
Student Research Abstract:
Interpreting Energy Profiles with CEGAR

Steven te Brinke
University of Twente – Formal Methods and Tools group – Enschede, The Netherlands

brinkes@cs.utwente.nl

1. INTRODUCTION
There is an increasing demand for reducing the energy

consumption of systems that are controlled by software. En-
ergy is one of the resources that should be reduced, but since
software often consumes higher-level resources which indi-
rectly consume energy, it is important to model not only
energy, but resource consumption in general. To facilitate
modular implementation of resource optimization logic, we
have proposed [1] to use so-called Resource-Utilization Mod-
els (RUMs), which express the relation between the dynamic
behavior of the component and the resources it uses and pro-
vides as state transition diagrams expressing transitions—
triggered by either service invocations or internal events—
between states of stable resource consumption. We have
shown how to use the CEGAR approach to automatically
extract RUMs from existing component implementations.
However, this approach does not measure any energy con-

sumption; it assumes that energy information is available
already, e.g.: as annotations in the source code or defined
by the specification. Whereas this assumption holds in some
cases, it is not applicable in general: Software libraries usu-
ally lack energy information. Therefore, to optimize energy
consumption effectively, it is necessary that the energy con-
sumption of such libraries can be profiled, so as to add en-
ergy information to the RUM.

2. EXTRACTING ENERGY INFORMATION
Our current approach uses CEGAR to extract RUMs from

source code, but energy information cannot be derived from
only source code, unless it is manually annotated with en-
ergy information. We would like to automatically add en-
ergy information to RUMs by energy profiling specified ex-
ecution scenarios. In this research, we will explore to which
degree we can use such energy profiles while automatically
generating a RUM with the CEGAR approach.

2.1 JouleUnit
JouleUnit [2] is a framework for profiling the energy con-

sumption of Android applications in order to generate en-
ergy labels. To provide such labels, the framework supports
writing system tests that execute a scenario and measure the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Za b

c

dW
P ≤ 0.9 J/s

X
P ≤ 0.8 J/s

Y
P ≤ 1 J/s

Figure 1: Example behavior

power consumption of the full device. Such measurements
are performed by special hardware—e.g.: an oscilloscope—
after which the framework synchronizes the measured sam-
ples with events generated through JouleUnit API calls.
Such special hardware is required because energy measure-
ments made by the smart phone itself are too coarse grained,
since generally many events are generated per second. The
special hardware provides measurements that are fine grained
enough to synchronize the measured samples with such events.

2.2 CEGAR
Counterexample-guided abstraction refinement (CEGAR)

is a formal method to refine abstract models when a con-
crete model is available. First, an initial abstract model is
derived, usually by static analysis of the source code. When
model checking cannot prove a given property on the ab-
stract model, a counterexample is produced and simulated
on the concrete model, which may have two outcomes:

• There is no real error, but the abstract model does not
include enough information about the concrete behav-
ior; it is called a spurious counterexample.

• There is a real error. Then an inventive step is needed,
because either the application misbehaves or, more
likely, the property is a too strict requirement.

In the first case, information can automatically be ex-
tracted from the concrete model to make a refined abstract
model in which the previous counterexample cannot occur,
and then this process must be repeated until the desired
property can be proven on the refined abstract model.

In the second case, when we discover that the property
is too strict, we should relax the requirements on energy
consumption. This can be guided by the counterexample,
but is not automatic.

2.3 Generating Test Code
Consider the state chart in Figure 1 the behavior (i.e.:

RUM) of an application, on which we run our approach.
Deriving this RUM started with specifying a key property,
which could be: reaching Z always consumes less than 16 J.
This key property cannot be guaranteed. Therefore, our
approach will give a counterexample, which could be the
following sequence that consumes 17.5 J (denoted by which

P

W, 4 J X, 6 J
Y, 5 J

t
(a) Actual energy consumption

P

t

max

(b) Energy profile 1
t

max

P

(c) Energy profile 2
t

max avg
P

(d) Energy profile 3

Figure 2: Example energy profiles

states are visited, how long the application stays in these
states, and how much energy is consumed in each state):
W, 5 s, 4.5 J → X, 10 s, 8 J → Y, 5 s, 5 J → Z.
We must validate that this counterexample is spurious and

derive all necessary information missing in the RUM from
the application, for which we leverage JouleUnit. From the
state chart, we see which services must be invoked to visit
the states of the counterexample. Assuming that we have
control over executing services a, b, and d, a JouleUnit test
case that stays in each state as long as given by the counter-
example can be generated by executing these services at the
right times. Executing this test shows us whether both the
timing and the energy consumption of the counterexample
are realistic. Figure 2a depicts a possible output of Joule-
Unit for this example: It shows the measured energy con-
sumption over time. From this figure we can conclude that
in reality, the counterexample did not occur, because both
states W and X consume less energy than possible accord-
ing to the RUM in Figure 1. Thus, the counterexample is
spurious and the RUM is refined with the actual energy con-
sumption. On the refined RUM, the above steps are applied
again iteratively, which shows that the key property holds.

2.4 Extracting Energy Profiles
The previous subsection gave an example of energy con-

sumption (Figure 2a) that is static during every state. In
reality, we expect the energy consumption to be more dy-
namic, for example as shown by the other graphs in Figure
2. The more precisely we can extract the energy profile, the
more useful the result will be. Extracting a precise profile
may require correlating changes in energy consumption to
execution events, such as service invocation. The max lines
in Figure 2 show three possible energy profiles which could
be extracted from the same measurement.
Figure 2b shows the simplest profile: the energy consump-

tion is always below a constant value. However, this value
is often much higher than the actual energy consumption,
so it is not a very precise profile.
In Figure 2c the maximum is reduced at some moment.

This creates a more precise profile, but requires knowledge
about when the maximum energy consumption changes (e.g.:
after a certain time or after invocation of a specific service).
The profile shown in Figure 2d is less precise than Figure

2c, but more precise than Figure 2b. Instead of providing a
maximum for the consumption at any moment, it provides
a maximum for the average energy consumption. Since, in
general, we are interested in the total energy consumption,
having guarantees on the average consumption is sufficient.

3. CHALLENGES
In this research, we use JouleUnit in an original way, for

which it was not specifically intended. This leads to the
following challenges:

1. JouleUnit provides system tests, but we want to profile
the energy of single components.

2. Generating test code that controls the execution to
follow the states from the counterexample is not trivial.

3. JouleUnit only provides outcomes of test cases; it can-
not provide guarantees.

Since JouleUnit only provides system tests (Challenge 1), it
does not directly provide fine-grained control for extracting
the resource consumption of single components, when sev-
eral components are executing in parallel. Therefore, test
cases must be constructed in such a way that either only
single components are executed, or the energy consumption
of other components should have been measured already,
such that the test results can be corrected for possible inter-
ference by these components.

For generating test code (Challenge 2), we need to identify
which API calls force which state changes and how long such
state changes take, so as to issue the calls that generate the
desired behavior.

Because the CEGAR approach is based on guarantees,
treating the results of test cases in this approach is chal-
lenging (Challenge 3). Possible solutions are using a prob-
abilistic model or restricting ourself to boundaries within
which we can give guarantees. We could, for example, exe-
cute test cases multiple times to provide sufficient certainty
about the energy profile. If the test is playing a song, then
playing 30 different songs can be used to find an energy pro-
file that holds for all these songs. This may provide enough
confidence to conclude that a counterexample is spurious.
However, identifying sufficient diverse inputs is also chal-
lenging. For example, using 30 different songs provides a
better energy profile than using 30 times the same song.

4. EXPECTED RESULTS
With the approach described in this paper, we expect to

be able to generate RUMs from source code, augmented
with the energy profiles extracted by JouleUnit. Such RUMs
should provide enough energy information to allow modular
specifying energy optimizations. To validate this, we will
write energy optimizations based on the generated RUMs
and verify that these optimizations indeed reduce the over-
all energy consumption of the system.

5. REFERENCES
[1] S. te Brinke, S. Malakuti, C. M. Bockisch, L. M. J.

Bergmans, M. Akşit, and S. Katz. A tool-supported
approach for modular design of energy-aware software.
In SAC ’14. ACM, Mar. 2014.

[2] C. Wilke, S. Götz, and S. Richly. JouleUnit: a generic
framework for software energy profiling and testing. In
GIBSE ’13, pages 9–14. ACM, Mar. 2013.

	Introduction
	Extracting Energy Information
	JouleUnit
	CEGAR
	Generating Test Code
	Extracting Energy Profiles

	Challenges
	Expected Results
	References

