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Abstract
We study some essential arithmetic properties of a new tree-based
number representation, hereditarily binary numbers, defined by
applying recursively run-length encoding of bijective base-2 digits.

Our representation expresses giant numbers like the largest
known prime number and its related perfect number as well as
the largest known Woodall, Cullen, Proth, Sophie Germain and
twin primes as trees of small sizes.

More importantly, our number representation supports novel
algorithms that, in the best case, collapse the complexity of various
computations by super-exponential factors and in the worse case
are within a constant factor of their traditional counterparts.

As a result, it opens the door to a new world, where arith-
metic operations are limited by the structural complexity of their
operands, rather than their bitsizes.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—Data types
and structures

General Terms Algorithms, Languages, Theory

Keywords arithmetic computations with giant numbers, heredi-
tary numbering systems, declarative specification of algorithms,
compressed number representations, compact representation of
large primes

1. Introduction
Number representations have evolved over time from the unary
“cave man” representation where one scratch on the wall repre-
sented a unit, to the base-n (and in particular base-2) number sys-
tem, with the remarkable benefit of a logarithmic representation
size. Over the last 1000 years, this base-n representation has proved
to be unusually resilient, partly because all practical computations
could be performed with reasonable efficiency within the notation.

However, when thinking ahead for the next 1000 years, com-
putations with very large numbers are likely to become more and
more “natural”, even if for now, they are mostly driven by purely
theoretical interests in fields like number theory, computability or
multiverse cosmology. Arguably, more practical needs of present
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and future cryptographic systems might also justify devising al-
ternative numbering systems with higher limits on the size of the
numbers with which we can perform tractable computations.

While notations like Knuth’s “up-arrow” [1] or tetration are use-
ful in describing very large numbers, they do not provide the abil-
ity to actually compute with them – as, for instance, addition or
multiplication with a natural number results in a number that can-
not be expressed with the notation anymore. More exotic notations
like Conway’s surreal numbers [2] involve uncountable cardinali-
ties (they contain real numbers as a subset) and are more useful for
modeling game-theoretical algorithms rather than common arith-
metic computations.

The novel contribution of this paper is a tree-based numbering
system that allows computations with numbers comparable in size
with Knuth’s “arrow-up” notation. Moreover, these computations
have a worse case complexity that is comparable with the tradi-
tional binary numbers, while their best case complexity outper-
forms binary numbers by an arbitrary tower of exponents factor.
Simple operations like successor, multiplication by 2, exponent of
2 are practically constant time and a number of other operations
benefit from significant complexity reductions.

For the curious reader, it is basically a hereditary number sys-
tem [3], based on recursively applied run-length compression of a
special (bijective) binary digit notation.

A concept of structural complexity is introduced, based on the
size of our tree representations and it is shown that several “record
holder” large numbers like Mersenne, Cullen, Woodall and Proth
primes have unusually small structural complexities.

We have adopted a literate programming style, i.e. the code
contained in the paper forms a self-contained Haskell module
(tested with ghc 7.6.3), also available as a separate file at http:
//logic.cse.unt.edu/tarau/research/2013/hbin.hs . Al-
ternatively, a Scala package implementing the same tree-based
computations is available from http://code.google.com/p/
giant-numbers/. We hope that this will encourage the reader to
experiment interactively and validate the technical correctness of
our claims. The Appendix contains a quick overview of the subset
of Haskell we are using as our executable function notation.

The paper is organized as follows. Section 2 gives some back-
ground on bijective base-2 numbers and iterated function applica-
tions. Section 3 introduces hereditarily binary numbers. Section 4
describes practically constant time successor and predecessor oper-
ations on tree-represented numbers. Section 5 shows an emulation
of bijective base-2 with hereditarily binary numbers and section 6
describes novel algorithms for arithmetic operations taking advan-
tage of our number representation. Section 7 defines a concept of
structural complexity and studies best and worse cases. Section 8
describes efficient tree-representations of some important number-
theoretical entities like Mersenne, Fermat, Proth, Woodall primes.
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Section 10 discusses related work. Section 11 concludes the paper
and discusses future work.

2. Natural numbers as iterated function
applications

Natural numbers can be seen as represented by iterated applications
of the functions o(x) = 2x+ 1 and i(x) = 2x+ 2 corresponding
the so called bijective base-2 representation [4] together with the
convention that 0 is represented as the empty sequence. As each
n ∈ N can be seen as a unique composition of these functions we
can make this precise as follows:

DEFINITION 1. We call bijective base-2 representation of n ∈ N
the unique sequence of applications of functions o and i to ε that
evaluates to n.

With this representation, and denoting the empty sequence ε, one
obtains 0 = ε, 1 = o ε, 2 = i ε, 3 = o(o ε), 4 = i(o ε), 5 = o(i ε)
etc. and the following holds:

i(x) = o(x) + 1 (1)

2.1 Properties of the iterated functions on and in

PROPOSITION 1. Let fn denote application of function f n times.
Let o(x) = 2x + 1 and i(x) = 2x + 2, s(x) = x + 1 and
s′(x) = x − 1. Then k > 0 ⇒ s(on(s′(k)) = k2n and
k > 1⇒ s(s(in(s′(s′(k)))) = k2n. In particular, s(on(0)) = 2n

and s(s(in(0))) = 2n+1.

Proof By induction. Observe that for n = 0, k > 0, s(o0(s′(k)) =
k20 because s(s′(k))) = k. Suppose that P (n) : k > 0 ⇒
s(on(s′(k))) = k2n holds. Then, assuming k > 0, P(n+1) follows,
given that s(on+1(s′(k))) = s(on(o(s′(k)))) = s(on(s′(2k))) =
2k2n = k2n+1. Similarly, the second part of the proposition also
follows by induction on n.

The underlying arithmetic identities are:

k > 0⇒ 1 + on(k − 1) = 2nk (2)

k > 1⇒ 2 + in(k − 2) = 2nk (3)
from where one can deduce

on(k) = 2n(k + 1)− 1 (4)

in(k) = 2n(k + 2)− 2 (5)
and in particular

on(0) = 2n − 1 (6)

in(0) = 2n+1 − 2 (7)
Also, one can directly relate ok and ik

on(k) + 2n = in(k) + 1 (8)

in(k) = on(k) + on(0) (9)

on(k + 1) = in(k) + 1 (10)

2.2 The iterated functions on, in and their conjugacy results
Results from the theory of iterated functions apply to our opera-
tions. The following proposition is proven in [5]:

PROPOSITION 2. If f(x) = ax+ b with a 6= 1, let x0 be such that
f(x0) = x0 i.e. x0 = b

1−a . Then fn(x) = x0 + (x− x0)an.

For a = 2, b = 1 and respectively a = 2, b = 2 this provides
an alternative proof for proposition 1.

A few properties similar to topological conjugation apply to our
functions

DEFINITION 2. We call two functions f, g conjugates through h if
h is a bijection such that g = h−1 ◦f ◦h, where ◦ denotes function
composition.

PROPOSITION 3. If f, g are conjugates through h then fn and gn

are too, i.e. gn = h−1 ◦ fn ◦ h.

Proof By induction, using the fact that h−1◦h = λx.x = h◦h−1.

PROPOSITION 4. on and in are conjugates with respect to s and
s′, i.e. the following 2 identities hold:

on(k) = s(in(s′(k))) (11)

in(k) = s′(on(s(k))) (12)

Proof An immediate consequence of i = s ◦ o (by 1) and Prop. 3.

Note also that proposition 1 can be seen as stating that on is
the conjugate of the leftshift operation l(n, x) = 2nx through
s(x) = x+ 1 (eq. 2) and so is in through s ◦ s (eq. 3).

The following equations relate successor and predecessor to the
iterated applications of o and i:

s(on(k)) = i(os
′(n)(k)) (13)

s(in(k)) = on(s(k)) (14)

s′(on(k)) = in(s′(k)) (15)

s′(in(k)) = o(is
′(n)(k)) (16)

By setting k = 2m+ 1 in eq. 2 we obtain:

1 + on(2m) = 2n(2m+ 1) (17)

As the right side of this equation expresses a bijection between
N × N and N+, so does the left side, i.e. the function c(m,n) =
1 + on(2m) maps pairs (m,n) to unique values in N+.

Similarly, by setting k = 2m+ 1 in eq. 3 we obtain:

2 + in(2m− 1) = 2n(2m+ 1) (18)

3. Hereditarily binary numbers
3.1 Hereditary Number Systems
Let us observe that conventional number systems, as well as the bi-
jective base-2 numeration system described so far, represent blocks
of 0 and 1 digits somewhat naively - one digit for each element of
the block. Alternatively, one might think that counting them and
representing the resulting counters as binary numbers would be
also possible. But then, the same principle could be applied recur-
sively. So instead of representing each block of 0 or 1 digits by as
many symbols as the size of the block – essentially a unary repre-
sentation – one could also encode the number of elements in such
a block using a binary representation.

This brings us to the idea of hereditary number systems. At our
best knowledge the first instance of such a system is used in [3], by
iterating the polynomial base-n notation to the exponents used in
the notation. We next explore a hereditary number representation
that implements the simple idea of representing the number of
contiguous 0 or 1 digits in a number, as bijective base-2 numbers,
recursively.



3.2 Hereditarily binary numbers as a data type
First, we define a data type for our tree represented natural num-
bers, that we call hereditarily binary numbers to emphasize that
binary rather than unary encoding is recursively used in their rep-
resentation.

DEFINITION 3. The data type T of the set of hereditarily binary
numbers is defined by the Haskell declaration:

data T = E | V T [T] | W T [T] deriving (Eq,Show,Read)

that automatically derives the equality relation “==”, as well as
reading and string representation. For shortness, We will call the
members of type T terms. The intuition behind the disjoint union
type T is the following:

• The term E (empty leaf) corresponds to zero
• the term V x xs counts the number x+1 of o applications fol-

lowed by an alternation of similar counts of i and o applica-
tions
• the term W x xs counts the number x+1 of i applications fol-

lowed by an alternation of similar counts of o and i applica-
tions
• the same principle is applied recursively for the counters, until

the empty sequence is reached

One can see this process as run-length compressed bijective base-2
numbers, represented as trees with either empty leaves or at least
one branch, after applying the encoding recursively.

These trees can be specified in the proof assistant Coq [6] as the
type T:

Require Import List.
Inductive T : Type :=
| E : T
| V : T -> list T -> T
| W : T -> list T -> T.

which automatically generates the induction principle:

Coq < Check T_ind.
hbNat_ind

: forall P : T -> Prop,
P E ->
(forall h : T, P h ->

forall l : list T, P (V h l)) ->
(forall h : T, P h ->

forall l : list T, P (W h l)) ->
forall h : T, P h

DEFINITION 4. The function n : T → N shown in equation 19
defines the unique natural number associated to a term of type T.

For instance, the computation of n(W (V E []) [E,E,E]) = 42 ex-
pands to (((20+1 − 1 + 2)20+1 − 2 + 1)20+1 − 1+2)22

0+1−1+1−
2. The Haskell equivalent of equation (19) is:

n E = 0
n (V x []) = 2^(n x +1)-1
n (V x (y:xs)) = (n u+1)∗2^(n x + 1)-1 where u = W y xs
n (W x []) = 2^(n x+2)-2
n (W x (y:xs)) = (n u+2)∗2^(n x + 1)-2 where u = V y xs

The following example illustrates the values associated with the
first few natural numbers.

0 = n E
1 = n (V E [])
2 = n (W E [])
3 = n (V (V E []) [])
4 = n (W E [E])
5 = n (V E [E])

Note that a term of the form V x xs represents an odd number
∈ N+ and a term of the form W x xs represents an even number
∈ N+. The following holds:

PROPOSITION 5. n : T→ N is a bijection, i.e., each term canoni-
cally represents the corresponding natural number.

Proof It follows from the equations 4, 5 by replacing the power of
2 functions with the corresponding iterated applications of o and i.

4. Successor (s) and predecessor (s’)
We will now specify successor and predecessor on data type T
through two mutually recursive functions defined in the proof as-
sistant Coq as

Fixpoint s (t:T) :=
match t with
| E => V E nil
| V E nil => W E nil
| V E (x::xs) => W (s x) xs
| V z xs => W E (s’ z :: xs)
| W z nil => V (s z) nil
| W z (E::nil) => V z (E::nil)
| W z (E::y::ys) => V z (s y::ys)
| W z (x::xs) => V z (E::s’ x::xs)
end
with
s’ (t:T) : T :=
match t with
| V E nil => E
| V z nil => W (s’ z) nil
| V z (E::nil) => W z (E::nil)
| V z (E::x::xs) => W z (s x::xs)
| V z (x::xs) => W z (E::s’ x::xs)
| W E nil => V E nil
| W E (x::xs) => V (s x) xs
| W z xs => V E (s’ z::xs)
| E => E (* Coq wants t total on T *)
end.

Note that our definitions are conforming with Coq’s requirement
for automatically guaranteeing termination, i.e. they use only in-
duction on the structure of the terms. Once accepting the defini-
tion, Coq allows extraction of equivalent Haskell code, that, in a
more human readable form looks as follows:

s E = V E []
s (V E []) = W E []
s (V E (x:xs)) = W (s x) xs
s (V z xs) = W E (s’ z : xs)
s (W z []) = V (s z) []
s (W z [E]) = V z [E]
s (W z (E:y:ys)) = V z (s y:ys)
s (W z (x:xs)) = V z (E:s’ x:xs)

s’ (V E []) = E
s’ (V z []) = W (s’ z) []
s’ (V z [E]) = W z [E]
s’ (V z (E:x:xs)) = W z (s x:xs)
s’ (V z (x:xs)) = W z (E:s’ x:xs)
s’ (W E []) = V E []
s’ (W E (x:xs)) = V (s x) xs
s’ (W z xs) = V E (s’ z:xs)

The following holds:

PROPOSITION 6. Denote T+ = T − {E}. The functions s : T →
T+ and s′ : T+ → T are inverses.

Proof It follows by structural induction after observing that pat-
terns for V in s correspond one by one to patterns for W in s’ and
vice versa.



n(t) =



0 if t = E,

2n(x)+1 − 1 if t = V x [],

(n(u) + 1)2n(x)+1 − 1 if t = V x (y:xs) and u = W y xs,

2n(x)+2 − 2 if t = W x [],

(n(u) + 2)2n(x)+1 − 1 if t = W x (y:xs) and u = V y xs.

(19)

More generally, it can be proved by structural induction that
Peano’s axioms hold and as a result< T, E, s > is a Peano algebra.

Note also that calls to s,s’ in s or s’ happen on terms that
are (roughly) logarithmic in the bitsize of their operands. One can
therefore assume that their complexity, computed by an iterated
logarithm, is practically constant.

5. Emulating the bijective base-2 operations o, i
To be of any practical interest, we will need to ensure that our data
type T emulates also binary arithmetic. We will first show that it
does, and next we will show that on a number of operations like
exponent of 2 or multiplication by an exponent of 2, it significantly
lowers complexity.

Intuitively the first step should be easy, as we need to express
single applications or “un-applications” of o and i in terms of their
iterates encapsulated in the V and W terms.

First we emulate single applications of o and i seen as virtual
“constructors” on type data B = Zero | O B | I B.

o E = V E []
o (V x xs) = V (s x) xs
o (W x xs) = V E (x:xs)

i E = W E []
i (V x xs) = W E (x:xs)
i (W x xs) = W (s x) xs

Next we emulate the corresponding “destructors” that can be seen
as “un-applying” a single instance of o or i.

o’ (V E []) = E
o’ (V E (x:xs)) = W x xs
o’ (V x xs) = V (s’ x) xs

i’ (W E []) = E
i’ (W E (x:xs)) = V x xs
i’ (W x xs) = W (s’ x) xs

Finally the “recognizers” o (corresponding to odd numbers) and
i (corresponding to even numbers) simply detect V and W corre-
sponding to o (and respectively i) being the last function applied.

o_ (V _ _ ) = True
o_ _ = False

i_ (W _ _ ) = True
i_ _ = False

Note that each of the functions o,o’ and i,i’ call s and s’ on a
term that is (roughly) logarithmically smaller. It follows that

PROPOSITION 7. Assuming s,s’ constant time, o,o’,o,i’ are
also constant time.

DEFINITION 5. The function t : N → T defines the unique tree of
type T associated to a natural number as follows:

t(x) =


E if x = 0,

o(t(x−1
2

)) if x > 0 and x is odd,
i(t(x

2
− 1)) if x > 0 and x is even,

(20)

We can now define the corresponding Haskell function t:T →
N that converts from trees to natural numbers.

Note that pred x=x-1 and div is integer division.

t 0 = E
t x | x>0 && odd x = o(t (div (pred x) 2))
t x | x>0 && even x = i(t (pred (div x 2)))

The following holds:

PROPOSITION 8. Let id denote λx.x and ◦ function composition.
Then, on their respective domains

t ◦ n = id, n ◦ t = id (21)

Proof By induction, using the arithmetic formulas defining the two
functions.

6. Arithmetic operations
We will now describe algorithms for basic arithmetic operations
that take advantage of our number representation.

6.1 A few low complexity operations
Doubling a number db and reversing the db operation (hf) are
quite simple, once one remembers that the arithmetic equivalent
of function o is o(x) = 2x+ 1.

db = s’ . o
hf = o’ . s

Note that efficient implementations follow directly from our
number theoretic observations in section 2.

For instance, as a consequence of proposition 1, the operation
exp2, computing an exponent of 2 , has the following simple
definition in terms of s and s’.

exp2 E = V E []
exp2 x = s (V (s’ x) [])

PROPOSITION 9. Assuming s,s’ constant time, db,hf and exp2
are also constant time.

Proof It follows by observing that only 2 calls to s,s’,o,o’ are
made.

6.2 Simple addition and subtraction algorithms
A simple addition algorithm (add) proceeds by recursing through
our emulated bijective base-2 operations o and i.

simpleAdd E y = y
simpleAdd x E = x
simpleAdd x y | o_ x && o_ y =

i (simpleAdd (o’ x) (o’ y))
simpleAdd x y | o_ x && i_ y =

o (s (simpleAdd (o’ x) (i’ y)))
simpleAdd x y | i_ x && o_ y =

o (s (simpleAdd (i’ x) (o’ y)))
simpleAdd x y | i_ x && i_ y =

i (s (simpleAdd (i’ x) (i’ y)))

Subtraction is similar.



simpleSub x E= x
simpleSub y x | o_ y && o_ x =

s’ (o (simpleSub (o’ y) (o’ x)))
simpleSub y x | o_ y && i_ x =

s’ (s’ (o (simpleSub (o’ y) (i’ x))))
simpleSub y x | i_ y && o_ x =

o (simpleSub (i’ y) (o’ x))
simpleSub y x | i_ y && i_ x =

s’ (o (simpleSub (i’ y) (i’ x)))

The following holds:

PROPOSITION 10. Assuming that s,s are constant time, the com-
plexity of addition and subtraction is proportional to the bitsize of
the smallest of their operands.

Proof The algorithms advance through both their operands with
one o’,i’ operation at each call. Therefore the case when one
operand is E is reached as soon as the shortest operand is processed.

Note that these simple algorithms do not take advantage of
possibly large blocks of o and i operations that could significantly
lower complexity on large numbers with such a “regular” structure.

We will derive next versions of these algorithms favoring terms
with large contiguous blocks of on and i applications, on which
they will lower complexity to depend on the number of blocks
rather than the total number of o and i applications forming the
blocks.

Given the recursive, self-similar structure of our trees, as the
algorithms mimic the data structures they operate on, we will have
to work with a chain of mutually recursive functions. As our focus
is to take advantage of large contiguous blocks of on and im

applications, the algorithms are in uncharted territory and as a result
somewhat more intricate than their traditional counterparts.

6.3 Reduced complexity addition and subtraction
We derive more efficient addition and subtraction operations simi-
lar to s and s’ that work on one run-length encoded block at a time,
rather than by individual o and i steps.

We first define the functions otimes corresponding to on(k)
and itimes corresponding to in(k).

otimes E y = y
otimes n E = V (s’ n) []
otimes n (V y ys) = V (add n y) ys
otimes n (W y ys) = V (s’ n) (y:ys)

itimes E y = y
itimes n E = W (s’ n) []
itimes n (W y ys) = W (add n y) ys
itimes n (V y ys) = W (s’ n) (y:ys)

They are part of a chain of mutually recursive functions as they
are already referring to the add function, to be implemented later.
Note also that instead of naively iterating, they implement a more
efficient algorithm, working “one block at a time”. When detecting
that its argument counts a number of applications of o, otimes just
increments that count. On the other hand, when the last function
applied was i, otimes simply inserts a new count for o operations.
A similar process corresponds to itimes. As a result, performance
is (roughly) logarithmic rather than linear in terms of the bitsize of
argument n. We will also use this property for implementing a low
complexity multiplication by exponent of 2 operation.

We will state a number of arithmetic identities on N involving
iterated applications of o and i.

PROPOSITION 11. The following hold:

ok(x) + ok(y) = ik(x+ y) (22)

ok(x) + ik(y) = ik(x) + ok(y) = ik(x+ y + 1)− 1 (23)

ik(x) + ik(y) = ik(x+ y + 2)− 2 (24)

Proof By (4) and (5), we substitute the 2k-based equivalents of ok

and ik, then observe that the same reduced forms appear on both
sides.

The corresponding Haskell code is:

oplus k x y = itimes k (add x y)

oiplus k x y = s’ (itimes k (s (add x y)))

iplus k x y = s’ (s’ (itimes k (s (s (add x y)))))

Note the use of add that we will define later as part of a chain
of mutually recursive function calls, that together will provide an
implementation of the intuitively simple idea: they work on one
run-length encoded block at a time. “Efficiency”, in what follows,
will be, therefore, conditional to numbers having comparatively few
such blocks.

The corresponding identities for subtraction are:

PROPOSITION 12.

x > y ⇒ ok(x)− ok(y) = ok(x− y − 1) + 1 (25)

x > y + 1 ⇒ ok(x)− ik(y) = ok(x− y − 2) + 2 (26)

x ≥ y ⇒ ik(x)− ok(y) = ok(x− y) (27)

x > y ⇒ ik(x)− ik(y) = ok(x− y − 1) + 1 (28)

Proof By (4) and (5), we substitute the 2k-based equivalents of ok

and ik, and observe that the same reduced forms appear on both
sides. Note that special cases are handled separately to ensure that
subtraction is defined.

The Haskell code, also covering the special cases, is:

ominus _ x y | x == y = E
ominus k x y = s (otimes k (s’ (sub x y)))

iminus _ x y | x == y = E
iminus k x y = s (otimes k (s’ (sub x y)))

oiminus k x y | x==s y = s E
oiminus k x y | x == s (s y) = s (exp2 k)
oiminus k x y = s (s (otimes k (s’ (s’ (sub x y)))))

iominus k x y = otimes k (sub x y)

Note the reference to sub, to be defined later, which is also part of
the mutually recursive chain of operations.

The next two functions extract the iterated applications of on

and respectively in from V and W terms:

osplit (V x []) = (x,E )
osplit (V x (y:xs)) = (x,W y xs)

isplit (W x []) = (x,E )
isplit (W x (y:xs)) = (x,V y xs)

We are now ready for defining addition. The base cases are the same
as for simpleAdd:

add E y = y
add x E = x

In the case when both terms represent odd numbers, we apply the
identity (22), after extracting the iterated applications of o as a and
b with the function osplit.

add x y |o_ x && o_ y = f (cmp a b) where
(a,as) = osplit x



(b,bs) = osplit y
f EQ = oplus (s a) as bs
f GT = oplus (s b) (otimes (sub a b) as) bs
f LT = oplus (s a) as (otimes (sub b a) bs)

In the case when the first term is odd and the second even, we apply
the identity (23), after extracting the iterated application of o and i
as a and b.
add x y |o_ x && i_ y = f (cmp a b) where

(a,as) = osplit x
(b,bs) = isplit y
f EQ = oiplus (s a) as bs
f GT = oiplus (s b) (otimes (sub a b) as) bs
f LT = oiplus (s a) as (itimes (sub b a) bs)

In the case when the first term is even and the second odd, we apply
the identity (23), after extracting the iterated applications of i and
o as, respectively, a and b.
add x y |i_ x && o_ y = f (cmp a b) where

(a,as) = isplit x
(b,bs) = osplit y
f EQ = oiplus (s a) as bs
f GT = oiplus (s b) (itimes (sub a b) as) bs
f LT = oiplus (s a) as (otimes (sub b a) bs)

In the case when both terms represent even numbers, we apply the
identity (24), after extracting the iterated application of i as a and
b.
add x y |i_ x && i_ y = f (cmp a b) where

(a,as) = isplit x
(b,bs) = isplit y
f EQ = iplus (s a) as bs
f GT = iplus (s b) (itimes (sub a b) as) bs
f LT = iplus (s a) as (itimes (sub b a) bs)

Note the presence of the comparison operation cmp, to be defined
later, also part of our chain of mutually recursive operations. Note
also the local function f that in each case ensures that a block of the
same size is extracted, depending on which of the two operands a
or b is larger. The code for the subtraction function sub is similar:
sub x E = x
sub x y | o_ x && o_ y = f (cmp a b) where

(a,as) = osplit x
(b,bs) = osplit y
f EQ = ominus (s a) as bs
f GT = ominus (s b) (otimes (sub a b) as) bs
f LT = ominus (s a) as (otimes (sub b a) bs)

In the case when both terms represent odd numbers, we apply the
identity (25), after extracting the iterated applications of o as a and
b. For the other cases, we use, respectively, the identities 26, 27 and
28:
sub x y |o_ x && i_ y = f (cmp a b) where

(a,as) = osplit x
(b,bs) = isplit y
f EQ = oiminus (s a) as bs
f GT = oiminus (s b) (otimes (sub a b) as) bs
f LT = oiminus (s a) as (itimes (sub b a) bs)

sub x y |i_ x && o_ y = f (cmp a b) where
(a,as) = isplit x
(b,bs) = osplit y
f EQ = iominus (s a) as bs
f GT = iominus (s b) (itimes (sub a b) as) bs
f _ = iominus (s a) as (otimes (sub b a) bs)

sub x y |i_ x && i_ y = f (cmp a b) where
(a,as) = isplit x
(b,bs) = isplit y
f EQ = iminus (s a) as bs
f GT = iminus (s b) (itimes (sub a b) as) bs
f LT = iminus (s a) as (itimes (sub b a) bs)

6.4 Defining a total order: comparison
The comparison operation cmp provides a total order (isomorphic
to that on N) on our type T. It relies on bitsize computing the
number of applications of o and i constructing a term in T. It is
part of our mutually recursive functions, to be defined later.

We first observe that only terms of the same bitsize need detailed
comparison, otherwise the relation between their bitsizes is enough,
recursively. More precisely, the following holds:

PROPOSITION 13. Let bitsize count the number of applica-
tions of o and i operations on a bijective base-2 number. Then
bitsize(x) <bitsize(y)⇒ x < y.

Proof Observe that their lexicographic enumeration ensures that
the bitsize of bijective base-2 numbers is a non-decreasing function.

cmp E E = EQ
cmp E _ = LT
cmp _ E = GT
cmp x y | x’ /= y’ = cmp x’ y’ where

x’ = bitsize x
y’ = bitsize y

cmp x y =
compBigFirst (reversedDual x) (reversedDual y)

The function compBigFirst compares two terms known to have
the same bitsize. It works on reversed (big digit first) variants,
computed by reversedDual and it takes advantage of the block
structure using the following proposition:

PROPOSITION 14. Assuming two terms of the same bitsizes, the
one starting with i is larger than one starting with o.

Proof Observe that “big digit first” numbers are lexicographically
ordered with o < i.

As a consequence, cmp only recurses when identical blocks
head the sequence of blocks, otherwise it infers the LT or GT
relation.

compBigFirst E E = EQ
compBigFirst x y | o_ x && o_ y = f (cmp a b) where

(a,c) = osplit x
(b,d) = osplit y
f EQ = compBigFirst c d
f LT = GT
f GT = LT

compBigFirst x y | i_ x && i_ y = f (cmp a b) where
(a,c) = isplit x
(b,d) = isplit y
f EQ = compBigFirst c d
f other = other

compBigFirst x y | o_ x && i_ y = LT
compBigFirst x y | i_ x && o_ y = GT

The function reversedDual reverses the order of application of the
o and i operations to a “biggest digit first” order. For this, it only
needs to reverse the order of the alternative blocks of ok and il. It
uses the function len to compute the number of these blocks and
infer that if odd, the last block is the same as the first and otherwise
it is its alternate.

reversedDual E = E
reversedDual (V x xs) = f (len (y:ys)) where

(y:ys) = reverse (x:xs)
f l | o_ l = V y ys
f l | i_ l = W y ys

reversedDual (W x xs) = f (len (y:ys)) where
(y:ys) = reverse (x:xs)
f l | o_ l = W y ys
f l | i_ l = V y ys



len [] = E
len (_:xs) = s (len xs)

And based on cmp, one can define the minimum min2, maxi-
mum max2 the absolute value of the difference absdif functions
as follows:

min2 x y = if LT==cmp x y then x else y
max2 x y = if LT==cmp x y then y else x
absdif x y = if LT == cmp x y then sub y x else sub x y

6.5 Computing dual and bitsize

The function dual flips o and i operations for a natural number
seen as written in bijective base 2. Note that with our tree represen-
tation it is constant time, as it simply flips once the constructors V
and W.

dual E = E
dual (V x xs) = W x xs
dual (W x xs) = V x xs

The function bitsize computes the number of applications of
the o and i operations. It works by summing up (using Haskell’s
foldr) the counts of o and i operations composing a tree-
represented natural number.

bitsize E = E
bitsize (V x xs) = s (foldr add1 x xs)
bitsize (W x xs) = s (foldr add1 x xs)

add1 x y = s (add x y)

Note that bitsize also provides an efficient implementation of the
integer log2 operation ilog2.

ilog2 x = bitsize (s’ x)

6.6 Fast multiplication by an exponent of 2
The function leftshiftBy operation uses the fact that repeated
application of the o operation (otimes) , provides an efficient
implementation of multiplication with an exponent of 2.

leftshiftBy _ E = E
leftshiftBy n k = s (otimes n (s’ k))

The following holds:

PROPOSITION 15. Assuming s,s’ constant time, leftshiftBy is
(roughly) logarithmic in the bitsize of its arguments.

Proof it follows by observing that at most one addition on data
logarithmic in the bitsize of the operands is performed.

6.7 Fast division by an exponent of 2
Division by an exponent of 2 (equivalent to the rightshift operation
is more intricate. It takes advantage of identities (4) and (5) in a
way that is similar to add and sub. First, the function toShift
transforms the outermost block of om or im applications to to a
multiplication of the form k2m. It also remembers if it had om or
im, as the first component of the triplet it returns. Note that, as a
result, the operation is actually reversible.

toShift x | o_ x = (o E,m,k) where
(a,b) = osplit x
m = s a
k = s b

toShift x | i_ x = (i E,m,k) where
(a,b) = isplit x
m = s a
k = s (s b)

Next the function rightshiftBy goes over its argument k one
block at a time, by comparing the size of the block and its argument
m that is decremented after each block by the size of the block.
The local function f handles the details, according to the nature of
the block (om or im), and stops when the argument is exhausted.
More precisely, based on the result EQ, LT, GT of the comparison,
as well on the type of block (as recognized by o p and i p), it
applies back otimes or itimes when the block is larger than the
value of m. Otherwise, it calls itself with the value of m reduced by
the size to the block as its first argument.

rightshiftBy _ E = E
rightshiftBy m k = f (cmp m a) where

(p,a,b) = toShift k

f EQ | o_ p = sub b p
f EQ | i_ p = s (sub b p)
f LT | o_ p = otimes (sub a m) (sub b p)
f LT | i_ p = s (itimes (sub a m) (sub b p))
f GT = rightshiftBy (sub m a) b

The following example illustrates the fact that rightShiftBy in-
verts the result ofleftshiftBy on a very large number.

*HBin> s’ (exp2 (t 100000))
V (V (W E [E]) [E,E,E,E,V E [],V (V E []) [],E]) []
*HBin> leftshiftBy (t 1000) it
W E [W (W E []) [V E [],V (V E []) []],W (W E [E])

[V E [],E,E,V E [],V (V E []) [],E]]
*HBin> rightshiftBy (t 1000) it
V (V (W E [E]) [E,E,E,E,V E [],V (V E []) [],E]) []

6.8 Reduced complexity general multiplication
Devising a similar optimization as for add and sub for multiplica-
tion is actually easier.

PROPOSITION 16. The following holds:

on(a)om(b) = on+m(ab+ a+ b)− on(a)− om(b) (29)

Proof By (4), we can expand and then reduce: on(a)om(b) =
(2n(a+1)−1)(2m(b+1)−1) = 2n+m(a+1)(b+1)−(2n(a+1)+
2m(b+1)+1 = 2n+m(a+1)(b+1)−1−(2n(a+1)−1+2m(b+
1)−1+2)+2 = on+m(ab+a+b+1)−(on(a)+om(b))−2+2 =
on+m(ab+ a+ b)− on(a)− om(b)

The corresponding Haskell code starts with the obvious base
cases:

mul _ E = E
mul E _ = E

When both terms represent odd numbers we apply the identity (29):

mul x y | o_ x && o_ y = r2 where
(n,a) = osplit x
(m,b) = osplit y
p1 = add (mul a b) (add a b)
p2 = otimes (add (s n) (s m)) p1
r1 = sub p2 x
r2 = sub r1 y

The other cases are reduced to the previous one by using the
identity i = s.o.

mul x y | o_ x && i_ y = add x (mul x (s’ y))
mul x y | i_ x && o_ y = add y (mul (s’ x) y)
mul x y | i_ x && i_ y =

s (add (add x’ y’) (mul x’ y’)) where
x’=s’ x
y’=s’ y

Note that when the operands are composed of large blocks of alter-
nating on and im applications, the algorithm is quite efficient as it



works (roughly) in time proportional to the number of blocks rather
than the number of digits. The following example illustrates a blend
of arithmetic operations benefiting from complexity reductions on
giant tree-represented numbers:

*HBin> let term1 = sub (exp2 (exp2
(t 12345))) (exp2 (t 6789))

*HBin> let term2 = add (exp2 (exp2 (t 123)))
(exp2 (t 456789))

*HBin> ilog2 (ilog2 (mul term1 term2))
V E [E,E,W E [],V E [E],E]
*HBin> n it
12345

This opens a new world where arithmetic operations are not limited
by the size of their operands, but only by their “structural complex-
ity”. We will make this concept more precise in section 7.

6.9 Power
We first specialize our multiplication for a slightly faster squaring
operation, using the identity:

(on(a))2 = o2n(a2 + 2a)− 2on(a) (30)

square E = E
square x | o_ x = r where

(n,a) = osplit x
p1 = add (square a) (db a)
p2 = otimes (i n) p1
r = sub p2 (db x)

square x | i_ x = s (add (db x’) (square x’)) where
x’ = s’ x

We can implement a simple but fairly efficient “ power by
squaring” operation for xy as follows:

pow _ E = V E []
pow x y | o_ y = mul x (pow (square x) (o’ y))
pow x y | i_ y = mul x2 (pow x2 (i’ y)) where

x2 = square x

It works well with fairly large numbers, by also benefiting from
efficiency of multiplication on terms with large blocks of on and
om applications:

*HBin> n (bitsize (pow (t 2014) (t 100)))
1097
*HBin> pow (t 32) (t 10000000)
W E [W (W (V E []) []) [W E [E],

V (V E []) [],E,E,E,W E [E],E]]

7. Structural complexity
As a measure of structural complexity we define the function
tsize that counts the nodes of a tree of type T (except the root).

tsize E = E
tsize (V x xs) = foldr add1 E (map tsize (x:xs))
tsize (W x xs) = foldr add1 E (map tsize (x:xs))

It corresponds to the function c : T→ N defined as follows:

c(t) =


0 if t = 0,∑
y∈(x:xs) (1 + ts(y)) if t = V x xs,∑
y∈(x:xs) (1 + ts(y)) if t = W x xs.

(31)

The following holds:

PROPOSITION 17. For all terms t ∈ T, tsize t ≤ bitsize t.

Proof By induction on the structure of t, by observing that the two
functions have similar definitions and corresponding calls to tsize
return terms assumed smaller than those of bitsize.

The following example illustrates their use:

*HBin> map (n.tsize.t) [0,100,1000,10000]
[0,6,8,10]
*HBin> map (n.bitsize.t) [0,100,1000,10000]
[0,6,9,13]

*HBin> map (n.tsize.t) [2^16,2^32,2^64,2^256]
[4,5,5,5]
*HBin> map (n.bitsize.t) [2^16,2^32,2^64,2^256]
[16,32,64,256]

Figure 1 shows the reductions in structural complexity com-
pared with bitsize for an initial interval of N.

Figure 1: Structural complexity (yellow line) bounded by bitsize
(red line) from 0 to 210 − 1

After defining the function iterated that applies f k times

iterated f E x = x
iterated f k x = f (iterated f (s’ k) x)

we can exhibit a best case

bestCase k = s’ (iterated exp2 k E)

and a worse case

worseCase k = iterated (i.o) k E

The following examples illustrate these functions:

*HBin> bestCase (t 5)
V (V (V (V E []) []) []) []
*HBin> n it
65535
*HBin> bestCase (t 5)
V (V (V (V E []) []) []) []
*HBin> n (bitsize (bestCase (t 5)))
16
*HBin> n (tsize (bestCase (t 5)))
4

*HBin> worseCase (t 5)
W E [E,E,E,E,E,E,E,E,E]
*HBin> n it
1364
*HBin> n (bitsize (worseCase (t 5)))
10
*HBin> n (tsize (worseCase (t 5)))
10

The function bestCase computes the iterated exponent of 2
(tetration) and then applies the predecessor s’ to it. A simple closed
formula can also be found for worseCase:

PROPOSITION 18. The function worseCase k computes the value
in T corresponding to the value 4(4k−1)

3
∈ N.



Proof By induction or by applying the iterated function formula to
f(x) = i(o(x))) = 2(2x+ 1) + 2 = 4(x+ 1).

The average space-complexity of the representation is related
to the average length of the integer partitions of the bitsize of
a number [7]. Intuitively, the shorter the partition in alternative
blocks of o and i applications, the more significant the compression
is, but the exact study, given the recursive application of run-length
encoding, is likely to be quite intricate.

Note also that our concept of structural complexity is only a
weak approximation of Kolmogorov complexity [8]. For instance,
the reader might notice that our worse case example is computable
by a program of relatively small size. However, as bitsize is an
upper limit to tsize, we can be sure that we are within constant
factors from the corresponding bitstring computations, even on
random data of high Kolmogorov complexity.

Note also that an alternative concept of structural complexity
can be defined by considering the (vertices+edges) size of the
DAG obtained by folding together identical subtrees. We will use
such DAGs in section 8 to more compactly visualize large tree-
represented numbers.

As section 8 will illustrate it, several interesting number theo-
retical entities that hold current records in various categories have
very low structural complexities, contrasting to gigantic bitsizes.

8. Efficient representation of some important
number-theoretical entities

Let’s first observe that Fermat, Mersenne and perfect numbers have
all compact expressions with our tree representation of type T.

fermat n = s (exp2 (exp2 n))

mersenne p = s’ (exp2 p)

perfect p = s (V q [q]) where q = s’ (s’ p)

*HBin> mersenne 127
170141183460469231731687303715884105727
*HBin> mersenne (t 127)
V (W (V E [E]) []) []

The largest known prime number, found by the GIMPS distributed
computing project [9] in January 2013 is the 48-th Mersenne prime
= 257885161 − 1 (with possibly smaller Mersenne primes below it).
It is defined in Haskell as follows:

-- exponent of the 48-th known Mersenne prime
prime48 = 57885161
-- the actual Mersenne prime
mersenne48 = s’ (exp2 (t prime48))

While it has a bit-size of 57885161, its compressed tree represen-
tation is rather small:

*HBin> mersenne48
V (W E [V E [],E,E,V (V E []) [],

W E [E],E,E,V E [],V E [],W E [],E,E]) []

The equivalent DAG representation of the 48-th Mersenne prime,
shown in Figure 2, has only 7 shared nodes and structural com-
plexity 22. Note that the empty leaf node is marked with the letter
T.

It is interesting to note that similar compact representations can
also be derived for perfect numbers. For instance, the largest known
perfect number, derived from the largest known Mersenne prime as
257885161−1(257885161 − 1), (involving only 8 shared nodes and
structural complexity 43) is:

perfect48 = perfect (t prime48)
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Figure 2: Largest known prime number discovered in January 2013:
the 48-th Mersenne prime, represented as a DAG

Fig. 3 shows the DAG representation of the largest known perfect
number, derived from Mersenne number 48. Similarly, the largest
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Figure 3: Largest known perfect number in January 2013

Fermat number that has been factored so far, F11 = 22
11

+ 1 is
compactly represented as

*HBin> fermat (t 11)
V E [E,V E [W E [V E []]]]

with structural complexity 8. By contrast, its (bijective base-2)
binary representation consists of 2048 digits.

Some other very large primes that are not Mersenne numbers
also have compact representations.

The generalized Fermat prime 27653 ∗ 29167433 +1, (currently
the 15-the largest prime number) computed as a tree is:

genFermatPrime = s (leftshiftBy n k) where
n = t (9167433::Integer)
k = t (27653::Integer)

*HBin> genFermatPrime
V E [E,W (W E []) [W E [],E,

V E [],E,W E [],W E [E],E,E,W E []],
E,E,E,W (V E []) [],V E [],E,E]

Figure 4 shows the DAG representation of this generalized Fermat
prime with 7 shared nodes and structural complexity 30.

The largest known Cullen prime 6679881 ∗ 26679881 + 1 com-
puted as tree (with 6 shared nodes and structural complexity 43)
is:

cullenPrime = s (leftshiftBy n n) where
n = t (6679881::Integer)

*HBin> cullenPrime
V E [E,W (W E []) [W E [],E,E,E,E,V E [],E,

V (V E []) [],E,E,V E [],E],E,V E [],E,V E [],
E,E,E,E,V E [],E,V (V E []) [],E,E,V E [],E]
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Figure 4: Generalized Fermat prime
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Figure 5: largest known Cullen prime

Figure 5 shows the DAG representation of this Cullen prime. The
largest known Woodall prime 3752948 ∗ 23752948− 1 computed as
a tree (with 6 shared nodes and structural complexity 33) is:

woodallPrime = s’ (leftshiftBy n n) where
n = t (3752948::Integer)

*HBin> woodallPrime
V (V E [V E [],E,V E [E],V (V E []) [],
E,E,E,V E [],V E []]) [E,E,V E [E],
V (V E []) [],E,E,E,V E [],V E []]

Figure 6 shows the DAG representation of this Woodall prime.
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Figure 6: Largest known Woodall prime

The largest known Proth prime 19249∗213018586+1 computed
as a tree is:

prothPrime = s (leftshiftBy n k) where
n = t (13018586::Integer)
k = t (19249::Integer)

*HBin> prothPrime
V E [E,V (W E []) [V E [],E,W E [],E,E,

V E [],E,E,E,E,V E [],W E [],E],E,W E [],
V E [],V E [],V E [],E,E,V E []]

Figure 7 shows the DAG representation of this Proth prime, the
largest non-Mersenne prime known by March 2013 with 5 shared
nodes and structural complexity 36.
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Figure 7: Largest known Proth prime

The largest known Sophie Germain prime 18543637900515 ∗
2666667 − 1 computed as a tree (with 6 shared nodes and structural
complexity 56) is:

sophieGermainPrime = s’ (leftshiftBy n k) where
n = t (666667::Integer)
k = t (18543637900515::Integer)

*HBin> sophieGermainPrime
V (W (V E []) [E,E,E,E,V (V E []) [],V E [],E,

E,W E [],E,E]) [V E [],W E [],W E [],V E [],
V E [],E,E,V E [],V E [],V E [],V (V E [])
[],E,V E [],V (V E []) [],V E [],E,W E [],E,
V E [],V (V E []) []]

Figure 8 shows the DAG representation of this prime. The largest
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Figure 8: Largest known Sophie Germain prime

known twin primes 3756801695685 ∗ 2666669 ± 1 computed as a
pair of trees (with 7 shared nodes both and structural complexities
of 54 and 56) are:

twinPrimes = (s’ m,s m) where
n = t (666669::Integer)
k = t (3756801695685::Integer)
m = leftshiftBy n k

*HBin> fst twinPrimes
V (W E [E,V E [],E,E,V (V E []) [],

V E [],E,E,W E [],E,E])
[E,E,E,W E [],W (V E []) [],V E [],E,V E [],
E,E,E,E,V E [],E,E,
V E [],V E [],E,E,E,E,E,E,E,V E [],E,E]

*HBin> snd twinPrimes
V E [E,W (V E []) [E,E,E,E,V (V E []) [],

V E [],E,E,W E [],E,E],E,E,E,
W E [],W (V E []) [],V E [],E,V E [],
E,E,E,E,V E [],E,E,V E [],
V E [],E,E,E,E,E,E,E,V E [],E,E]

Figures 9 and 10 show the DAG representation of these twin
primes. One can appreciate the succinctness of our represen-
tations, given that all these numbers have hundreds of thousands
or millions of decimal digits. An interesting challenge would be to
(re)focus on discovering primes with significantly larger structural
complexity then the current record holders by bitsize.
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More importantly, as the following examples illustrate it, com-
putations like addition, subtraction and multiplication of such num-
bers are possible:

*HBin> sub genFermatPrime (t 2014)
V (V E []) [E,V E [],E,W E [E],V E [W E [E],

W E [],E,W E [],W E [E],E,E,W E []],V E [],
E,W (V E []) [],V E [],E,E]

*HBin> bitsize (sub prothPrime (t 1234567890))
W E [V E [],E,E,V (V E []) [],E,E,

V E [],E,E,E,E,V E [],W E [],E]
*HBin> tsize (exp2 (exp2 mersenne48))
V E [E,E,E]
*HBin> tsize(leftshiftBy mersenne48 mersenne48)
V E [W E [],E]
*HBin> add (t 2) (fst twinPrimes) ==

(snd twinPrimes)
True
*HBin> ilog2 (ilog2 (mul prothPrime cullenPrime))
W E [V E [],E]
*HBin> n it
24

9. Computing the Collatz/Syracuse sequence for
huge numbers

As an interesting application, that achieves something one cannot
do with ordinary Integers is to explore the behavior of interesting
conjectures in the new world of numbers limited not by their sizes
but by their structural complexity. The Collatz conjecture states that
the function

collatz(x) =

{
x
2

if x is even,
3x+ 1 if x is odd.

(32)

reaches 1 after a finite number of iterations. An equivalent formula-
tion, by grouping together all the division by 2 steps, is the function:

collatz′(x) =

{
x

2ν2(x) if x is even,
3x+ 1 if x is odd.

(33)

where ν2(x) denotes the dyadic valuation of x, i.e., the largest
exponent of 2 that divides x. One step further, the syracuse function
is defined as the odd integer k′ such that n = 3k + 1 = 2ν(n)k′.
One more step further, by writing k′ = 2m + 1 we get a function
that associates k ∈ N to m ∈ N.

The function tl computes efficiently the equivalent of

tl(k) =

k

2ν2(k) − 1

2
(34)

tl n | o_ n = o’ n
tl n | i_ n = f xs where

V _ xs = s’ n
f [] = E
f (y:ys) = s (i’ (W y ys))

Then our variant of the syracuse function corresponds to

syracuse(n) = tl(3n+ 2) (35)

which we can code efficiently as

syracuse n = tl (add n (i n))

The function nsyr computes the iterates of this function, until
(possibly) stopping:

nsyr E = [E]
nsyr n = n : nsyr (syracuse n)

It is easy to see that the Collatz conjecture is true if and only if
nsyr terminates for all n, as illustrated by the following example:

*HBin> map n (nsyr (t 2014))
[2014,755,1133,1700,1275,1913,2870,1076,807,

1211,1817,2726,1022,383,575,863,1295,1943,
2915,4373,6560,4920,3690,86,32,24,18,3,5,
8,6,2,0]

The next examples will show that computations for nsyr can be
efficiently carried out for numbers that with traditional bitstring
notations would easily overflow even the memory of a computer
using as transistors all the atoms in the known universe.

The following examples illustrate this:

map (n.tsize) (take 1000 (nsyr mersenne48))
[22,22,24,26,27,28,...,1292,1313,1335,1353]

As one can see, the structural complexity is growing progressively,
but that our tree-numbers have no trouble with the computations.

*HBin> map (n.tsize)
(take 1000 (nsyr mersenne48))

[22,22,24,26,27,28,...,1292,1313,1335,1353]

Moreover, we can keep going up with a tower of 3 exponents. Inter-
estingly, it results in a fairly small increase in structural complexity
over the first 1000 terms.

*HBin> map (n.tsize) (take 1000
(nsyr (exp2 (exp2 (exp2 mersenne48)))))

[26,33,36,37,40,42,...,1313,1335,1358,1375]

While we did not tried to wait out the termination of the exe-
cution for Mersenne number 48 we, have computed nsyr for the
record holder from 1952, which is still much larger than the values
(up to 5 × 260) for which the conjecture has been confirmed true.
Figure 11 shows the structural complexity curve for the “hailstone
sequence” associated by the function nsyr to the 15-th Mersenne
prime, 21279 − 1

As an interesting fact, possibly unknown so far, one might
notice the abrupt phase transition that, based on our experiments,
seem to characterize the behavior of this function, when starting
with very large numbers of relatively small structural complexity.

And finally something we are quite sure has never been com-
puted before, we can also start with a tower of exponents 100 levels
tall:

*HBin> take 1000 (map(n.tsize)(nsyr (bestCase (t 100))))
[99,99,197,293,294,296,299,299,...,1569,1591,1614,1632]

10. Related work
We will briefly describe here some related work that has inspired
and facilitated this line of research and will help to put our past
contributions and planned developments in context.



Figure 11: Structural complexity curve for nsyr on 21279 − 1

Several notations for very large numbers have been invented in
the past. Examples include Knuth’s arrow-up notation [1] covering
operations like the tetration (a notation for towers of exponents). In
contrast to our tree-based natural numbers, such notations are not
closed under addition and multiplication, and consequently they
cannot be used as a replacement for ordinary binary or decimal
numbers.

The first instance of a hereditary number system, at our best
knowledge, occurs in the proof of Goodstein’s theorem [3], where
replacement of finite numbers on a tree’s branches by the ordinal ω
allows him to prove that a “hailstone sequence” visiting arbitrarily
large numbers eventually turns around and terminates.

Like our trees of type T, Conway’s surreal numbers [2] can also
be seen as inductively constructed trees. While our focus is on ef-
ficient large natural number arithmetic and sparse set representa-
tions, surreal numbers model games, transfinite ordinals and gener-
alizations of real numbers.

Numeration systems on regular languages have been studied
recently, e.g. in [10] and specific instances of them are also known
as bijective base-k numbers. Arithmetic packages similar to our
bijective base-2 view of arithmetic operations are part of libraries
of proof assistants like Coq [6].

Arithmetic computations based on recursive data types like the
free magma of binary trees (isomorphic to the context-free lan-
guage of balanced parentheses) are described in [4], where they are
seen as Gödel’s System T types, as well as combinator application
trees. In [11] a type class mechanism is used to express compu-
tations on hereditarily finite sets and hereditarily finite functions.
In [12] integer decision diagrams are introduced providing a com-
pressed representation for sparse integers, sets and various other
data types.

11. Conclusion and future work
We have provided in the form of a literate Haskell program a declar-
ative specification of a tree-based number system. Our emphasis
here was on the correctness and the theoretical complexity bounds
of our operations rather than the packaging in a form that would
compete with a C-based arbitrary size integer package like GMP.
We have also ensured that our algorithms are as simple as possible
and we have closely correlated our Haskell code with the formu-
las describing the corresponding arithmetical properties. As the al-
gorithms involved are all novel and we have explored genuinely
uncharted territory, we are not considering this literate program
a functional pearl, as we are by no means focusing on polishing
known results, but rather on using the niceties of functional pro-
gramming to model new concepts. For instance, our algorithms rely

on properties of blocks of iterated applications of functions rather
than the “digits as coefficients of polynomials” view of traditional
numbering systems. While the rules are often more complex, re-
stricting our code to a purely declarative subset of functional pro-
gramming made managing a fairly intricate network of mutually
recursive dependencies much easier.

We have shown that some interesting number-theoretical en-
tities like Fermat and perfect numbers, and the largest known
Mersenne, Proth, Cullen, Sophie Germain and twin primes have
compact representations with our tree-based numbers. One may
observe their common feature: they are all represented in terms of
exponents of 2, successor/predecessor and specialized multiplica-
tion operations.

But more importantly, we have shown that computations like
addition, subtraction, multiplication, bitsize, exponent of 2, that
favor giant numbers with low structural complexity, are performed
in constant time, or time proportional to their structural complexity.
We have also studied the best and worse case structural complexity
of our representations and shown that, as structural complexity
is bounded by bitsize, computations and data representations are
within constant factors of conventional arithmetic even in the worse
case.

The fundamental theoretical challenge raised at this point is the
following: can other number-theoretically interesting operations
expressed succinctly in terms of our tree-based data type? Is it pos-
sible to reduce the complexity of some other important operations,
besides those found so far? In particular, is it possible to devise
comparably efficient division and modular arithmetic operations fa-
voring giant low structural complexity numbers? Would that have
an impact on primality and factoring algorithms?

The methodology to be used relies on two key components,
that have been proven successful so far, in discovering compact
representations of important number-theoretical entities, as well as
low complexity algorithms for operations like exp2, add, sub, cmp,
mul and bitsize:

• partial evaluation of functional programs with respect to known
data types and operations on them, as well as the use of other
program transformations
• salient number-theoretical observations, similar to those in

Props. 1, 17, 11 12, 13 that relate operations on our tree data
types to number-theoretical identities and algorithms.

Another aspect of future work is building a practical package
(that uses our representation only for numbers larger than the size
of the machine word) and specialize our algorithms for this hybrid
representation. In particular, parallelization of our algorithms, that
seems natural given our tree representation, would follow once the
sequential performance of the package is in a practical range. Easier
developments with practicality in mind would involve extensions to
signed integers and rational numbers.
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Appendix
A subset of Haskell as an executable function notation
We mention, for the benefit of the reader unfamiliar with Haskell,
that a notation like f x y stands for f(x, y), [t] represents se-
quences of type t and a type declaration like f :: s -> t -> u
stands for a function f : s × t → u (modulo Haskell’s “curry-
ing” operation, given the isomorphism between the function spaces
s× t → u and s→ t → u). Our Haskell functions are always
represented as sets of recursive equations guided by pattern match-
ing, conditional to constraints (simple relations following | and be-
fore the = symbol). Locally scoped helper functions are defined in
Haskell after the where keyword, using the same equational style.
The composition of functions f and g is denoted f . g. It is also
customary in Haskell, when defining functions in an equational
style (using =) to write f = g instead of f x = g x (“point-free”
notation). We also make some use of Haskell’s “call-by-need” eval-
uation that allows us to work with infinite sequences, like the [0..]
infinite list notation, corresponding to the set of natural numbers N.
Note also that the result of the last evaluation is stored in the spe-
cial Haskell variable it. By restricting ourselves to this Haskell–
subset, our code can also be easily transliterated into a system of
rewriting rules, other pattern-based functional languages as well as
deterministic Horn Clauses.

Division operations
A fairly efficient integer division algorithm is given here, but it does
not provide the same complexity gains as, for instance, multiplica-
tion, addition or subtraction. Finding a “one block at a time” divi-
sion algorithm, if possible at all, is subject of future work.

div_and_rem x y | LT == cmp x y = (E,x)
div_and_rem x y | y /= E = (q,r) where

(qt,rm) = divstep x y
(z,r) = div_and_rem rm y
q = add (exp2 qt) z

divstep n m = (q, sub n p) where
q = try_to_double n m E
p = leftshiftBy q m

try_to_double x y k =
if (LT==cmp x y) then s’ k
else try_to_double x (db y) (s k)

divide n m = fst (div_and_rem n m)
remainder n m = snd (div_and_rem n m)

Integer square root
A fairly efficient integer square root, using Newton’s method is
implemented as follows:

isqrt E = E
isqrt n = if cmp (square k) n==GT then s’ k else k where

two = i E
k=iter n
iter x = if cmp (absdif r x) two == LT

then r
else iter r where r = step x

step x = divide (add x (divide n x)) two


