
GPU Video Retargeting with Parallelized SeamCrop

Johannes Kiess, Daniel Gritzner, Benjamin Guthier
Stephan Kopf, Wolfgang Effelsberg

Department of Computer Science IV
University of Mannheim, Mannheim, Germany

{kiess|guthier|kopf|effelsberg}@informatik.uni-mannheim.de
gritzner@pi4.informatik.uni-mannheim.de

ABSTRACT
In this paper, we present a fast parallel algorithm for the
retargeting of videos. It combines seam carving and crop-
ping and is aimed for real-time adaptation of video streams.
The basic idea is to first find an optimal cropping path over
the whole sequence with the target size. Then, the borders
are slightly extended to be reduced again by seam carving
on a frame-by-frame basis. This allows the algorithm to
get more important content into the cropping window as it
is also able to remove pixels from within the window. In
contrast to the previous SeamCrop algorithm, the presented
technique is optimized for parallel processes and a CUDA
GPU implementation. In comparison, the computation time
of our GPU algorithm is 10.5 times faster (on a 960 × 540
video with a retarget factor of 25%) than the already efficient
CPU implementation.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems; I.4.9 [Image Processing and
Computer Vision]: Applications

General Terms
Algorithms

Keywords
GPU, SeamCrop, video retargeting, video resizing, seam
carving, cropping

1. INTRODUCTION
A lot of videos are produced every day - feature films for
cinemas, documental movies or smartphone videos. These
videos are watched on a variety of different devices, ranging
from widescreen TVs with Full HD resolution to smartphone
displays with SVGA resolution. But not every video is suited

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
MMSys ’14, March 19 - 21 2014, Singapore, Singapore
Copyright 2014 ACM 978-1-4503-2705-3/14/03...$15.00.
http://dx.doi.org/10.1145/2557642.2557648

for every display right away, they have to be adapted in size
and resolution. This process is called retargeting.
There are different methods for video retargeting, for ex-
ample warping [11] scales the frames non-uniformly or seam
carving [14] removes paths of pixels from the frames. The
computational complexity of most of these methods can get
very high because a global optimization problem has to be
solved over a whole video in order to generate the optimal
retargeted version. The GPU can be used to significantly
enhance the performance of such algorithms. For instance,
the calculation of the importance functions can often be par-
allelized as the values are computed for each pixel indepen-
dently from the others [19, 3]. The goal of these enhance-
ments is to achieve real-time retargeting. This is especially
important when the user wants to watch a live event like a
football game or another type of livestream over the inter-
net.
In this paper, we present an accelerated version of the Seam-
Crop approach for videos [6] using a CUDA implementation
on the GPU. The basic idea of the algorithm is to find a crop-
ping window of the target size and then extend the borders
to get more important content into it through seam carving.
As there are a lot of parts like the importance value calcu-
lation that can be parallelized, the algorithm is well suited
to be implemented on the GPU.

Our main contributions are as follows:

• We present an efficient CUDA implementation of the
SeamCrop algorithm for the GPU and explain the changes
and adjustements in detail.

• A comprehensive performance test shows the efficiency
of the new algorithm.

• The new GPU algorithm is 10.5 times faster (on a 960×
540 video with a retarget factor of 25%) and is able to
to retarget videos with a resolution up to 720 × 405 in
real-time (assuming 25 frames per second).

The rest of this paper is structured as follows: other video
retargeting algorithms using the GPU are presented in Sec-
tion 2. In the following Section 3, the differences between
the parallel CUDA version and the previous version of the
algorithm are discussed and enhancements are described in
detail. Section 4 shows the results of our performance test.
Finally, Section 5 concludes the paper.

139

2. RELATED WORK
A lot of research has already been done in the field of image
and video retargeting. First, we will give an overview of me-
dia retargeting algorithms. In the next step, we will focus
on the speeding up of the algorithms by using the GPU and
discuss papers that also use the GPU in their implementa-
tion.

2.1 Media Retargeting Algorithms
Retargeting techniques can be roughly categorized into three
different kinds of operators – cropping, seam carving and
warping [9]. Basically all of these techniques follow a basic
workflow. In the first of two steps, the importance of each
pixel is determined. For instance, this can be done with
gradient magnitude, saliency map, face detection, or a com-
bination of several methods. In the second step, an operator
or a combination of operators is used to adjust the size to the
target size based on the information from step one. The main
principle is always to preserve as much important content as
possible. This general explanation defines the basic work-
flow. The execution can vary in the individual algorithms,
for instance in a video that is retargeted frame-by-frame, the
steps are repeated for each frame respectively.

Cropping tries to identify the most important region in an
image or video and discards the rest around it. A so called
cropping window is used with the goal to minimize its size
while containing as much energy as possible. For videos,
temporal consistency also plays an important role as a shak-
ing cropping window is unpleasant to watch.
Such a cropping window can be found by an optimization of
multi-size trajectories throughout a video scene [12]. Each
trajectory represents a cropping window with a different size
that may also cover different content. In terms of size, each
trajectory has a fixed window size that does not change dur-
ing a shot. Several of these trajectories are found by the al-
gorithm and ranked based on the energy captured in them.
The one with the highest energy is chosen for the shot. If
there are various interesting regions in a scene that can not
be contained in one trajectory, the algorithm is able to com-
bine multiple of them.

Seam Carving removes paths of connected pixels from im-
ages and was first introduced in 2007 [1]. In contrast to
cropping, this technique can discard content inside of an im-
age, not just at the borders. A seam is defined as a connected
path of pixels from top to bottom or from left to right with a
low importance for the image content. The algorithm works
iteratively and removes one seam in each step. In each itera-
tion, the seam with the lowest energy is found and removed,
effectively reducing the size of one dimension by 1.
A vertical seam is defined as a path of pixels from top to bot-
tom with the following two constraints: The first constraints
states that one and only one seam pixel is selected in each
row. In the second constraint, the horizontal distance be-
tween two adjacent seam pixels is not allowed to be larger
than 1. This leads to the seam pixels of vertical seams to be
vertically or diagonally connected (8-connected). The cost
of a seam is defined as the sum of the energy values of all
pixels that are included in it. In order to find the optimal
seam, dynamic programming is used to identify the seam
with the minimal cost of all possible seams.

A horizontal seam is a connected path of pixels from left to
right and is found in a similar manner by switching rows and
columns of an image. When a seam is removed, all pixels
are shifted vertically or horizontally to fill the resulting gap.
Seam carving was later expanded to also work for videos [14]
by searching for 2D manifolds in the 3D video cube. Each
manifold depicts a seam over the course of the whole video.
As the originally used dynamic programming was not suit-
able for the optimization of a video cube, the authors repre-
sent the video as a graph and use graph cuts. Additionally, a
new energy criterion called forward energy is proposed that
takes into account the energy that is introduced by the new
edges that occur by removing a seam. Nevertheless, if a
video depicts objects with straight lines like buildings, seam
carving typically introduces severe artifacts because straight
lines may become curved or disconnected. In previous work,
we improved seam carving by applying line detection and
modifying the energy map in the local neighborhood of the
intersection point of a seam and a straight line [8].
As the optimization over the 3D video cube takes a lot of
processing time, another seam carving method for videos [10]
was introduced that is more efficient by using a so-called
background picture. This picture is created by aligning all
the frames of the shot and using a median filter to merge
the frame pixels. Seam carving with forward energy is then
applied to find seams on the background picture. The found
seams are finally mapped back to the individual frames by
applying a camera motion compensation model between each
frame and the background picture.
Each operator has its limitations, for instance, cropping can
not be used for enlargement. Multi-operator retargeting tries
to overcome these individual limitations by combining seam
carving, scaling, and cropping [16]. The order of the oper-
ators is determined via dynamic programming in a multi-
dimensional space where each dimension represents the use
of an operator in either width or height. For videos, the
order of the operators is found in the key frames and then
interpolated for each intermediate frame.
Normally, a key aspect of seam carving is the constraint that
the seams have to be connected. In a novel approach, seams
are allowed to be temporally and spatially discontinuous [4].
The algorithm works on a frame-by-frame basis and uses
an appearance-based temporal coherence measure to ensure
consistency and let seams be temporally disconnected. In a
similar manner, the seams can also be spatially disconnected.

Warping is the term that is used when an image or video is
scaled non-uniformly in order to retarget it. A mesh is used
to map the cells from the source to the target size. Based on
the algorithm, the cells of this mesh can have different froms
like quads or triangles and different cell sizes, going down
to one pixel per cell. As with previous techniques, warping
tries to maintain important content unchanged while distort-
ing homogenuous regions that the viewer will most likely not
notice.
An interesting approach considers the optical flow as an ad-
ditional information [17]. The retargeting process is divided
into a spatial and a temporal component that can be com-
puted one after the other. First, the algorithm uses warping
on each frame seperately. Based on the change in the frame,
the motion pathlines of the pixels can be determined through
the optical flow and be optimized in comparision of the ones
from the original frames. This additional information is then

140

used in a second run through of the warping on the frames.
A more object-based approach uses segmentation to preserve
objects especially during the retargeting [13]. The first step
of the algorithm is to use a spatio-temporal segmentation in
order to find volumetric objects in the 3D video cube. These
segmented objects are not objects like a person or a car, but
connected regions of a similar color. Important volumetric
objects are then kept as unchanged as possible while the
other regions are adapted similarily to linear scaling in the
retargeting step.

2.2 GPU Importance Detection
Importance functions are a central part of each retargeting
algorithm, as the resulting importance map guides the fol-
lowing steps and has a crucial impact in the achieved quality
of the result. These functions often have low dependencies
between their seperate steps or the information needed de-
pends on a small pixel area which makes them a good can-
diate for parallelization.
For instance, when computing an importance map for a
640 × 480 image, Xu et al. [19] are 8.5 times faster using
a GPU implementation (with four graphic cards) compared
to the CPU implementation. They use the saliency map
from Itti et al. [5] as a basis and implement it using the
CUDA technology from NVIDIA. Goferman et al. [3] also
use CUDA on the GPU to enhance the performance of their
importance function, but use a different approach than [19].
In contrast, they try to find the regions that define the con-
tent of the image rather than the possible fixation points of
a viewer. Their GPU version is five times faster than the
corresponding CPU implementation.

2.3 GPU Video Retargeting
Previous work has shown that GPU implementations are also
capable of speeding up the retargeting of images and videos.
A prominent example is the warping algorithm for stream-
ing videos presented in [11]. It works on the pixel level and
has the ability to retarget videos in real-time. This is pos-
sible due to high parallelization and an implementation on
the GPU. Also, the authors combine automatically detected
features with manual annotations to enhance the accuracy of
their importance map. They achieve 33.5 frames per second
(fps) on a 480 × 270 sequence with a retarget factor of 50%.
Another interesting approach combines warping with crop-
ping [18]. Critical regions are defined with content that
should be preserved while everything outside the borders
is allowed to be cropped. The content inside the borders
is then retargeted through warping. An interesting proposi-
tion is to give up the notion that all important content has
to be preserved at all times during the course of a video.
The GPU is used to calculate the deformation of the mesh
during the warping. When using a retarget factor of 50%,
the algorithm can retarget a 688 × 288 sequence with 6 fps.

Seam carving [14] is the basis of a highly parallelizable video
retargeting technique [2] for the GPU. In the retargeting pro-
cess, the video is computed frame by frame, which makes the
technique also suitable for images. A frame is enhanced with
a newly introduced just-noticeable-distortion (JND) model
and then an importance map is computed by applying an
edge detection filter. JND is composed of several image fea-
tures like gradient, entropy, visual saliency, segmentation,
etc. Also, a multi-seam search scheme is presented which

can find multiple seams without the need to recompute the
importance map after each seam by backtracking and split-
ting found seam paths. The seams are searched sequentially,
frame by frame. For temporal coherence, the seams need to
be connected which leads to them forming a continuous sur-
face in the 3D video cube. Performance-wise, the algorithm
achieves 11 fps on a 512×384 sequence (retarget factor 50%).

3. PARALLEL SEAMCROP
In this section, we start by exlpaining SeamCrop for videos
as it was proposed in [6, 7]. Then, we describe how this algo-
rithm can be parallelized and present details of our CUDA
implementaion for the GPU.

3.1 SeamCrop for Videos
The main idea of SeamCrop is to use seam carving ’carefully’
to not introduce visible artifacts. In the following explana-
tions, a m × n video cube should be retargeted to m′ × n,
which is a reduction of width. A change of height is done
similarily while a reduction of both dimensions is processed
sequentially one after the other.
In contrast to image retargeting, the algorithm starts by
searching for an optimal cropping window path with the tar-
get size over the course of the whole video. To measure the
importance of each pixel, motion saliency and the gradient
magnitude are used. First, the importance values in each
column i = 1, ...,m are summed up to a column cost value
respectively. Based on these values, the energy costs of all
possible cropping windows in each frame can easily be op-
tained by summing up the values of the included columns.
This leads to a two-dimensional array where each value de-
picts the position i of a cropping window in a frame t. Dy-
namic programming is then used to find the path with the
maximum energy in a similar way to the search of a seam in
seam carving [14]. As the optimal path can be shaky due to
small movements to the left and right by one pixel, a Gaus-
sian filter is used to smooth the result.
When the path of the cropping window has been found, the
seam carving step of the algorithm begins. In contrast to the
cropping step, the search for seams is done frame by frame.
Therefore, the borders of the window are equally extended
on both sides. In the experiments in [6], the window was en-
larged by 20%. If one side of the window is close to a border,
it is extended until the border and the rest is added on the
other side. Seam carving is then used inside the extended
borders to get more important content into the window or
to prevent objects from being cut off (see Figure 1).
In order to ensure temporal coherence, energy costs similar
to [4] are used.These costs take the position of the seams
from the previous frame t − 1 into account. Assuming that
st−1
k seams were found, the same amount is searched in the

current frame. The energy costs are called temporal coher-
ence costs and have to be calculated for each seam stk seper-
ately. They are zero at the positions of the corresponding
seam from the previous frame and increase linearly in the
horizontal directions from each seam point until a threshold
β is reached. This threshold regulates how much the position
of the seam from the previous frame is forced in the current
frame. All positions after the threshold are set to the same
value.
Due to a possible moving cropping window it may happen
that positions of a seam from a frame before lie now out-
side of the extended borders. If this happens for a position,

141

Figure 1: Top row: The estimated cropping window (green lines) is extended (blue dotted lines) and then
reduced to the target size again by removing a small number of seams (red). Bottom row: results of the
frames being reduced by the cropping operator alone (left) and by SeamCrop (right). From Kiess et al. [6].

every cost value in that row is set to the threshold value.
When more than 20% of the positions are outside, no tem-
poral costs are added for the seam so that a new seam can
be found.

3.2 SeamCrop for GPU
An efficient version of the SeamCrop algorithm is already
available[6], using a 2D optimization for the search of the op-
timal cropping window and doing seam carving on a frame-
by-frame basis. To further enhance the processing speed,
some changes are made to parallelize more processes and
optimize the performance of a GPU implementation. These
changes and some insights of our CUDA implementation are
presented in detail in the following. If not stated otherwise,
assume all steps to be executed on the GPU in order to save
copy operations between CPU and GPU.

3.2.1 System Overview
The basic workflow of the algorithm remains the same: two
passes are done on the video, the first to find a cropping
window over the whole sequence and the second to search
for seams frame by frame (see Figure 2).
In both passes, frames are treated in multiple CPU-threads.
These threads are responsible for loading the frames to the
CPU memory, copying them from CPU to GPU and remov-
ing them from the GPU when they are not needed anymore.
Also, they organize the workflow on the GPU as they start
kernels for the frames and watch the synchronization be-
tween the frames, for example that a frame has to wait in
the seam carving step until enough seams are found in the
previous frame because of the temporal coherence costs. By

using multiple CPU-threads and assigning a different CUDA
stream to each thread multiple kernels can be executed on
the GPU in parallel. This ensures that the GPU utilization
is high throughout the runtime.
On the GPU, frames are usually divided into regions that are
computed independent and parallel, so called blocks. Each
block consists of several threads that have a shared memory.
As CUDA has no mechanism for synchronizing blocks, we
implemented one ourselves. This is important because most
of the steps of the algorithm need that the steps before are
finished, for instance, when finding the optimal seam paths
the result of each row depends on the previous row. The
block synchronization function uses CUDA’s thread synchro-
nization to ensure that all threads of a given block enter and
leave the block synchronization function at the same time.
The first thread of each block is chosen as a representative
for the block. This representative uses atomic functions to
increase a variable and perform a busy wait on said variable.
Once all blocks have reached this point the representatives
will end their busy wait and normal operation resumes. As
an alternative, kernel launches could have been used for syn-
chronization; but doing so decreased the performance of the
program.

3.2.2 Importance Function
As the pixels within a frame are independent from each other
during the importance calculation, this step of the algorithm
is highly parallelizable. There are several possibilities to
determine the importance values like saliency map or his-
togram of gradients that can be used in this approach. We
chose to stay with the simple gradient function from [6], as

142

Figure 2: Overview of the basic workflow of the algorithm. In pass one, the optimal cropping window is
searched via dynamic programming (green lines) in a global optimization over all frames. Seams are searched
in the second pass (red lines) inside the extended borders of the cropping window (blue dotted lines) frame-
by-frame.

it provides sufficient information for visually good results.
Also, we keep the simple motion saliency function. As this
function is calculated dependent on the previous and the
succeeding frame respectively, the thread of the frame has to
wait until these other two frames are also loaded in the mem-
ory. The resulting motion saliency map is smoothed with a
Gaussian function. We implemented a horizontal smoothing
kernel and transpose it for the vertical direction. This way,
only one implementation is necessary and there are no con-
flicts with the memory banks of the GPU that would occur
in an additional vertical kernel.
After the importance map is calculated, the frame is dropped
and the thread can be assigned to another frame. A major
difference implementation-wise is the drop of the importance
information in the first pass after the necessary data for the
calculation of the cropping window has been gained. This is
due of the possibility of parallelizing this step efficently so
that it is fast to recalculate the importance function. This
leads to the advantage of being able to process videos with
higher resolutions, as the algorithm needs less memory space
than before when it kept all frames and importance maps in
the memory.

3.2.3 Cropping Window
In the calculation of the cropping window path, there are
some dependencies that have to be considered in the par-
allelization. For instance, the columns have to be summed
up before the costs of each cropping window position can be
calculated. The columns themselves are independent and all
the sums can be calculated at the same time.
In the next step, the cropping path is searched via dynamic
programming in a 2D array similar to seam carving [14].
This leads to a dependency between the rows, as each po-
sition in a row depends on the values of its potential pre-
decessors in the line above (see Figure 3). Therefore, rows
are done one after another while the positions in a row can
be calculated inependently. When the costs of the path have
been summed up, the optimal cropping path can be found by
backtracking from the cheapest value in the last row, which
is not very complex. Everything except the calculated crop-
ping path is then dropped from the memory before the sec-
ond pass starts. The smoothing of the path is done on the
CPU as it is not a complex operation. It is the only op-
eration in our implementation that is not computed on the
GPU.

Figure 3: Example for the pixels depending on each
other during the search for a seam. The cost of the
current pixel (red) is the addition of its importance
value with the cost of the cheapest predecessor in
the line above (dark grey). Only the three adjacent
pixels are possible. These themselves depend on the
values of the line above (light grey).

3.2.4 Seam Carving
Seam Carving is done in the second pass of the algorithm.
As mentioned before, the seams are now computed frame-
by-frame instead of a global optimization like in the crop-
ping step. Each seam depends on the seams that have been
previously calculated in the current frame t as well as the
corresponding seam from the frame t − 1. This means that
only one seam is searched in each frame at a time, although
this is done in parallel. Because the algorithm uses informa-
tion of the seams from the previous frame t−1 via temporal
coherence costs, each thread waits until the thread of frame
t−1 has found enough seams. For instance, if seam i should
be calculated, the thread waits until the other one has found
at least seam i + 1 before it starts with it. As a lookup ta-
ble, an array keeps track of the number of seams that have
been found in all frames. If a thread has to wait because not
enough seams are found in frame t− 1, the time is given to
other threads until it can continue.
Like mentioned before, each row is computed one after an-
other in the dynamic programming step where the cheapest
seam is searched (see Figure 3). For the calculation, each
column is assigned its own thread so that each pixel in a row
can be computed independently. Because the rows depend
on each other, each one has to wait until the previous one

143

Figure 4: Search for the minimum value in the last row of a frame. Top row of the figure: each second
thread checks if its neighbor has a lower value and copies it and its position in this case (i.e., 0 compares to
1 (red), 2 to 3,..). Middle row: the same is done with each fourth thread and the thread two IDs before (i.e.,
0 compares to 2 (red), 4 to 6, ...). This is repeated until the first thread has the optimal value of the block
and its position.

is finished. After this computation, the cheapest value in
the last row has to be found because it marks the end of
the optimal seam. This is done differently than in the orig-
inal approach, where the minimum is found by just going
through from left to right.
Instead all threads of a block are used to find the minimum.
First, each thread copies its importance value and its po-
sition into the shared memory. Then, every other thread
checks if its neighbor has a better value and copies it and
the position in that case (see Figure 4). After that, every
fourth thread checks if the thread two IDs after it has a
better value. This goes on until the optimal value and its
position have been copied all the way to the first thread of
each block. Lastly, each block writes its best value and posi-
tion into the global memory and the first thread of the first
block determines the global minimum and more importantly
the position of the global minimum.
In order to save computation time, the importance map is
only calculated once and then modified by each found seam
in a way that the following seams will not pick the same
pixels. This is done by setting the importance values of the
used pixels really high.

4. DISCUSSION
We conducted a detailed performance test in order to prove
the efficiency of the GPU implementation. In the perfor-
mance test, we compared GPU against CPU, measured how
long pass one and two of the algorithm take and tested dif-
ferent parameters. As we did not fundamentally change any
of the core principles of the SeamCrop algorithm [6], we pass
on a quality of results comparision to other state-of-the-art
video retargeting algorithms.
All the tests were performed on a PC with the following
specifications: Intel i7-3770 processor with four cores at 3.4
GHz, 16 GB DDR3 RAM and a NVIDIA GeForce GTX 650
TI with 1024 MB memory and 768 CUDA cores. In the
implementation, eight CPU threads are used as the PC has
four cores and is able to support two threads per core. The
factor for the extended borders is set to 20% and only the
width is reduced in all tests while other parameters vary.

Also, except for GPU test number four, all sequences have
183 frames for a better comparision of the results.
We first did a performance comparison between the already
efficient CPU implementation and our new GPU version of
the algorithm (see Figure 5). The tests where done on a
480×270 and a 960×540 sequence with the retarget factors
25% and 50%. We take those factors from a comparative
study on image retargeting by Rubinstein et al. [15], where
they are regarded as a considerable resizing. In the 480×270
sequence, the GPU version is about 3 times as fast as the
CPU one. The factor gets higher for the 960× 540 sequence
as the parallel processes come more into effect. There, the
new algorithm is 10.5 times faster for a retarget factor of
25% and 8 times faster for 50%.
In addition to the comparison to the CPU version, we also
did detailed performance tests on the GPU implementation.
There are four tests with varying parameters that are pre-
sented in the following.
In our first GPU test case, we measured how long the algo-
rithm takes to reduce the size of a video by 25% and by 50%
(see Figure 6). For the reduction, six sequences are used in
four different resolutions (1920×1080, 1440×810, 960×540
and 480 × 270). For the 480 × 270 sequence, the gap when
reducing the retargeting factor from 25% to 50% is not big.
This is caused by the computation overhead of steps that
have to be done regardless of the target size. The gap gets
even smaller with increasing resolutions as the capacity of
the GPU is fully used and the frames per second drop in
general. When analyzing the percentage load of each pass,
there are clear differences (see Figure 7). The first pass is less
complex and has more potential to be parallelized than the
second pass. Especially the seam carving in pass two with its
need to synchronize row after row takes time. Nonetheless,
the GPU version is a lot faster than the CPU version.
GPU test case number two uses a 960 × 540 sequence and

varies the retarget factor width from 10% to 50% (see Figure
8). The decrease in fps over the increasing retarget factor
has to do with more possible cropping window positions per
frame as well as a larger number of seams that has to be
found. It is not a linear progression because the use of the

144

(a) Retarget Factor 25% (b) Retarget Factor 50%

Figure 5: Performance comparison between the CPU and the GPU version of the algorithm.

Figure 6: GPU test number one: Frames per sec-
ond on four different resolutions and two retargeting
factors (RF). For the figure, the results from the six
used sequences are averaged.

Figure 7: Percentage that the two passes take in
relation to the pure processing time (without loading
and saving the frames) on the GPU. For this figure,
the results for both retarget factors are averaged as
the percentages are nearly identical.

Figure 8: GPU test number two: Frames per second
of a 960×540 sequence with a varying retarget factor.

GPU becomes more efficient in the later stages as there are
more computations that can be done in parallel.
In test case number three, we retarget a sequence by 25% but
vary the resolution of the source video (240×135, 480×270,
720×405, 960×540, 1200×675, 1440×810, 1680×945, and
1920 × 1080). Like in the previous test, the progression is
also non-linear (see Figure 9). This has to do with two fac-
tors: First, not all steps in the figure have the same amount
of pixel increase. For instance, 480 × 270 has four times the
pixels than 240× 135, but 720× 405 has only 2.25 times the
pixels than 480 × 270. Second, the GPU is not working to
full capacity in the beginning with the low resolutions and is
later more efficient in parallelizing at the high ones. Assum-
ing 25 frames per second and always keeping a shot in the
buffer, our algorithm is able to achieve real-time retargeting
up until a resolution of 720 × 405 pixels.
Lastly, in our fourth test case, a 960 × 540 sequence is re-

targeted by 25% with a varying number of frames (183, 244,
305, 366, 427 and 488). As expected, the fps stays at the
same amount (in this case seventeen) no matter how many
frames the sequence has (see Figure 10).

145

Figure 9: GPU test number three: Frames per sec-
ond with increasing frame resolutions and a retarget
factor of 25%.

Figure 10: GPU test number four: The number of
frames of the video sequence (960× 540, retarget fac-
tor 25%) does not affect the frames per second that
are achieved.

5. CONCLUSION
We presented a GPU implementation of the SeamCrop algo-
rithm for videos with a significantly enhanced performance
compared to the original. The differences and the adjuste-
ments between the two versions are thoroughly discussed and
measurements of the efficiency are shown in a detailed per-
formance test. In comparison to the already efficient CPU
implementation of the original paper, the computation time
of our algorithm is 10.5 times faster (on a 960 × 540 video
with a retarget factor of 25%). Also, our algorithm is able
to retarget videos with a resolution up to 720×405 pixels in
real-time (assuming 25 frames per second).
In future work, we would like to extend our GPU algorithm
to stereoscopic videos. However, this is not an easy and
straightforward transition as new important factors like the
disparity between the two views have to be considered.

6. REFERENCES
[1] S. Avidan and A. Shamir. Seam carving for

content-aware image resizing. ACM Transactions on
Graphics, SIGGRAPH 2007, 26(3), 2007.

[2] C.-K. Chiang, S.-F. Wang, Y.-L. Chen, and S.-H. Lai.
Fast jnd-based video carving with gpu acceleration for
real-time video retargeting. IEEE Trans. Cir. and Sys.
for Video Technol., 19(11):1588–1597, 2009.

[3] S. Goferman, L. Zelnik-Manor, and A. Tal.
Context-aware saliency detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
34(10):1915–1926, 2012.

[4] M. Grundmann, V. Kwatra, M. Han, and I. Essa.
Efficient hierarchical graph-based video segmentation.
In 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2141–2148, 2010.

[5] L. Itti, C. Koch, and E. Niebur. A model of
saliency-based visual attention for rapid scene analysis.
In IEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 20(11), pages 1254–1259.
IEEE Computer Society Press, November 1998.

[6] J. Kiess, B. Guthier, S. Kopf, and W. Effelsberg.
SeamCrop: Changing the size and aspect ratio of
videos. In Proceedings of the 4th Workshop on Mobile
Video, MoVid ’12, pages 13–18, New York, NY, USA,
2012. ACM.

[7] J. Kiess, B. Guthier, S. Kopf, and W. Effelsberg.
SeamCrop for image retargeting. In Proceedings of
IS&T/SPIE Electronic Imaging (EI) on Multimedia on
Mobile Devices, volume 8304. SPIE, 2012.

[8] J. Kiess, S. Kopf, B. Guthier, and W. Effelsberg. Seam
carving with improved edge preservation. In
Proceedings of IS&T/SPIE Electronic Imaging (EI) on
Multimedia on Mobile Devices, volume 7542, pages
75420G:01 – 75420G:11, January 2010.

[9] S. Kopf, T. Haenselmann, J. Kiess, B. Guthier, and
W. Effelsberg. Algorithms for video retargeting.
Multimedia Tools and Applications (MTAP), Special
Issue: Hot Research Topics in Multimedia, Springer
Netherlands, 51:819–861, January 2011.

[10] S. Kopf, J. Kiess, H. Lemelson, and W. Effelsberg.
FSCAV: Fast seam carving for size adaptation of
videos. In Proceedings of the 17th ACM International
Conference on Multimedia (MM), pages 321–330, New
York, NY, USA, 2009. ACM.

[11] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross.
A system for retargeting of streaming video. In ACM
SIGGRAPH Asia 2009 papers, pages 1–10, New York,
NY, USA, 2009. ACM.

[12] Y. Li, Y. Tian, J. Yang, L.-Y. Duan, and W. Gao.
Video retargeting with multi-scale trajectory
optimization. In MIR ’10: Proceedings of the
international conference on Multimedia information
retrieval, pages 45–54, New York, NY, USA, 2010.
ACM.

[13] S. Lin, C. Lin, I. Yeh, S. Chang, C. Yeh, and T. Lee.
Content-aware video retargeting using
object-preserving warping. IEEE Transactions on
Visualization and Computer Graphics, PP(99):1–1,
2013.

[14] M. Rubinstein, S. Avidan, and A. Shamir. Improved
seam carving for video retargeting. ACM Transactions
on Graphics, SIGGRAPH 2008, 27(3), 2008.

[15] M. Rubinstein, D. Gutierrez, O. Sorkine, and
A. Shamir. A comparative study of image retargeting.
In ACM SIGGRAPH Asia 2010 papers, pages

146

160:1–160:10, New York, NY, USA, 2010. ACM.

[16] M. Rubinstein, A. Shamir, and S. Avidan.
Multi-operator media retargeting. ACM Transactions
on Graphics, SIGGRAPH 2009, 28(3):1–11, 2009.

[17] Y.-S. Wang, J.-H. Hsiao, O. Sorkine, and T.-Y. Lee.
Scalable and coherent video resizing with per-frame
optimization. ACM Transactions on Graphics,
SIGGRAPH 2011, 30(4), 2011.

[18] Y.-S. Wang, H.-C. Lin, O. Sorkine, and T.-Y. Lee.
Motion-based video retargeting with optimized
crop-and-warp. ACM Transactions on Graphics,
SIGGRAPH 2010, 29(4):article no. 90, 2010.

[19] T. Xu, T. Pototschnig, K. Kuhnlenz, and M. Buss. A
high-speed multi-gpu implementation of bottom-up
attention using cuda. In IEEE International
Conference on Robotics and Automation, 2009. ICRA
’09., pages 41–47, 2009.

147

