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Figure 1: Blind agents relying solely on sound localization and sound-driven collision avoidance while navigating along a highway with

crossing vehicles that emit sounds.

Abstract

With the increasing realism of interactive applications, there is a
growing need for harnessing additional sensory modalities such as
hearing. While the synthesis and propagation of sounds in virtual
environments has been explored, there has been little work that ad-
dresses sound localization and its integration into behaviors for au-
tonomous virtual agents. This paper develops a framework that en-
ables autonomous virtual agents to localize sounds in dynamic vir-
tual environments, subject to distortion effects due to attenuation,
reflection and diffraction from obstacles, as well as interference be-
tween multiple audio signals. We additionally integrate hearing in-
to standard predictive collision avoidance techniques and couple it
with vision to allow agents to react to what they see and hear, while
navigating in virtual environments.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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steering

1 Introduction

As the visual and simulation fidelities of interactive applications
continue to reach new heights, there has been a growing interest
to fill the void in an equally important sensory modality — hear-
ing. This has led to many exciting recent contributions for syn-
thesizing [O’Brien et al. 2002; James et al. 2006] and propagat-
ing [Raghuvanshi et al. 2009] sounds in complex 3D virtual en-
vironments, enabling users to perceive high-quality audio content.
However, autonomous agents that populate these environments and

*{wangyu9, pengfei, badler } @seas.upenn.edu
T {mubbasir.kapadia, ladislav.kavan} @ gmail.com

interact with human-controlled avatars lack an appropriate mech-
anism to perceive and react to acoustic signals, which limits the
perceived realism of their behavior and breaks immersion.

Identifying where sounds originate (sound localization), under-
standing how it impacts an agent’s movement (sound-driven navi-
gation and collision avoidance), and fusing it with visual perception
can greatly enhance the behavioral repertoire of NPC behavior. For
example, an agent can hear the footsteps of a player following from
behind, localize enemy gunfire, or use hearing to predict the spatial
location of other entities in the dark, which can significantly impact
its response.

There has been a recent surge in contributions for the synthe-
sis [Bonneel et al. 2008] and propagation [Raghuvanshi et al. 2010]
of sound signals in virtual environments. However, traditional ap-
proaches [Monzani and Thalmann 2000] rely on distance-based
heuristics to impact the behavior of autonomous agents in response
to auditory signals. This simplified hearing model produces arti-
facts because the influence of obstacles on sound propagation is not
considered: for instance, two agents separated by a wall should not
hear each other, even though they are close to each other.

The motivation for this work is to combine a physically accurate
model for sound propagation and localization, and integrate it into
agent navigation and collision avoidance. Sound signals are accu-
rately propagated in the environment while accounting for degra-
dation to due to absorption, reflection, diffraction, and mixing of
sound signals. The pressure and gradient field of the propagated
sounds are computed to find its local directional flow, and the in-
tegration of several detectors per receiver is used to localize the
sound signal. A smooth and continuous tracking of sound sources
is obtained by applying a Kalman Filter [Thrun et al. 2005] to the
predicted sound positions.

Using the predicted position and velocity of different sound signals,
we introduce sound obstacles which are generalized velocity obsta-
cles [Wilkie et al. 2009] for objects in the environment which an a-
gent hears, but cannot see. We integrate sound obstacles into a tradi-
tional vision-based steering approach [Shao and Terzopoulos 2005;
Yu and Terzopoulos 2007] to simulate autonomous agents that inte-
grate hearing into navigation and goal-directed collision avoidance.
If no visual information is used, we can simulate the behavior of
a virtual blind agent. When combined with visual perception, we
demonstrate autonomous agents that exploit hearing for objects that
are currently not in their line of sight, to greatly enhance their be-
havior in dynamic environments. We demonstrate the benefit of
sound localization by integrating it into the steering response of an
agent, but it can be potentially used to impact decision-making at



all levels of cognition. The main contributions of this paper are as
follows:

e We introduce the ability of autonomous virtual humans to pre-
dict the position and velocity of sound-emitting objects based
on what it hears, subject to sound propagation and distortion
in dynamic virtual environments.

e We present a multi-modal steering platform that integrates
hearing into a traditional vision-based model, allowing agents
to predict and react to the cumulative presence of objects that
they may hear or see.

2 Related Work

Computational Acoustics. The theory of wave propagation is well
established in classical physics. Sound is governed by the wave e-
quation, which is a second-order partial differential equation. Tech-
niques for sound simulation can be roughly classified into numeri-
cal acoustics (NA) and geometric acoustics (GA).

Numerical acoustics is directly solving the wave equation. Clas-
sic methods include finite difference time domain (FDTD), finite
element, and boundary element methods. FDTD uses time do-
main difference to approximate derivative, and it can handle a wide
frequency range with a single simulation run. The finite elemen-
t method uses an irregular discretization, allowing it to adapt to
complex boundaries [Ihlenburg 1998]. Boundary element method
only requires a mesh of the boundary of the domain [Ciskowski and
Brebbia 1991]. Numerical methods are accurate but very costly: for
example, for FDTD every wavelength should have 6-10 samples to
give an accurate result [Mehra et al. 2012], which makes it very
expensive.

The Transmission Line Matrix method (TLM) is very popular in
electromagnetic wave propagation, and it is also applied to the
simulation of sound waves [Kristiansen and Viggen 2010; Ka-
gawa et al. 1998]. TLM can be regarded as a simplified numerical
method. However, different from FDTD, the ratio of A (wavelength
of the sound we are simulating) to h (grid spatial step) is a constant
determined by the model, i.e., for a given grid resolution we can
only simulate sound with certain frequency. Although the TLM
method features some limitations, we argue it is an adequate ap-
proximation in the context of virtual agents. TLM is simple, easy
to implement and parallelize.

Geometric acoustics is a high frequency approximate method for
sound simulation. If the wavelength is much smaller than object
dimension (such as light), the wave equation can be approximated
by raytracing, which assumes that sound propagates as rays of ener-
gy quanta. Typical geometric acoustics includes volumetric tracing
(beam tracing and frustum tracing) [Funkhouser et al. 2004; An-
tonacci et al. 2004] and image source method [Allen and Berkley
1979]. Compared with numerical acoustics, it is computationally
efficient and there are lots of methods to accelerate ray tracing in
graphics. However, geometric acoustics cannot fully simulate low-
frequency phenomena such as diffraction [Kristiansen and Viggen
2010], and methods such as edge-diffraction [Funkhouser et al.
1998] have been proposed to approximately capture these lower or-
der effects. Precomputed Acoustic Transfer (PAT) has been used
to accelerate both sound synthesis [James et al. 2006] and propaga-
tion [Raghuvanshi et al. 2010].

Sound Localization. Sound source localization (SSL) draws a
lot of attention from biomedical scientists, physiologists, engineers
and computer scientists. Distance estimate can be achieved by mea-
suring sound intensity and spectrum, and during the process a prior
knowledge about the source’s characteristics of radiation is needed
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Figure 2: An illustration of TLM method.

Figure 3: A snapshot of 2D-TLM sound propagation model. P is a
sound packet in one grid.

[Strumillo 2011]. The mechanism of human’s ability to determine
the location of nearby sound sources is not fully understood [Mar-
tin 1995]. Human depends on a number of anatomical properties
of the human auditory system, including interaural intensity differ-
ence (IID), interaural time difference (ITD), and directional sound
filtering of the human body. An artificial robust localization sys-
tem demands different approaches [Strumillo 2011], and often uses
pressure sensors arrays. In the area of robotics, one of the most
widely used method for the passive localization of acoustic source
is based on the measurement of the time delay of arrival (TDOA)
of the source signal to receptor pairs [Huang et al. 1997; Strumillo
2011]. By locating three sensors and recording the time difference
of sound arriving, it is easy to calculate the position of sound source
analytically. Instead, our algorithm makes use of local sound pack-
ets information that the virtual human perceive to determine the di-
rection and distance of the sound source, and it also provides clues
for the confidence of localization.

Robot Localization. While the robot localization problem often
refers to the (active) self-localization of robots, different from our
(passive) source localization problem, there are many shared ideas.
Particle Filter and Kalman Filter are cornerstones of many such al-
gorithms [Thrun et al. 2005]. Extended Kalman filter is combined
with landmarks to tackle the simultaneous localization and mapping
(SLAM) problem [Dissanayake et al. 2001].

Vision-based Steering. There is a a vast amount of literature in
goal-directed collision avoidance for autonomous agents and we
refer the readers to extensive surveys [Pelechano et al. 2008; Thal-
mann and Musse 2013; Kapadia and Badler 2013]. Steering tech-
niques use reactive behaviors or social force models [Helbing and
Molnar 1995; Pelechano et al. 2007] to perform goal-directed col-
lision avoidance in dynamic environments. Predictive approach-
es [Paris et al. 2007; Van den Berg et al. 2008; Singh et al. 2011a]
and local perception fields [Kapadia et al. 2009] enable an agent
to avoid others by anticipating their movements. Recent work ap-
plies accelerated planning techniques [Singh et al. 2011b; Kapadia
et al. 2013] to solve challenging deadlock situations in crowd inter-
actions.
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Figure 4: Framework of our agent perception and steering.

Reciprocal Velocity Obstacle (RVO) [Van den Berg et al. 2008] is a
popular method both for robot navigation and agent simulation. By
introducing the concepts of reciprocal velocity obstacle, the method
calculates geometrically collision-free velocity set for the agent and
pick the best velocity (closest to preferred velocity) in the set. Hy-
brid Reciprocal Velocity Obstacle (HRVO) [Snape et al. 2011] is
an extension of original RVO method, and accommodates noise in
visual information which is useful for robots. The work in [Ondfej
et al. 2010] proposes a synthetic vision-based approach to collision
avoidance. The work in [Shao and Terzopoulos 2005] integrates a
vision model to drive reactive collision avoidance, navigation, and
behavior for autonomous pedestrians.

3 Framework Overview

Figure 4 illustrates an overview of the framework. Sound signals
are propagated in a dynamic virtual environment to capture various
acoustic effects including attentuation, reflection, and diffraction.
Agents equipped with hearing perceive the sound pressure and gra-
dient at their locations, which is used to compute the predicted posi-
tion and velocity of the sound emitting objects (Section 4). Finally,
a multi-modal steering framework integrates visual and auditor in-
formation to enable autonomous agents to predict and react to the
presence of dynamic entities in the virtual environment that they
may hear or see (Figure 11).

3.1 Sound propagation model

A computational method for simulating sound must satisfy limits
on computation time and memory [Mehra et al. 2012], while ac-
counting for relevant acoustic properties such as attenuation and
diffraction of sound signals in order to make them feasible for in-
teractive applications. We adopt a planar model that uses the Trans-
mission Line Matrix Method (TLM) [Kagawa et al. 1998; Huang
et al. 2013] for sound propagation in complex dynamic environ-
ments. Even though propagation is planar, the sound can be prop-
agated across different planes at different heights, to produce the
effect in a 3D environment, and our proposed approach can be ex-
tended to 3D intuitively. We briefly describe the TLM method be-
low and refer the readers to a comprehensive overview for more
details [Kristiansen and Viggen 2010].

Sound is governed by the wave equation or, equivalently, Huygens
principle, which states that “every point of a wave frontier can be
considered as a source of secondary wavelets known as a sub-source
which spread out in all directions”. The TLM model consists of a
mesh of interconnected nodes. All cells are updated in parallel,
and the update of a cell is determined only by cells in its vicinity
[Kristiansen and Viggen 2010]. The update rule is shown in Figure

Figure 5: An illustration of sound localization, the green mark is
sound source, the red one is the agent (receiver), and the blue one
is the estimated position of sound source(output of our algorithm).
Markers have been circled.

2. Based on Huygens principle, the energy of a directional incident
pulse with an amplitude scatters to four directions.

One grid in TLM contains several packets, and each packet has one
of four possible directions{ N, S, W, E'}. Initially, the packets em-
anate from a sound source in all four directions. At each iteration,
the packets are updated according to rule shown in Figure 2. The
sound packets around the receiver will be subsequently used as in-
put to sound localization [Huang et al. 2013]. The output of TLM
method that will be used in next section is what we called a “sound
map”. The sound map is analogous to an image but with four chan-
nels per pixel, corresponding to the directions.

4 Sound localization

Psychology experiments [Loomis et al. 1998] have investigated au-
ditory perception and showed that the mean error for different tar-
get azimuths is usually less than 5° for audition perception, and
a 7-meter change in target distance (from 3 to 10 m) could pro-
duce a change in mean indicated distance of 5.4 m for vision and
of only 3.0 m for audition. The experiment demonstrates that the
perceived egocentric distance of auditory perception exhibits more
error than that of visual perception, and this difference between the
two sensory modalities needs to be captured to simulate believable
autonomous virtual humans or agents. The input from the TLM-
based sound propagation is used to localize sound emitting objects
using a binaural localization model, which is used to supplement
visual information to produce a more complete mental model of an
agent’s surroundings. Before localization we assume the agent has
already distinguished sounds from different sources.

4.1 Possible Localization Clues

We firstly examine some possible clues for localization that are used
by human or robot.

Time Delay of Arrival. The TDOA (time delay of arrival) method
measures the time delay (distance) differences between several d-
ifferently located detectors to the same source to localize sound
source and is greatly impacted by the accuracy of the time delay
measurement. TDOA might be suitable for ray tracing based sound
model where the sound paths are explicitly calculated; however it
cannot be integrated with our sound propagation model (TLM) be-
cause if the representation of sound grid is rough, the result of T-
DOA will be very inaccurate. For example, if the distance between
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Figure 6: Measured sound intensity as a function of distance in
TLM model.

two receptors pairs is 4, due to triangle inequality there is only 9
possible time delays (from -4 to 4).

Binaural Hearing. The sound intensity p perceived by the agent is
computed as follows:

log(I)
P=—r

1)

Our experiment validate the relation between the sound intensity p
and distance from sound source d in TLM model shown in Figure 6.
Thus, like real human, the nuance of intensity between two ears also
provides clues for virtual agent’s localization. However, like time
delay, such feature lacks accuracy in TLM model; for instance we
can see from Figure 6 that in TLM model the function is not exactly
monotone.

Field Gradient of First-arriving Sound. This is what we use for
localization. In psychology, it has been proposed that humans pre-
fer the direction of the first-arriving sound or so-called direct sound
for localization, which arrives at a given position before any rever-
beration effects [Litovsky et al. 1999; Martin 1995]. For algorithm
design, the advantage of using only first-arriving sound is that echo
filtering and signal processing is not needed. The cumulative vector
m that we will see later actually corresponds to the sound pressure
field of first-arriving sound; it is the intuition behind the detector
that we will introduce.

4.2 Sound Flow Detection

We detect the direction of the sound flow by tracing the local flow of
the sound wave energy, to compute the sound field gradient which
reveals the position of the source. First, we define the center of
the sound energy as the weighted average position of sound wave
energy using the energy values as the weight, similar to calculating
the center of an object using their mass or gravity as weight. In
other words, if we consider the sound packets to be virtual balls
with mass (energy), we can calculate the “momentum” of the region
as follows:

m; = Z v B ()

Vp; EP

where P are the set of sound packets in the region, v; and F; are
velocity and energy of the sound packet p;, and m; represents the
momentum vector in the region at time t.

Experiments show m can reflect the opposite direction of sound
source: although every sound packet’s velocity only has four pos-
sible directions {N, .S, W, E}, our experiments show that sound
packets in one gird is enough to give an acceptable result and pro-
duce no noticeable error.

If we use m; to denote the vector that we obtained at time t, we can

make it smoother and more robust by using cumulative vector:

m = Z m, 3)

where m is the cumulative vector, and 1" is the time when the first
sound packet is perceived by the agent. The length of sampling
period of perceived signal is t,, (time window). When ¢, is short,
we only collect the sound packets propagating along the shortest
path from sound source to the agent, thus producing an echo-free
effect without any reverberation. In TLM model, we find for ¢, =
4 ~ 10 generally gives good results. ¢, < 3 is too sensitive and
sometimes does not give the correct answer.

The direction of the sound source is computed as:
0 = atan2(—my, —my) (€]

where m,, m, are z,y component of vector m. We have two mi-
nuses here because sound momentum is always in the opposite di-
rection of source.

4.3 Ensemble of Detectors

Let there be n sound detectors, and each of them can localize the
source on a line. Our task is to integrate the outputs of all detectors.
We build a very simple probabilistic model to tackle this problem.
Assume that detector D; localizes the source on the line /; inter-
secting at point (z;, y;) with a slope of tan 6;, where (z;, y;) is the
position of D;, and 6; is as defined in Eq. 4:

sin@;(z — x;) — cos0;(y —y;) =0
The distance of an arbitrary point (x,y) to the line I; is given by:
di(z,y) =| sin0i(z — zi) — cosOi(y — yi) ||

If we have one observation taken from D;, we assume the proba-
bility distribution of the source is given by a Gaussian distribution,
which works seamlessly with Kalman Filter. If we have multiple
detectors D; (i from 1 to n), we simply multiply the probabilities
together.
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The output estimate of source position (o, o) is given by maxi-
mizing the probability:

P(z,y| Di) =

n
(zo,y0) =argmax P(z,y | D) = arg minZd?(m,y)
(z,y) (z,y) i—1

To | _ Sor, sin?6; — > sinb; cos b; -t
Yo )\ >op,sinb;cosb; —>"  cos®0;

S (sin® 0;x; — sin6; cos 0;y;)
> (sinB; cos Oz — cos? 0;y;)

We only use sound flow detector here; we could also include time
delay clues but our experiment shows that it does not contribute to
the accuracy of localization in TLM sound model, due to its lack
of accuracy according to the previous analysis. Employing more
detectors can also increase the robustness of the algorithm but al-
so increase the computational cost; in practice, we choose n = 3.
At a first glance it might be strange to assume that one agent has



three or even more “ears”. However, if we only use two detectors
(n = 2), localization fails when the two detectors and the source
are collinear, which happens quite often. While integrating more
detectors (array of sound detectors) generally works better, our ex-
periment shows three detectors demonstrate satisfactory robustness
and accuracy.

4.4 Confidence of Sound Localization

Let us emphasize that it is not always possible to localize the sound
source. For example, if the sound is generated by 100 tiny sound
sources distributed in different places in the space, there does not
exist a single sound source position. To reflect this, we introduce a
measure of the confidence of the sound localization.

In certain conditions the localization is ambiguous and the localized
position itself is insufficient to describe human’s localization, so it
is necessary to introduce the confidence of sound localization in
auditory perception. When the auditory information is very fuzzy,
which might be caused e.g. by multiple reverberations, the localiza-
tion is less believable, and thus the weight or priority of this sound
source should be small.

Figure 7: Several possible wavefronts. Dotted lines indicate the
shape of wavefront.

Figure 7 shows several cases of a wavefront. The left image shows
the situation where the sound source can be approximately regarded
as a single source. In this case, sound localization is well-defined.
The middle image shows the situation where the equivalent sound
source is infinitely far. The right image shows the situation where
the wavefront tends to “converge”, which is impossible for a single
source where no obstacle exists. However, it is possible when there
are obstacles. Only in the left image the output of the localization
is “legal”, i.e., the localization is well-defined; in the right image,
the detectors will converge to the opposite direction.

The situation when there are obstacles in the map is equivalent to
the situation that sound is produced by a lot of tiny sources (sub-
sources) distributed at different places. If such sub-sources are lo-
cated in almost the same direction, our algorithm could still give
an estimate of an equivalent single source. If such sub-sources are
more widely distributed, it is only possible to give an estimate of
the direction of the equivalent single source: we do this by simply
averaging all detectors’ direction estimate together. The worst case
is that sound comes equally from all directions around the agent; in
this case it is impossible to localize the sound source.

Figure 8 illustrates the relative confidence of sound localization due
to the presence of different obstacle configurations. The momentum
vector m estimates the direction of a sound source, and its magni-
tude could also be useful. When the sound sources or sub-sources
share similar directionality, the magnitude of m will be strength-
ened; when they are in different directions, it will be weakened.
For a single source, according to Huygens’ principle, a greater con-
fidence value means that the directions of all of the sub-sources are
similar, or obstacles have little influence.

Sound directionality is hard to measure for TLM model, because
sound paths are not explicitly present in the simulation. Direction-

Figure 8: An illustration of localization confidence. The red mark
and the blue mark are sound source and receiver respectively, and
the green marks are major sub-sources and each of them has a con-
tribution (black vector) to the total “momentum” vector (red). From
left to right, we can see the sub-sources become more disperse and
confidence decrease from 1 to 0.7, and to 0.5.

ality or localization confidence is much easier to measure in mod-
els based on ray tracing, where sound paths are maintained, so we
know the confidence by comparing whether these paths are similar
in direction. In practice, for TLM model we could use the ratio of
magnitude of the aggregate momentum vectors to the sound inten-
sity calculated by Eq.1 as the confidence metrics, but it assumes
the agent already knows sound source intensity and real distance.
Although there seems to be no reasonable solution to judge local-
ization confidence, our discussion leads to the following algorithm:

1. Agent successfully locates sound source. If all detectors
converge to a legal position, output both the distance and di-
rection.

2. Agent only infers direction of sound. If all detectors out-
put similar directions while converging to an illegal position
(Figure 7 right case), output only direction.

3. Unsuccessful localization of sound. If detectors output con-
tradictory directions, there is no output.

4.5 Tracking of Sound Sources

Sound localization algorithm will give output periodically, which
must be translated to a continuous estimate of the source positions,
given our past and current observations. There are several methods
we might use for tracking; Particle Filter and Kalman Filter are the
most widely used. Particle Filter uses a group of particles (e.g. 200
particles) to represent the spatial belief distribution of the sound
sources. However, the computation cost of particle filter is high
especially when we have multiple sources and multiple receiver of
sound. Kalman Filter is an alternative choice for localization which
assumes that the state of an object updates linearly and we obtain
an observation every time step.

Xe = A Xe 1+ Brur + €2
Zy = C X + 0t
X¢ ~ N([Lt, Et), €t ~ N(07 Rt)» 615 ~ N(07 Qt)

where X, is the state space; Z; is the observation for sound source
we get from the previous sections, and €; and J; are noises of state
transfer and observation. For example, if we assume that the source
moves linearly, we can build the following motion model:

x 101 0
o Y |01 0 1
Xe=1 o, A=1100 1 0
vy 000 1

Z, (100 0
Zi:(zy) Ct_(o 10 o)

We have no external control u: here so ux = 0. Using this algo-
rithm, we iteratively update the distribution of X; ~ N (e, X¢)



according to Z; using the updating rule described in [Thrun et al.
2005]. This model has an additional error when sound source
changes its velocity, due to the linear velocity assumption.

5 Auditory steering

In order to integrate sound localization into a predictive steering
framework, we must first be able to estimate the collision boundary
of a sound emitting agent, and its current velocity. This allows an
agent to build a complete spatial representation of all obstacles in
the environment that it sees or hears, allowing it to exploit both
sensory modalities for goal-directed collision avoidance.

5.1 Sound Obstacle

As we have seen, X; corresponds to a normal distribution
N (pe, X¢), where put represents the continuous estimate of the
sound source location (velocity related terms are not used here),
and X¥; represents the spatial uncertainty. We introduce the con-
cept of sound obstacle, whose position corresponds to pt¢ and size
corresponds to 3¢, which intuitively means that we are choosing a
“core” area of the Gaussian distribution.

1
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The exact solution of this inequality will lead to a quadric which
defines the boundary of the sound obstacle. We do not care about
the exact shape because human relies on prior knowledge of sound
source size, which can be denoted as X p. Based on prior semantic
knowledge of sound type, e.g. the sound is emanated from a car
or a human, we could add that information to the predicted shape
of the sound obstacle, and thus the final space occupancy of sound
obstacle can be 3 p + 3. A conservative agent might choose a
larger size of sound obstacles. Since we do not care about the ex-
act shape of the region, for computational simplicity of the steering
algorithm, we could use a sphere with radius /7,0y, or more con-
servatively maxz{o., oy}

5.2 Velocity Estimate

The direct way to estimate the velocity of a sound obstacle is to
calculate the gradient of position, however, we do not need to do so
in our model. In the framework of Kalman Filter, it is quite easy
— we already add velocity in the state space of Kalman Filter, so
the output of Kalman Filter already contains velocity. Recall that
X ~ N (pt, X¢), so smoothed velocity estimate is contained in
p¢ and velocity uncertainty is contained in 3.

5.3 Predictive Collision Avoidance using Sound Ob-
stacles

Agents compute sound obstacle and predicted velocity of the sound
emitting object based on the sound localization result. This infor-
mation can be easily fed into traditional synthetic vision-based s-
teering methods [Ondfej et al. 2010] to incorporate hearing into
collision avoidance. In our framework, we exploit the estimated
velocity of the sound obstacle for predictive collision avoidance.

Each agent keeps a list of its neighbors, obtained by vision or via
sound localization. Notice that each agent might localize the same
sound source at different positions due to localization error. For
vision, we model visibility as a foveal cone to limit the number

of obstacles an agent can see. We treat sound obstacles as tra-
ditional velocity obstacles in the HRVO framework [Snape et al.
2011]. HRVO is designed to accommodate sensor noise for colli-
sion avoidance in robotics, and effectively handles the inaccuracy
in the predicted position, velocity, and collision boundary of the
sound obstacles.

6 Results

Sound Localization. Figure 9 illustrates the localization and track-
ing of one or more sources in the absence of obstacles, with high
localization accuracy due to the absence of audio distortion.
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Figure9: a) Tracking a single source. b) Tracking multiple sources.
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Figure 10: Source finding, also illustrating the influence of obsta-
cles on localization. Agent goes to the estimated position of sound
(green) each step; finally, the agent gets to the exact source position
(blue marker).

Our algorithm localizes the source near the corner of the obstacle,
along the shortest path from source to receiver. This makes sense
because in this case, the nearest sub-source or secondary source is
around the corner, so our algorithm outputs the sub-source instead
of the source. More generally, for a complex obstacle arrangement,
our algorithm will point to the nearest sub-source or average of sev-
eral nearest sources. However, if the receiver is trying to find the
position of source using our algorithm, as the agent is approach-
ing current sub-source, the sub-source will ultimately converge to
the real source position, as shown in Figure 10. Notice also how
obstacles influence the localization process.

Navigating to a Sound Source. The predicted position of a sound
emitting object can be used as a target to navigate an agent towards
it. This can be used to produce chase simulations where an agent
can exploit both vision and hearing to chase other agents. Figure
11 illustrates this example, also shown in the accompanying video.

Avoiding Collision with Sound-Emitting Objects. Figure 1 illus-
trates a simple example where blind agents are crossing a highway
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Figure 11: The agent is using a vision-sound multi-model steering
to chase the target agent. When he cannot see target anent, sound
provides clues for navigation.




with bi-directional traffic. Agents cannot see the cars, but predic-
tively avoid collisions by hearing them, and are able to cross the
highway safely.

Blind Corner. Agents use hearing to predict the locations of po-
tential crossing threats around corners, as illustrated in Figure 12.

Figure 12: Corner case. One agent hears that another agent is
approaching from the other side of the blind corner and stops.

6.1 Computational Performance

Our experiment is setup in Unity using the ADAPT character an-
imation platform [Shoulson et al. 2013]. Auditory simulation is
implemented as a C++ plugin and localization is implemented in
C#, on a Core i-7 dual-core MacBook. The computational cost of
sound simulation is proportional to the number of sound sources
(denoted as s), and the cost of sound localization is proportional to
the number of sound-receiver pairs (denoted as p). Figure 13 shows
the computation cost with increasing values of s and p.
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Figure 13: Performance: computing time per update for a) fixed
source number (s=6) and varying source-receiver pairs (p from 1
to 10). b) fixed source-receiver pair number (p=6) and varying
source number (s from 1 to 10).

Phase Avg. time per update (ms)
sound simulation 2.25
source-receiver pair 2.76

Table 1: Average time per update.
7 Conclusions and Future work

In this paper, we discussed the process of simulating autonomous
virtual agents capable of hearing and localizing sounds in the envi-
ronment, and using this information for audio-driven steering. We
describe a variety of cases that demonstrate the benefits of integrat-
ing hearing into traditional vision-only agent models. Currently,
auditory perception is limited to steering and collision avoidance,
without speech and communication. In our model, only an ener-
gy value is contained in the sound packet, which can convey more
information such as semantic message, an segment of record or

even computer generated sound. There are two possible approach-
es: the first is that speech signals are contained in the sound pack-
ets and propagating in the virtual world, and the agent processes
perceived signals using pattern recognition and natural speech pro-
cessing techniques, which also provide a human computer interface
with speech and make it possible that human directly communi-
cates with virtual agent. Another approach is that only semantic
information is contained in the packets and signal processing part
is skipped, making the simulation more efficient.

One straightforward approach to model human response to sound
might be directly mimicking the human auditory and perception
system. However, this would require high sound simulation accu-
racy, making it very costly even to simulate the sound perception for
already one agent, effectively precluding the simulation of a large
amount of agents. Instead, this paper introduces many simplifica-
tions that allow us to simulate large amounts of agents in real-time.
In order to acquire high accuracy, key auditory properties such as
ITD, IID and HRTF (head related transfer functions) need to be
properly modeled in future work. Other potential improvements
include representing the detector subject as a circular normal dis-
tribution and using a wrapped Kalman Filter for azimuthal source
tracking [Traa and Smaragdis 2013].
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