designed components (i.e., without existing imple-
mentation). A preliminary study of this is discussed in pre-
vious work [H]. The main challenge for integration is guar-
anteeing correctness. Since, in general, checking whether a
model is an over-abstraction is unfeasible, models created
by CEGAR are over-abstractions by construction, whereas
manually designed models provide no such guarantee.

We furthermore intend to develop a library of RUMs de-
rived from implementations of standard components, such as
fixed network implementations, and power considerations, in
order to allow their reuse as various optimization strategies

for different applications are analyzed. Finally, we want to
explore the possibility to discover optimization opportuni-
ties using model checkers, as outlined in Section 2.

[10]

[12]

[13]

14

[15]

REFERENCES

C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT Press Cambridge, 2008.

C. Barrett and C. Tinelli. CVC3. In W. Damm and
H. Hermanns, editors, Proc. 19" Int. Conf. on
Comput. Aided Verification (CAV ’07), volume 4590
of LNCS, pages 298-302. Springer-Verlag, July 2007.
Berlin, Germany.

D. Beyer, T. A. Henzinger, R. Jhala, and

R. Majumdar. The software model checker Blast:
Applications to software engineering. Int. J. Softw.
Tools Technol. Transf., 9(5), 2007.

S. te Brinke, C. Bockisch, L. Bergmans, S. Malakuti,
M. Aksit, and S. Katz. Deriving minimal models for
resource utilization. In GIBSE ’13 [I¥], pages 15-18.
S. te Brinke, S. Malakuti, C. M. Bockisch, L. M. J.
Bergmans, and M. Aksit. A design method for
modular energy-aware software. In Proc. ACM
Sympos. Appl. Comput. ACM, 2013.

S. te Brinke, S. Malakuti Khah Olun Abadi, C. M.
Bockisch, L. M. J. Bergmans, and M. Aksit. A design
method for modular energy-aware software. Technical
Report TR-CTIT-12-28, Centre for Telematics and
Information Technology, University of Twente, 2012.
S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C.
Trans. Softw. Eng. (TSE), 30(6):388-402, June 2004.
S. Chaki, E. Clarke, A. Groce, J. Ouaknine,

O. Strichman, and K. Yorav. Efficient verification of
sequential and concurrent C programs. Formal
Methods in Syst. Des. (FMSD), 25(2-3):129-166, 2004.
S. Chaki, E. Clarke, A. Groce, and O. Strichman.
Predicate abstraction with minimum predicates. In
D. Geist and E. Tronci, editors, Correct Hardware
Des. and Verification Methods, volume 2860 of LNCS,
pages 19-34. Springer Berlin Heidelberg, 2003.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In

E. Emerson and A. Sistla, editors, Comput. Aided
Verification, volume 1855 of LNCS, pages 154-169.
Springer Berlin Heidelberg, 2000.

E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
SATABS: SAT-based predicate abstraction for
ANSI-C. In TACAS, volume 3440 of LNCS. Springer,
2005.

E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244-263, Apr. 1986.
M. Cohen, H. S. Zhu, E. E. Senem, and Y. D. Liu.
Energy types. SIGPLAN Not., 47(10):831-850, Oct.
2012.

C. Disenfeld and S. Katz. Specification and verification
of event detectors and responses. In Proc. Int. Conf.
on Aspect-Oriented Softw. Devel. (AOSD), 2013.

Y. Fei, L. Zhong, and N. K. Jha. An energy-aware
framework for dynamic software management in

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

(24]

(25]

(26]

27]

28]

29]

30]

mobile computing systems. ACM Trans. Embed.
Comput. Syst., 7(3):27:1-27:31, May 2008.

J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In Proc. 17%" ACM
Sympos. on Operating Syst. Principles, SOSP 99,
pages 48-63, New York, NY, USA, 1999. ACM.

J. Flinn and M. Satyanarayanan. Powerscope: a tool
for profiling the energy usage of mobile applications.
In Proc. 2™ IEEE Workshop on Mobile Comput. Syst.
and Appl., pages 2-10, 1999.

Proc. 2013 Workshop on Green in/by Softw. Eng.,
GIBSE 13, New York, NY, USA, Mar. 2013. ACM.
S. Gotz, C. Wilke, S. Cech, and U. Assmann.
Architecture and mechanisms for energy auto tuning.
In Proc. Sustainable ICTs and Manag. Syst. for Green
Comput., 2012.

M. Héhnel, B. Dobel, M. Volp, and H. Héartig.
Measuring energy consumption for short code paths
using RAPL. SIGMETRICS Perform. Eval. Rev.,
40(3):13-17, Jan. 2012.

S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
Estimating mobile application energy consumption
using program analysis. In Proc. 2018 Int. Conf.
Softw. Eng., ICSE 13, pages 92-101, Piscataway, NJ,
USA, 2013. IEEE Press.

S. Malakuti, S. te Brinke, L. M. J. Bergmans, and

C. M. Bockisch. Towards modular resource-aware
applications. In Proc. 3"% Int. Workshop on Variability
& Composition (VariComp 2012), pages 13-17, New
York, March 2012. ACM.

Z. Manna and A. Pnueli. The temporal logic of
reactive and concurrent systems. Springer-Verlag New
York, Inc., 1992.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with Eprof. In Proc. 7"
ACM Eur. Conf. Comput. Syst., EuroSys '12, pages
29-42, New York, NY, USA, 2012. ACM.

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M.
Wang. Fine-grained power modeling for smartphones
using system call tracing. In Proc. 6! Conf. Comput.
Syst., EuroSys '11, pages 153-168, New York, NY,
USA, 2011. ACM.

C. Sahin, F. Cayci, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh. Towards power reduction through
improved software design. In Energytech, 2012 IEEE,
pages 1-6, 2012.

C. Szyperski. Component software: beyond object-
oriented programming. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1998.

N. Vijaykrishnan, M. Kandemir, M. Irwin, H. Kim,
and W. Ye. Energy-driven integrated hardware-
software optimizations using SimplePower. In Proc.
ISCA ’00, 2000.

C. Wilke, S. Gotz, and S. Richly. JouleUnit: a generic
framework for software energy profiling and testing. In
GIBSE ’13 [[¥], pages 9-14.

H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
ECOSystem: managing energy as a first class
operating system resource. SIGOPS Oper. Syst. Rev.,
36(5):123-132, Oct. 2002.

	Introduction
	Design Approach for Resource-Aware Component-Based Software
	Identifying Key Properties
	Modeling Resource Behavior
	Abstraction over component implementation
	Guarantees on component resource utilization

	Analyzing Resource Behavior and Selecting Optimizer

	Tool Support
	CEGAR
	Using CEGAR for deriving RUMs
	Automatically simplifying derived RUMs
	Application of CEGAR

	Model Checking RUMs

	Related Work
	Conclusion and Future Work
	References

