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ABSTRACT
The Linux kernel feature model has been studied as an ex-
ample of large scale evolving feature model and yet details
of its evolution are not known. We present here a classi-
fication of feature changes occurring on the Linux kernel
feature model, as well as a tool, FMDiff, designed to auto-
matically extract those changes. With this tool, we obtained
the history of more than twenty architecture specific feature
models, over ten releases and compared the recovered infor-
mation with Kconfig file changes. We establish that FMDiff
provides a comprehensive view of feature changes and show
that the collected data contains promising information re-
garding the Linux feature model evolution.

1. INTRODUCTION
With more than 10,000 features and decades of develop-

ment history, the Linux kernel is a popular choice of system
for the study of large scale software product line evolution.
To understand how such a large and variable system evolves,
researchers have been looking at the evolution of its feature
model (FM). Several studies (e.g. [7],[5]) quantified the ad-
dition and removal of features in the Linux kernel over time
or present structural metrics of the kernel’s FM, such as
the depth of feature structure or number of leaf features in
each release, as means to illustrate the evolution of both the
kernel and its FM.

Previous work on the evolution of FMs of other systems
(e.g. [4], [19], and [9]) mention types of changes that have not
been studied on the Linux kernel, as attribute value changes
for instance. With that in mind, we think that a more de-
tailed view of the changes occurring on the Linux kernel FM
can be obtained, thus providing more insights on the evo-
lution of the kernel itself, its architecture, implementation
and build mechanism.

In this paper, we present a classification of feature changes
occurring in the Linux kernel FM based on the Kconfig lan-
guage1 and a corresponding tool, FMDiff, to extract them.
Our classification describes feature changes on three differ-
ent levels of granularity. The first level, the coarsest, allows
us to capture changes on the level of FMs, namely the ad-
dition, modification, and removal of features. The second
level describes changes in the properties of features, such
as adding a default value to an existing feature, and the

1https://www.kernel.org/doc/Documentation/kbuild/kconfig-
language.txt

third, the finest, reflects changes in attribute values, as the
addition of a feature reference in the condition of a select
statement for instance. Inspired by Undertaker ([21],[20])
and based on the EMF Compare2 diff algorithm, FMDiff

captures type, prompt, default value, select, and depends
statement changes, as defined by the Kconfig language. Our
tool loads and compares Linux FMs extracted from two sub-
sequent versions of the Linux kernel and stores differences
(i.e. feature changes) in a database for further analysis.

Using FMDiff and our change type classification, we build
a dataset comprised of features changes obtained by extract-
ing the change history of more than twenty architecture-
specific FMs over ten releases of the Linux kernel.

To evaluate our approach, we randomly extract a set of
feature changes from our dataset and manually trace them
back to Kconfig file modifications, and vice versa. The re-
sults show that FMDiff captures a large majority of changes
operated on Kconfig files and provides a more comprehen-
sive view of feature changes than what could be obtained by
looking at Kconfig file differences. In addition, we present
a first statistical view of the changes captured by FMDiff,
which underlines the potential usefulness of having detailed
information about feature changes in order to analyze FM
evolution.

The main contributions of this paper are: 1) the feature
model change type classification scheme; 2) the FMDiff ap-
proach to extract and classify changes; 3) the evaluation of
the classification scheme and FMDiff with ten recent releases
of the Linux kernel feature model; and 4) a first statistic
analysis on the evolution of the Linux kernel feature model.
Finally, FMDiff and our dataset are available for download.3

The remainder of this paper is organized as follows. Sec-
tion 2 provides some background information of the Linux
kernel FM and its reconstruction. We present our feature
change classification and its rationale in Section 3. FMDiff

is introduced in Section 4 and evaluated in Section 5. We
discuss the tool capability to capture feature changes and
its potential usage in Section 6. Section 7 presents related
work. Finally, we conclude this paper and elaborate on po-
tential future applications of FMDiff in Section 8.

2http://www.eclipse.org/emf/compare/
3https://github.com/NZR/Software-Product-Line-
Research
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2. BACKGROUND
The approach described in this paper is based on the ex-

traction of FMs declared with the Kconfig language using
the kdump tool. In this section, we present the basic Kconfig

concepts and the output format generated by kdump.

2.1 The Linux kernel feature model
Linux users can tailor their own kernel with Xconfig (among

other tools), the kernel configurator. This tool displays
available configuration options in the form of a tree. In
the following we refer to options as features. As the user
selects or unselects features, Xconfig updates the tree of
visible features to show only those that are compatible with
the current selection. Features and their composition rules,
that denote cross-tree constraints in FMs, are specified us-
ing the Kconfig language (see also [16] and [17]). Listing 1
depicts an example of a feature declaration in the Kconfig

language.

Listing 1: Example of a feature declaration in Kconfig

1 if ACPI

3 config ACPI_AC
tristate "AC Adapter"

5 default y if ACPI
depends X86

7 select POWER_SUPPLY
help

9 This driver supports the AC Adapter
object ,(...).

11

endif

In the Kconfig language, features have at least a name
(following the config keyword on line 3) and a type. The
type attribute specifies what kind of values can be associ-
ated with a feature. A feature of type boolean can either
be selected (with value y for yes) or not selected (with value
n for no). Tristate features have a second selected state (m
for module), implying that the features are selected and are
meant to be added to the kernel in the form of a module.
Finally, features can be of type integer (int or hex) or type
string. In our example the ACPI_AC feature is of type tris-
tate (line 4). Features can also have default values, in our
example the feature is selected by default (y on line 5), pro-
vided that the condition following the default if keyword is
satisfied. The text following the type on line 4 is the prompt

attribute. It defines whether the feature is visible to the end
user during the configuration process. The absence of such
text means the feature is not visible.

Kconfig supports two types of dependencies. The first one
represents pre-requisites, using the depends (or depends on)
statement followed by an expression of features (see line 6).
If the expression is satisfied, the feature becomes selectable.
The second one, expressing reverse-dependencies, are de-
clared by the select statement. If the feature is selected
then the target of the select will be selected automatically
as well (POWER_SUPPLY is the target of the select state-
ment on line 7). The select statement may be conditional.
In such cases, an if statement is appended to the select

statement. depends, select and constrained default state-
ments are used to specify the cross-tree constraints of the
Linux kernel FM [14]. A feature can have any number of
such statements.

Furthermore, Kconfig provides statements to express con-
straints on sets of features, such as the if statement shown

on line 1. This statement implies that all features declared
inside the if block depend on the ACPI feature. This is
equivalent to adding a depends ACPI statement to every fea-
ture declared within the if block.

Finally, Kconfig offers the possibility to define feature hi-
erarchy using menus and menuconfigs. Those objects are
used to express logical grouping of features and organize the
presentation of features in the kernel configurator. Like “if”
statements, constrains defined on menus and menuconfigs
are applicable to all elements within.

2.2 Feature model representation
A prerequisite to our approach is to be able to extract

feature definitions from Kconfig files. For this, we use an
existing Linux tool, namely kdump, to translate Kconfig fea-
tures into an easier to process format. This tool has been
used in other studies of the Linux variability model, such as
[21], where kdump output is used by Undertaker to determine
feature presence conditions. kdump produces a set of “.rsf”
files, each one containing an architecture specific FM, i.e.
an instance of the Linux FM where the choice of hardware
architecture is predetermined. Listing 2 shows the example
of the feature declared in Listing 1 in “.rsf” format as output
by kdump.

Listing 2: Representation of the feature declaration of
Listing 1 in .rsf format

Item ACPI_AC tristate
2 Prompt ACPI_AC 1

Default ACPI_AC "y" "X86 && ACPI"
4 ItemSelects ACPI_AC POWER_SUPPLY "X86 && ACPI"

Depends ACPI_AC "X86 && ACPI"

The first line shows the declaration of a feature (Item)
with name ACPI_AC and type tristate. The second line
declares a prompt attribute for feature ACPI_AC and its value
is set to true (1). The third line declares the default value of
the ACPI_AC feature, which is set to y if the expression X86

&& ACPI evaluates to true. Line 4 adds a select statement
reading when ACPI_AC is selected the feature POWER_SUPPLY

is selected as well, if the expression X86 && ACPI evaluates
to true. Finally, the last line adds a cross-tree constraint
reading feature ACPI_AC is selectable (depends) only if X86

&& ACPI evaluates to true.
kdump eases feature extraction but modifies their decla-

ration, influencing our approach to record changes in FMs.
Among the applied modifications, two are most important
for our approach: kdump flattens the feature hierarchy and it
resolves features depends statements. Concerning the flat-
tening of the hierarchy, kdump modifies the depends state-
ment of each feature to mirror the effects of its hierarchy.
For instance, kdump propagates surrounding if conditions
to the depends statements of all features contained in the
if-block. This explains the addition of ACPI to the condition
of the depends statement on line 5 of Listing 2. Concern-
ing the resolution of depends statements, kdump propagates
conditions expressed in the depends statement of a feature
to its default and select conditions. This explains the
condition X86 && ACPI that has been added to the select
(ItemSelects) and default value (Default) statements in
Listing 2.

3. CHANGE CLASSIFICATION
We aim at classifying feature changes occurring on the
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Default statement

CHANGE  CATEGORY

CHANGE  SUB-CATEGORY

CHANGE TYPE

Feature model change

Feature

Attribute Depends statement Select statement

Type Expression

Default Value Target 

Prompt References Condition References Condition References

Operation: {ADD | REMOVE | MODIFY}

Operation: {ADD | REMOVE | MODIFY}

Operation: {ADD | REMOVE | MODIFY}

Figure 1: FMDiff scheme to classify changes in feature models on different levels

Linux kernel FM. Existing feature change classifications do
not take into account some specificities of the Kconfig gram-
mar (e.g. select relationships with conditions). To capture
as accurately as possible changes in such statements, we in-
troduce a new classification. We present a three level classi-
fication scheme of feature changes, namely change category,
change sub-category and change type. Each category de-
scribes a feature change on a different level of granularity.
Items in each level are named based on the modified Kcon-
fig statement, such as a default statement, and the change
operation applied. The possible change operations that we
consider are are add (ADD), remove (REM), and modify (MOD).
Figure 1 depicts our change classification scheme.

The first level, change category, describes changes at a FM
level. Here, features can be either added, removed, or modi-
fied. The corresponding change categories are ADD_FEATURE,
REM_FEATURE, and MOD_FEATURE. In the following, we abbre-
viate lower-level change types by prefixing the feature prop-
erty that can change with the three change operations ADD,
REM, and MOD.

The next level, change sub-category, describes which prop-
erty of the feature has been changed. We differentiate be-
tween attribute related changes comprising changes of type
or prompt properties, and changes in the dependencies, de-
fault value, and select statements. The corresponding twelve
change sub-categories are {ADD,REM,MOD}_ATTR, {ADD,REM,-
MOD}_DEPENDS, {ADD,REM,MOD}_DEF_VAL, and {ADD,REM,MOD}-

_SELECT.
Finally, change types detail which attribute, or which

part of a statement is modified. The change types are:

• Attribute change types: we track changes occurring
on the type and prompt attributes. Combined with
the three possible operations, we have {ADD,REM,MOD}-
_TYPE and {ADD,REM,MOD}_PROMPT.

• Depends statement change types: depends statements
contain a boolean expression of features. We use a set
of change types describing changes occurring in that
expression, namely {ADD,REM,MOD}_DEPENDS_EXP. In
addition, we further detail these changes by recording
the addition and removal of feature references (men-
tions of feature names) in the boolean expression with
the two change types {ADD,REM}_DEPENDS_REF.

• Default statement change types: default statements
are composed of a default value and a condition. Both,
the condition and the value can be boolean expressions
of features. Default values can be either added or re-
moved recorded as {ADD,REM}_DEF_VAL change types.
Changes in the default statement condition are recorded

as {ADD,REM,MOD}_DEF_VAL_COND. Finally, we track changes
in feature references in the default value using {ADD,-

REM}_DEF_VAL_REF and in the default value condition
using the two change types {ADD,REM}_DEF_VAL_COND-
_REF.

• Select statement change types: select statements are
composed of a target and a condition which, if satisfied,
will trigger the selection of the target feature. Simi-
lar to the default statement change types, we record
{ADD,REM,MOD}_SELECT_TARGET changes. Changes to
the select condition are recorded as {ADD,REM,MOD}-

_SELECT_COND. Finally, to track changes in feature ref-
erences inside a select condition, we use the {ADD,-

REM}_SELECT_REF change types.

The three change categories, twelve change sub-categories
and twenty seven change types form a hierarchy allowing us
to classify changes occurring in FM declared with Kconfig.

As an example consider an existing feature with a default
value definition to which a developer adds a condition. The
change will be fully characterized by the change category
MOD_FEATURE and the sub-category MOD_DEF_VAL, since the
feature and default value declaration already existed, and
finally the ADD_DEF_VAL_COND change type denoting the ad-
dition of a condition to the default value statement, and a
ADD_DEF_VAL_REF change type for each of the features refer-
enced in the added default value condition.
Kconfig provides several additional capabilities, namely

menus to organize the presentation of features in the Linux
kernel configurator tool, range attribute on features and op-
tions such as env, defconfig_list or modules. We do not
keep track of menu changes, but we do capture the depen-
dencies induced by menus. kdump propagates feature de-
pendencies of menus to the features a menu contains in the
same way it propagates if block constraints. kdump does
not export the range attribute of features, therefore we can-
not keep track of changes on this attribute and do not in-
clude them in our feature change classification scheme. We
plan to address this issue in our future work. Furthermore,
kdump does not export options such as env, defconfig_list
or modules and we cannot track changes in such statements.
But, because those options are not properties of features and
do not change their characteristics, we consider the loss of
this information as negligible when studying FM evolution.

Regarding our classification scheme, we would like to point
out that some combinations of change category, sub-category,
and change types are not possible or do not occur in prac-
tice. For instance, the change types denoting that a depends
or a select statement was added can not occur together with
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Figure 2: Change extraction process overview

the change category REM_FEATURE denoting that the feature
declaration was removed. Some combinations are also con-
strained by Kconfig, such as the change type ADD_TYPE can
only occur in the context of a feature creation, i.e. with the
change category ADD_FEATURE.

Furthermore, our change classification does currently not
include high-level FM transformations, such as merge fea-

ture or move feature. However, the effect of such transfor-
mations on features can be represented by modifications of
feature dependencies which are covered by our classification.

4. FMDIFF
The main objective of FMDiff is to automate the extrac-

tion of changes occurring on the Linux FM and record those
changes according to the classification scheme presented in
the previous section. The extraction of feature changes is
done in several steps as depicted in Figure 2.

4.1 Feature model extraction
The first step of our approach consists in extracting the

Linux FM from Kconfig files. We first obtain the Kconfig
files of selected Linux kernel versions from the source code
repository. Next, we use the Undertaker tool, that provides
a wrapping of kdump, to extract architecture specific FMs
for each version. Undertaker outputs one “.rsf” file per ar-
chitecture per revision, in the format described in Section 2.

We perform a few noteworthy transformations when load-
ing“.rsf”files into FMDiff. “.rsf”files describe Kconfig choice
structures. Those entities are not named in the Kconfig files
and are automatically named by kdump (e.g. CHOICE_32).
This means that the same choice structure can have dif-
ferent names in different releases and cannot be accurately
tracked over time. For the time being, we ignore choices

Feature

Type (string)

Prompt (boolean)

Depends (string)

DependsReferences (list of strings)

Select Statement

Target (string)

Condition (string)

SelectConditionReferences (list of strings)

Default Statement

DefaultValue (string)

Condition (string)

DefaultValueReferences (list of strings)

DefaultValueConditionReferences (list of strings)

"contains"

"contains"

"contains"

FeatureModel

Architecture (string)

Revision (string)

0

*

0 *

0 *

Figure 3: FMDiff feature metamodel

when instantiating an FM.
Features can declare dependencies on those choice, refer-

ring to them by their generated name. We replace all choice
identifiers in feature statements by CHOICE. Doing this, we
cannot trace the evolution of choice structures but prevent
polluting the results with changes in the choice name gener-
ation order while we still are able to track changes in feature
dependencies on choices.

4.2 FMDiff feature model construction
The second step is concerned with constructing FMs from

two subsequent versions of a “.rsf” file. FMDiff compares
FMs that are instances of the meta-model presented in Fig-
ure 3.
FeatureModel represents the root element having two at-

tributes denoting the architecture and the revision of the
FM. A FeatureModel contains any number of features repre-
sented as Feature. Each feature has a name, type (boolean,
tri-state, integer, etc.), and prompt attribute. In addition,
each feature contains a Depends attribute representing the
depends statements of a Kconfig feature declaration. All
features referenced by the depends statement are stored in
a collection of feature names, called DependsReferences.

Each feature can have any number of Default State-

ments, containing a default value and its associated condi-
tion. Furthermore, a feature can have any number of Select
Statements containing a select target and a condition. The
condition of both statements is recorded as string by the at-
tribute Condition. The features referenced by the condition
of each statement are stored in the collection DefaultVal-

ueReferences or SelectReferences respectively.
The .rsf output also allows a feature to have multiple de-

pends statements but, in our meta-model, we allow features
to have only one. In the case where FMDiff finds more than
one for a single feature, it concatenates those statements
using a logical AND operator. This preserves the Kconfig
meaning of multiple depends statements.

It is possible for a feature to have two default value state-
ments, with the same default value (“y” for instance) but
with different conditions. In such cases, our matching heuris-
tic would be unable to distinguish between the two. The
same is true for features that have two select statements
with the same target. To circumvent this problem, we con-
catenate conditions of default statements with a logical OR
operator if their respective default values are the same. We
do the same transformation for select statement conditions,
for the same reasons.

4.3 Comparing models
For the comparison of two FMs, FMDiff builds upon the
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the EMF Compare framework. EMF Compare is part of the
Eclipse Modeling Framework (EMF) and provides a cus-
tomizable “diff” engine to compare models. It was used in
the past to compare models in various domains, like inter-
face history extraction [12], or IT services modeling [3], and
proved to be flexible and efficient. EMF Compare takes as
input a meta-model, in our case the meta model presented in
a Figure 3, and two instances of that meta-model each rep-
resenting one version of an architecture specific Linux FM.
EMF Compare outputs the list of differences between the
two instances.

The diff algorithm provided by EMF Compare is a two
step process. The first step, the “matching” phase, iden-
tifies which objects are conceptually the same in the two
instances. In our case study, this means matching a feature
from one FM to the other. Here, we consider two features to
be the same if they have the same name in the two models.
Similarly, we need to provide rules to identify whether two
default or select statements are the same. For default value
statements, we use a combination of the feature name and
the default value. For select statements, we use the targeted
feature name and the feature name.

Our choices of matching rules have consequences on how
differences are computed. A renamed feature cannot be
matched in two models using our rules. Its old version will
be seen as removed, and the new one as added. Default or
select statements can only be matched if their associated fea-
ture and its default value (or select target respectively) are
the same in both models. Like for feature renaming, changes
in default values (select target) are captured as the removal
of a default value (select) statement and the addition of a
new one.

EMF Compare generates a list of the differences between
the two models, expressed using concepts from the FMDiff
feature meta-model. For instance, a difference can be an
“addition” of a string in the DependsReferences attribute
of a feature. Another example is the “change” of the Con-

dition attribute of a Select Statement element, in which
case EMF Compare gives us the old and new attribute value.

4.4 Classifying changes
The last step of our process consists in translating the dif-

ferences obtained by EMF Compare into feature changes as
defined by our classification scheme. The translation pro-
cess comprises four steps. First, we run through differences
pertaining to the “contains” relationship of the Feature-

Model object to identify which features have been added
and removed, giving us the feature change category. Then,
we focus on differences in “contains” relationships on each
Feature to extract changes occurring at a statement level,
providing us with the change sub-category. The differences
in attribute values of the various properties are then ana-
lyzed to determine the change type. Finally, changes are
regrouped by feature name, creating for each feature change
the 3-level classification.

The results are stored in a relational database. We record
for each feature change: the architecture and revision of the
FM in which the change occurred, the name of the feature
affected, the change classification, and the old and new val-
ues of the attribute (when relevant).

5. EVALUATING FMDIFF
FMDiff’s value lies in its ability to accurately capture

changes occurring on the Linux FM. To assess both FMD-

iff’s data completeness and usefulness, we compare it with
the information on changes that we obtained by manually
analyzing the textual differences between two versions of
Kconfig files. We consider FMDiff data to be complete if
it contains all changes seen in Kconfig files, and useful if it
provides the information needed to understand the changes
in the Linux FM.

5.1 Data set
Using Git, we retrieve the history of the Linux FM. Lotufo

et al. highlight that at random points in time, the Linux FM
is not necessarily consistent[7]. To minimize such issues,
we extract feature changes between official Linux releases.
For all releases of the Linux Kernel from 2.6.28 to 3.8, we
rebuild 26 architecture specific FMs. We extract the changes
occurring in 10 releases, over time period of 2 years (from
March 2011 for 2.6.38 to February 2013 for 3.8).

Between release 2.6.38 and 3.8, 5 new architectures were
introduced (Unicore32 in 2.6.39, Openrisc in 3.1, Hexagon in
3.2, C6X in 3.3 and arm64 in 3.7). We include those archi-
tectures in our study to capture the effects of the introduc-
tion of new architectures on the Linux FM. We extract the
feature history of 21 architectures present in version 2.6.38
and follow the addition of new architectures, for a total of
26 in 3.8. Our dataset contains 1,860,311 feature changes.

5.2 Completeness
To evaluate the completeness of the captured changes, we

verify that a set of feature changes observed in Kconfig files
are also recorded by FMDiff.

5.2.1 Method
We randomly pick twenty five Kconfig files from different

sub-systems (memory management, drivers and so on) mod-
ified over five releases. We then use the Unix “diff” tool to
manually identify the changed features.

Because FMDiff captures feature changes per architecture,
we first determine in which architecture(s) those feature
changes are visible. Then, we compare Kconfig files diff’
with the feature changes captured by FMDiff for one of those
architectures. We pick architectures in such a way that all
architectures are used during the experiment.

For each feature change, FMDiff data 1) matches the Kcon-
fig modification if it contains the description of all feature
changes - including attribute and value changes; 2) partially
matches if FMDiff records a chage of a feature but that
change differs from what we found out by manually ana-
lyzing the Kconfig files; 3) mismatches if the change is not
captured by FMDiff.

A partial or mismatch would indicate that FMDiff misses
changes, hence the more full matches the more complete
FMDiff data is. For this evaluation, we take into account
that renamed features will be seen in FMDiff as “added” and
“removed”.

5.2.2 Results
In the selected twenty five modified Kconfig files, 51 fea-

tures were touched. 48 of those feature changes could be
matched to FMDiff data, described by 121 records of our
database. A single partial match was recorded, caused by an
incomplete “.rsf” file. A default value statement (def bool y)
was not translated by kdump in any of the architecture spe-
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cific “.rsf” files. In two cases, the FMDiff changes did not
match the Kconfig feature changes. In both cases, develop-
pers removed one declaration of a feature that was declared
multiple (2) times, with different default values, in differ-
ent Kconfig files. In FMDiff, a change in the feature default
value was recorded, which is consistent with the effect of the
deletion on the architecture specific FM. Based on this, we
argue that FMDiff accurately captures the change.

Over our sample of feature changes, FMDiff did capture all
the changes occurring in“.rsf”files. Moreover, a large major-
ity (94%) of Kconfig file changes were reflected in FMDiff’s
data. In the remaining cases, FMDiff still captures accu-
rately the effects of Kconfig file changes on Linux FM. We
conclude, based on our sample, that the dataset obtained
with FMDiff is complete with respect to the changes occur-
ring on the Linux FM.

5.3 Usefulness
By comparing FMDiff data with Kconfig file differences,

we identify what information made available by FMDiff would
be difficult to obtain using textual difference approaches.

5.3.1 Method
We trace 100 feature changes randomly selected from the

FMDiff dataset to the Kconfig file modifications that caused
them. For each change, we determine the set of Kconfig files
of both versions of the Linux FM that contain the modified
feature. We then perform the textual diff on these files and
manually analyze the changes. If the textual differences can-
not explain the feature change recorded by FMDiff, we move
up the Kconfig file hierarchy and analyze the textual differ-
ences of Kconfig files that include this file via the source

statement.
The comparison between FMDiff changes and Kconfig file

changes can either 1) match if the change can be traced to a
modification of a feature in a Kconfig file; 2) indirectly match
if the change can be explained by a Kconfig file change but
the feature or attribute seen as modified in the Kconfig file is
not the same as the one observed in FMDiff data; or finally
3) mismatch if it cannot be traced to a Kconfig file change.

We observe an indirect match when a FMDiff change is
the result of kdump propagating dependency changes onto
other feature attributes or onto its subfeatures (e.g. when a
depends statement is modified on a parent feature) . Here,
indirect matches indicate that FMDiff captures side-effects
of changes operated on Kconfig files.

5.3.2 Results
Among the hundred randomly extracted changes, four

were modifications of feature boolean expressions, adding
or removing multiple feature references. We traced each ref-
erence addition/removal separately, bringing us to a total of
108 tracked feature changes.

We successfully traced 107 changes out of 108 back to
Kconfig files changes. A single mismatch was found, involv-
ing a choice statement couldn’t be explained; but the change
was consistent with the content of kdump’s output. We ob-
tained 26 matches, 79 indirect matches and finally 2 features
were renamed and those changes were successfully captured
as deletion and creation of a new feature. Among the indi-
rect matches, 61 are due to hierarchy expansion and 18 due
to depends statement expansion on other attributes.

The large number of indirect matches is explained by an

over-representation in our sample of changes induced by the
addition of new architectures. Architectures are added by
creating, in an architecture-specific folder (e.g. /arch), a
Kconfig file referring existing generic Kconfig files in other
folders (e.g. /drivers). Hence, we observe feature additions
in an architecture specific FM without modifications to fea-
ture declarations.

79 feature changes captured by FMDiff could not be di-
rectly linked to feature changes in Kconfig files but to changes
in the feature hierarchy or other feature attributes. We ar-
gue that even if FMDiff data does not always reflect the ac-
tual modifications performed by developers in Kconfig files,
it captures the effect of the changes on the Linux FM. In
fact, FMDiff data provides more information than what can
be obtained from the textual differences between two ver-
sions of the same Kconfig file, where such effects need to be
reconstructed manually.

6. DISCUSSION
During our evaluation, we showed that FMDiff captures

accurately a large majority of feature changes in the Linux
FM. Based on this, we elaborate here on limits and potential
usages of the tool and the gathered data.

6.1 Feature changes
Thanks to kdump hierarchy and attribute expansion, FMD-

iff not only captures changes visible in Kconfig files, but
also the side effects of those changes (indirect matches). It
makes explicit FM changes that would otherwise only be
visible by manually expanding dependencies and conditions
of features and feature attributes. Such an analysis requires
expertise in the Kconfig language as well as in-depth knowl-
edge of Linux feature structures.

Developers and maintainers modifying Kconfig files can
use our tool to assess the effect of the changes they per-
form on feature hierarchy. By querying FMDiff data, they
can obtain the list of feature changes between their local
version and the latest release. This will give them insight
on the spread of a change by answering questions such as
“which features are impacted?” and “should this feature be
impacted?”. Moreover, developers can follow the impact of
changes performed by others on their subsystem, by look-
ing at changes occurring on features declared in their sub-
system.

As mentioned in Section 3, we do not track all possible
changes occurring in Kconfig files. We ignored the range at-
tribute, and only partially capture changes of choice struc-
tures. Those limitations were not problematic during the
evaluation of FMDiff because the range attribute is not used
widely (less than 170 occurrences in v3.10 kernel, for over
12,000 features) and in our small sample, choice modifica-
tions do not occur often. We consider that the loss of infor-
mation is minimal. However, we will improve this in future
work.

6.2 Exploiting change types
Since the addition and removal of features in the Linux

FM are well documented, we expect that features are also
modified during the course of a release. We compute, over
ten releases, the total number of changed features and the
number of modified, added and removed features in each
architecture specific FM; using only the first level of our
change classification.
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Figure 4: Evolution of the change category distribution
(averaged over architectures)

To obtain an overview of the changes occurring in each
release, we compute the average number of modified, added
and removed features per architectures. Based on FMDiff

data, we found out that in release 3.0, the average num-
ber of feature changes in architecture specific FMs is 722.
About 70% of those changes are modifications of existing
features, 22% are additions of new features, and only about
8% of those changes are feature removals. The results are
presented in Figure 4.

Overall, modifications of existing features account for more
than 50% of the feature changes in most releases (8 out of
10). This means that feature modifications play a major
role in the evolution of the Linux FM compared to the other
changes (several features have been added while only few
have been removed).

6.3 Threats to validity
Internal validity The evaluation of the tool was done by

manually inspecting changes in Kconfig files and recorded
changes in FMDiff. Like most manual processes, it is error
prone. We recorded comparison and matches and we share
the sample and results on our website for further validation.

The sampling of FMDiff changes for the validation is done
randomly, so the different releases, architectures or change
types are not equally represented in our samples. We con-
sider that this sample contained enough different types of
changes and feature operations to be representative of com-
mon feature transformations performed on the Linux FM.

External validity Our change classification, and tool are
tightly linked to the Kconfig language. While a mapping be-
tween Kconfig and more generic FM (such as FODA) exists
[14], we did not investigate its usage to generalize our ap-
proach. This work is currently limited to product lines using
the Kconfig language as a mean to describe their features.

7. RELATED WORK
The Linux kernel has been used as an example of an evolv-

ing software product line many times in the past. Israeli et
al. show in [5] that the Linux kernel evolution followed some
of Lehman’s Law of software evolution [6], namely the con-
tinuing growth by measuring the number of lines of code over
time. Lotufo et al. [7] study the evolution of the Linux ker-
nel variability model over time through FM structural metric

evolution (model size, number of leaves, etc.). They show
in their study that the number of features and constraints
increase over time, but also that maintenance operations are
performed to keep the complexity of the variability model
in check. However, they do not provide details on change
operations, nor ways to capture them in an automated way.

In order to study the Linux Kernel variability model struc-
ture, properties and evolution, several research teams have
developed tools to reconstruct a FM from Kconfig files. LVAT
[15] and Undertaker ([18],[20],[2]) are the main examples of
such tools. We chose to rely on Undertaker for its conve-
nient wrapping of kdump, allowing us to use the same tools
that are also used by the Linux kernel development team.
LVAT could have allowed us to capture the feature hierar-
chy. However, kdump flattening of the hierarchy facilitated
the capture of feature hierarchy changes through changes of
depends statements.

Several FM change classifications have been proposed in
the past. In his thesis, Paskevicius describes several trans-
formations that can be operated on a FM [9]. Similarly, FM
change patterns have been identified by Alves et al. in [1]
and Neves et al. in [8]. In his study of the co-evolution of
models and feature mapping [13], Seidl also describes a set of
operations applied to FM. Thum et al. [22] classify feature
changes based on their impact on the possible products that
can be generated from the FM - a change can increase or
decrease the number of products that can be obtained from
a product line. More recently, Passos et al. ([10],[11]) com-
piled a catalogue of the evolution patterns occurring specif-
ically on the Linux kernel.

We did not use those classifications in our study for two
main reasons. First, according to She et al. [15] a depends

statement can either be interpreted as a cross-tree constraint
or a hierarchy relationship, so we cannot automatically map
changes of depends statements in other change classifica-
tions. Second, FMDiff is able to capture changes in feature
attributes which are not considered by these classifications.

8. CONCLUSION
In this paper, we presented a classification scheme to cat-

egorize changes in the Linux FM and the FMDiff tool to
automatically extract these changes from subsequent ver-
sions of Kconfig files declaring the Linux FM. We evaluated
our approach by manually validating the changes extracted
by FMDiff from ten releases of the Linux kernel. The re-
sults clearly show that our approach can capture feature
changes accurately. Moreover, a comparison between the
information on changes obtained with FMDiff and the in-
formation obtained through manual analysis of the textual
differences between Kconfig files highlighted that our ap-
proach provides a more comprehensive view on FM changes.
Finally, we demonstrated the usefulness of our approach and
the information extracted on feature changes by providing
a first glimpse on the evolution of the Linux FM over ten
releases, finding that the majority of changes refer to feature
modifications.

As a next step, we plan to detail our studies on the evolu-
tion of the Linux FM by analyzing the fine-grained change
types. Using the data acquired by FMDiff, we will an-
swer questions such as what are the most frequent types of
changes performed in the Linux FM and which features and
parts of the feature model are changing frequently. Further-
more, since we rebuild architecture specific FMs, our dataset
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enables us to analyze and compare their evolution. Another
direction of our future research is to investigate the impact
of feature changes on other variability spaces, such as build
and source code variability. For instance, we plan to ex-
plore how feature changes ripple through the Linux kernel
implementation.
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