
Using Chip Multithreading to Speed Up

Scenario-Based Design Space Exploration ∗

Peter van Stralen
Insititute for Informatics, University of Amsterdam

p.vanstralen@uva.nl

Abstract

To cope with the complex embedded system design,
early design space exploration (DSE) is used to make
design decisions early in the design phase. For early
DSE it is crucial that the running time of the ex-
ploration is as small as possible. In this paper, we
describe both the porting of our scenario-based DSE
to the SPARC T3-4 server and the analysis of its per-
formance behavior.

1 Introduction

A significant amount of research has been performed
on system-level Design Space Exploration (DSE) for
Multi-Processor System-on-Chips (MPSoCs)s [5, 10,
7] during the last two decades. The majority of this
work is focused on the analysis of MPSoC architec-
tures under a single, static application workload. The
current trend, however, is that application workloads
executing on embedded systems become more and
more dynamic.

Recently, we have introduced the scenario-based
DSE environment [11] that exploits workload scen-
arios [3] to model both the dynamism between
and within the applications that are mapped onto
a MPSoC. As a basis for scenario-based DSE, a
scenario-aware version of our high level simulation
framework Sesame [10, 12] is used. Within scenario-
aware Sesame (as illustrated in Figure 1) a separ-

∗We would like to thank Bart Muijzer and Ruud van der
Pas from Oracle Netherlands for their support during the usage
of the SPARC T3-4.

Decode

Processor

Memory

Mapping layer: abstract RTOS
(scheduling of events)

Processor Processor

Event traces

Ap
pl

ica
tio

n
m

od
el

Ar
ch

ite
ct

ur
e

m
od

el

Scheduled
events

Inter application scenario
Intra application scenario Intra application

scenario

EncodeSample

Quality
Control Display

VideoMP3

Figure 1: High level scenario-based MPSoC simula-
tion

ation of concerns is used with separate models for
the application, the architecture and the mapping.
In the application model the functional behavior of
the application is described using intra- and inter-
application scenarios. Intra-application scenarios de-
scribe the dynamic behavior within an application,
whereas the inter-application scenarios describe the
dynamic behavior between multiple applications (i.e.,
which applications can run concurrently). The struc-
ture of the applications themselves are described us-
ing Kahn process networks [8]. Next, the architecture
model describes the non-functional behavior (e.g.,
used power, elapsed cycles) of the MPSoC design. To
connect the application model and the architecture

1

ar
X

iv
:1

30
8.

64
69

v1
 [

cs
.P

F]
 2

9
A

ug
 2

01
3

�����
�
���	�
�

�������
��	����

Trainer
/ Best

designs

Best
Subset

Selected
Designs

Figure 2: The framework for scenario-based DSE us-
ing feature selection.

model, the mapping layer maps both the processes
and communication channels in the applications onto
a component in the architecture.

A complicating factor of embedded system design,
however, is that there is an exponential number of
potential mappings. That is why a search algorithm
is required to efficiently explore the design space.
Therefore, our scenario-based DSE framework aims
at an efficient search for (sub-)optimal mappings of
embedded systems with dynamic multi-application
workloads. As shown in Figure 2, the framework
consists of two components: the design explorer and
the subset selector. In the design explorer, there is
searched for the optimal MPSoC mapping. For this
purpose, a genetic algorithm [9] is used that applies
natural evolution on a population of mappings to
identify high quality mappings. This quality is de-
termined by simulating each of the mappings in the
population. Although a Sesame simulation typically
takes less than a second, there are many mappings
that need to be evaluated. On top of that, each map-
ping needs to be evaluated for multiple application
scenarios. To speed up the evaluation of a single map-
ping, a representative subset of application scenarios
is used. This mapping is identified by the subset se-
lector. Based on a set of training mappings (that is
based on selected designs from the design explorer),
the subset selector dynamically selects a representat-
ive scenario subset. Since, the representative subset
of scenarios is dependent on the current designs in
the design explorer, both the design explorer and the
subset selector are running simultaneously.

To efficiently run the scenario-based DSE, we have
ported it to the SPARC T3-4 server and studied its

performance behavior. With 512 hardware threads,
the SPARC T3-4 server is perfectly suitable to be
used for the embarrassingly parallel scenario-based
DSE. During the search of the scenario-based DSE,
a number of worker threads are used to perform Ses-
ame simulations in parallel. Over time, each worker
thread fires many processes to perform simulation
jobs that can be execute on the hardware threads
of the SPARC T3-4.

In the remaining sections of this paper, we start
by discussing the SPARC T3-4 server in more detail.
Next, Section 3 describes the unoptimized imple-
mentation of the scenario-based DSE. The following
two sections (Section 4 and 5) will shows how Sesame
and the scenario-based DSE are profiled to optimize
the final design of the scenario-based DSE (Section
6). After that, experiments show both the perform-
ance and the bottlenecks of the scenario-based frame-
work. Finally, a conclusion is given.

2 The SPARC T3-4

�������

�����

���

�)/(+'

��������������&%*���	���/��"+��**'!$�+$-"

.���)'** �)

�'#")"&!/�,&$+ �'#")"&!/�,&$+

���
��

��	
���
���
���
���
���
�����
�	������ �(�)!�����)'!"**')

��������������&%*���	���/��"+��**'!$�+$-"

.���)'** �)

�'#")"&!/�,&$+ �'#")"&!/�,&$+

���
��

��	
���
���
���
���
���
�����
�	������

�(�)!�����)'!"**')

��������������&%*���	���/��"+��**'!$�+$-"

.���)'** �)

�'#")"&!/�,&$+ �'#")"&!/�,&$+

���
��

��	
���
���
���
���
���
�����
�	������ �(�)!�����)'!"**')

��������������&%*���	���/��"+��**'!$�+$-"

.���)'** �)

�'#")"&!/�,&$+ �'#")"&!/�,&$+

���
��

��	
���
���
���
���
���
�����
�	������

�(�)!�����)'!"**')

����')"
���
��0

Figure 3: A schematic view of the SPARC T3-4 pro-
cessor.

Most of the multi-core processors are implemen-
ted as a Chip Multiprocessor (CMP). On a single
chip, multiple (identical) cores are placed to enable
thread level parallelism. Although thread level par-
allelism improves the number of potential operations

2

per second, it does not deal with the memory gap.
The memory gap is the disparity between the pro-
cessor speed and the memory speed and, due to this
disparity, the memory latency is an important aspect
of the processor performance. If the processor is not
able to find alternative work while an application is
blocked on a memory call, both the performance and
energy consumption of a processor degrades.

The SPARC T3 processor [1] tries to minimize the
idle time of the processor by using Chip Multith-
reading (CMT). CMT is a combination of CMP
and Fine-Grained Multithreading (FG-MT). With
FG-MT, a processor core is capable of quickly switch-
ing between active threads. As a result, memory
latency of a thread can be filled by executing another
active thread. In this way, the processor core tries to
do active work in each cycle. A SPARC T3 processor
has up to sixteen cores, each supporting eight hard-
ware threads per core. In our case, a SPARC T3-4
server is used. This server is shown schematically in
Figure 3. As the name suggests, the SPARC T3-4
has four SPARC T3 processors running at 1.65GHz.
This gives a total of 64 T3 cores and a total number
of 512 hardware threads.

Within a T3 core there are two execution units,
one per four hardware threads. Additionally, a single
floating point / graphics unit (FGU) is present for
all the eight hardware threads. Level 1 caches are
present in each individual core. For instructions a
16KB instruction cache is available and data can be
stored in a 8KB data cache. The level 2 cache are
shared between all the cores on a single SPARC T3
processor using a crossbar switch. The cores in the
SPARC T3 processor are kept consistent using coher-
ency units. Finally, each T3 core has its own memory
management unit for virtual memory management.
For the instruction data, a instruction Translation
Lookaside Buffer (TLB) of 64 entries is present and
the data TLB has 128 entries.

For comparing the performance of the scenario-
based DSE on the SPARC T3-4, we have also ran the
original implementation of our scenario-based DSE
on a Sun Fire X4440 [2] compute server with four
quad-core AMD Opteron 8356 processors running at
2.3GHz. In contrast to the SPARC T3-4, this ma-
chine runs CentOS Linux.

3 Unoptimized implementation

At first, we have ported the scenario-based DSE to
the SPARC T3-4 without any optimization. As the
SPARC T3 processor supports 64 bits, we had the
possibility to compile for both 32 and 64 bits. In
order to see which option was best, we compared the
performance scaling of both options.

In Figure 4a, the performance scaling is shown
with the unmodified scenario-based DSE and default
compilation flags1. During this experiment, the size
of the workload remains fixed and the number of
worker threads is varied. At first, we investigated
the total wall clock time of the application. The log-
arithmic horizontal axis shows the number of threads
that are used to simultaneously process the simula-
tions, whereas the left vertical axis shows the wall
clock time, also using a logarithmic scale. As a con-
sequence, the ideal speedup manifests itself with a
straight line.

With the 32 bit compilation, a comparison is made
between the compiled code of gcc and compiled code
of the Sun cc compiler. Up to 128 threads, the per-
formance of the Sun cc compiler and the gcc compiler
is similar and, therefore, we have decided to use the
Sun cc compiler for all the experiments. For this
compiler, the speedup of the code is completely lin-
ear until 64 threads. With more than 64 threads the
speedup quickly decreases. At the optimal point of
512 threads, the Oracle SPARC T3-4 is 29 percent
fast than our Sun Fire X4440 server.

In order to identify the cause of the decrease in
speedup, the user and system time is also plotted in
Figure 4. For this graph, the right vertical axis shows
the accumulated processor time in minutes. Since the
amount of work is constant, the expected behavior is
that the accumulated user time remains the same.
This is indeed the case when the number of threads
is between 1 and 64. After this point, however, the
user time starts to increase. The same is true for the
system time: due to the increased number of threads,
the complexity of the coordinating tasks of the oper-
ating system starts to increase. This can be clearly

1Optimization -O3 for gcc and -xO5 for the Sun cc compiler.
Other flags are tried, but do not have any significant effect

3

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

$"

$!"

$!!"

$!!!"

$!!!!"

$!!!!!"

!" $" %" &" '" #" (")" *" +" $!"

!
""
#$

#%
&'
()

*+
,-
"(
..
-,
*/
$
(*
0$

12
34
*

5%
-"
6*
/
$
(*
0.
4*

78,(&).*0964*

:%',&;+&,"*7<=>*;"&%12?*

,-./0"12..-32"

4/00"50657"

8559:/00"50657"

;1.<"

=>1?.@"

('"AB<./-1" #$%"AB<./-1"

=3C"DE<."F'''!"A62"=2..-"

(a) 32 Bits.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

$"

$!"

$!!"

$!!!"

$!!!!"

$!!!!!"

!" $" %" &" '" #" (")" *" +" $!"

!
""
#$

#%
&'
()

*+
,-
"(
..
-,
*/
$
(*
0$

12
34
*

5%
-"
6*
/
$
(*
0.
4*

78,(&).*0964*

:%',&;+&,"*7<=>*;"&%12?*0@>A1'4*

,-./0"12..-32"

4/00"50657"

81.9"

:;1<.="

('">?9./-1" #$%">?9./-1"

:3@"AB9."C'''!">62":2..-"

(b) 64 Bits.

Figure 4: The performance scaling of Sesame on the Oracle SPARC T3-4 for the initial 32 and the 64 bit
compilation.

seen when the system is overloaded with more than
512 threads.

For the user time, however, the increase is not as
you would expect. The most plausible explanation is
the increase is related to the number of physical cores.
There are 64 physical cores on the Oracle SPARC
T3-4. When the number of threads is lower or equal
than the number of physical cores, the speedup is lin-
ear. With more than 64 threads the hardware threads
should lead to a further improvement of the perform-
ance. Still, this improvement is not linear anymore.
Although hardware threads have their own execution
units, a small part of the functionality is shared with
the other hardware threads on the physical core. In
order to identify this shared functionality in our pro-
gram and to minimize these dependencies between
the tasks, we have applied profiling. This will be de-
scribed in the following two sections.

Finally, the comparison between the 32 bits (Fig-
ure 4a) and the 64 bit implementation (Figure 4b)
shows that the 32 bit option on the SPARC is su-
perior to the 64 bit option. In our reference system,
the x86 based Sun Fire X4440, 64 bits compilation is
done, which is clearly faster than when 32 bit com-
pilation is used. In the SPARC T3-4, however, 32 bit
compilation is better. In Figure 4b the performance
scaling of the 64 bit version of our application can be
seen for the Oracle SPARC T3-4. The graph shows

exactly the same trend as the 32 bit compilation (Fig-
ure 4a). However, the absolute performance is worse
than the 32 bit compilation. The difference between
our x86 based reference system and the SPARC T3-4
is that in the x64 architecture 64 bit compilation en-
ables some additional architectural features. For the
SPARCV9 architecture, however, these optimizations
are already available in the 32 bit compilation. As
a result, on the Oracle SPARC T3-4 scenario-based
DSE only suffers from the increased memory foot-
print and does not benefit from additional architec-
tural features.

4 Profiling of a Single Sesame
Call

We start by profiling an individual Sesame simula-
tion on the Oracle SPARC T3-4 and the Sun Fire
X4440. As the Sun Fire X4440 is running CentOS
linux, we use gprof [4] to obtain the profile. In Figure
5 the profile with the functions that use the largest
amount of exclusive user time is shown. For the per-
formance of a single Sesame call, there is a large dif-
ference between the Sun Fire X4400 and the Oracle
SPARC T3-4. The single thread performance is ap-
proximately 7 times slower than the Sun Fire X4440.
It is to be expected that the single thread perform-

4

0

0.04

0.08

0.12

0.16

n
e
w

st
a
te

p
e
a
rl
se

n
d

ft
im

e
r

p
ro

c
e
ss

o
r_

c
a
ll

vp
ro

c
_c

a
ll

b
u

s_
c
a
ll

p
e
a
rl
re

c
e
iv

e

sc
h

e
d

u
le

m
e
m

o
ry

_c
a
ll

jo
b

Id

vm
e
m

b
u

s_
c
a
ll

n
e
x
t

fi
n

d
_m

e
sg

fi
n

d

b
e
e
n

id
le

in
se

rt
_q

c
o

lle
c
ts

e
n

d
re

c
v

tr
a
c
e
C

o
m

m
ID

n
e
x
tT

ra
c
e

c
o

lle
c
ts

e
n

d

in
tm

a
p

_g
e
t

h
o

ld
_t

o

st
o

re
_m

sg

in
tm

a
p

_h
a
s

<
o

th
e
r>

Profile of Sesame

%
 t

im
e

Function

Sun UltraSparc T3-4
Sun Fire X4440

Figure 5: The function profile of a single Sesame simulation obtained with gprof.

ance is worse on the Oracle SPARC T3-4, than it is
on the Sun Fire X4440. The individual core of the
SPARC T3-4 is not only simpler, but the clock fre-
quency is also lower. This difference does not seems
to be related to differences in the function profile.
As there are no significant differences in the function
profile, the porting of the scenario-based DSE to the
SPARC T3-4 does not introduce new bottlenecks in
a single Sesame simulation. Therefore, we decided
that there is no need to invest time in the optimiza-
tion of a single simulation. Rather, there is focused
on optimizing the scenario-based DSE that executes
multiple simulations simultaneously.

5 Profiling of the Scenario-
based DSE

Next, the complete scenario-based DSE framework is
profiled. For this purpose, the Oracle Solaris Studio
Performance Analyzer [6] is used. Figure 6a shows
the function profile of a scenario-based DSE where 32
worker threads are running simultaneously. The pro-
file shows the same behavior as the profile of a single
Sesame simulation. However, during the Sesame sim-
ulation there are some clear hot spots. One of these
hot spots is ftimer. This function only returns (after
a short calculation) the current simulation time. To
improve the performance, we have enabled function
inlining in the Sun cc compiler for functions from
external libraries (ftimer is a function in a dynamic
shared library that is normally imported at runtime).
The effect of inlining is clearly visible in the profile of
Figure 6a, where the ftimer function is inlined with

5

Function 32 Threads 512 Threads

newstate

pearlsend

ftimer

processor_call

vproc_call

pearlreceive

bus_call

schedule

memory_call

next

vmembus_call

12.90% 10.65%

9.30% 11.36%

7.50% 0.00%

7.10% 7.34%

6.60% 8.08%

6.00% 6.45%

4.80% 4.50%

4.60% 9.58%

4.10% 3.41%

3.70% 3.50%

3.00% 2.87%

newstate

pearlsend

ftimer

processor_call

vproc_call

pearlreceive

bus_call

schedule

memory_call

next

vmembus_call

0% 3% 6% 9% 12% 15%

Execution Profile

Fraction of User Time

F
u

n
c
ti
o

n

32 Threads
512 Threads

(a) Profile

32 Threads 512 Threads

User Time

System Time

Lock Time

436 sec 44013 sec

9 sec 1674 sec

293 sec 28877 sec

293 sec

9 sec

436 sec

32 Threads

User Time System Time Lock Time

28877 sec

1674 sec

44013 sec

512 Threads

(b) Breakdown

Figure 6: The profile and execution time breakdown (accumulated over all threads) of the scenario-based
DSE with 32 and 512 simultaneously running worker threads. In contrast to the 32 thread experiment, the
512 thread experiment uses full function inlining.

the 512 thread experiment. As the function ftimer

is not present any more, its user time drops to zero.
For some functions (e.g., pearlsend and schedule),
however, the relative user time increases significantly.
Due to the heavy use of inlined functions, the relative
amount of computation time increases and, as a res-
ult, the fraction of the total exclusive user time that
is spent in these functions.

In Figure 4 we noticed that there was an increase in
user and system time for situations where the number
of threads was larger than 64. To analyze this growth,
the breakdown of the total processing time accumu-
lated over all threads is shown in Figure 6b. Apart
from the absolute values, the fractions of user, user
lock and system time are more or less equal. Still,
the overhead of the scenario-based DSE seems to be
unreasonably large. Although none of the scenario-
based DSE framework function show up in the profile
(Figure 6a), the amount of user lock time is signific-
ant. Most likely, part of this lock time is due to the
lock-based job queue of the scenario-based DSE. To
resolve this issue, we have redesigned our scenario-
based DSE to use a lockless job queue. This design
will be described in the next section.

6 Final design

The original design of the workpool of the scenario-
based DSE used a queue based on mutexes and con-
dition variables to enforce that only one thread at
the time retrieves a job from the job queue. Such
a lock-based design works satisfactory if the number
of worker threads are low. However, when there is
scaled up to 512 threads the contention becomes rel-
atively large. This is substantiated by the amount of
lock time in the time breakdown in Figure 6b.

Figure 7 shows the lockless design of the work-
pool. The lockless implementation is largely based
on volatile variables and atomic operations. Addi-
tionally, synchronization is achieved using a barrier.
During execution, two stages can be distinguished:
initialization and the main execution. Initialization
is triggered by the main thread. The main thread
will create all the worker threads one by one and
wait until the worker threads are initialized. Next,
the worker threads will initialize their data struc-
ture. After the worker threads are all ready for exe-
cution, the threads are synchronized using a barrier
(Barrier Init).

Within the main execution, the job queue is filled

6

Main thread Worker 0 Worker n

C
reate pool

Init Init

��

��
��	��

Create

Fill queue

��

��
����
�

Perform
 job

Perform
 job

Perform
 job

Perform
 job

��

��
��	�

W
rap up

...

...Create...

Figure 7: The ”lockless” implementation of the
scenario-based DSE work pool with 3 worker threads

and processed by the worker threads. During the
filling of the queue, all the worker threads are blocked
on a barrier (Barrier Start). The filling of the
queue is done by the main thread. This involves the
allocation of a vector with job descriptions and, next
to this, the atomic variables are initialized. There are
two atomic variables: 1) the cur pointer that refers to
the first unprocessed job and 2) the end pointer that
refers to the last job. After initializing the queue, the
main thread will also synchronize on the start barrier.

When all threads are started the jobs will be pro-
cessed. Each of the jobs will be handled by a single
worker threads that will start a Sesame simulation in

an external process using the system() command2.
In the meanwhile, the main thread is blocked on the
final barrier (Barrier End) until the complete job
queue is handled. To fetch a job, a worker thread
atomically increments the cur pointer and obtains
the current value. In case the value is smaller or equal
to the end pointer, the specific job will be fetched
from the queue. Otherwise, the worker thread will
also synchronize on the final barrier.

Once all the threads have reached the end barrier
the main thread will wrap up. This involves the de-
struction of the queue and make it ready for the next
batch of evaluations. In the meanwhile, the worker
threads are already waiting on the start barrier. This
design allows us to process multiple batches without
recreating the workpool for each generation in the
scenario-based DSE.

7 Experiments

Until now, we have described the port of the scenario-
based DSE to the SPARC T3-4. The focus of this
porting procedure was to run the evaluation of a
batch of simulations as fast as possible. In this sec-
tion we will present the final results using three types
of experiments. During the experiments, the final
design of the scenario-based DSE is used with a fixed
workload that consists of 1000 individual simulation
jobs. The first two experiments will analyze the in-
fluence of the type of heap allocation and the type of
scheduling. Next, we will give a short remark on the
wall clock time accuracy of the Oracle Solaris Studio
Performance Analyzer. This is followed by an exper-
iment that explains the increase of user time with an
increasing number of worker threads. Finally, we can
show with a final experiment the scalability of the
scenario-based DSE.

7.1 Heap Allocation

During the profiling with the Oracle Solaris
Studio Performance Analyzer, one hot spot

2Unfortunately, it is not possible to easily integrate Sesame
in the evaluator due to the large number of global variables in
the program

7

libmalloc libumem libmtmalloc
32
64
128
256
512
1024

1.000 1.022 1.0070

1.000 1.021 1.0023

1.000 1.024 1.0011

1.000 1.017 0.9919

1.000 1.046 0.9710

1 1.035 0.9580

libmalloc libumem libmtmalloc
32
64
128
256
512
1024

0.000 0.000 0.0002

0.001 0.001 0.0008

0.001 0.002 0.0022

0.001 0.002 0.0026

0.003 0.004 0.0016

0.002 0.002 0.0032

0.94

0.968

0.995

1.023

1.05

32 64 128 256 512 1024

Influence of Heap Allocation

N
o

rm
a
liz

e
d

 W
a
ll

C
lo

c
k
 T

im
e

Threads

libmalloc
libumem
libmtmalloc

Figure 8: The influence of the different types of heap
allocation on the execution time of the scenario-based
DSE.

with respect to system time was the function
take_deferred_signal(). When digging deeper in
the function stack, we found out that this function
becomes hot due to mutex locks in malloc and free.
The default malloc library on Oracle Solaris uses
a single heap for all the different threads. During
system calls like malloc and free, the access to the
shared heap is guarded by mutex locks. In a system
where there are many hardware threads, such as the
SPARC T3-4, this quickly can become a bottleneck
of an application.

Fortunately, Oracle Solaris provides more heap al-
location strategies. Next to the default strategy, a
multithreaded malloc (libmtmalloc) and a type of
slab allocator (libumem). We compared the perform-
ance of our scenario-based DSE framework on these
three types of heap allocation. The experiment is
performed for a variable number of worker threads,
where each experiment is repeated six times.

The result of the experiment is shown in Figure 8.
In the results the wall clock time of every experiment
is normalized to the average wall clock time of the de-
fault heap allocation scheme and the error bars show
the standard error of the mean. At first, it is clear
that our application is not suited for slab allocation.
In the case of slab allocation, the heap allocator tries
to reduce the memory fragmentation by preallocat-
ing memory slots of a certain type. When these types
are allocated frequently, this quickly provides alloc-
ated memory with hardly any fragmentation. This
approach may be well suited to kernel objects (In

fact, libumem is a user space implementation of the
original slab allocator inside the kernel), but in our
scenario-based DSE framework libumem is signific-
antly slower for all cases. It also does not solve our
bottleneck problem as it has the same mutex locks as
the default heap allocator.

The multithreaded heap allocator libmtmalloc,
however, has split the heap into individual segments
for each separate thread. This requires more heap
space, but locally the dynamically allocated data
can be created concurrently for each of the differ-
ent threads without using locks. Our results show
that for situations where a relative modest number
of threads are used, libmtmalloc is slower. In this
case we only suffer from a larger heap space. Increas-
ing the number of workers, libmtmalloc is becom-
ing faster than the default heap allocator. The more
worker threads there are, the more lock contention
is present in the default heap allocator. This lock
contention is not present in the multithreaded heap
allocator, what is especially visible when we overload
the system with 1024 worker threads.

7.2 Scheduling

Another aspect that can influence the performance
is the scheduling policy of the process. Solaris 10
allows us to set the scheduling class of a process with
the command priocntl. For a normal user, there
are two possible classes: 1) time sharing and 2) fixed
priority. Time sharing periodically recalculates the
priority of a process to give each process an equal
part of the processing time, whereas in the case of the
fixed priority it remains equal for the total lifetime of
the process.

As in our scenario-based DSE framework separate
processes are used for each individual simulation, the
scheduling can affect the performance. As shown in
Figure 9a, the desired behavior of the performance is
that it improves until all the 512 hardware threads of
the SPARC T3-4 are utilized. After this point, the
performance should degrade very slowly. This is the
case with the fixed priority policy. For time sharing,
however, the performance of the scenario based DSE
framework degrades faster and using 1024 threads it
is even slower than using 256 worker threads.

8

Time sharing Fixed priority Bound threads

256

512

1024

218.364 218.11

202.325 197.188 313.061

231.883 206.665 485.741

0

125

250

375

500

256 512 1024

Wall Clock Time for Different Scheduling Policies

W
a
ll

c
lo

c
k
 T

im
e
 (
s)

Threads

Time sharing
Fixed priority
Bound threads

(a) Execution Time

Time Sharing Fixed Priority

256

512

1024

995242 951022

1493268 1023907

2306522 1065709

0

750000

1500000

2250000

3000000

256 512 1024

C
o

n
te

x
t

S
w

it
c
h

e
s

Threads

Time Sharing
Fixed Priority

Scheduling Policy and the
Number of Context Switches

(b) Context Switches

Figure 9: The wall clock execution time with different scheduling policies and the relation to the number of
context switches.

Most likely, the reason for the degraded perform-
ance of the time sharing policy is the number of con-
text switches. In order to quantify the influence of
context switches, we have used the standard C lib-
rary function getrusage. The results in Figure 9b,
show indeed a correlation between the number of con-
text switches and the degraded performance. For the
fixed priority policy the number of context switches
remains constant with an increased number of worker
threads. The number of context switches for the time
sharing policy, on the other hand, increase simultan-
eously with the number of worker threads.

We realized that it should be beneficial that each
worker process keeps the affinity with the T3 core
where it is running. In this way, a more efficient
cache usage can be achieved. To achieve the (virtual)
processor affinity, all the worker threads are bind to
one of the hardware threads with the system call
processor_bind. Since the manual did not provide
us with a clear mapping of the processor identifier
and the hardware thread, we only performed this ex-
periment for 512 and 1024 worker threads. In this
case, it is relatively easy to spread to workers over
the architecture. Looking to the performance in Fig-
ure 9a, our simple worker mapping scheme does not
give satisfactory results. Undoubtedly, better worker
mapping schemes can be identified, but we do not
expect to obtain significant improvements.

7.3 User Time Scaling

A much larger potential improvement can be gained
if we resolve the increase in user time. Going back to
the scalability graph in Figure 4, we identified that
once the number of worker threads is larger than 64,
the total user time of the application starts to in-
crease. However, as the workload remains constant,
the user time should remain constant irrespective of
the number of worker threads. If we can reduce the
increase in user time, the total speedup of the ap-
plication (compared to sequential execution) can be
improved significantly.

In order to identify the cause of the increase, a
significant amount of research with the Oracle Sol-
aris Studio Performance Analyzer was required. The
hardware counters finally gave us the solution. In
Figure 10, the number of TLB misses can be seen
for the instruction memory and the data memory.
Obviously, the number of TLB misses show a high
correlation between the increase in user time. Un-
til 64 worker threads, the user time was constant:
the TLB experiment shows us that in this case there
are no TLB misses. After this point, the user time
is increasing and this is reflected by a skyrocketing
number of TLB misses. When a TLB miss occurs in
user mode, it is also resolved in user mode. So, the
time to resolve the TLB misses is also added to the
user time. With more than 3.3 billion TLB misses, it

9

ITLB Misses DTLB Misses

32

64

128

256

360

512

0 0

0 0

100003 0

60001800 94000282

338110143 418001254

984029520 2328006984

0E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

32 64 128 256 360 512

Scalability with respect to TLB Misses

To
ta

l T
L
B

 M
is

se
s

0 0 100003 60001800 338110143 984029520

0 0 0 94000282 418001254 2328006984ITLB Misses
DTLB Misses

Threads

Figure 10: The number of TLB misses in relation to the number of worker threads

is to be expected that a large increase in user time is
observed.

The architecture of the SPARC T3-4 also explains
why the threshold is at 64 worker threads. Each
worker thread uses separate processes to perform the
simulations. As a result, each worker thread needs his
own private entries in the instruction and data TLB.
Until 64 worker threads, each worker thread can run
at a separate T3 core and have his own TLB. How-
ever, when the number of worker threads is larger
than the number of T3 cores, the TLBs are shared.
In the case that all 512 hardware threads are utilized,
each hardware thread can have only 8 entries in the
instruction TLB and 16 entries in the data TLB (1

8
of the entries in the shared TLB of the T3 core).

It is hard to resolve the TLB misses. At first,
Sesame includes a large number of shared libraries.
Secondly, a large amount of data is used during the
simulation. This involves input data like the work-
load of the embedded system, the description of the
application and the architecture of the embedded sys-
tem. Additionally, a large amount of output data is
produced that is temporarily stored in memory.

The relation between threads and processes, as de-
picted in Figure 11, explains the TLB problem. For
the scenario-based DSE the first two levels of the
tree are running in a single process (the evaluator
and worker threads). Sesame workers, however, are
separate processes. The Oracle Solaris Studio Per-

formance Analyzer learns us that all the TLB misses
occur in a large shared library named libymlpearl.

A potential improvement is to incorporate Sesame
in the evaluator as a shared library. In this way the
simulation is a function call instead of an extern-
ally running process. The big advantage in this case
is that libymlpearl only needs to be loaded once.
Shared data between the simulation is in this situ-
ation shared between all the workers. However, from
origin Sesame uses many global variables. Thus, it
would require a large (but absolutely not impossible)
implementation effort to turn Sesame into a loadable

evaluator

pthread pthread pthread

worker worker

libymlpearl

worker

libymlpearl libymlpearl

system(...) system(...)

shared	 lib shared	 lib shared	 lib

system(...)

Figure 11: The relation between threads and pro-
cesses in the scenario-based DSE

10

Workers 2log w Achieved Ideal Peak

1

4

8

16

32

64

90

128

180

256

360

512

768

1024

0 1 1 184.69
2 4 4 184.69
3 7.996232144 8 184.69
4 15.96440577 16 184.69
5 31.79885333 32 184.69
6 61.53364049 64 184.69

6.491853096 81.84172011 90 184.69
7 106.6000703 128 184.69

7.491853096 130.3413344 180 184.69
8 154.2810392 256 184.69

8.491853096 168.0017067 360 184.69
9 184.6893043 512 184.69

9.584962501 184.0013894 768 184.69
10 183.2476845 1024 184.69

0 2 4 8 16 32 64 128 256 512 1024
1

10

100

1000
Final Speedup of Scenario Based DSE

S
p

ee
d

up
 (T

se
q

 /
 T

p
ar

)

Achieved
Ideal
Peak

Threads

185

Figure 12: The final scalability of scenario-based DSE
on the SPARC T3-4

dynamic library.

At the moment, the only possible improvement is
to increase the page size of the heap to 4MB instead
of the default 8KB. This gives already a performance
improvement of more than four percent with respect
to the execution time with the 8KB page.

7.4 Scalability

With all these improvements, it is time to show the
final scalability of the application. For this experi-
ment, we increased the size of the workload to 10.000
jobs to be certain that the lack of sufficient workload
does not limit our speedup. The results are given in
Figure 12.

Linear speedup is achieved when the number of
worker threads is less or equal to the number of T3
cores. In this case, the chip multiprocessing is ex-
ploited and most resources are private to the worker
threads. Examples of these resources are the level 1
caches, the execution units and the TLBs.

For 128 threads the parallelized evaluator is 107
times as fast as the sequential version. In this case,
the average number of worker threads per T3 core is
two. Each worker thread has thus its own execution
unit (as there are two in each T3 core), but other
resources like caches and TLBs needs to be shared.
As a consequence, the speedup is still close to linear.

Above the 128 threads the execution units are also
shared between the worker threads. For these con-

Successive
Performance

Improvements

1) 32 bit

2) Final (inlined) design

3) MT malloc

4) Fixed Priority Scheduling

5) 4M Page

21%

14%

2%

3%

4%

4%

3%

2%

14%

21%

1) 32 bit
2) Final (inlined) design
3) MT malloc
4) Fixed Priority Scheduling
5) 4M Page

Successive Performance Improvements

Figure 13: The successive improvements in perform-
ance after the different optimization steps. For each
improvement step, the relative execution time is
given with respect to the plain 64 bit compilation.
Each of the improvement extends the improvements
of the previous step. As a consequence, at the 4M
Page all the improvements are enabled (32 bit, final
inlined design, MT Malloc and fixed priority schedul-
ing)

figurations, the performance mostly suffers from the
limited TLB size. Hence, the maximal obtained spee-
dup is almost 185 times as fast as the sequential ex-
ecution. Given the fact that there are 128 functional
units on the SPARC T3-4, the chip multithreading
is able to improve the performance of our scenario-
based DSE framework.

8 Conclusions

In this paper the porting of our scenario-based DSE
framework to the SPARC T3-4 is described. In or-
der to analyze the performance of our scenario-based
DSE on the SPARC T3-4, we used the Oracle Sol-
aris Studio Performance Analyzer to profile the ap-
plication. This resulted in a modified design of the
scenario based DSE where the locks in the shared
job queue were replaced by atomic operations. The
only locks left in the application are barrier synchron-
izations that are needed to ensure that the worker
threads do not access the queue when it is filled.

A summary of the improvements during the pro-
filing of our scenario-based DSE framework on the

11

SPARC T3-4 server is given in Figure 13. The largest
improvement were made during the first two steps.
By using 32 bits instead of 64 bit compilation, already
21 percent performance improvement was achieved.
Secondly, the lockless queue implementation com-
bined with function inlining brought another 14 per-
cent of improvement. The heap allocation scheme
and the scheduling policy, on the other hand, give
moderate improvements (2 or 3%) on the final design
of the scenario-based DSE framework. Largest re-
maining bottleneck are the TLB misses. A 4M pages-
ize already give a performance improvement of more
than 4%, but additional gains could be achieved in
future work.

Finally, the SPARC T3-4 server gives a speedup of
more than 185 times as fast as the sequential code.
Given the fact that there are only 128 execution units,
we can conclude that the chip multithreading ap-
proach is already paying off. Still, the SPARC T3-4
behaves poorly for a workload with a large number of
(similar) processes. When all the hardware threads
are filled, only 8 instruction TLB entries are available
and 16 data TLB entries. This can quickly give a per-
formance degradation by introducing TLB misses.

References

[1] Sparc t3-4 server. http://www.oracle.

com/us/products/servers-storage/

servers/sparc-enterprise/t-series/

sparc-t3-4-ds-173100.pdf.

[2] Sun fire x4440 server. http://www.

oracle.com/us/products/servers-storage/

servers/x86/034679.pdf.

[3] S. V. Gheorghita et al. System-scenario-based
design of dynamic embedded systems. ACM
Transactions on Design Automation of Elec-
tronic Systems, 14(1):1–45, 2009.

[4] S. L. Graham, P. B. Kessler, and M. K. McK-
usick. gprof: a call graph execution profiler.
SIGPLAN Notices, 39(4):49–57, April 2004.

[5] M. Gries. Methods for evaluating and covering
the design space during early design develop-

ment. Integration, the VLSI Journal, 38(2):131–
183, 2004.

[6] D. Grove. Multicore Application Programming:
for Windows, Linux, and Oracle Solaris (De-
veloper’s Library). Addison-Wesley Professional,
1st edition, November 2010.

[7] Z.J. Jia, A.D. Pimentel, M. Thompson,
T. Bautista, and A. Nunez. Nasa: A generic in-
frastructure for system-level mp-soc design space
exploration. In 8th IEEE Workshop on Embed-
ded Systems for Real-Time Multimedia (ESTI-
Media), pages 41–50, October 2010.

[8] G. Kahn. The semantics of simple language for
parallel programming. In IFIP Congress, pages
471–475, 1974.

[9] M. Mitchell. An Introduction to Genetic Al-
gorithms. MIT Press, Cambridge, MA, USA,
1998.

[10] A. D. Pimentel, C. Erbas, and S. Polstra. A
systematic approach to exploring embedded sys-
tem architectures at multiple abstraction levels.
IEEE Transactions on Computers, 55(2):99–
112, 2006.

[11] P. van Stralen and A. D. Pimentel. A High-
level Microprocessor Power Modeling Technique
Based on Event Signatures. Journal of Sig-
nal Processing Systems, 60(2):239–250, August
2010.

[12] P. van Stralen and A. D. Pimentel. Scenario-
based design space exploration of MPSoCs. In
Proceedings of IEEE International Conference
on Computer Design (ICCD ’10), October 2010.

12

http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t3-4-ds-173100.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t3-4-ds-173100.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t3-4-ds-173100.pdf
http://www.oracle.com/us/products/servers-storage/servers/sparc-enterprise/t-series/sparc-t3-4-ds-173100.pdf
http://www.oracle.com/us/products/servers-storage/servers/x86/034679.pdf
http://www.oracle.com/us/products/servers-storage/servers/x86/034679.pdf
http://www.oracle.com/us/products/servers-storage/servers/x86/034679.pdf

	1 Introduction
	2 The SPARC T3-4
	3 Unoptimized implementation
	4 Profiling of a Single Sesame Call
	5 Profiling of the Scenario-based DSE
	6 Final design
	7 Experiments
	7.1 Heap Allocation
	7.2 Scheduling
	7.3 User Time Scaling
	7.4 Scalability

	8 Conclusions

