Extending a Run-time Resource Management framework
to support OpenCL and Heterogeneous Systems

Giuseppe Massari
DEIB - Politecnico di Milano
Via Ponzio 34/5, 20133
Milano, Italy

giuseppe.massari @polimi.it

Patrick Bellasi
DEIB - Politecnico di Milano
Via Ponzio 34/5, 20133
Milano, Italy
patrick.bellasi @polimi.it

ABSTRACT

From Mobile to High-Performance Computing (HPC) systems, per-
formance and energy efficiency are becoming always more chal-
lenging requirements. In this regard, heterogeneous systems, made
by a general-purpose processor and one or more hardware accel-
erators, are emerging as affordable solutions. However, the effec-
tive exploitation of such platforms requires specific programming
languages, like for instance OpenCL, and suitable run-time soft-
ware layers. This work illustrates the extension of a run-time re-
source management (RTRM) framework, to support the execution
of OpenCL applications on systems featuring a multi-core CPU and
multiple GPUs. Early results show how this solution leads to ben-
efits both for the applications, in terms of performance, and for the
system, in terms of resource utilization, i.e. load balancing and
thermal leveling over the computing devices.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling, Kernels

General Terms

Design, Algorithms, Performance

Keywords

Runtime, OpenCL, Graphical Processing Units (GPUs), Multicore,
Heterogeneous systems, OpenCL, Parallel programming, Profiling

1. INTRODUCTION

In the last decades, the growning request of performance in the
computing systems has pushed the chip manufacturing technology
towards always higher integration processes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PARMA-DITAM ’14, January 22 2014, Vienna, Austria.

Copyright is held by the authors. Publication rights licensed to ACM.
Copyright 2014 ACM 978-1-4503-2607-0/14/01 ...$15.00.

21

Chiara Caffarri
Universita di Parma
Via Universita 121, 43121
Parma, Italy
chiara.caffarri @studenti.unipr.it

William Fornaciari
DEIB - Politecnico di Milano
Via Ponzio 34/5, 20133
Milano, Italy

william.fornaciari @polimi.it

At first, this evolution bound the increment of the processors’
performance to the rise of their frequency of work. In the last
years, this trend has changed, due to the emerging thermal and
power management issues. The frequency rising has given way
to the increasing level of architectural parallelism (multi-core and
many-core processors).

Nowadays, with the market of battery-powered mobile devices
exploding, and the growth of data center and cloud computing sys-
tems, the control over the energy consumption has become another
big issue. Performance and energy consumption determine a trade-
off, that we can treat as a whole talking about energy efficiency.
Roughly speaking, this concept is usually defined in computing
systems as the ratio between performance achieved and power con-
sumed for that purpose.

From the hardware perspective, it is well known how the max-
imum energy efficiency can be achieved by spending silicon area
in ASIC, or exploiting application-specific computing units (e.g.,
DSP). In this case, the price is paid in terms of flexibility, time and
costs. As an alternative, these drawbacks can be strongly mitigated
by resorting to heterogeneous platforms. In this work, we will refer
to platfoms usually featuring a general purpose multi-core proces-
sor along with hardware accelerators, as many-core processors or
Graphical Processing Units (GPUs).

The effective exploitation is one of the most critical issues in
this kind of platforms. Suitable programming languages are in-
deed required, along with run-time software layers. In this regard,
OpenCL is a noteworthy and widespread parallel programming lan-
guage, targeting code execution on both CPU processors and GPU
adapters. Typically, an OpenCL application is made by kernels,
namely code performing parallel computations on a selected de-
vice, and a sequential host code, in charge of setup, synchronize
the kernels execution, and manage data transfers between host and
device memory. The interaction between host and devices is based
on OpenCL commands, that are properly queued.

According to this schema, as first step, the applications are in
charge of query the OpenCL runtime, in order to know the set of
all the available computing devices. Afterwards, the applications
select the device(s) on which execute the kernels. This point be-
comes extremely critical, especially if we consider scenarios with
several OpenCL applications running on heterogeneous platforms,
featuring a multi-core CPU and multiple GPUs. Indeed, since each
application is unaware of the others, and has no knowledge about
the status of the computing devices, it is easy to observe a bad uti-

lization of system resources. In other words, we would have under-
utilized devices alongside overutilized ones, with whatever concern
loss of performance, and other side effects related to thermal and
power management.

What is missing to manage a scenario like this is a third party
arbiter, having a system-wide perspective. This in order to allocate
computing resources, with the aim of maximizing the overall per-
formance or balancing the usage of all the devices.

This paper introduces a work in progress extension of a frame-
work, aiming at enabling run-time resource management of OpenCL
applications running on heterogeneous systems, featuring a multi-
core CPU and multiple GPUs.

1.1 Related works

Several projects have investigated how to alleviate the program-
mer from the burden of managing hybrid or heterogeneous plat-
forms, building systems where applications would spread across
the entire machine.

StarPU [1] [2] is a runtime system targeting heterogeneous mul-
ticore architectures equipped with GPU adapters. It provides a uni-
fied high-level programming interface, but adopting an abstraction
to model tasks, the codelet, that forces the developer to declare
tasks with their data dependencies and write a driver for each new
architecture that might be targeted. The programmer can specify
the level of priority of a task, just like our target framework, but
conversely from StarPU, the application developer should only re-
arrange its code in the reconfigurable execution model exported by
the application run-time library, without specifying data dependen-
cies and writing driver functions. SkePU [5] [6] is a C++ template
library designed to support parallel programming and it provides
a multi-GPU support. It is based on skeleton programming, so it
requires the programmer to rewrite a program using skeletons, i.e.,
pre-defined generic components that capture, organize and mask to
the user all the details involved in the parallel computation struc-
ture, that are not relevant to the user code. In addition, all those
computations that do not fit a given skeleton must be rewritten.

Qilin et al., face changes in runtime environments, like hard-
ware/software configurations, or input problem size, with their het-
erogeneous programming system [7], featuring an automatic adap-
tive mapping. The solution is built on top of NVIDIA CUDA for
executing code on GPUs, and thus the communication between the
CPU and GPU is managed by CUDA drivers. Qilin et al. pro-
vide libraries that substantially wrap function calls to the vendor’s
ones, like we did in our solution, but they still allow the program-
mer to optionally select the processing elements to use. We believe
that this approach does not fit well in the scenario described in the
previous paragraph. Indeed, as we are going to see, we delegate
mapping decisions to the resource manager scheduling policy, in
order to pursue a system-wide optimization in resource allocation.
Moreover, the solution proposed by Qilin et al. focuses on improv-
ing performance and energy consumption of a single application,
while our target framework aims at taking into account all the ap-
plications to run.

Finally, OpenCLoSE middleware [3] exploits offline profiling
and static priorities to take scheduling decisions at run-time, but
it requests the application to be partitioned into chunks, namely en-
tities including a set of computations and the associated memory
transfers. Moreover, the OpenCLosE source code does not seem to
be available, actually.

2. RUN-TIME RESOURCE MANAGEMENT

This section describes the work done to integrate the support to
OpenCL and heterogeneous platforms into an existing run-time re-

22

| romlonti Applications |
I pplication I
Lo Requirements \»77751}'1’777777777777{? 77777 |
cTTTTTTT T T T T Resources I

I . Assignment

| System-Wide

I Optimization

} Policy

|

| Applications

—————————— Constraints

e J l ,,,,,,,,,,,,,,,,,, Resources L

Availability ‘}
!
|

Figure 1: Overall view of the BarbequeRTRM.

source management framework. The integration flow is resumed in
Figure 3, and shows how different parts of the framework have been
involved. In this regard, next sections will provide some details.

2.1 The BarbequeRTRM framework

The run-time resource management approach that we aim to ex-
tend is the BarbequeRTRM framework!. Figure 1 provides an over-
all view of the interactions between its core module, i.e. the System-
Wide Run-Time Resource Manager (SW-RTRM), the applications,
and the hardware platform.

From an high abstraction level, the SW-RTRM module takes care
of collecting two types of information: 1) resource requirements
from running applications and 2) run-time variability of the com-
puting resources availability. These two kind of inputs can trigger a
system-wide optimization step, where in a scheduling and resource
allocation policy is executed, in order to dynamically redefine the
caomputational resource partitioning among the demanding appli-
cations. The resource management is performed on an event-driven
basis (applications starting, finishing, sending requests, ...). Once
a new resource partitioning has been defined, the SW-RTRM mod-
ule performs all the control actions required to setup platform spe-
cific constraints and to notify the applications involved.

The integration of the framework in a hardware system is op-
erated at two layers: the first one involves the hardware platform,
while the second one the applications. For the former, a Platform
Integration Layer (PIL) is in charge of monitoring the status of re-
sources, and enforcing the constraints defined by the optimization
policy. This is usually a platform-specific module. For the appli-
cations, a Run-Time Library (RTLib) is provided, to transparently
setup the communication channel between the resource manager
and the application. The RTLib exports a set of services, that al-
lows the application to send resource requests, and get notifications
about resource assignment changes. A detailed description of the
framework and the optimization policy can be found in [4]. In the
next section we briefly recall the policy, and focus on the changes
introduced for the management of heterogeneous systems.

2.2 Run-time resource allocation

The resource allocation problem has been formalized as a Multi-
dimensional Multi-choice Knapsack Problem. Accordingly, the
BarbequeRTRM approach requires that each application provides
a set of resource requests options. Such options are called Applica-
tion Working Modes (AWMs), and are provided through an XML
file, called Recipe in jargon. Every single AWM is characterized by
a set of resources (type and amount required), along with an integer

IProject website at http://bosp.dei.polimi.it

value, expressing the level of QoS or performance associated.

The optimization policy is a heuristic, performing a system-wide
multi-objective optimization. It allocates resources taking into ac-
count the overall QoS/performance, the fairness, the load balanc-
ing, the task migration and reconfiguration overhead.

Therefore, for each application to run, the policy selects an AWM,
and binds the requested resources to the physical system resources,
trying to make the best choice in a system-wide perspective. This
is repeated for all the application priority classes. We extended
this algorithm by enabling the binding step for requests of com-
puting resources that must be bound to GPU, as well as to CPU.
As a consequence, the optimization policy becomes able to sched-
ule OpenCL applications, allocating heterogeneous computing re-
sources.

2.3 OpenCL library-in-the-middle

The design and the implementation of the whole extension has
been driven by the requirement of being as less invasive as possi-
ble. This means do not introduce customizations in the OpenCL
specifications, and do not burden the developer with a lot of code
to add or rewrite.

Since the OpenCL applications are usually linked to a library
provided by hardware vendors, we decided to adopt a sort of library-
in-the-middle strategy. The basic idea is to intercept the OpenCL
function calls, with the main purpose of moving the control over
the system resources, i.e. the computing devices, from the applica-
tion to the resource manager. As shown in the previous section, the
BarbequeRTRM provides a library (RTLib) that allows the applica-
tions to interact with the resource manager daemon. Therefore, the
library-in-the-middle is an extension of the current RTLib, where
in the OpenCL functions have been redefined, in order to wrap at
the OpenCL function calls performed at run-time by the applica-
tions. It is worth to say that most of the wrapper functions simply
forward the function call to the original OpenCL library functions.
Actually, additional logics has been implemented just for the func-
tions that can be considered “sensitive”, from the point of view of
the access to resources (e.g., c1GetDeviceIDs).

More in detail, we integrated the Platform Integration Layer mod-
ule with the code lines commonly used by the OpenCL applica-
tions to setup the access to the computing devices. This allows the
BarbequeRTRM to enumerate the set of devices accessible to the
OpenCL runtime. Then, whenever an OpenCL application asks for
a device descriptor, the resource manager, through the RTLib, re-
turns just the descriptor associated to a single computing device,
assigned by the resource allocation policy. The overall picture de-
picts a very low overhead solution. From the application side, this
configures the automatic device selection, that introduces benefits
from the system-wide perspective, as we are going to see in Sec-
tion 3, as well as from the application developer point of view, since
it is lift from the burden of implementing a kind of logics for the
selection of the computing device. Please consider that actually,
the framework allows the correct management of single device ap-
plications, the multi-device option is indeed planned as a future
extension.

In addition to the run-time resource management, this wrapping
approach enables the possibility of profiling the execution of the
OpenCL commands queued by the application. Next section moves
the focus on this point.

2.4 Command-level profiling

One of the features offered by the RTL1ib is the possibility to col-
lect performance counter based statistics, to profile the behavior of
parallel applications running on CPU. In this work, we extended

23

<Application Working Mode,
OpenCL profiling OpenCL device>
Run-time
Resource Manager
(RTRM)

Run-time
Library
extension

Application

<Application Working Mode, OpenCL commands

OpenCL device>

ibOpenCL.so

Figure 2: Interaction between the OpenCL application and the
BarbequeRTRM with the RTLIb extension acting as library-in-the-
middle ahead of the original OpenCL library.

this capability with the support to the OpenCL command-level pro-
filing. To do that, we started from the event-based profiling API
provided by the OpenCL API, thanks to which it is possible to ex-
tract timing information about the permanence of a command in-
side a queue, or about its execution.
Actually, the OpenCL application developer can declare an event
object (c1_event), and bind it to a command to queue. The run-
time fills the object with the timing information, related to each
stage of the command processing (i.e., queued, submitted and ex-
ecuted). With the RTLib extension, the developer can avoid the
declaration of such event objects, and let the library to collect (and
dump) profiling information on all the OpenCL functions support-
ing the event profiling, by simply defining an environmental vari-
able. What happens in this case is that event objects are defined by
the library in a way that is completely transparent to the developer.
An interesting point to consider is that, since a large part of
OpenCL applications falls in the class of streaming processing,
their execution is usually characterized by a pretty regular process-
ing cycle. As a consequence, by collecting timing information for
each command queued in each cycle iteration, the RTLib can build
profiling statistics for each command type, and call instance. Such
statistics are useful, not only to support the developer in perfor-
mance optimization, but also for resource management. Indeed,
we can exploit such statistics both at design-time and at run-time.
In the former case, it can be done by supporting the identification
of the set of Application Working Modes. In the latter, by driving
the resource allocation policy with an online profiling of the appli-
cation. In Paragraph 3.3 an example of the former case is provided.
Finally, Figure 2 resumes the interaction between the applica-
tion and the BarbequeRTRM. The RTLib extension intercepts the
OpenCL function calls. In case of OpenCL profiling support is en-
abled, the timing information are collected. Whenever the applica-
tion performs a query to retrieve the set of the available computing
devices, the RTLib looks at the device ID assigned by the policy,
and returns the device descriptor to the application.

3. EXPERIMENTAL RESULTS

To evaluate the benefits introduced by this framework exten-
sion, we executed scenarios featuring some OpenCL applications
on a heterogeneous system made by a multi-core CPU and multi-
ple GPUs. In Paragraph 3.2 we are going to see how the automatic
device selection mechanism, driven by the run-time resource man-
ager policy, positively affect the performance of the applications
applications and the system load and thermal balancing.

3.1 Experimental Setup

We characterized the performance of our proposed work exploit-
ing three OpenCL applications taken from the samples included
in the AMD Accelerated Parallel Processing (APP) SDK (version
2.8), and a OpenCL implementation of the Stereo-matching algo-

__

OpenCL Applications

Runtime

OpenCL extension OpenCL profiling
Application params

Resource usage

Pareto-optimal
configurations

\

- Design Space Exploration - . Resources Management i

Wrapping gnsp P Scheduling Policy 9 :

i

1

- Command-level profiling - Multi-objective optimization: - Heterogeneous Scheduling - CPU quota enforcing i
- Automatic device selection & Maximize performance - Heterogeneous Resource Allocation - CPU cores assignment i
4 Maximize quality - Automatic CPU/GPU assignment |

Run-time library * . i

1

i

i

i

1

Runtime resource
allocation

..

Figure 3: The integration flow: RTLib extension, DSE exploitation and run-time resource management.

rithm. Each application executes a single kernel at a time, and the
host program consumes the output of the kernel.

The hardware system was composed by 1 CPU Intel i7 3770
Quad core with Hyper-Threading, and 2 GP-GPUs ATI Radeon
HD 7750, running a Linux OS (kernel version 3.8) and providing
the AMD OpenCL Runtime version 1.2. The tests have been ex-
ecuted keeping the frequencies of the CPU and the GPUs set to a
fixed value. This in order to avoid the influence of uncontrolled
frequency scaling activities. More in detail, the GPU frequencies
have been locked to the minumum values, i.e., 300 Mhz for the
cores and 400 MHz for the memory bus. Conversely, the CPU cores
have been locked to the maximum frequency value, corresponding
to 3,40 GHz.

3.2 Automatic device selection

This experiment has been performed by using the NBody sample
from the AMD APP SDK (single device version). We observed the
variation of completion time of the execution, load percentage and
the temperature of the GPUs, considering scenarios with a number
of instances ranging from 1 to 4. Since NBody represents a compu-
tational intensive application, it is easier for us to show the benefits
of exploiting run-time resource management with OpenCL appli-
cations. We compared the BarbequeRTRM-managed execution to
the usual unmanaged one.

Concerning the completion time, it is immediate to see in Fig-
ure 4a, how the run-time resource management is necessary to avoid
performance penalty. Indeed, in the unmanaged case all the NBody
instances select the same GPU device (ID 0). Accordingly, since
the execution of each instance leads to a full utilization of the GPU
(100% load), the completion time scale up by a factor equal to the
number of running instances. Conversely, whenever more than one
instance is running, the BarbequeRTRM-managed case distributes
the allocation of the NBody instances over both the GPUs, with a
consequent halving of the execution time. Accordingly, the GPU
load reaches the 100% for both the devices in the BarbequeRTRM-
managed cases (multiple instances), avoiding the extreme unbal-
ancing reported in the unmanaged cases, i.e. 100% versus 0% (Fig-
ure 4b and Figure 4c).

As expected, the load balancing led also to a temperature lev-
elling among the GPUs. The GPU temperature (Figure 5b) is al-
most the same in both cases, while Figure 5a shows that in the
BarbequeRTRM-managed case the GPU 1 temperature increases
from 32° C to 40° C, since it passes from idle to active.

The overall result is shown in Figure 5c, with the difference of
temperature between GPUs dropping from 13-14° C to a range of
3-7° C. Temperature levelling is a very important result, that must

24

be considered jointly to the reduction of execution time. Indeed, by
distributing the kernels on both GPUs, the single GPU works for a
shorter time span, with a two-fold benefit: a) less energy required
to supply the fan cooling system; b) mitigation of the aging effects
on the devices, due to thermal stress.

3.3 Command-level profiling exploitation

To identify a suitable set of Application Working Modes, ex-
ploiting a Design Space Exploration (DSE) is often a reasonable
choice. Given a big space of configurations/options, DSE tools
usually perform an effective exploration of the space, returning the
Pareto optimal configurations, according to a set of metrics to op-
timize (e.g, performance and QoS maximization, energy consump-
tion minimization, etc...).

In this experiment, we tested the integration of the OpenCL pro-
filing support with the DSE, considering an application performing
StereoMatching computations. The choice has been driven by a
pair of reasons. The former is that, the application performs a run-
time monitoring of the frame-per-second rate (FPS). This let us to
consider the FPS as a performance metrics, and thus an objective,
to maximize. The latter reason is due to the presence of several pa-
rameters that, according to the value assigned, affect the computa-
tional capacity required to keep a certain QoS level or performance
goal.

Briefly, our design space was composed by the set of values of
four application-specific parameters (hypo step (HS), confidence
(C), max arm length (MAL), max hypo value (MHV)), and two pa-
rameters related to heterogeneous resource usage (CPU quota(CPU)
and GPU assignment(GPU)). For reasons of space, we cannot pro-
vide further details about how each parameter is related to the appli-
cation behavior. The goals of the multi-objective exploration were:
a) maximize the level of quality of the images processed (IQ); b)
maximize the frame-per-second (FPS) rate, i.e. minimize the time
of the processing cycle (CT); ¢) minimize the overhead (OH) due
to data transfer, in case of execution on GPU. The exploration has
been performed by MOST, a DSE tool developed in the context of
the MULTICUBE project [8].

It is worth to remark that the last objective has been introduced
thanks to the OpenCL command-level profiling support of the ap-
plication run-time library. More in detail, we have defined the over-
head as the ratio between the time spent to perform data mem-
ory transfers (time spent in executing c1EnqueueReadBuffer and
clEnqueueWriteBuffer commands), and the time spent to per-
form real computations on the device (c1EnqueueNDRangeKernel):

Exec time(particles=32768)

GPUO load (particles=32768)

GPUT1 load(particles=32768)

300

[BarbequeRTRM managed
E Unmanaged

Load [%]

3
Number of instances

(a) Execution time

3
Number of instances

(b) GPU 0 Load

[BarbequeRTRM managed
Bl Unmanaged

100

[0 BarbequeRTRM managed
Bl Unmanaged
0 2

3 4
Number of instances

(c) GPU 1 Load

Figure 4: Automatic OpenCL device assignment: Completion time and GPUs load for the execution of the NBody sample.

GPUO temp(particles=32768)

GPU1 temp(particles=32768)

60
3 BarbequeRTRM managed
B Unmanaged

40

Temperature [°C]
8
Temperature [°C]
@

8

1 2 4 1

3
Number of instances

(a) GPU 0 Temperature

[0 BarbequeRTRM managed
B Unmanaged

3
Number of instances

(b) GPU 1 Temperature

Difference of temperature between GPUs

3 BarbequeRTRM managed
EEl Unmanaged

4 1 2 4

3
Number of instances

(c) GPUs Temperature difference

Figure 5: Automatic OpenCL device assignment: GPUs temperature during the execution of the NBody sample.

_ EnqueueReadBuf feriime + EnqueueW riteBuf f eryime

OH
EnqueueNDRangeKernel;ime

@)

This because data transfers are typically source of bottlenecks for
the GPU performance exploitation. Therefore, we try to reward the
configurations such that if a “big” data transfer is required, it should
be worth only if the time spent for the execution of the kernel is
“big” as well.

Considering just a finite number of values for each parameters,
we started from a design space of about 200 configurations. The ex-
ploration has identified the Pareto optimal configurations listed in
Table 1. Such configuration are actually called Operating Points.
Then, from the list of Operating Points we can extract the Applica-
tion Working Modes (grey rows), by ignoring application-specific
parameters and “negligible” difference in the resource usage con-
figurations. Therefore, at run-time, the resource allocation policy
will allocate resources to StereoMatching considering just this set
of options, and all the possible resource bindings, i.e. the available
set of CPU cores and GPUs.

Once the AWM has been assigned, the application can select
an Operating Point from a range, catrying out a re-tuning of the
application parameters, aiming at following a runtime goal, i.e. for
instance a certain FPS value. This is another service provided by
the RTLib, but a detailed description is out of the scope of this
work.

3.4 Heterogeneous resource allocation

In this test, we evaluated the behavior of the framework in a
mixed workload scenario, with several applications competing for

25

GPUO |

|GPUIJ |
NB 2

| GPU1 |
MC

| GPU1

GPUT
CPU (85%)

l CPU (50%) CPU (85%)

GPUT
| CPU (50%) | cPU (85%)

O]] [[«][5]] [

Figure 6: Heterogeneous resource allocation in a mixed workload
scenario.

the system resources. The workload features OpenCL applications
at different priorities. We considered two instances of NBody (high
priority), two instances of StereoMatching (low priority), and an in-
stance of MonteCarloAsianDP (from the AMD APP SDK samples)
having a medium priority, at different instants of time. Higher pri-
ority has been assigned to the applications that have been profiled
as the most GPU intensive, in order to effectively exploits the com-
puting resources.

From the point of view of the resource allocation policy, we will
focus on the choices made in terms of selection of AWM and re-
source binding for two StereoMatching instances, considering the
results of the design space exploration previously discussed.

Figure 6 shows the timeline of the execution, along with the com-
puting resource allocated to the applications. Please consider the

OP | HS C MAL MHV | CPU GPU | CT[s] IQ[%] OH FPS AWM
1 45 1 32 85 1] 0.035 33 2.044 28.827 0
2 2 45 16 32 80 1] 0.067 50 0.814 14.840 -
3 1 45 1 32 60 1| 0.090 100 2218 11.142 -
4 1 45 1 32 30 1] 0.097 100 1.976 10.317 1
5 3 45 16 32 | 300 0| 0.225 33 0.023 4.446 2
6 2 45 16 32 | 300 0| 0317 50 0.023 3.151 -
7 1 45 16 32 | 300 0| 0.587 100 0.022 1.704 -
8 1 45 16 32 | 100 0| 1914 100 0.007 0.522 -
9 2 45 16 32 50 0| 1988 50 0.004 0.503 3
10 1 45 16 32 25 0| 7510 100 0.002 0.133 4

Table 1: Operating Points of the StereoMatching application resulting from the Design Space Exploration. The Application Working Modes

(AWMs) are highlighted in grey.

AWMs highlighted in Table 1.

1. The first application launched is an instance of NBody (NB
1), which gets the access to GPU 0.

2. The first instance of StereoMatching (SM 1), to which the
BarbequeRTRM assigns the AWM 0, featuring a GPU and
85% of the CPU quota.

3. MonteCarloAsianDP starts, and since it has a higher priority
than StereoMatching, it obtains the GPU 1. This leads to the
migration of SM 1 from GPU to CPU, with the assignment
of the AWM 3 (50% of CPU).

4. A second instance of NBody (NB 2) is co-scheduled on GPU
0.

5. A second instance of StereoMatching (SM 2) is co-scheduled
on CPU (50%) with the first one, since higher priority appli-
cations are still running.

6. MonteCarloAsianDP terminates and frees GPU 1, that is re-
assigned to SM 1, along with 85% of CPU quota (AWM 0).

7. When SM 1 terminates, the second instance of StereoMatch-
ing (SM 2) can take its place with GPU 1 and 85% of CPU
quota assigned.

In summary, what happened is that the StereoMatching instances
have been dynamically migrated between CPU and GPU, at run-
time, without the implementation of any logics by the application
developer. In the case of CPU allocation, the BarbequeRTRM has
reserved to the application the amount of quota resulting from a
multi-objective exploration performed at design time. Accordingly,
the amount of resources allocated has always been a Pareto optimal
choice. In some cases, like at (2), (6) and (7) an heterogeneous allo-
cation has been performed, by assigning a CPU quota, and granting
the access to a GPU. At (5) instead, five OpenCL applications were
spread among different devices. Overall, the the BarbequeRTRM
framework, along with the support of DSE has enabled an effective
utilization of computing resources, from an heterogeneous system,
by properly assigning devices to OpenCL applications, with the op-
timal amount of quota in case of CPU.

4. CONCLUSIONS AND FUTURE WORKS

In this paper we introduced a working run-time resource man-
agement framework, extended to support OpenCL applications, run-
ning on systems featuring a multi-core CPU and multiple GPUs.
We have shown early benefits in terms of performance, load bal-
ancing and thermal leveling, deriving from the exploitation of a
system-wide perspective over the availability of resources and the
application requirements. We have also provided an example of
integration of our OpenCL command-level profiling with a Design
Space Exploration activity. It has been shown how this can sup-
port the resource allocation policy at run-time, by identifying only
a subset of resource usage configurations that are worth to consider,

26

given a multi-objective optimization. On going works are focusing
on the exploitation of online profiling, to drive the resource alloca-
tion policy, the multi-device support, and a policy to improve the
co-scheduling of kernels on the same GPU.

5. ACKNOWLEDGEMENTS

This work has been partially supported by the EU HARPA project
FP7-ICT-2013-10-612069.

6. REFERENCES

[1] C. Augonnet and R. Namyst. A Unified Runtime System for
Heterogeneous Multi-core Architectures. In Euro-Par 2008
Workshops-Parallel Processing, pages 174—183. Springer,
2009.

C. Augonnet, S. Thibault, R. Namyst, and P.A. Wacrenier.
StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures. In Concurrency and
Computation: Practice and Experience, pages 187198,
February 2011.

A. Bahga and V.K. Madisetti. A Dynamic Resource
Management and Scheduling Environment for Embedded
Multimedia and Communications Platforms. Embedded
Systems Letters, IEEE, 3(1):24-27, March 2011.

P. Bellasi, G. Massari, and W. Fornaciari. A RTRM proposal
for multi/many-core platforms and reconfigurable
applications. In ReCoSoC, 2012.

U. Dastgeer, J. Enmyren, and C. Kessler. Auto-tuning SkePU:
a Multi-Backend Skeleton Programming Framework for
Multi-GPU Systems. In Fourth Workshop on Programmability
Issues for Multi-Core Computers (MULTIPROG-2011), page
132, 2011.

J. Enmyren, U. Dastgeer, and C.W. Kessler. Towards a
Tunable Multi-Backend Skeleton Programming Framework
for Multi-GPU Systems. In MCC’10, Third Swedish Workshop
on Multi-Core Computing, Goteborg, Sweden, November
2010.

C.K. Luk, S. Hong, and H. Kim. Qilin: Exploiting Parallelism
on Heterogeneous Multiprocessors with Adaptive Mapping. In
Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on. IEEE, 2010.

C. Silvano, W. Fornaciari, and E. Villar. Multi-objective
Design Space Exploration of Multiprocessor SoC
Architectures: The MULTICUBE Approach. Springer, 2011.

(2]

(3]

(4]

[5

—

(6]

(7]

(8]

Zhttp://www.harpa-project.eu/

