

Improving Data-Driven Design and
Exploration of Digital Musical
Instruments

Abstract
We present Gesture Mapper, an application for digital
musical instrument designers to rapidly prototype
mappings from performer gestures to sound synthesis
parameters. Prior work [2] has shown that using
interactive supervised learning to generate mappings
from user-generated examples can be more efficient
and effective than users writing mapping functions in
code. In this work, we explore new ways to improve on
data-driven design of interactive systems, specifically
by proposing new mechanisms for rapid exploration and
comparison of multiple alternative mappings. We
present a conceptual structure for interactive
mappings, a basic framework for generating mappings
from more diverse types of user-specified constraints
than are supported by supervised learning, and the new
Gesture Mapper user interface for mapping exploration
and comparison.

Author Keywords
User interfaces; Digital musical instruments; Design
tools.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces—Interaction Styles

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).
Copyright is held by the author/owner(s).
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
ACM 978-1-4503-2474-8/14/04.
http://dx.doi.org/10.1145/2559206.2581327

Christopher Laguna
University of California, San Diego
La Jolla, California
United States of America
cplaguna@ucsd.edu

Rebecca Fiebrink
Goldsmiths University of London
New Cross, London
SE14 6NW
United Kingdom
r.fiebrink@gold.ac.uk

Introduction
Digital musical instrument (DMI) designers must decide
what it means to play an instrument: how will a
performer move, and what sounds will be produced in
response? Inherent in the design of a new instrument is
the challenge of defining an appropriate mapping from
a musician’s actions (often represented as features
extracted from sensors tracking physical gestures, e.g.,
USB game controllers or on-body sensors) to
parameters driving real-time sound synthesis (e.g.,
pitch, volume, timbre) [4]. Sometimes an instrument
builder has strong preconceived notions about how the
input gestures should be mapped to output parameters,
for example when the digital instrument will mimic the
behavior of an existing acoustic instrument. Often,
however, digital instrument builders strive to create
completely unique instruments, and they may not
initially have clear ideas about what input gestures to
use or how they should affect the instrument’s sound.
These creators need to not just implement a mapping,
but to also design the instrument, determining what
subset of the infinite number of possible interactions it
will support. Our goal in Gesture Mapper is to improve
the design process for this latter group. A longer-term
goal of this research is to develop data-driven design
tools that can be applied to designing other real-time
systems, such as gaming and accessible interfaces.

We begin this paper with an overview of the Wekinator,
a tool for creating DMI mappings using interactive
supervised learning. We motivate our current work by
identifying important design subtasks—deciding what to
build, and comparing alternative designs—that are not
well-supported by Wekinator. Then, we describe new
approaches to supporting these tasks while maintaining
the user’s ability to drive the design by providing

example data and high-level constraints, rather than by
programming.

Background and Motivation
The Wekinator [2] was designed to facilitate the
creation of DMIs and other real-time interactive
systems. It allows users to define mappings from an
arbitrary set of real-time input features (e.g.,
describing a musician’s gestures with a sensor
interface) to an arbitrary set of real-time output
parameters driving sound synthesis, animation, or
similar processes. (Inputs are sent to Wekinator from
an external feature extractor, and outputs are sent to
the sound synthesis engine or similar environment,
using the OpenSoundControl protocol.) Wekinator
enables users to create mappings using interactive
supervised learning: users create a labeled training set
by demonstrating example input gestures and labeling
them with the appropriate sound synthesis parameter
values. A supervised learning algorithm infers the
mapping from input features to output parameters
using the training data. The user can test the mapping
by moving and listening to the instrument’s sound in
real-time. The typical Wekinator workflow (Fig. 1)
involves an iterative process of creating training data,
evaluating the mapping produced by that data, and
refining the mapping by modifying the data.

Resnick et al. [5] have written about how technology
can support creative work in diverse domains, including
design and the arts. One of the guidelines for creativity
support tools emphasized by [5] is that tools should
support exploration of many alternative designs,
backtracking when design changes are unsuccessful,
and “sketching” new designs without specifying
unknown or irrelevant low-level details. Fiebrink et al.
[3] observed composers using Wekinator to build new

Figure 1: User workflow for applying
interactive machine learning to
building mapping functions in the
Wekinator [1]. After an initial
configuration step, users typically
focus on iterating through the steps
highlighted in yellow: adding or
removing labeled training examples,
re-training to build a revised mapping
function, and evaluating the revised
mapping by running it in real-time
while performing gestures and
listening to resulting instrument
sound.

musical instruments and found that, in line with the
proposals of [5], instrument designers value
exploration, rapid prototyping, and “sketching” from
incomplete specifications. Fiebrink et al. also showed
that interactive supervised learning allowed composers
to explore, prototype, and sketch more quickly and
effectively compared to building mappings by writing
code. Because changing the training data was all that
was needed to change a mapping, and changing the
data was relatively fast and easy, users could explore
many designs and experiment with diverse ideas.

Generating mappings from user-supplied examples
rather than from code also allows more effective
communication of embodied knowledge [2] and better
accessibility to non-programmers. However, we believe
there is room to improve on these methods as
implemented in prior work, based on the following two
observations:

(1) Instrument building has properties of a “wicked”
design problem [6], an ill-defined problem wherein a
problem “definition’’ is found only by arriving at a
solution. An instrument designer may not have a clear
plan for how the instrument should behave (or what
the mapping should look like), especially at early stages
of the design process. Wekinator-style supervised
learning imposes unnecessary constraints on designers
by forcing them to hypothesize appropriate output
labels for each example input in the training set.

(2) A designer may have many ideas about how input
might map to output, and about what input devices or
features to use in the first place. He or she may need to
develop several ideas in parallel and then explore them
side-by-side in order to decide how to proceed. In fact,
recent research has pointed to the positive effects of

parallel exploration on design quality [1]. In contrast,
interactive supervised learning as supported in
Wekinator encourages a linear design process, in which
one single idea is iteratively refined through successive
modifications to a dataset. New mechanisms should
encourage experimentation with radically different
mappings and feature sets, and support comparing
alternative mappings in quick succession.

System Overview
Our system implements new approaches for generating
mappings without requiring users to fully specify
instrument structure or to generate labeled data, and
new user interfaces to encourage side-by-side creation,
modification, and evaluation of alternative mappings.

Operational Definition of a Mapping
Our creation of new methods and interfaces has
required a more formalized definition of what a
mapping entails. We define a mapping as a set of
functions, one per output parameter. Each function
computes its output using some subset of available
inputs. Each function has one of several possible types
(e.g., a regression model, classifier, or threshold
detector), and the set of feasible types is determined
by properties of the input and output (e.g., whether the
output is continuous or discrete). A specific function of
a given type can be instantiated by choosing a precise
parameterization (e.g., specifying the regression
coefficients or threshold value). The instantiating
parameters can be set manually, inferred from an
example dataset, or randomly generated.

The design of a mapping function for each output
synthesis parameter can therefore be viewed as a
sequence of decisions: the choice of which inputs are
used in computing the output; the choice of function

type; and the choice of parameters to instantiate a
specific function of that type. Our basic approach is to
allow users to explicitly specify any of these choices,
but to also provide automated procedures for making
these choices in a reasonable manner.

Generating Random Mappings from Incomplete
Specifications
Our system can instantiate a fully-functional mapping
given only the number, types (continuous, discrete, or
binary), and value ranges of the input features and
output parameters. The user may optionally specify
which of the input features will be used to compute
each output, or he may leave this to be randomly
chosen by the system. The user can also choose
whether to provide labeled, unlabeled, or no training
examples to constrain or guide the instantiation of each
function comprising the mapping. If labeled data is
supplied, the function is learned from the data just as
in Wekinator. For unlabeled data, the instantiation of
the function will be guided by the data (e.g. a k-class
classifier can be created by randomly assigning class
labels to clusters learned using k-means). If no data is
supplied, a function is instantiated based on the input
and output types and ranges.

If the user has not chosen a function type for a
parameter, the system currently chooses one at
random from the set of all feasible types (e.g., a
classification function may be chosen for binary or
discrete—but not continuous—outputs). Future work
will explore smarter methods for choosing functions.

By giving users the option to automate the choice of
functions and the selection of inputs to use in
computing each function, we allow users to create a
new mapping without specifying any information about

how the inputs and outputs should be related. Fiebrink
et al. [3] found that composers often enjoyed being
surprised by the mapping functions produced by
Wekinator and “discovering” new instruments through
their use of the system. Our new approach makes it
even easier to discover new mapping ideas: if a user
chooses to generate mappings using only functions
without training examples, he or she can create a
working instrument with the click of a button. Since the
automated configurations are pseudo-random, the user
can generate different mappings simply with successive
clicks of the same button. Thus, users can create and
play with many mappings quickly when they do not
have a good idea of how instruments should behave.

GUI Support for Mapping Exploration and Comparison
We now describe each section of our new GUI to
support instrument creation and comparison (Figure 2):

1. The Workspace: The interface is a workspace that
contains multiple instruments. At any time, users can
switch between instruments via a combo box (top left)
encouraging them to explore side-by-side creations of
instruments, described later.

2. Stash: The “stash” is a global space where functions
and datasets can be saved and copied into other
instruments. Knowing that they can save valuable parts
of an instrument, users will be able to go on to (1)
modify that instrument without worrying how the
valuable parts were affected, and (2) create
“composite” instruments, where some parts of the
instrument came from other instruments.

3. History Tree: The history tree will save all previous
revisions of an instrument, each at a different node in
the tree. When the user makes any changes to an
instrument, a new node in the tree appears. The user

can click on the tree to revert to any node. This allows
users to explore new ideas without worrying about
losing their current progress. Also, if users have many
paths they want to explore from the same node, they
can simply explore one path, travel back to that node,
and then explore the new path. The result will be two
leaf nodes that the user will be able to compare side by
side in the Compare Instruments interface.

4. Compare Instruments: This interface (implemented
but not shown) allows users to quickly compare
multiple instruments by playing them in quick
succession. The interface also allows users to play
instruments simultaneously. This enables users to

design for ensembles and encourages “composite”
instruments, where the true instrument is made up of
many “instruments” within the system.

Training Data Manipulation
Each function is assigned its own training data set, so
users can remove an output or edit a function’s dataset
without affecting the functions that drive other outputs.
Users can also add inputs and outputs without affecting
existing functions. Future work will develop pre- and
post-processing mechanisms to maintain data sets past
changes to input and output data types, enabling users
to change data types without the overhead of creating
a new training data set.

Figure 2: Our GUI workspace, as seen when generating a new instrument.

Current Progress
Our system can currently generate mappings and
automatically choose functions and their inputs.
Functions requiring no examples and labeled examples
exist in the system, but functions requiring unlabeled
examples do not yet exist in the system. Users can
create labeled training sets, but cannot yet create
unlabeled training sets. Mappings can be run in real-
time, and multiple mappings can be run
simultaneously. Functions can be manually edited.
Mappings can be saved beyond the current session. The
stash and history tree are not yet implemented.

Conclusion
We have presented a new set of methods to support
digital musical instrument builders creating mappings
from musicians’ gestures to sound. Our methods
explicitly accommodate designers’ needs to quickly
discover and evaluate alternative designs, by
supporting creation of fully-functional mappings from
incomplete user specifications, and by using stochastic
algorithms to instantaneously create multiple candidate
mappings to satisfy any user-specified constraints.
Compared to past work in [2], we give users more
options for communicating constraints and goals to the
mapping system, including the creation of mappings
from labeled or unlabeled gesture examples, as well as
randomly-generated mappings from no examples at all.
We thus aim to support rapid exploration even at early
stages of the design process when the design goals
have not yet solidified.

Our next steps include the implementation of the
history tree and stash elements of the interface, and
exploration of the utility of the system in studies with
instrument builders. The most significant intended
contributions of our ongoing work include a usable tool

for instrument designers, as well as data-driven
algorithms and interfaces that can be applied or
adapted to improve the design process for other real-
time interactive systems in music, dance, gaming,
physiotherapy, and other domains.

Acknowledgements
The work of Chris Laguna was supported in part by the
Distributed Research Experiences for Undergraduates
(DREU) program, a joint project of the CRA Committee
on the Status of Women in Computing Research and
the Coalition to Diversify Computing, which is funded in
part by the NSF Broadening Participation in Computing
program (NSF CNS-0540631).

References
[1] Dow, S. P. et al. “Parallel prototyping leads to
better design results, more divergence, and increased
self-efficacy.” ACM TOCHI 17, 4, Article 18, 2010.

[2] Fiebrink, R., D. Trueman, and P.R. Cook. “A meta-
instrument for interactive, on-the-fly machine
learning.” Proc. New Interfaces for Musical Expression,
2009.

[3] Fiebrink, R., et al. “Toward understanding human-
computer interactions in composing the instrument.”
Proc. International Computer Music Conference, 2010.

[4] Hunt, A., and M. M. Wanderley. “Mapping
performer parameters to synthesis engines.” Organised
Sound 7(2):97–108, 2002.

[5] Resnick, M., et al. “Design principles for tools to
support creative thinking.” Report of Workshop on
Creativity Support Tools, 2005.

[6] Rittel, H. “On the planning crisis: Systems analysis
of the ‘first and second generations.’”
Bedriftsøkonomen, no. 8: 390–96.

