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ABSTRACT
Gestures are important non-verbal signals in human com-
munication. Research with virtual agents and robots has
started to add to the scientific knowledge about gestures but
many questions with respect to the use of gestures in human-
computer interaction are still open. This paper investigates
the influence of robot gestures on the users’ perceived work-
load and task performance (i.e. information recall) in a
direction-giving task. We conducted a 2 x 2 (robot gestures
vs. no robot gestures x easy vs. difficult task) experiment.
The results indicate that robot gestures increased user perfor-
mance and decreased perceived workload in the difficult task
but not in the easy task. Thus, robot gestures are a promis-
ing means to improve human-robot interaction particularly in
challenging tasks.

Author Keywords
human-robot interaction; gestures; perceived workload; task
performance

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Gestures are important non-verbal signals in human commu-
nication (e.g., [19, 22]). Research with virtual agents and
robots has started to add to the scientific knowledge about the
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Figure 1. Nao robot providing route directions to a user.

use of gestures in human-computer interaction (HCI). Com-
plex gesture models for virtual agents have been developed
and employed in HCI research (e.g., [1, 4, 20, 27]).

The evaluation of these models focused, among others, on
the perceived naturalness of the gestures [20], on their ex-
pressivity [27], on users’ trust in the agent [4], and on gesture
production depending on the cognitive load of the speaker
[2]. All these studies showed that virtual agents are perceived
more positively when producing co-verbal gestures.

Gesture research with agents has attracted further attention
in the recent years with the increasing number of robot re-
search platforms that cannot only produce gestures in a vir-
tual space but in the physical world that they share with hu-
mans (e.g., [3, 25, 28]). There is quite some work on gestures
in human-robot interaction (HRI), particularly with respect
to gesture-speech mismatches and synchronization (e.g. [25,
28]), and persuasiveness of gestures [6]. Common findings
of these studies were that, if gestures are synchronized with
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speech, they have positive effects on the evaluation (e.g., per-
suasiveness) of robots. Thus, HRI research has supported the
findings from the virtual agents community.

Our research focuses on an effect of gestures that has largely
been ignored in HCI in general as well as in HRI in particu-
lar: the influence of gestures produced by a system (here by a
robot) on the perceived workload and task performance (here
measured in terms of information recall) of the user in tasks
with varying difficulty. While the impact of gesturing on ob-
jective task performance has found some attention in previous
work (see Section ”Related work”), perceived workload has
not been taken into account. However, perceived workload is
a highly important concept because it captures the users’ sub-
jective impression of the task (see Section ”Related Work”).
It has been shown that perceived workload affects the affec-
tive and physiological state of humans. High perceived work-
load can cause affective distress and increased blood pressure
[8, 15] and has also been shown to influence job satisfaction
[8].

To address this gap in the literature, we present an experi-
ment on the influence of deictic (pointing) gestures that are
redundant with speech in a direction-giving task. Users lis-
ten to directions provided by a robot in an easy or a difficult
task. The descriptions are only accompanied by gestures for
half of the participants. Based on our results, we show the
importance of robot gestures particularly in difficult tasks.

Thus, our study contributes first research on the influence of
robot gestures on perceived human workload and task perfor-
mance. We add to the understanding of user behavior and
cognitive capabilities in tasks with different levels of diffi-
culty. In this respect, our work lays the ground for the design
of future robot systems.

RELATED WORK
In the following, we highlight related work on gestures in
human interaction. Thereafter, we introduce the concept of
perceived workload, before we discuss the relation between
both (gestures and perceived workload) and establish the hy-
potheses for our experiment.

Gestures in human interaction
There is a vast body of research on gestures in human interac-
tion. Based on Kendon’s definition [19], they are understood
here as deliberate movements with sharp onsets and offsets.
They are an excursion in that a part of the body (usually the
arm or the head) moves away from and back to a certain posi-
tion. The movement is interpreted as an addressed non-verbal
utterance that conveys information.

Gesture research has resulted in categorizations of types and
functions of gestures. These are described in the following
sections because they help to set the frame for our experiment.

Types of gestures
Several categorizations of types of gestures that accompany
speech have been introduced in the literature (see [9] for an
overview). One of the best known categorizations is by Mc-
Neill [23]. He differentiates four types of gestures: Iconic
gestures represent body movements, movements of objects or

people in space, and shapes of objects or people. Metaphoric
gestures present an abstract idea rather than a concrete object.
Deictic gestures are used to indicate objects, people, and lo-
cations in the real world that do not necessarily have to be
present. Finally, beat gestures are beats with the rhythm of
speech regardless of content.

As has been mentioned above, our experiment focuses on
a direction-giving task. In this context, deictic gestures are
the most relevant type of gestures because they connect utter-
ances to the physical setting and the physical world in which
the conversation takes place is the topic of the conversation
[5]. Pointing is the most obvious way to create deictic refer-
ences. For the use of gestures in route direction tasks, Kita
[21] found that when people utter an expression such as ”turn
left”, they also perform gestures to describe the direction of
”left”. Hato et al. [14] pointed out that also in HRI such ges-
tures are important in deictic interactions that refer to a region
in space.

Kendon [19] identified different pointing gestures in interac-
tion data, extending the index finger being the most com-
monly used when a speaker singles out a particular object
or place. Thus, in our experiment the robot will perform
pointing gestures with its index finger extended while pro-
viding the directions to the user (see Section ”Independent
Variables”).

Functions of gestures
Most of the research on human gestures follows one of two
main traditions: the one claiming that the main function
of gestures is to help the speakers think and structure their
speech [9], or the one stressing the communicative impor-
tance of gestures [19]. We here follow the second tradition
and summarize related work on the influence of gestures on
the perception of a person by others.

Gesturing has been found to strongly affect human listeners
because they pay close attention to information conveyed via
such non-verbal behaviors [9]. The influence of the gestures
is largely determined by their relation to the information en-
coded in verbal utterances. This relation can be reinforcing
or supplementing [16]. Especially deictic gestures such as
pointing, references to objects, locations, and actions, can be
reinforcing (also called ”redundant” in the literature). The
gestures label what is pointed at, but the referent can be un-
derstood with speech only. In contrast, when the gesture is
supplementing, the referent that is pointed at is not clear with-
out the gesture (for example, if someone says ”this”, a point-
ing gesture is needed to clarify what is referred to with the
utterance). For our experiment, we use reinforcing deictic
gestures. Thus, the referent is also clear without the gesture
which allows us to design and compare conditions with and
without the robot gesturing (see Section ”Independent Vari-
ables”).

Perceived workload
Our work focuses on the effect of the reinforcing deictic ges-
tures on the perceived workload of users. There are many def-
initions of the perceived workload concept in the psychology
literature. One of the best known is by Hart and Staveland
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[12]. They define workload as a hypothetical construct that
represents the cost incurred by a human operator to achieve
a certain level of performance. This view is human-centered
rather than task centered and captures a subjective experience
rather than an inherent property of a task. In other words,
the perceived workload depends on the circumstances, skills,
behaviors and perceptions of the user.

Perceived workload is a well-studied concept in HCI which is
underlined by the fact that validated standard scales like the
Nasa TLX exist. In [13], Hart reviews a selection of 550 pa-
pers that have used the Nasa TLX. It needs to be mentioned
that the review was conducted some years ago, in 2006, and
even at that time papers were selected and the overall number
was higher. According to Hart’s analysis, the research areas
where the scale has been employed include manual control
tasks such as flying (14%), driving (9%), data entry (10%)
and others. However, there are much fewer studies addressing
the perceived workload caused by virtual agents and robots.
The Nasa TLX has mainly been used to measure human per-
formance and workload in teleoperation scenarios (with one
human teleoperating one or multiple robots) [29]. The per-
ceived workload concept has also been mentioned in some
other contexts. Gu and Badler [10] propose to research the
effects of workload in studies with virtual agents by manipu-
lating the number of agents one interacts with. However, they
present no evaluation. In HRI, Yoshiike et al. [31] suggest
to reduce workload by minimizing the social cues of a robot
so that the user does not have to follow eye-gaze, facial ex-
pressions, life movement, etc. Again, there is no study to test
the effect of this minimal design on the perceived workload
of the user.

The influence of robot gestures on users’ task perfor-
mance and perceived workload
In the following, we establish a connection between gestures,
performance and perceived workload, and introduce our hy-
potheses.

For human interaction, Kendon [18] proposed that gestures
along with speech make utterance units more effective. In an
HRI direction-giving task (as in our experiment), Okuno et
al. [26] discovered that gestures had a positive effect on re-
call of the information. Also McNeil, Alibali, and Evans [22]
suggested that redundant gestures facilitate understanding in
adult-child interaction. They assumed that indexical (deictic)
gestures may facilitate comprehension most when speakers
make reference to particular objects and locations. However,
their findings only partially underlined these assumptions.
They found that speakers’ reinforcing gestures facilitated lis-
teners comprehension of the accompanying speech when the
verbal message was highly complex (in their study this was
the case for younger children compared to older ones) but not
when it was simple. Also for HRI, Häring et al. [11] found
that additional modalities (gaze and gesture) did not help to
increase performance in the simple condition of a puzzle but
in the complex condition. This leads us to our first hypothe-
sis:

easy task / easy task /
no gestures gestures
difficult task / difficult task /
no gestures gestures

Table 1. Experimental conditions

H1: The participants’ task performance (in terms of correct
recall of directions) will improve significantly when the robot
produces redundant gestures in the difficult task but not in the
easy task.

However, task performance is not our main interest here. In
contrast to previous studies, we are also interested in the ef-
fects of gestures on the perceived workload of the users. As
has been mentioned above, we are not aware of any related
work addressing this relation directly. However, it has been
shown that visual feedback can decrease perceived mental
workload [30]. Also gestures are a visual cue which leads
us to our second hypothesis:

H2: The participants’ perceived workload will be signifi-
cantly lower when the robot produces redundant gestures,
both in the difficult and in the easy task.

METHOD
We designed a 2 (gesture vs. no gesture) x2 (easy vs. difficult
task) between subjects experiments (see Table 1), in which
the participants played a memory game with the robot Nao.
The robot told the participants a seemingly random set of di-
rections that they were later asked to recall. The directions
consisted of phrases used to navigate a building. Each di-
rection included two pieces of information: one directional
information (up, down, left or right) and a number specifying
the amount of levels the participant needed to go up or down,
or the number of turns the participant needed to take to left or
right. The phrases we used were:

• ”Take the ’nth’ left”

• ”Take the ’nth’ right”

• ”Go up ’n’ levels”

• ”Go down ’n’ levels”

In all utterances, n was a number between one and five. The
amount of directions per round was varied between difficulty
levels (see Section ”Independent Variables”).

Robot
The robot used in this experiment is the Nao robot by Alde-
baran Robotics (see Figures 1, 2, and 3). It is a bipedal hu-
manoid robot that measures 57.3 cm in height when in an
upright, standing position. The robot has 25 degrees of free-
dom to move its head, arms, hands, legs, and hips. It has two
speakers integrated in its head.

In our experiment, the robot was connected to a laptop
from where the researcher could remote control its behavior.
Scripts for the utterances and gestures were prepared before-
hand and played during the interaction. All participants re-
ceived the same set of directions in a randomized order.
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Figure 2. Nao in the condition without gestures (static pose).

Independent variables
The following sections describe how we manipulated the
robot behavior and the task between the conditions.

Gesture vs. no gesture
We designed two different robot behaviors with respect to
gesturing. In the ”no gesture” condition (also referred to as
”static condition” in the following), the robot stayed in one
posture throughout the experiment and did not gesture (see
Figure 2). For the condition with gestures (also called ”an-
imated condition” in the remainder of the paper), we devel-
oped movements that were in accordance with the directions
that the robot provided to the users. Thus, all gestures were
pointing (deictic) gestures redundant with speech (see ”Re-
lated Work” Section). Their design was based on work by
Kanda et al. [17]. However, as the Nao robot cannot rotate
its torso, we replaced this motion by the rotation of the head.
This should allow the participants and the robot to establish a
joint perspective. We implemented the following gestures:

1. The robot points its arm and rotates its head to its right (left
for the participant) or left (right for the participant).

2. The robot points its arm and tilts its head upwards.

3. The robot points its arm and tilts its head downwards.

Figure 3 depicts examples of the gestures of the robot.

Easy vs. difficult task
We chose a direction-giving task because the embodied robot
could indeed be credible in such a task pointing out directions
in space. Furthermore, this task allowed for manipulation of
the difficulty by influencing the amount of information pro-
vided to the participants. As has been mentioned above, each
direction consisted of two pieces of information. We con-
ducted a pretest with five students of our university to deter-
mine how many directions appeared easy or difficult to them.

Figure 3. Gestures of the Nao robot (upper left: pointing to the left;
upper right: pointing to the right; lower left: pointing upwards; lower
right: pointing downwards).

All participants of the pretest should be able to solve the easy
task. The difficult task should cause some problems to some
of them but still be solvable for the majority of participants.
Based on the results of the pretest, we decided for two direc-
tions (with two pieces of information each) in the easy task
and four directions (with two pieces of information each) in
the difficult task. This decision is in line with Miller’s Law
that claims that humans are able to hold 7 ± 2 objects in their
working memory [24].

Next to the pieces of information within one direction, we
also analyzed how long the participants paid attention to the
task and the robot before getting bored or distracted. Based
on this information, we decided for five rounds that the par-
ticipants had to complete with the robot in both conditions.

Dependent variables
Our dependent variables included measures of perceived
shared reality, task performance, and perceived workload. We
also collected demographic information on age, gender, and
experience with robots.

Perceived shared reality
We employed a scale on perceived shared reality because
it has been found that robot gestures and shared reality are
closely intertwined in HRI [28]. Thus, this scale basically
serves as a manipulation check to ensure that the manipula-
tions between the static and animated conditions were actu-
ally perceived by the users and caused the potential differ-
ences in the task difficulty and perceived workload ratings.

We used the experienced shared reality scale previously em-
ployed by Salem et al. [28]. The scale contains three items:

• I feel close to the robot
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• I found the interaction with the robot pleasant

• I had fun while interacting with the robot

The scale was a 5-point Likert scale (1: strongly disagree -
5: strongly agree). Its internal reliability (Cronbach’s α) was
.822.

Task performance
The task performance was an objective measure. We counted
the number of correct recalls of directions by the users based
on video data that we recorded during the trials. The maxi-
mum score was 5 (minimum 0) because the users played five
rounds and only if the recall of the information presented in
one round was 100% correct, the recall was counted as being
correct (thus, increasing the score by one point per round).

Perceived workload
To capture the users’ subjective impression of the workload
(or in other words the perceived workload), we used the Nasa
TLX scale which is a standard in recording subjective task
workload [12]. We included all subscales (mental demand,
physical demand, temporal demand, performance, effort, and
frustration) into the analysis, each of them being rated on a
10-point Likert scale ranging from ”low” to ”high”.

We employed the weighted version of the Nasa TLX which
allows to take the importance of each subscale in a specific
scenario into account. Thus, the questionnaire included the
scale to weigh the subscales which asked the participants to
compare all individual subscales with all others and to indi-
cate which one they found more important or relevant.

Data analysis
Before analyzing the data, we checked for normality of dis-
tribution. If the data was normally distributed, we used
two-factorial ANOVAs and we report main- and interac-
tion effects. In case of non-normally distributed data, non-
parametric tests were applied, namely Kruskall-Wallis tests
followed up by post-hoc Mann-Whitney tests as proposed by
Field [7].

Procedure
At the start of the experiment, each participant was greeted by
the experimenter who provided some explanation and asked
the participant to fill out a consent form. Thereafter, the
participant sat down in front of the table on which the Nao
was standing (see Figure 1). Thus, both were facing each
other (rather than having the participants look down on the
small robot). The experimenter explained that when the robot
would either point to the right or left, it would comply to the
spatial perspective of the participants, i.e. if it used its left
arm to point, it would point to the right. After providing this
information, the experimenter withdrew to a laptop that was
used to control the robot in a Wizard of Oz fashion. The
participants could not see the experimenter from where they
were sitting.

In all conditions, the interaction started with the robot utter-
ing ”Let’s begin the game”. As mentioned above, the robot’s
actions were pre-programmed and triggered by the experi-
menter at the correct moments. Every directional phrase was

randomly separated by one of the following words: ”next”,
”then”, ”following that”, ”subsequently”, or ”after that”.
When the participant completed the round successfully, the
robot would say ”That is correct”. If the participant made an
error, the robot said ”That is not correct.” Both events were
triggered by the experimenter. Each new round started with
the robot announcing ”Let’s begin a new round”. After having
completed five rounds, the experimenter asked the participant
to fill out the questionnaire and thanked him/her.

Sample
The experiment was conducted with 32 participants dis-
tributed equally between the conditions. All participants were
students of the university (3 female, 29 male). Their age
ranged between 18 and 28 years with a mean age of 21 years
(standard deviation (sd) = 2 years). The participants had
hardly any experience with robots: 27 had never seen a robot
in real life, 3 had only seen one, and just 2 had interacted or
worked with robots before the experiment.

RESULTS

Perceived shared reality
A Shapiro-Wilk test showed that the data for perceived shared
reality were normally distributed. Thus, we conducted a two-
way ANOVA to discover differences between the conditions.
This ANOVA revealed that there was no statistical difference
between the conditions regarding experienced shared reality,
F (3, 28) = 1.865.p = 0.159. In fact, both the static / easy
and the static / difficult conditions had a mean of 2.96 (easy:
sd = 0.81, difficult: sd = 0.63). The means for the animated
/ easy and animated / difficult conditions were the same as
well with a value of 3.58 (easy: sd = 0.42, difficult: sd =
0.89). Thus, the task difficulty did not have an impact on the
perceived shared reality which is positive because only the
gestures should have. There was indeed a main effect for the
gestures F (1, 29) = 5.594, p = .025. Based on this finding,
we can conclude that the manipulation was successful and the
gestures led to higher perceived shared reality.

Task performance
A Shapiro-Wilk test showed that the data on task perfor-
mance were not normally distributed. Hence, we conducted
a Kruskal-Wallis test to compare the conditions. The test re-
vealed a significant difference between them (p=.001) (see
Figure 4). Post-hoc Mann-Whitney tests showed that partic-
ipants who completed one of the easy conditions had signif-
icantly higher scores (m = 4.35, sd = 0.70) than partici-
pants who completed one of the two hard conditions (m =
3.06, sd = 1.29), U = 47.50, p = .002. This finding indi-
cates that the manipulation of the difficulty of the task was
successful. Tests between the individual conditions showed
that the difference was statistically significant between the
static conditions (U = 5.00, p = .003) as well as between
the animated conditions (U = 14.00, p = .045). Partici-
pants who completed an animated condition had significant
higher scores (m = 4.23, sd = 0.76) than participants
who completed a static condition (m = 3.19, sd = 1.38),
U = 68.00, p = .023. Thus, not only the difficulty of the
task, but also the gestures played an important role for task
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Subscale Mean weight (sd)
Mental demand 4.34 (0.90)

Physical demand 0.41 (0.67)
Temporal demand 2.19 (1.06)

Performance 3.97 (0.93)
Effort 2.81 (1.00)

Frustration 1.31 (1.06)
Table 2. Mean weights (standard deviations) of the Nasa TLX subscales

performance. To look at this in more detail, we compared all
individual conditions. We found that the gestures had no sig-
nificant influence on task performance in the easy condition
but in the difficult condition (U = 7.50, p = .007). In other
words, in the easy condition the recall of the participants did
not improve if the robot gestured, but in the difficult condition
it improved significantly. This finding is in line with related
work and H1 (The participants’ task performance (in terms of
correct recall of directions) will improve significantly when
the robot produces redundant gestures in the difficult task but
not in the easy task).

Perceived workload
As has been mentioned in the ”Dependent Variables” Section,
we used the weighted Nasa TLX scale to assess perceived
workload. The results indeed revealed that some subscales
were more relevant than others to the participants, e.g., phys-
ical demand had almost no influence with a mean weight of
0.41 (sd = 0.67, on a scale of 0 to 5). Table 2 depicts the
weights of all subscales.

Overall, the perceived workload was average (m = 5.32
(sd = 1.17) on a scale of 1:low - 10: high). Again, we con-
ducted a Shapiro-Wilk test for normality which showed that
the data for perceived workload were normally distributed.
A two-way ANOVA revealed a significant difference of the
perceived workload between the four conditions (F (3, 28) =
6.905, p = .001). We discovered main effects for anima-
tion (F (1, 31) = 6.438, p = .017) and for task difficulty
(F (1, 31) = 11.018, p = .003). In other words, the perceived
workload in the easy task (m = 4.77, sd = 0.90) was signif-
icantly lower than in the hard task (m = 5.87, sd = 1.18);
and it was significantly lower in the animated conditions
(m = 4.90, sd = 0.83) compared to the static conditions
(m = 5.74, sd = 1.33). There was no interaction effect be-
tween animation and difficulty.

However, Figure 5 shows that the perceived workload de-
creased much more due to the gestures in the difficult task
(manimated = 5.15, sd = 0.81,mstatic = 6.58, sd = 1.07)
than it did in the easy task (manimated = 4.65, sd =
0.82;mstatic = 4.89, sd = 1.01). In fact, unpaired T-tests
showed that the difference in the easy task was not signifi-
cant, while the difference in the difficult task was (T (14) =
3.031, p = .009). Therefore, H2 (The participants’ perceived
workload will be significantly lower when the robot produces
redundant gestures, both in the difficult and in the easy task)
was only supported for the difficult but not for the easy tasks.

This finding is in line with the results regarding task perfor-
mance. It appears that in the case of our experiment, the task
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Figure 4. Task performance (mean number of directions that the partic-
ipants recalled correctly) in the conditions.
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Figure 5. Perceived workload in the conditions.

performance was actually correlated with the perceived work-
load. Indeed, we discovered a significant negative correlation
between the weighted Nasa TLX scores and the task perfor-
mance (number of correct answers), r(30) = −0.695, p =
0.000. In other words, the higher the perceived workload, the
less correct answers were provided by the participants.

DISCUSSION
This paper set out to answer the question whether robot ges-
tures can decrease the users’ perceived workload and increase
their performance on a task. To find an answer to this ques-
tion, we conducted a direction-giving experiment in which
we manipulated the gestures that a robot performed (no ges-
tures vs. deictic gestures) and the difficulty of the task (easy
vs. difficult task). Our results showed that the robot gestures
did indeed support human task performance and lowered the
perceived workload of the users but only in the difficult task.
This result is in line with research on gestures in human inter-
action that came to the same conclusion (see ”Related work”,
[22]). We believe that this is due to the easy task being simple
enough for the participants to be completed with very little
information. This little information could easily be kept in
mind even if it was only presented with one modality. How-
ever, the difficult task required the participants to recall more
information and multimodality was useful to convey it.
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But what does this imply for the design of robots or virtual
agents? As has been mentioned in the introduction, perceived
high workload can have a serious negative impact on humans’
psychological and physical well-being. Thus, if we are build-
ing systems, we have to strive to keep the perceived work-
load low enough to avoid such effects. This goal has to be
achieved despite the fact that the difficulty of the task itself
in many cases cannot be reduced. However, we can influ-
ence how a system and a human solve the task. Our results
show that equipping systems with the capability to gesture is
a promising way to reduce perceived workload while keeping
the task difficulty stable.

LIMITATIONS AND FUTURE WORK
Our work suffers from some limitations that will be addressed
in future research. First of all, the impact of gesture in inter-
action is highly dependent on the task. Our research here is
restricted to one direction-giving task and to deictic gestures.
Thus, future work needs to focus on the influence of other
types of gestures (iconic, metaphoric, and beat) on perfor-
mance and perceived workload in a variety of tasks. Further-
more, future research would profit from larger sample sizes
and samples that better capture representative user groups of
robots, i.e. samples with better gender and age distribution.

Nevertheless, we believe that this work addresses a novel as-
pect in HRI that comes with valuable implications for the
larger HCI community: it introduces the relation between
robot gestures and perceived workload to the field and shows
that the interaction can actually profit from robot gestures
with respect to perceived workload, particularly in difficult
tasks.
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