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ABSTRACT
Processes can synchronize their states by exchanging mes-
sages. System crashes and network failures may cause mes-
sage loss, so that state changes of a process may remain
unnoticed by its partner processes, resulting in state incon-
sistency or deadlocks. In this paper we define a method
to transform a business process into its recovery-enabled
counterpart. We also discuss the correctness proof of the
transformation, and the performance evaluation of our pro-
totype implementation. In our previous work, we presented
solutions to these synchronization problems that were based
on rather strong assumptions. For example, specific failure
patterns or interaction patterns (one client instance inter-
acts with one server instance) were assumed. In this paper,
the solution is extended to multiple process instances with
more possible synchronization failures.

Keywords
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tion, Business Process, WS-BPEL

1. INTRODUCTION
Electronic data interchange has grown significantly in the

last decade. Often data interchange is based on collabo-
rative processes run by different parties exchanging mes-
sages to coordinate the execution of their business processes.
At runtime, each process instance maintains its state. The
state change of one party is synchronized with its partners
via messages exchange. A message loss may happen due to
the possibility of system crashes and network failures,thus
a state change by one party may remain unnoticed by the
other parties. This may result in inconsistent states or even
dead-locks. Thus robust state synchronization mechanisms
are necessary to guarantee proper collaborative process ex-
ecution. Possible synchronization failures can be seen from
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Figure 2: Our Idea

a screen dump of an error after a system crash of an orches-
tration engine such as Apache ODE (see Fig. 1)

A possible failure situation is illustrated in Fig. 2a) us-
ing a simple purchase process. In the purchase process, the
initiator1 submits the order, and we assume that a system
crash occurs afterwards. During the failure of initiator1, re-
sponder sends its result message and changes into state s2.
The responder further changes from state s2 to s2′ due to a
synchronization with initiator2 also submitting an order. A
request is said to be “idempotent” [15] if the operation can
be safely repeated. However, the message submit(order) is
not idempotent. We can conclude this because the respon-
der changes its state from s1 to s2 after receiving message
submit(order). If the initiator1 recovers simply by resend-
ing the submit(order) message, which as a consequence trig-
gers further responder state change from s2′ to s3′ (possible
order re-processing) and a result’ message, which most prob-
ably will be different from the original response result1.

A private interaction pattern [1] (see Fig. 3a) represents
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Figure 3: Multiple Processes Instances Shared State
Types

a state synchronization between a pair of client and server
instances. While a shared, static interaction (see Fig. 3b)
means that state is shared between multiple client instances
and static number of server instances. We present in [8]
a method to determine non-idempotent operations. In this
paper we propose an approach addressing the more complex
shared, static interaction with non-idempotent operations.
The basic idea (see Fig. 2b) behind it is to cache the re-
sponse of non-idempotent operations. In case a request is
resent in the context of a recovery action, the request is not
executed again and the cached response is returned. In our
previous work, we presented solutions to these problems that
were based on rather strong assumptions. In [16], a private
interaction pattern is assumed. In [8] we extend our solu-
tion to cover the shared, static interaction pattern, however,
only one possible synchronization failure is considered. In
this paper, the solution is extended to cope with the more
complex shared, static interaction pattern with more types
of synchronization failures.

We assume that in the case of server crashes or network
failures, the state of the business process can be restored
once recovered. This is a reasonable assumption, since most
available business process engines, such as Apache ODE,
work in this way. We choose WS-BPEL [12] as an illustrative
process specification language, because as an OASIS stan-
dard it is widely used by enterprises. However, our mecha-
nisms are applicable to other process specification languages
that support similar workflow patterns [17]. The structure
of the paper is the following. Section 2 analyzes possible syn-
chronization failures. Section 3 proposes our process trans-
formation based solution. Section 4 evaluates our solution.
Section 5 discusses related work and Section 6 concludes our
paper.

2. SYNCHRONIZATION FAILURE ANAL-
YSIS

Possible synchronization failures with regards to system
crash and network failure are service unavailable, pending
request failure and pending response failure [16]. All these
synchronization failures are shown in Fig. 4. A service un-
available failure (marked as XSU ) happens if the responder
system crashes or the network fails before a request message
is delivered. A pending request failure (marked as XREQ)
happens if the initiator crashes after sending the request and
before receiving the response message. A pending response
failure (marked as XRESP ) happens if the responder system
crashes after receiving the request but without sending the
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Figure 4: Possible Synchronization Error
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Figure 5: Transformed Initiator Process

response message. Another reason for a pending response
failure is that the network fails when delivering the response
message.

The difficulty of recovery is twofold. First, a responder
state change from s1 to s2 is triggered by a synchroniza-
tion (order message submission from single client). Second,
because multiple initiator instances (initiator1, initiator2)
synchronize their states with one responder instance, if pend-
ing request failure happens, further state changes are still
possible. The server instance may not stay in state s2 and
may change into a state s2′ due to synchronization with
another initiator instance (initiator1).

3. RECOVERY METHOD
Our idea is to transform the original process into a recovery-

enabled process. On the initiator side, the main idea of the
transformation is to resend the request message whenever a
synchronization failure is detected. On the responder side,
the transformation adds a caching capability, i.e., the re-
sponse message for a newly incoming message representing
a non-idempotent operation is cached. If the responder re-
ceives a resent message from the initiator due to a failure,
the responder replies the cached response message and does
not execute the operation again. In the following we discuss
the initiator and responder transformations.

3.1 Initiator Transformation
The initiator starts a state synchronization by executing

an invoke activity. The transformation of the invoke activ-
ity is shown as Fig. 5. The invoke activity is nested within a
scope activity with an exception handler. If a synchroniza-
tion failure happens (marked as XSU , XReq, XResp), the
exception handler in the scope can be executed, i.e., adding
a delay before retrying using a wait activity. A failure is
detectable in many WS-BPEL process engines, e.g., Apache
ODE. The scope activity is inside a while activity to imple-
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Figure 6: Transformation of the Responder Process

ment a retry behavior. If the invoke activity finishes without
failure, an assign activity is used to alter the value of the
variable $retry to 0 to end the while iteration.

3.2 Responder Transformation
The original responder process is shown in Fig. 6a. The

process receives an order message, processes it, and sends
a response. The transformed responder process is shown
as Fig. 6b. The state synchronization consisting of a re-
quest response pattern is split into an asynchronous request
to send the original order message, and a request response
pattern to query the response, thus the result of the original
request.

In the first step, the responder receives a messageOrderMsg
(the left branch of the pick activity in the while iteration in
Fig. 6b). This is a one-way message, so that the responder
does not send a response, thus pending request or response
failure are avoided. After receiving the order message, an if
activity is used to check whether the order is cached. If the
order is cached, this implies that the order has been pro-
cessed before and this is a resent message due to failure. In
this case the responder does nothing (empty activity). If the
order is not cached, the responder processes the order and
adds the result to the cache.

In the second step, the responder receives the query mes-
sage from the initiator. The WS-BPEL correlation mecha-
nism can be used to correlate the query message with the
corresponding order message. If the order is cached, the re-
sponder will use the cached response message as a reply. If
the request is not cached, the responder sends a message
BusyMsg to indicate to the initiator that the processing is
not finished.

The two steps are placed via a pick activity in a while
iteration to support the interaction with multiple client in-
stances and retries per instance.

After the transformation, the possible types of failures
are marked as X1, X2 and X3. Failure X1 is a service un-
available failure and can be compensated by the initiator’s
transformation support to resend a message. Failure X2 is a
pending response failure. The initiator can detect the failure
by not receiving the response message and recover by resend-
ing the query message. On the responder side, the resend
message is replied with a cached response. Failure X3 hap-
pens in a control flow outside a synchronization block, thus,

this error does not affect the state synchronization with the
initiator.

3.2.1 Implementation of Cache Related Operations
The cache is declared as a process variable in WS-BPEL

with an XML structure of entries. Each entry is a mapping
from request message to response message. A sample cache
entry is shown as the following.

<cache>

<cacheEntry >

<requestEntry >

<requestMsg />

</requestEntry >

<responseEntry >

<responseMsg />

</responseEntry >

</cacheEntry >

<cacheEntry .../>

</cache>

The cache operations are pre-defined using XSLT to op-
erate on the cached XML data. The invocation of cache
operation is an “assign” activity. We use the standard WS-
BPEL function doXslTransform() in the assign with a pre-
defined XSLT script to manage the cache. A sample read
cache activity is shown as the following.

<bpel:assign >

<bpel:copy >

<bpel:from >

bpel:doXslTransform(

"testCached.xsl", $cache ,

"requestMsg", $requestMsg)

</bpel:from >

<bpel:to >$foundCachedRequest </bpel:to >

</bpel:copy >

</bpel:assign >

3.2.2 Adapter Design
As the transformation defined so far, there is a mismatch

in the interaction patterns expected by the transformed re-
sponder and the transformed initiator. To solve this prob-
lem, the initiator is further transformed. In case it is not
possible to modify the initiator, we have to place an adapter
between the initiator and the responder to mediate this mis-
match.

The design of the adapter process is shown in Fig. 7. The
adapter receives an order message from the initiator. In the
following while iteration, it forwards the message to the re-
sponder (activity invoke1 ). Then it sends the query message
to ask the responder for the result (activity invoke2 ). If the
result message is replied ([$reply = result]), the while iter-
ation is terminated by changing the value of the conditional
variable $finish to yes. If the result message is MBusy,
which indicates that the responder is still processing, a wait
activity is executed to introduce a delay and then the outer
while iteration sends the query message again. Finally, the
result message is replied to the initiator. Both invoke ac-
tivities are defined in the while iteration, because the first
invoke activity is a one-way message exchange, which is non-
blocking. If the first invoke activity is defined outside the
while iteration, it is possible that the transport layer delivers
the second message (query) before the first message (order).
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From the initiator point of view, the adapter is designed
as a stateless process: each client request triggers a new
adapter creation. In the case of an adapter failure, this
is a pending response failure from the client point of view.
This triggers the client to resend the request message, which
creates a new adapter instance to fulfill the synchronization.

3.2.3 Design Considerations of Generic Adapter
If we deploy a separate adapter for each specific initiator

and responder, lots of adapter instances are created, which
will probably increase the processing overhead. Another op-
tion is to re-use a generic adapter for all initiators and re-
sponders. Three related design considerations are discussed
in the following. First, the messages delivered to and from
adapters should be independent from the initiator and re-
sponder processes. The parts of the message should refer to
a generic typed element or declared as a generic type, such
as “xsd:anyType”. The drawback is due to the correlation
mechanism of WS-BPEL. In particular, for different mes-
sages different correlation set configurations are required,
which makes it necessary to distinguish messages, which is
not the case with anyType. Second, the responder process
should describe its operations in a process-independent way.
The generic adapter should not refer to any responder spe-
cific operations, e.g., process specific port type definitions
in their WSDL. The drawback is that the responder cannot
use the control flow branching activities (like “pick” in WS-
BPEL), because all messages are generic types and dedicated
to generic process operations. Finally, a generic addressing
mechanism is required to forward an incoming message to a
proper responder, for example, by mapping specific informa-
tion of an incoming message to the address of the responder.
This can be achieved by using a mapping from message to
responder addresses in XSLT. In WS-BPEL, the function
doXslTransform(inMsg, XSLT) can be used to query the re-
sponder address.

From the above discussion, we can see that the possibility
of using a generic adapter is quite limited. On the other
hand, with additional process management effort, a process-
specific adapter can still be automatically generated from
the initiator and responder services descriptions, e.g., their
WSDL descriptions.

4. EVALUATION
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Figure 8: Correctness Evaluation Setup

Figure 9: Correctness Criteria: One Way Message

We evaluate three aspect of our recovery mechanism: the
correctness of the process transformation, its performance
at runtime and the process design complexity.

4.1 Correctness Evaluation
Fig. 8 shows that the correctness proof is done in the fol-

lowing three steps. First, we prove that a process interaction
as shown in Fig. 6 is correct without system crashes or net-
work failures. Second, we prove that the process interaction
cannot pass the correctness criteria when a synchronization
failure happens. Finally, with the process transformation
method described in this paper, we prove that the process
interaction can finish successfully with regards to synchro-
nization failures.

4.1.1 Correctness Criteria
In this paper, correctness means that in the presence of a

system crash or network failure, all the synchronization can
be recovered. After a few retry messages are sent, all the
messages can be ultimately received. Formally, we model
the criteria of correctness using automata defined as tuple
A = (Q,Σ, δ, q0, F ). A criteria automata for a synchroniza-
tion using a one-way message M1 is shown in Fig. 9. The
state set Q contains all possible states. q0 is the initial state,
q1 is the state after M1 is sent and q2 is the state after the
message is finally received. The transition set Σ is the mes-
sage sending or receiving behavior {sendM1, receiveM1}.
F is the set of all acceptable states that we use to describe
that the synchronization finished successfully {q0, q2}. The
transition function is described as follows:
δ(q0, sendM1) = q1: The messageM1 is sent. δ(q1, sendM1) =
q1: If the message is not received, it may be re-sent multiple
times. δ(q1, receiveM1) = q2: The sent message finally got
received. δ(q2, sendM1) = q1: Message of the same type
is sent multiple times from sender. This is possible due to
specific process design: the send message activity could be
nested in an iteration (while loop). An additional criteria
model for synchronous interactions has been described in
our previous work [8].

4.1.2 Evaluation Process
In the evaluation, we model the WS-BPEL using Petri

Nets. In our previous work [8], a mapping of WS-BPEL
activities to a Petri Net model is specified. By simulating
the Petri Net model, we generate the corresponding occur-
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Table 1: Performance of Our Transformation
Workload Before Transformation After
λ = 5 645 ms 1607 ms
λ = 10 892ms 5419 ms

rence (automata) graph. Finally we prove the correctness
by proving that the generated automata is subsumed by the
criteria automata. The detailed proof is omitted here due
to page space limitations.

4.2 Performance Evaluation
The setup of our performance test is shown in Fig. 10. We

use the cloud infrastructure from Amazon EC2. The initia-
tor and responder processes are deployed on two computing
instances and we use a local client to collect the performance
data. We test the performance of the original process and
the transformed process under two different workloads. The
request sent per minute complies to a Poisson distribution
with parameters λ = 5 and λ = 10. Each test lasts for an
hour and the response times of the executions of the 30 min-
utes in the middle are collected. The performance data is
shown in Table 1.

Some performance overhead is caused by the set of process-
specific query intervals in the adapter process. After the re-
sponder finishes processing it can only send the reply after
the adapter has queried the result. For example, in our test,
the query interval is 1000ms and we see the response time
distribution in Fig. 11. The response time peak interval is
near 1000ms, which is the query interval. Another reason
could be the management of the adapter instances. At run-
time, each incoming request message triggers a new adapter
instance creation. As we use the limited EC2 instance type
in this evaluation (t1.micro with 1 vCpu and 0.613GiB mem-
ory), we expect better performance under scalable infras-
tructure, e.g., the auto scaling feature of cloud.
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Figure 11: Response Time Distribution

4.3 Transformation Complexity Evaluation
The illustrative responder process depicted in Fig. 6a con-

tains one receive and reply activity nested in a while itera-
tion to process the request messages from multiple clients.
The receive, process and reply activities are wrapped as a
sequence activity. Thus in total 4 activities are defined.
The pseudo-code of the corresponding transformed process
is shown as follows.

<bpel:while >

<bpel:condition >... </bpel:condition >

<bpel:pick >

<bpel:onMessage name="receiveParams" .>

<bpel:if name="isReqMsgCached">

<bpel:condition .></bpel:condition >

<bpel:sequence >

<!-- Some Process -->

<bpel:assign name="cacheResult" .>

</bpel:assign >

</bpel:sequence >

</bpel:if >

</bpel:onMessage >

<bpel:onMessage name="getResult">

<bpel:if >

<!-- Result is not added to cache -->

<bpel:condition >...</bpel:condition >

<bpel:reply variable="MBusy" . />

<!--Result is in cache.-->

<bpel:else >

<bpel:assign name="getCachedReply"/>

<bpel:reply name="replyResult" />

</bpel:else >

</bpel:if >

</bpel:onMessage >

</bpel:pick >

</bpel:while >

Without introducing the process design details we can no-
tice the complexity of the transformed process. In total 9
activities are defined. However, in our approach this com-
plexity is not revealed to process designers, since the process
can be transformed automatically into its recovery-enabled
counterpart during deployment.

5. RELATED WORK
Exception handling [2, 14] is process-specific. WS-BPEL

supports compensations of well-defined exceptions using ex-
ception handlers. However, elaborate process handler design
requires process-specific knowledge of failure types and their
related recover strategies. Alternatively, we try to ease the
process designers from dealing with synchronization failures
by a transparent process transformation from a given busi-
ness process to its recovery-enabled counterpart. If a system
is to be fault tolerant, it can better try to hide the occur-
rence of failures by applying redundancy [15]. Three kinds
of redundancy are possible: information redundancy, time
redundancy, and physical redundancy.

Fig. 12 shows that physical redundancy is a recovery abil-
ity of the infrastructure. The solutions discussed in [10, 9,
3] are implemented as process engine plug-in, which makes
them dependent of a specific process engine. We defined our
solution based on the WS-BPEL building blocks without re-
quiring extensions at engine level. The transformed process
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can still be migrated to other standard process engines. Re-
liable network protocols such as HTTPR and WS-RX are
proposed to provide reliable synchronization. However, the
deployment of these solutions increase the complexity of the
network infrastructure. We assume that system crashes and
network failures are rare events, thus extending the infras-
tructure introduces too much overhead. Further, the solu-
tions are not applicable in some out sourced deployment en-
vironment. For example, in some cloud computing environ-
ments, user-specific infrastructure configuration to enhance
synchronization is not possible. Dynamic service substitu-
tion [6, 7] is a way to perform recovery by replacing the
target services by equivalent services. In [11, 5, 4], the QoS
aspects of dynamic service substitution are considered. In
our work, we do not change the business partners at run
time.

Information redundancy recovery is based on replication.
Our cached-based process transformation is information re-
dundant because a cache is a kind of replication. Time re-
dundancy solutions include web services transactions. The
WS-AT standard specifis atomic transactions, while WS-
BA standard specifis a relaxed transactions that the partic-
ipant can choose to leave the transaction before it commits.
However, if a transaction rolls back, a process-specific com-
pensation is required. Actually, transactions can deal with
well-defined failures. The 2 phase commit distributed trans-
action protocol can not deal with system crash (referred to
as cite failure in [13]). In a special case of process in which
that all participants send the vote result to a coordinator, if
the coordinator crashes before sending the vote result to any
participant, all the participants are blocked without know-
ing the final results of the transaction.

6. CONCLUSIONS
In this paper, we propose a process synchronization failure

recovery method with regards to system crashes and network
failures. We analyze possible synchronization failures and
we propose a recovery method to transform a business pro-
cess into its recovery-enabled counterpart. We have proved
the correctness of our process transformations and we imple-
mented a prototype to test the runtime performance of our
method. In future, synchronization failures of more complex
process interactions patterns should be taken into consider-
ation.
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