
COMMUNICATIONS OF THE ACM June 1997/Vol. 40, No. 6 11

Practical Programmer
R

O
B

ER
T

N
EU

B
EC

K
ER

Robert L. Glass

Revisiting the Industry/Academe
Communication Chasm
“The Greek notion of science held it
above the vulgar pragmatics, leading
to a pedantic tendency that tolerated
intellectual laxity, sometimes with
tragic consequences.” —Noah
Kennedy, in The Industrialization
of Intelligence

Three incidents happened
recently that trouble me.
Those three incidents were

all attacks on the state of the
practice of software by academics
who apparently sincerely believed
what they were saying.

One incident might not have
gotten to me. It hap-
pens, from time to
time, that acad-
eme seems to
need to put
down those who
build software
for a living. Two
attacks I might
have tolerated
and ignored.
But three was
too much
to bear.
I fear
the
com-

munication chasm between acad-
eme and industry, which I believe
has existed for over 25 years (I
gave a keynote on the subject to a
Burroughs users group in 1971!),
is getting worse, not better.

What were the three incidents?
Let me describe them:

1. A computer science acade-
mic proposed to create a special
issue for the Journal of Systems and
Software. In the motivational part
of the call for papers inherent in
his proposal, he said this:

“Given the historical software crisis,
most serious software practi-

tioners in the software-
building world are
desperate for better
ways of developing
reliable systems . . .
and would therefore
adopt any tool and
notation that works
toward achieving reli-
ability goals”

In that one sentence, I found
three offensive things. First, there
was a mention of a “software cri-
sis.” I thought the time had
passed when computer scientists
began every article with cries of
crisis. There was good reason for
that change, I thought. Most soft-
ware projects are largely successful,
sometimes spectacularly so. Sure,
there are also failed projects, but
they tend to come about only in
massive projects that tax the state
of the practice, and in optimistic
projects using untried technology
that taxes the state of the art.

Secondly, in the statement the
word “desperate” was included.
This was the most offensive cut

of all. The software practition-
ers I know quietly and
confidently go about
their business of build-

ing software systems.
They know and
expect that systems
are growing in size
and complexity by
a factor of 50 or

more every 10
years. They
accept and wel-

come the chal-
lenge of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F255656.255663&domain=pdf&date_stamp=1997-06-01

12 June 1997/Vol. 40, No. 6 COMMUNICATIONS OF THE ACM

building systems that interweave
with the very fabric of modern
society. There is no sense of des-
peration in any of these people,
nor should there be.

Thirdly, there was the phrase,
“adopt any tool or notation.”
“Breakthrough” candidate tools
and notations, accompanied by
almost unbearable hype, are the
norm in the software world. The
capable and dedicated software
practitioner has learned to ignore
the claims of breakthrough,
ignore the hype, and cut to the

chase of the topic: Does the bene-
fit of this new proposed technol-
ogy exceed the cost? Does anyone
know the answer to that question?
More often than not, no one
knows the answer. All too often,
the benefit only marginally
exceeds the cost (those studies
that do exist tend to show the
benefits of new technologies
touted as “breakthroughs” lie in
the 5% to 30% improvement
range). “Adopt any tool or
notation” out of some sense of
“desperation”? Au contraire.
Practitioners have learned to be
wary, and reject new ideas (for
better or for worse) much more
often than they embrace them.

2. The second incident
occurred in a paper submitted by
an academic author to the same
journal. In this submittal, the

author made the statement: “Soft-
ware tools are usually larger and
more complex than application
software.” Acting as a reviewer, I
was troubled by this statement. I
have worked professionally in
both the tools-building and the
application-building world of
software. In my experience, appli-
cations are almost invariably big-
ger than tools. But not knowing
of any data on the subject, as a
reviewer I asked the author to
either support his position by
citation, or remove it if he could

not find support for it.
The author did neither. In his

revision, the statement was
changed to, “tools are larger and
more complex than the majority
of applications.” Obviously, the
author was completely convinced
of the truth of the point he made,
and was not interested in backing
away from making it, even
though he was not able to come
up with the requested citation.

Two things trouble me about
this incident. The first is this: aca-
demics, who are very interested in
the construction of software tools,
often engage in relatively compli-
cated tools projects; but those
same academics are not very inter-
ested in applications, and seldom
engage in any application work
larger than “toy” projects. Their
built-in bias, based on their own

personal experience but no experi-
ence beyond the hallowed and
ivy-covered halls, thus supports
the “truth” that tools projects are
larger than applications. But this
is insular and incorrect.

What also troubles me is the
“cascading citation” problem. If I
allowed this author to leave his
particular “truth” in his work,
then another author downstream
could cite that position and thus
provide relatively “irrefutable”
evidence that tools are larger than
applications.

The interesting thing about this
particular dilemma is that I know
of no data supporting either my
position or the author’s. I do know
of some data that supports the
notion that business application
systems are growing by a factor of
50 every 10 years or so, and I know
that the largest projects in the his-
tory of computing (1,000–2,000
programmers were involved) were
in aerospace applications, but those
are nothing more than interesting
clues and anecdotal evidence. A
worthwhile research project here
would be a software census, one
that would answer some of these
unanswered questions.

3. The third incident involved
an academic speaker making a
presentation to a local software
group. In the course of pre-
presentation conversation, and

ACADEMICIANS DON’T UNDERSTAND THE EXPONENTIAL

complexity effect in large problems; industrial folk don’t

understand the rudiments of what academicians have done

for them. Laughable public statements are made by

each side about the other’s turf.

COMMUNICATIONS OF THE ACM June 1997/Vol. 40, No. 6 13

again during the presentation, he
made the point that software prac-
tice used totally archaic tech-
niques and was to be scorned. He
went further, and named a partic-
ularly well-known software vendor
as the most egregious of the
offenders. Specifically, he included
in his claims the statements that
this particular vendor (a) did no
testing, but relied on customer
beta testing for the removal of
errors, and (b) used assembler lan-
guage for its projects.

In the case of this incident, as
opposed to the previous two, we
have stepped over into the realm
where factual evidence is available.
There are recent books and articles
in the literature describing how
this particular vendor does busi-
ness, and there are plenty of expa-
triates from the vendor who have
provided anecdotal but personal
testimony on these subjects as
well. These are the facts: This ven-
dor instituted quality assurance as
a practice over 10 years ago. Test-
ing is comprehensive and thor-
ough. Beta testing does detect
errors not caught by internal test-
ing, but that simply represents
the state of the practice of soft-
ware, one which no amount of
“breakthrough” technology will
fix. Further, this vendor uses
third-generation languages on an
ongoing basis, resorting to assem-
bler only when interfacing or effi-
ciency problems force it to.

Why am I so troubled by these
attacks on practice? Because they
are so unnecessary and so
counter-productive. They are
unnecessary because both acade-
mics and practitioners are typi-
cally bright and rational people
who share similar goals—they

want to help build successful
software products using success-
ful approaches. They are counter-
productive because they obscure
the similar goals and make ene-
mies out of people who ought to
be natural allies.

I mentioned earlier that this
problem has concerned me for
over 25 years. Just for curiosity, I
dug back through my files and
found my description of the com-
munication chasm between indus-
try and academe, published in
1981, in an old collection of
essays of mine called Software
Soliloquies. Here is how I
described the problem and its
symptoms back then:

1. Jargon barriers (Parlez-vous
Computerese?) In the short (then-)
25-year history of computing as a
field, the industrial and academic
experts have managed to find a
way to be unable to talk to each
other. Can you imagine a Journal
of the ACM article in Datamation?
Can you imagine the opposite? If
you succeeded, who would really
understand what was being said?

2. Physical barriers (on a clear
day, you can see to the edge of the
campus (plant). I’ve been to acade-
mic computing conferences. I’ve
been to industrial computing con-
ferences. The sets of attendees are
all too often mutually exclusive.

3. Unrealistic understandings
(Around the real-time world in 80
days). The academic picture of the
industrial world (and vice versa) is
both skewed and disdainful. Acad-
emicians don’t understand the
exponential complexity effect in
large problems; industrial folk
don’t understand the rudiments of
what academicians have done for
them. Laughable public state-

ments are made by each side
about the other’s turf.

4. Working the wrong prob-
lems (What have you done for me
(with me) lately?). Academic peo-
ple tend to assume that student
problems are typical program-
ming problems, and that the real-
world can be simulated in one (or
two) semester projects. Industrial
people tend to reinvent the same
ad hoc wheel they invented last
year, and not even remove any of
the flat spots.

The fact is that each faction can
gain a lot from the skilled profes-
sionals of the other. A bridge is
needed between the two ghettoes.

Now isn’t it sad that an essay
based on a 25-year-old talk pub-
lished 15 years ago is still valid
today? Is no one in the field lis-
tening? I have friends and col-
leagues in the academic world of
computing. I have friends and col-
leagues in the industrial world of
computing. I like and believe in
them all, on both sides of this ter-
rible chasm. It is time to begin
building the bridges that will
help us surpass it.

I would like to believe that this
column, which may appear to be
an attack on academe, is actually a
beginning of the end of such
attacks. By identifying attacks
from one side of the chasm toward
the other for what they are, I hope
I am helping with the necessary
precursors to the bridge building
that eventually must take place.

Would you help me?

Robert Glass is the publisher of the
Software Practitioner newsletter and editor
of Elsevier’s Journal of Systems and Software.
He welcomes feedback: 1416 Sare Rd.,
Bloomington, IN 47401.

© ACM 0002-0782/97/0600 $3.50

c

Practical Programmer

