
 

Improving Data-Driven Design and 
Exploration of Digital Musical 
Instruments

 
 

Abstract 
We present Gesture Mapper, an application for digital 
musical instrument designers to rapidly prototype 
mappings from performer gestures to sound synthesis 
parameters. Prior work [2] has shown that using 
interactive supervised learning to generate mappings 
from user-generated examples can be more efficient 
and effective than users writing mapping functions in 
code. In this work, we explore new ways to improve on 
data-driven design of interactive systems, specifically 
by proposing new mechanisms for rapid exploration and 
comparison of multiple alternative mappings. We 
present a conceptual structure for interactive 
mappings, a basic framework for generating mappings 
from more diverse types of user-specified constraints 
than are supported by supervised learning, and the new 
Gesture Mapper user interface for mapping exploration 
and comparison.  
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Introduction 
Digital musical instrument (DMI) designers must decide 
what it means to play an instrument: how will a 
performer move, and what sounds will be produced in 
response? Inherent in the design of a new instrument is 
the challenge of defining an appropriate mapping from 
a musician’s actions (often represented as features 
extracted from sensors tracking physical gestures, e.g., 
USB game controllers or on-body sensors) to 
parameters driving real-time sound synthesis (e.g., 
pitch, volume, timbre) [4]. Sometimes an instrument 
builder has strong preconceived notions about how the 
input gestures should be mapped to output parameters, 
for example when the digital instrument will mimic the 
behavior of an existing acoustic instrument. Often, 
however, digital instrument builders strive to create 
completely unique instruments, and they may not 
initially have clear ideas about what input gestures to 
use or how they should affect the instrument’s sound. 
These creators need to not just implement a mapping, 
but to also design the instrument, determining what 
subset of the infinite number of possible interactions it 
will support. Our goal in Gesture Mapper is to improve 
the design process for this latter group. A longer-term 
goal of this research is to develop data-driven design 
tools that can be applied to designing other real-time 
systems, such as gaming and accessible interfaces. 

We begin this paper with an overview of the Wekinator, 
a tool for creating DMI mappings using interactive 
supervised learning. We motivate our current work by 
identifying important design subtasks—deciding what to 
build, and comparing alternative designs—that are not 
well-supported by Wekinator. Then, we describe new 
approaches to supporting these tasks while maintaining 
the user’s ability to drive the design by providing 

example data and high-level constraints, rather than by 
programming. 

Background and Motivation 
The Wekinator [2] was designed to facilitate the 
creation of DMIs and other real-time interactive 
systems. It allows users to define mappings from an 
arbitrary set of real-time input features (e.g., 
describing a musician’s gestures with a sensor 
interface) to an arbitrary set of real-time output 
parameters driving sound synthesis, animation, or 
similar processes. (Inputs are sent to Wekinator from 
an external feature extractor, and outputs are sent to 
the sound synthesis engine or similar environment, 
using the OpenSoundControl protocol.) Wekinator 
enables users to create mappings using interactive 
supervised learning: users create a labeled training set 
by demonstrating example input gestures and labeling 
them with the appropriate sound synthesis parameter 
values. A supervised learning algorithm infers the 
mapping from input features to output parameters 
using the training data. The user can test the mapping 
by moving and listening to the instrument’s sound in 
real-time. The typical Wekinator workflow (Fig. 1) 
involves an iterative process of creating training data, 
evaluating the mapping produced by that data, and 
refining the mapping by modifying the data.  

Resnick et al. [5] have written about how technology 
can support creative work in diverse domains, including 
design and the arts. One of the guidelines for creativity 
support tools emphasized by [5] is that tools should 
support exploration of many alternative designs, 
backtracking when design changes are unsuccessful, 
and “sketching” new designs without specifying 
unknown or irrelevant low-level details. Fiebrink et al. 
[3] observed composers using Wekinator to build new 

 

 

Figure 1: User workflow for applying 
interactive machine learning to 
building mapping functions in the 
Wekinator [1]. After an initial 
configuration step, users typically 
focus on iterating through the steps 
highlighted in yellow: adding or 
removing labeled training examples, 
re-training to build a revised mapping 
function, and evaluating the revised 
mapping by running it in real-time 
while performing gestures and 
listening to resulting instrument 
sound. 

 



  

musical instruments and found that, in line with the 
proposals of [5], instrument designers value 
exploration, rapid prototyping, and “sketching” from 
incomplete specifications. Fiebrink et al. also showed 
that interactive supervised learning allowed composers 
to explore, prototype, and sketch more quickly and 
effectively compared to building mappings by writing 
code. Because changing the training data was all that 
was needed to change a mapping, and changing the 
data was relatively fast and easy, users could explore 
many designs and experiment with diverse ideas.  

Generating mappings from user-supplied examples 
rather than from code also allows more effective 
communication of embodied knowledge [2] and better 
accessibility to non-programmers. However, we believe 
there is room to improve on these methods as 
implemented in prior work, based on the following two 
observations: 

(1) Instrument building has properties of a “wicked” 
design problem [6], an ill-defined problem wherein a 
problem “definition’’ is found only by arriving at a 
solution. An instrument designer may not have a clear 
plan for how the instrument should behave (or what 
the mapping should look like), especially at early stages 
of the design process. Wekinator-style supervised 
learning imposes unnecessary constraints on designers 
by forcing them to hypothesize appropriate output 
labels for each example input in the training set. 

(2) A designer may have many ideas about how input 
might map to output, and about what input devices or 
features to use in the first place. He or she may need to 
develop several ideas in parallel and then explore them 
side-by-side in order to decide how to proceed. In fact, 
recent research has pointed to the positive effects of 

parallel exploration on design quality [1]. In contrast, 
interactive supervised learning as supported in 
Wekinator encourages a linear design process, in which 
one single idea is iteratively refined through successive 
modifications to a dataset. New mechanisms should 
encourage experimentation with radically different 
mappings and feature sets, and support comparing 
alternative mappings in quick succession. 

System Overview  
Our system implements new approaches for generating 
mappings without requiring users to fully specify 
instrument structure or to generate labeled data, and 
new user interfaces to encourage side-by-side creation, 
modification, and evaluation of alternative mappings.  

Operational Definition of a Mapping 
Our creation of new methods and interfaces has 
required a more formalized definition of what a 
mapping entails. We define a mapping as a set of 
functions, one per output parameter. Each function 
computes its output using some subset of available 
inputs. Each function has one of several possible types 
(e.g., a regression model, classifier, or threshold 
detector), and the set of feasible types is determined 
by properties of the input and output (e.g., whether the 
output is continuous or discrete). A specific function of 
a given type can be instantiated by choosing a precise 
parameterization (e.g., specifying the regression 
coefficients or threshold value). The instantiating 
parameters can be set manually, inferred from an 
example dataset, or randomly generated. 

The design of a mapping function for each output 
synthesis parameter can therefore be viewed as a 
sequence of decisions: the choice of which inputs are 
used in computing the output; the choice of function 



  

type; and the choice of parameters to instantiate a 
specific function of that type. Our basic approach is to 
allow users to explicitly specify any of these choices, 
but to also provide automated procedures for making 
these choices in a reasonable manner.  

Generating Random Mappings from Incomplete 
Specifications 
Our system can instantiate a fully-functional mapping 
given only the number, types (continuous, discrete, or 
binary), and value ranges of the input features and 
output parameters. The user may optionally specify 
which of the input features will be used to compute 
each output, or he may leave this to be randomly 
chosen by the system. The user can also choose 
whether to provide labeled, unlabeled, or no training 
examples to constrain or guide the instantiation of each 
function comprising the mapping. If labeled data is 
supplied, the function is learned from the data just as 
in Wekinator. For unlabeled data, the instantiation of 
the function will be guided by the data (e.g. a k-class 
classifier can be created by randomly assigning class 
labels to clusters learned using k-means). If no data is 
supplied, a function is instantiated based on the input 
and output types and ranges. 

If the user has not chosen a function type for a 
parameter, the system currently chooses one at 
random from the set of all feasible types (e.g., a 
classification function may be chosen for binary or 
discrete—but not continuous—outputs). Future work 
will explore smarter methods for choosing functions. 

By giving users the option to automate the choice of 
functions and the selection of inputs to use in 
computing each function, we allow users to create a 
new mapping without specifying any information about 

how the inputs and outputs should be related. Fiebrink 
et al. [3] found that composers often enjoyed being 
surprised by the mapping functions produced by 
Wekinator and “discovering” new instruments through 
their use of the system. Our new approach makes it 
even easier to discover new mapping ideas: if a user 
chooses to generate mappings using only functions 
without training examples, he or she can create a 
working instrument with the click of a button. Since the 
automated configurations are pseudo-random, the user 
can generate different mappings simply with successive 
clicks of the same button. Thus, users can create and 
play with many mappings quickly when they do not 
have a good idea of how instruments should behave. 

GUI Support for Mapping Exploration and Comparison 
We now describe each section of our new GUI to 
support instrument creation and comparison (Figure 2): 

1. The Workspace: The interface is a workspace that 
contains multiple instruments. At any time, users can 
switch between instruments via a combo box (top left) 
encouraging them to explore side-by-side creations of 
instruments, described later.  

2. Stash: The “stash” is a global space where functions 
and datasets can be saved and copied into other 
instruments. Knowing that they can save valuable parts 
of an instrument, users will be able to go on to (1) 
modify that instrument without worrying how the 
valuable parts were affected, and (2) create 
“composite” instruments, where some parts of the 
instrument came from other instruments. 

3. History Tree: The history tree will save all previous 
revisions of an instrument, each at a different node in 
the tree. When the user makes any changes to an 
instrument, a new node in the tree appears. The user 



  

can click on the tree to revert to any node. This allows 
users to explore new ideas without worrying about 
losing their current progress. Also, if users have many 
paths they want to explore from the same node, they 
can simply explore one path, travel back to that node, 
and then explore the new path. The result will be two 
leaf nodes that the user will be able to compare side by 
side in the Compare Instruments interface.  

4. Compare Instruments: This interface (implemented 
but not shown) allows users to quickly compare 
multiple instruments by playing them in quick 
succession. The interface also allows users to play 
instruments simultaneously. This enables users to 

design for ensembles and encourages “composite” 
instruments, where the true instrument is made up of 
many “instruments” within the system.  

Training Data Manipulation 
Each function is assigned its own training data set, so 
users can remove an output or edit a function’s dataset 
without affecting the functions that drive other outputs. 
Users can also add inputs and outputs without affecting 
existing functions. Future work will develop pre- and  
post-processing mechanisms to maintain data sets past 
changes to input and output data types, enabling users 
to change data types without the overhead of creating 
a new training data set.  

 
Figure 2: Our GUI workspace, as seen when generating a new instrument.  



  

Current Progress 
Our system can currently generate mappings and 
automatically choose functions and their inputs. 
Functions requiring no examples and labeled examples 
exist in the system, but functions requiring unlabeled 
examples do not yet exist in the system. Users can 
create labeled training sets, but cannot yet create 
unlabeled training sets. Mappings can be run in real-
time, and multiple mappings can be run 
simultaneously. Functions can be manually edited. 
Mappings can be saved beyond the current session. The 
stash and history tree are not yet implemented. 

Conclusion 
We have presented a new set of methods to support 
digital musical instrument builders creating mappings 
from musicians’ gestures to sound. Our methods 
explicitly accommodate designers’ needs to quickly 
discover and evaluate alternative designs, by 
supporting creation of fully-functional mappings from 
incomplete user specifications, and by using stochastic 
algorithms to instantaneously create multiple candidate 
mappings to satisfy any user-specified constraints. 
Compared to past work in [2], we give users more 
options for communicating constraints and goals to the 
mapping system, including the creation of mappings 
from labeled or unlabeled gesture examples, as well as 
randomly-generated mappings from no examples at all. 
We thus aim to support rapid exploration even at early 
stages of the design process when the design goals 
have not yet solidified. 

Our next steps include the implementation of the 
history tree and stash elements of the interface, and 
exploration of the utility of the system in studies with 
instrument builders. The most significant intended 
contributions of our ongoing work include a usable tool 

for instrument designers, as well as data-driven 
algorithms and interfaces that can be applied or 
adapted to improve the design process for other real-
time interactive systems in music, dance, gaming, 
physiotherapy, and other domains. 
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