
Jakob Nielsen

N O N C O M M A N D
U S E R

I N T E R F A C E S

ost
current Uls are fairly similar and

belong to one of two common types: either
the traditional alphanumeric full-screen
terminals with a keyboard and function

keys, or the more modern WIMP
workstations with windows,/cons, menus,

and a pointing device. In fact, most UI
standards released since 1983 have been

remarkably similar, and it is that category
of canonical windOw system that is

referred to as "current" throughout this
article. In contrast, the next generation of
UIs may move beyond the standard WIMP

paradigm to involve elements such as
virtual realities, head-mounted displays,

sound and speech, pen and gesture
recognition, animation and multimedia,
limited artificial intelligence, and highly
portable computers with cellular or other
wireless communication capabilities. It is

difficult to envision the use of this
hodgepodge of technologies in a single,

united UI design, and indeed, it may be one
of the defining characteristics of next-
generation UIs that they abandon the
principle of conforming to a canonical

interface style and instead become more
radically tailored to the requirements of

individual tasks.
In any case, all previous generations of UIS,
whether batch-, line-oriented, full-screen,

or WIMP, have all had one defining characteristic in common: They were all

I L L U S T R A T I O N : R I C O L I N S S T U D I O ¢OMMUNIC~TIONSOFTHIACM/ApriI1993/Vol.36, No.4 8~

http://crossmark.crossref.org/dialog/?doi=10.1145%2F255950.153582&domain=pdf&date_stamp=1993-04-01

G E

based on the concept of an explicit
dialogue between the user and the
computer during which the user com-
manded the computer to do something.
Indeed, the concept of commands has
been so ingrained in the design of all
previous interface generations that
many people may not have considered
that it is a design decision to include

c o m m a n d s at all. As this article will
show, next-generation UIs may involve
several changes that could lead to a
noncommand-based interaction para-
digm for future systems.

Tfais article first considers basic
ways of s t ructur ing the user's access
to computat ional functionality and
then defines and surveys 12 dimen-
sions along which next-generat ion
UIs may differ from previous gener-
ations of UIs. It then goes into more
detail r egard ing the concept of non-
command-based UIs, which seems to
be a unifying idea behind several
otherwise disparate developments in
next-generat ion UIs. Finally, the ar-
ticle considers how the transit ion to
next-generat ion interfaces and non-
command dialogues may impact es-
tablished usability engineer ing prin-
ciples.

Functlonalllty Structuring
Tradi t ional UIs were function-
oriented. The user accessed what-
ever the system could do by specify-
ing functions first and then their ar-
guments. For example, to delete the
file 'foo' in a l ine-oriented system, the
user would first issue the delete com-
mand in some way such as typing del,
rm, zap, or whatever. The user
would then fur ther specify that the
item to be deleted was called foo.
The typical syntax for function-
or iented interfaces was a v e r b - n o u n
syntax such as del foo.

In contrast, modern GUIs are ob-
ject-or iented. The user first accesses
the object of interest and then modi-
fies it by opera t ing on it. The re are
several reasons for going with an ob-
ject -or iented interface approach for
GUIs. One is the desire to continu-
ously depict the objects of interest to
the user to allow direct manipulat ion.
Icons are good at depict ing objects,
but often poor at depict ing actions,
leading objects to dominate the visual
interface. Fur thermore , the object-

or iented approach implies the use of
a noun-verb-syntax , where the file
foo is deleted by first selecting the
file foo and then issuing the delete
command (for example, by dragging
it into the trash can). With this syn-
tax, the computer has knowledge of
the ope rand at the time the user tries
to select the operator , and it can
therefore help the user select a func-
tion appropr ia te for that object by
only showing valid commands in
menus, tool panes, and so forth. This
eliminates an entire category of syn-
tax errors due to mismatches be-
tween opera to r and operand.

Unfortunately, the change from
funct ion-oriented interfaces to ob-
ject -or iented ones is quite difficult
for interface designers. For example,
in one recent study, we observed five
groups of developers with significant
experience in the design of char-
acter-based interfaces designing
their first GUI. Four o f the five
groups included funct ion-oriented
aspects in their design where object-
or iented solutions would have been
more appropr ia te , and the fifth
group only avoided a function-
or iented design due to advice from
an outside usability specialist. A
follow-up study of one of the teams
seven months later found it had de-
signed a good GUI for a major prod-
uct, but that 8 of the 10 most severe
usability problems in its proto type
design were due to a lack of object-
orientation. Object-oriented inter-
face design is sometimes described as
turn ing the interface inside-out
when compared to funct ion-oriented
design, and this change is difficult
for people who are used to the tradi-
tional way of s t ructur ing functional-
ity.

An example may clarify the dis-
tinction between function- and ob-
ject-or iented interfaces and show
why it is not enough to be graphical
in o rde r to be object-oriented. Con-
sider the task of selecting certain in-
format ion from a database, format-
ting the data, and pr int ing the
resulting report . A funct ion-oriented
interface that was designed by partic-
ipants in our study started by asking
the user to specify the query criteria
in a (graphical) dialog box.

Then, the user had to select for-

matt ing options from a (graphical)
pull-down menu, and finally, the
user could click on a (graphical) pr int
button. Only after the last step would
the user be shown by actual data
from the database. All these steps
were centered a round the operat ions
to be pe r fo rmed by the user and not
a round the actual data to be manipu-
lated by the user. An alternative, ob-
ject--oriented design would start by
showing the user a window with sam-
ple records f rom t h e d a t a b a s e . Ob-
serving this data would make it much
easier for the user to r emember the
nature of the database contents, and
would simplify the task of construct-
ing an appropr ia te query. As the
user modif ied the query, the system
would dynamically update the con-
tent of the data window to show sam-
ples of records satisfying the query.
Format t ing would be done by modi-
fying the window layout, thus pro-
viding immediate feedback on how
typical records would look in the re-
vised formatt ing. Issuing the pr int
command would still be the final
step, but the ou tput would not be a
surprise to the user, since it would
only reflect the data-centered modi-
fications for which incremental feed-
back had already been observed by
the user.

The next generat ion of UIs will
likely move somewhat away from the
s tandard object-oriented approach to
a user-or iented and task-oriented
approach. Instead of using ei ther a
v e r b - n o u n or a n o u n - v e r b syntax,
such interfaces will to some degree
be syntax free. Gesture-based inter-
faces such as pen comput ing simulate
digital paper , and one certainly does
not think of syntax when writing,
drawing, or edit ing on a paper note-
pad. For example, allowing users to
edit text by drawing p roof read ing
marks on the text itself eliminates the
need for a syntax that distinguishes
between separate indicators of what
function should be executed and
what object it should be appl ied to,
since both are specified by a single
p roof read ing mark (e.g., delet ing a
word by striking it out). The key no-
tion here is that the specification of
both action and object are unif ied
into a single input token ra ther than
requir ing the composit ion of a

84 April I993/Vol.36, No.4 /COMMUNICATIONSOlITHIIACM

~ E

stream of user input.

A fur ther functionality access
change is likely to occur on a macro
level in the move from application-
or iented to document-or iented sys-
tems. Tradi t ional opera t ing systems
have been based on the notion of
applications that were used by the
user one at a time. Even window sys-
tems and other at tempts at applica-
tion integration typically forced the
user to "be" in one application at a
time, even though other applications
were running in the background.
Also, any given document or data file
was only opera ted on by one applica-
tion at a time. Some systems allow the
construction of pipelines connecting
multiple applications, but even these
systems still basically have the appli-
cations act sequentially on the data.

The application model is con-
straining to users who have inte-
grated tasks that require multiple
applications to solve. Approaches to
alleviate this mismatch in the past
have included integrated software
and composite editors that could deal
with multiple data types in a single
document. Since no single p rogram
is likely to satisfy all computer users,
however, no matter how tightly inte-
grated it is, o ther approaches have
also been invented to break the ap-
plication barrier. Cut-and-paste
mechanisms have been available for
several years to allow the inclusion of
data from one application in a docu-
ment belonging to another applica-
tion. Recent systems even allow live
links back to the original application
so that changes in the original data
can be reflected in the copy in the
new document. However, these
mechanisms are still constrained by
the basic application model that re-
quires each document to belong to a
specific application at any given time.

An alternative model is emerging
in object-oriented opera t ing systems,
where the basic object of interest is
the user's document. Any given doc-
ument can contain subobjects of
many different types, and the system
will take care of activating the appro-
priate code to display, print, edit, o r
email these data types as required.
The main difference is that the user
no longer needs to think in terms of

runn ing applications, since the data
knows how to integrate the available
functionality in the system. In some
sense, such an object-oriented system
is the ult imate composite editor, but
the difference compared to tradi-
tional, tightly integrated mult imedia
editors is that the system is open and
allows plug-and-play addi t ion of new
or upg raded functionality as the user
desires without changing the rest of
the system.

Even the document-or iented sys-
tem may not have broken sufficiently
with the past to achieve a sufficient
match with the users' task require-
ments. It is possible that the very no-
tion of files and a file system is out-
dated and should be replaced with a
generalized notion of an information
space with interl inked information
objects in a hyper text manner . As
personal computers get gigabyte
harddisks, and addit ional terabytes
become available over the network,
users will need to access hundreds of
thousands or even millions of infor-
mation objects. To cope with these
masses of information, users will
need to think of them in more flexi-
ble ways than simply as "files," and
information retrieval facilities need
to be made available on several dif-
ferent levels of granulari ty to allow
users to find and manipulate associa-
tions between their data. In addi t ion
to hyper text and information re-
trieval, research approaching this
next-generat ion data parad igm in-
cludes loosely s tructured informa-
tion objects and personal informa-
tion management systems where
information is organized according
to the time it was accessed by the in-
dividual user. Also, several commer-
cial products are already available to
add full-text search capabilities to
existing file systems, but these utility
programs are typically not integrated
with the general file UI.

To conclude, several t rends seem
to indicate that the concept of files as
uniform objects without semantic
structure may not continue to be the
fundamenta l unit of information in
future computer systems. Instead,
UIs may be based on more flexible
data objects that can be accessed by
their content.

Interaction Characteristics for
Next-Generation Interfaces
Table 1 summarizes 12 dimensions
along which next-generat ion UIs
may be dif ferent from tradit ional
interfaces. A discussion of these di-
mensions follows. One should proba-
bly not expect all next-generat ion
UIs to differ from current ones on all
of these dimensions simultaneously,
but many systems will probably in-
clude changes on more than one
dimension. It seems that the design
t rends listed as being "next-genera-
tion" tend to suppor t one another
along several of the dimensions.

User FOCUS
Users have traditionally been re-
quired to pay close attention to the
control of their computer system, to
the extent that the use of a computer
often feels like exactly that: the use
of a computer , and not like working
directly on some task. Users have
been required to come up with the
appropr ia te commands and to put
together command specifications in
the appropr ia te syntax. These re-
quirements are typically completely
overwhelming for novice users, and
even exper ienced users often have
no real desire to excel in using a com-
puter as such but would like to be
able to concentrate on doing their
work.

Many next-generat ion UIs seem to
be based on some form of noncom-
mand interaction principles in o rde r
to allow users to focus on the task
ra ther than on opera t ing the com-
puter. Some systems may be as spe-
cialized as appliances and take on a
single role without any need for user
instruction except for the basic in-
struction implicit in deciding to use
the tool at a specific time.

For example, the Portholes system
for connecting work groups at re-
mote locations displays miniature
images of each participant 's office as
well as meet ing areas [5]. These im-
ages are ref reshed every few minutes
and thus allow people at each loca-
tion to get a general idea of which
colleagues are a round and what they
are doing, but without the privacy
intrusion that might follow from
broadcast ing live video. For the pur-
poses of cur rent discussion, an im-

¢OlUMUN|C:A'rIoNS OIRTHI AcM/April 1993/Vol.36, No.4 8 S

~ ~ O A

T a b l e 1. Compar i son b e t w e e n t h e c u r r e n t Ul g e n e r a t i o n o f c o m m a n d - b a s e d in ter faces and t h e po ten t i a l
nex t g e n e r a t i o n o f in te r faces across 12 d imens ions

, semanucs

Turn-ta~ing Yes; user and compute r wait for " No; user and c ompu te r both kee,p '
each o ther going

Many next-generation UIs seem to be based on some form of noncommand

interaction principles in order t o a l l o w u s e r s t o

f O C U S o n t h e t a s k r a t h e r t h a n o n o p e r a t i n g

t h e c o m p u t e r .

8 ~ April 1993/Vol.36, No.4 /CONIJluNIUTIO~OP'I'HIACN

por tant point about Portholes is that
the various participants do not need
to take any action to inform their
coworkers they are in their office or
that they are meeting with somebody
and should not be disturbed. This
information is communicated to the
system by virtue of the regular activi-
ties they would do anyway, thus al-
lowing them to focus on their real-
world task ra ther than on using a
computer . Experience with other
systems for computer -suppor ted
cooperative work has shown that
people are reluctant to expend effort
on enter ing information into a com-
puter for the sole purpose of helping
others, thus this type of interface
design to allow users to focus on their
work is probably the only one that
would work in the long term.

Com0uter 's Role
Many users would probably prefe r a
computer that did what they actually
wanted ra ther than what they said
they wanted, but tradit ional com-
puter systems explicitly follow a
command-or ien ted interaction style
where the computer does exactly as it
is told, even when the user's com-
mands may be different from the
user's intentions. One of the few ex-
ceptions from this rule was the Do
What I Mean (DWIM) feature of the
Interl isp p rogramming system. In
DWIM, the computer would reinter-
pret meaningless user input to make
it into legal commands. For example,
if the user issued a command refer-
r ing to a nonexistent file, DWIM
would not issue an e r ror message but
try a spelling correction on the file
name. I f a small change in the file
name made the command legal,
DWIM would assume that the user
had mistyped, and it would reissue
the command in a corrected form.
In control rooms or o ther systems
where the computer has ways of as-
sessing whether the user is about to
make a mistake, it can also be possi-
ble for the computer to in ter rupt
users and warn them against the
likely consequences of their actions.

Many of the examples discussed in
this article illustrate ways for the
computer to watch the user and in-
terpre t the user's actions (or even
inaction, which might indicate a need

for help under certain circum-
stances). Such inferences are becom-
ing more feasible as the computer
gains addit ional high-bandwidth
media through which to observe the
user, as discussed later. Not only may
the user be observed by eye-tracking
and special equipment such as
datasuits and active badges (dis-
cussed further) , but the computer
may also point video cameras at users
to get general information about
where they are.

Even though some forms of agents
can be implemented without the use
of artificial intelligence, the use of
agents in the interface will probably
be most successful if they can rely on
some form of limited artificial intelli-
gence in the system. This does not
mean, however, that it will be neces-
sary to wait until full artificial intelli-
gence is achieved and perfect natural
language unders tanding becomes
possible. Several of the interface
techniques discussed in this article
require the computer to make some
kind of semiintelligent inferences, to
build up knowledge-based models of
the users and their tasks, and to per-
form fairly complex pat tern recogni-
tion. It is not necessary, though, for
the computer to fully unders tand the
domain or to exhibit human-l ike
qualities in o ther ways. The interac-
tion is still that: an interaction be-
tween two participants; and the
human can supplement the comput-
er's limited intelligence.

Interface Control
It follows from the preceding discus-
sion of the changes in the user's and
the computer ' s role in the interac-
tion, that much of the control of the
UI will pass from the user to the
computer . Sometimes, the computer
may even choose to pe r fo rm actions
without explicit user control, and
often, it will customize the interac-
tion by changing appropr ia te param-
eters automatically.

When the computer is allowed to
change the UI, it can adapt the inter-
action to the user's specific usage cir-
cumstances and location. For exam-
ple, if the computer knows where the
user is, it can enlarge the text on the
display if the user is s tanding up, or it
could speak out impor tant alert mes-

sages by speech synthesis if the user
is in the other end of the office. Fur-
thermore, the computer could act on
impor tant email arriving while the
user is out of the office by one of sev-
eral means: activating the user's
beeper , r inging a phone in the office
where the user is, downloading the
message to the user's notebook com-
puter over the wireless network, or
sending a fax to the user's hotel. The
exact choice o f delivery mechanism
would be chosen by the computer
based on knowledge of the user's
whereabouts and preferences.

Compute r control of the interface
may be resented by some users if it is
not designed carefully. Many forms
of adaptive interfaces may be readily
accepted because they simply cause
the computer to behave the way one
would naturally expect it to if it were
par t of the tradit ional physical world.
For example, the organization of
kitchen tools in drawers and cabinets
adapts by itself to cause the most fre-
quently used tools to be on top and in
front, whereas less frequently used
tools are hidden. In a similar man-
ner, several current applications aug-
ment their "File" menu with lists of
the last five or so files used by the
user in that application, under the
assumption that recently used files
are likely to be among the more fre-
quently used ones in the future and
thus should be made more easily ac-
cessible. This assumption seems rea-
sonable, and a study of somewhat
similar adaptive menus found them
to be an improvement over static
menus [10]. Given the observation
that users tend to have several work-
ing sets of data and tools that are
used together, it might be better,
though, to have the computer build
cross-application object lists that can
be associated with the user's various
tasks. In other words, following the
ear l ier-ment ioned t rend away from
monolithic applications, adaptive
stand-alone applications may not be
sufficient to meet the user's needs,
and the computer may have to build
a system-wide model of the user's
work across application objects.

Syntax
Syntax considered as temporal rules
for the sequence of input actions may

COMMUHICATION$OPTHliACM/April 1993/Vo1.36, No.4 8 ~

disappear ,or at least be greatly di-
minished in importance in many
next-generat ion UIs. Syntax was nec-
essary in earl ier interfaces because
they relied on a limited user vocabu-
lary that had to be combined in o rde r
to specify complex actions. In con-
trast, gesture-based interfaces pro-
vide almost infinite numbers of
unique input tokens that can specify
a complete unit of intent, given that
the location of the gesture is also sig-
nificant for its interpretat ion. Fur-
thermore, increased use o f multiple
parallel input streams (discussed
later) and the elimination of explicit
turn- taking in the dialogue make it
possible and necessary for the com-
puter to be more flexible in handl ing
many al ternate sequences of input
actions, thus reducing the incidence
of syntax errors.

At the '.same time, gestural lan-
guages may int roduce a visual syntax
for more complex operat ions to sup-
p lement the role normally played by
temporal syntax. For example, the
parsing of gestures cor responding to
this expression

certainly needs a visual syntax to de-
termine that the scope of the square
root sign is that denoted by the bond-
ing box (which would of course not
normally be visible to the user and
not jus t the 'x' [11].

From a usability perspective, the
square root example may still feel
syntax-less, since the user only needs
to draw a single gesture to specify
both the opera t ion and its scope. A
key advantage here is the t ranspar-
ency of the under ly ing parsing due
to the user 's unders tanding of 2D
mathematical notation. In reality,
such unders tand ing is initially quite
difficuh to achieve, and the usability
of gesture-based formula edi tor
could be very low for users who had
not already internalized the relevant
composit ion rules. Actually, most of
the interaction techniques discussed
in this article are only "natural" for
users who are already used to the
basic elements of the techniques. The
advantage of next-generat ion inter-

faces is that they tend to build on
abilities that many humans have his-
torically acquired anyway (such as
looking at the world, handwrit ing,
and gesturing), so that the learning
time for these skills is not charged to
the computer .

Object VisibiliW
Direct manipulat ion is a fundamen-
tal component of most cur rent GUIs,
with the prototypical examples being
the way icons can be deleted by being
dragged to the trash can, and word
processor margins can be adjusted by
the dragging of markers in a ruler.
Direct manipulat ion almost by defi-
nition requires that the objects that
are to be directly manipula ted are
made explicit to the user and repre-
sented visibly on the screen.

It is not possible to directly manip-
ulate a file system with millions of
data objects that all have to be visible
at the same time. Instead, some ob-
jects will be h idden or manipula ted
implicitly th rough agents or as side-
effects of o ther user actions. Re-
duced object visibility may inversely
impact usability unless care is taken
to allow the users ways to f ind objects
and inspect their state as needed.

Interaction Stream
In general , cur rent UIs are based on
s ingle- threaded dialogs where users
opera te one input device at a time.
For example, the user can either be
using the mouse or the keyboard, but
not both at the same time. The main
current exception is the use of modi-
fier keys such as Shift-Click or Op-
tion-Click, but such modifiers are
essentially mouse actions that could
as well have been suppor ted by hav-
ing a few more buttons on the
mouse.

In contrast, future interfaces may
involve mul t i th readed dialogs, where
the user operates mult iple input de-
vices simultaneously to control dif-
ferent aspects of the interface. Bux-
ton and Myers [3] showed that users
were able to use both hands in paral-
lel to opera te a t radit ional command-
based interface controlled by a
graphics tablet for one hand and a
set o f sliders or a touch-sensitive sur-
face for the other hand. Users who
were allowed to use both hands in a

mul t i th readed dialog pe r fo rmed a
test task 15 to 25% faster than con-
trol groups who were constrained to
using one hand at a time.

The handl ing of mul t i th readed
input will obviously also become nec-
essary if the compute r is to be able to
observe the user by some combina-
tion of eye tracking, video cameras,
active badges, and so on. An example
of mul t i th readed input is the classic
Put -That -There system [2], where
the user could move objects by point-
ing at a wall-sized display and say,
'put that' (pointing to an object) 'there'
(pointing to a destination). The sys-
tem combines gesture and speech
recognit ion and requires both to run
in parallel, since the recognit ion o f
the screen coordinates being pointed
at has to take place at the exact t ime
the user says ' that ' or ' there' . Since
ei ther user action is meaningless
without the other, the compute r can-
not complete, say, the analysis of the
speech input before paying attention
to the gesture tracker.

Examples of mul t i th readed output
obviously include the many mult ime-
dia systems that have appea red re-
cently. Also, some Help systems use
the audio channel to comment on the
events on the graphical screen with-
out changing or interfer ing with the
display. One exper imenta l system
used a virtual reali ty-type interface
for 'parking ' addit ional windows and
icons in a simulated space a round the
user's pr imary workstation [7]. Ob-
jects in the simulated space were
made visible th rough a see- through
head-mounted display which was
combined with a head tracker to de-
termine what objects to display, de-
pend ing on where the user was look-
ing. The see- through display had
fairly poor resolution, so users would
move their pr imary working win-
dows back to the real compute r
screen and only use the simulated
space for current ly unused windows.

Mul t i threaded input and output
has several advantages from a user
interface perspective. First, as in the
Put -That -There example, the differ-
ent input media may supplement one
another . Sometimes, one medium
can be used for one stream of input,
such as commands, and another can
be used for another stream, such as

8 8 April 1993/VoL36, No.4 /¢OMMUNICAT|ONSOFTHliACM

data, with the resulting dialogue feel-
ing less constrained and moded than
when both streams have to be over-
loaded on a single device such as a
mouse. For example, a drawing pro-
gram could use pen input for the
graphics and voice recognit ion for
commands such as undo, rotate. A
second advantage of combining mul-
tiple input streams is that they will
allow more precise recognition due
to the redundancy exhibited by natu-
ral human behavior: I f the computer
has difficulty unders tanding what
the user is saying, then knowledge of
where the user is looking may help
decide between two possible inter-
pretations if one of them matches the
object the user is current ly looking
a t .

Bandwidth
The user's input to current systems
has ei ther very low bandwidth (a key-
board generat ing maybe 10 charac-
ters per second), or at most a fairly
low bandwidth when the user is mov-
ing the mouse. Even the output to
modern graphics displays effectively
has a fairly low bandwidth, since
most of the pixels on the screen re-
main the same for several seconds at
a t ime as long as the interface is
based on static images.

In contrast, the various next-
generat ion UIs described in this arti-
cle demand significantly increased
bandwidth between the computer
and the user. Tracking the motion of
a dancer 's body in three dimensions
in o rde r to generate appropr ia te
music requires several orders of
magni tude more communicat ion and
recognit ion capacity than the track-
ing of a mouse in two dimensions.
Likewise, the generat ion o f stereo-
scopic animated graphics with sound
effects for a virtual reality requires
much higher bandwidth than the dis-
playing of a dialog box. Studies of
virtual reality systems have shown
that users notice time lags of as little
as 200 milliseconds between their
motions and updates of the head-
mounted display [19].

Tracking FeedbaCk
Providing users with feedback dur-
ing the dialogue is one of the most
basic usability principles, and contin-

uous feedback offers users the possi-
bility of adjust ing their actions before
they have commit ted to an er roneous
result. Tradit ional , direct manipula-
tion GUIs are often good at provid-
ing continuous feedback based on
the lexical level o f the dialogue. For
example, as the user moves a file icon
over an application icon, the com-
puter will highlight the application
icon if the application knows how to
open a file of the type designated by
the file icon. This kind of feedback
only relies on lexical knowledge of
the identity of the basic interaction
tokens (here, the types o f the icons),
but not on deeper knowledge of the
user's intentions or the semantics of
the interaction objects. I t is therefore
possible to provide the highlighting
feedback by a low-level process that
tracks the mouse motions and tests
the types of the icons touched by the
pointer.

Tracking feedback may be much
more difficult to achieve in some
next-generat ion interfaces. For ex-
ample, a music accompaniment sys-
tem cannot always generate the same
sound as a result of a given note
played by the user. The appropr ia te
feedback depends on the type of
music being played and the context
of the user's o ther input. Also, sys-
tems relying on the recognit ion of
f ree-form user input, such as a natu-
ral language speech recognizer,
probably need to provide continuous
feedback on the way the user's input
is being in terpreted, so that the user
can rephrase the input if necessary.
One fairly unobtrusive way of doing
so in an agent-based system is to have
an an thropomorphic visualization of
the agent 's unders tanding in the
form of nodding when it under-
stands and frowning when it does
not.

Gesture-based interfaces present
special t racking problems in that
appropr ia te user feedback often can-
not be given until after the gestures
have been recognized, meaning that
the feedback will appear too late to
help the user in complet ing the
action. One suggestion for alleviating
this problem is to design hybrid ges-
t u r e - d i r e c t manipulat ion interaction
techniques [21] where tracking feed-
back appears halfway through a ges-

ture (which may even be recognized
early th rough "eager" recognition).
Alternatively, one might design in-
terfaces where progressively im-
proved tracking feedback appears
th roughout the user's action, as more
of it is recognized.

Turn-Taking
Tradi t ional UIs have been based on
the concept of a dialogue where the
computer and the user took turns in
present ing statements to the other
dialogue partner . While the com-
puter was waiting for the user's
input, it would sit idle, and the user
was also prevented from initiating
new actions dur ing any response
time delays, with the possible excep-
tion of typeahead, which was not
processed anyway until the user's
p rope r ' turn' . A typical example of
turn- taking is the way database
searches and information retrieval
have al ternated between the specifi-
cation of user queries and the display
of the re tu rned set of information,
leading to fairly slow progress to-
ward iteratively focusing on the de-
sired information. Dynamic queries
where the system works in parallel
with the user without waiting for the
user to finish specifying a query were
52% faster than a tradit ional data-
base on one test [27] and were much
p re fe r red by users.

The granulari ty of the turn-taking
in dialogues has been getting steadily
smaller, from hours or days in the
batch-processing era to seconds or
minutes in the full screen form fill-in
days, to subsecond interaction units
in modern GUIs. Except for video
games, the principle remains,
though, thatfirst the user commands,
and then the computer replies. Many
GUIs are implemented as event-
based programs, and some of them
take advantage of this software struc-
ture to allow the user to continue to
interact with the p rogram while ear-
lier, t ime-consuming commands are
still in the process of being carried
out.

Many next-generat ion interfaces
will abandon turn- taking because
they will have no well-defined transi-
tion points where the user would
stop and wait for a response. This is
typically true for n o n c o m m a n d -

COMMUNICA'IrlONS Olin THe A~M/Apri11993/Vol.36, No.4 8 9

based systems as discussed later. For
example, the VIDEOPLACE system
[13] projects a silhouette of the user
onto a large screen, where it is
merged with images of a simulated
world. The: effect is that of s tepping
into the images and is similar to vir-
tual realities, but in 2D ra ther than
3D. Using VIDEOPLACE involves
playing with simulated critters crawl-
ing over you or with the silhouettes
of o ther u,;ers, as well as picking up
and stretching various objects. All of
these activities are continuous, and
users jus t keep playing without any
specific system response, except of
course that the system continuously
keeps up with their activities and
generates new critters and objects
with which they may play.

Some next-generat ion interfaces
will not only allow the user to provide
simultaneous input across multiple
channels, but will also keep provid-
ing new output th roughout the user's
input actions. In systems that are in
some way coupled to the physical
world, the need for continuous sys-
tem output is obvious in that the
world does. not wait for the user be-
fore it changes its state. Thus systems
for, say, air traffic control or the
moni tor ing of a te lephone network
will have to update their displays to
reflect changes in the sur rounding
reality. Similarly, systems for giving
directions 1:o a driver (discussed later)
will keep moni tor ing the progress of
the car on the route and will have to
in te r rupt the dr iver when an impor-
tant turn is reached even if the dr iver
is in the middle of issuing a com-
mand to the system.

Interface LOCUS
Users of tradit ional computers have
been chained to their screens to the
extent that many nontechnical users
talk about the screen as if it w e r e the
computer . Binding the interface to
the screen of a workstation or a ter-
minal has severe limitations for the
use of the computer , however. The re
are obviously many human tasks that
are not done while sitting at a desk
and that can only be suppor ted by
computers with less desk-bound in-
terfaces. Activities such as those of
travelling salespeople may be helped
by the current t rend toward pen-

based, highly portable computers .
Other human activities involve the
collaboration o f many people sitting
in meetings or walking about a plant,
construction area, or other nonoffice
environment; and these activities
may be helped by a t rend toward
making computat ional power avail-
able as part of the environment ,
ra ther than limiting it to the flat
screen. Wireless networks will allow
users to carry smaller computers with
them without losing touch with their
main computer , and the distr ibution
of data and functionality among dif-
ferent computers may become trans-
paren t to users who will feel all com-
putat ional devices are access points
to "their" computer , no mat ter where
it is physically located, and no matter
whether the data being accessed is in
fact on their personal computer or
on a remote host.

Plain usability considerations also
suppor t some moves o f the interface
into the environment . For example,
virtual reality interfaces may be more
convenient to use when they are pro-
jected onto the walls of a media room
instead of requir ing the user to wear
a special head-mounted display. Sim-
ilarly, eye tracking, voice input, and
some gesture-recognit ion interfaces
are more pleasant to use if they allow
the user to move about ra ther than
sit in a fixed position all day.

Initial moves away from the flat
screen include the use of nontradi-
tional i n p u t - o u t p u t devices that
have the feel of physical objects in
their own right and not jus t as ap-
pendices to a computer . A pr ime
example was the Noobie 'playstation'
[6] which had the shape of a large
fantasy animal. The user (typically a
child) would interact with Noobie by
sitting in its lap, squeezing its tail, or
moving its arms. Noobie's ou tput was
a tradit ional computer screen that
would display various o ther fantasy
animals in accordance with the user's
manipulat ion of Noobie's body.
Empirical studies of chi ldren using
Noobie showed they did not wonder
where the keyboard or mouse were,
but readily accepted that a furry
creature could be an interactive de-
vice.

Outpu t devices may also become
embedded in the environment and

interact with characteristics of that
environment. For example, active
employee badges that constantly
t ransmit the identity and location of
every individual in a bui lding have
been used to suppor t a personalized
corporate bulletin board displaying
information of interest to those em-
ployees who happen to be passing by
it [26]. Note how the user 's only
' command ' to the system is his or her
physical presence.

Real-world objects serve as the
total UI to the exper imenta l Digital-
Desk system [18], where the user's
regular desk is observed by the com-
puter th rough a camera mounted in
the ceiling. When the user gestures
to characters on a piece of paper in a
special way, the computer per forms
optical character recognit ion on the
camera image of the paper and acts
on the information. Ou tpu t can be
displayed on the same paper from a
projector moun ted next to the cam-
era. For example, the user could ges-
ture at a column of numbers in an
expense repor t to have the system
calculate the sum and project the re-
sult at the bot tom of the column. As
another example, a user reading a
foreign language text could point to
a word and get the dict ionary defini-
tion displayed, thus making any
pr in ted book into a kind of hyper-
text, as long as it was in view of the
camera and projector o f the system.

Other examples o f integrat ing the
su r rounding envi ronment with the
UI include mobile systems such as
computer -equipped shopping carts
that display appropr ia te advertise-
ments depend ing on where the user
goes in the supermarke t (and thus
which product groups the user is in-
terested in). In fact, the p rope r term
for the human in this h u m a n -
compute r interface may be ' shopper '
and not 'user' , i l lustrating how the
compute r blends in with the environ-
ment and allows the human to "use"
it while remaining focused on other
tasks. Though such systems are cur-
rently being deployed in supermar-
kets solely for advert ising reasons,
one could easily imagine them inte-
grated with the user's home com-
puter, f rom which the shopping cart
could download the user's shopping
list for the day and steer the user

90 April 1992;/Vol.36, No.4 / ¢ O M M U N I C A T I O N S O F T H E A C M

Eye tracking voice input, and some gesture-recognition interfaces are more
pleasant to use they a l l o w t h e u s e r t o m o v e a b o u t

r a t h e r t h a n s i t i n a f i x e d P O S i t i o n a l l d a y .

toward the location of the desired
items, possibly using information re-
trieval techniques to match the user's
vocabulary to database records de-
scribing the goods in the store.

The exper imental Back Seat
Driver system [24] uses speech out-
put to provide directions to a driver
of a car navigating city streets. The
system can also deliver voice mail and
weather reports , but its main respon-
sibility is to get the driver to the desti-
nation by giving instructions jus t as
they are needed. Instead of tradi-
tional written directions such as ' turn
r ight at the fifth traffic light after the
square', the Back Seat Driver can
give instructions such as ' turn right at
the next traffic sign', and even 'you
jus t missed your turn ' (after which it
can plan an al ternate route). The
prototype location system deter-
mines the car's current location by
dead reckoning from a known start-
ing point, but one could also imagine
using navigational satellites or o ther
location systems. For the purposes of
the current analysis, impor tant attri-
butes of the Back Seat Driver are that
the user's ' input ' to the system simply
consists of driving a car, that the sys-
tem is located where the user needs
it, ra ther than in a special box, and
that its output is de te rmined relative
to the user's current location.

User Programming
End-user p rogramming of current
UIs mostly involves a profusion of
very awkward macro languages that
in many cases do not seem to have
benefi ted from advances in pro-
g ramming language design in the
last 30 years. In fact, end-user pro-
g ramming has declined in usability
with the introduct ion of GUIs which
increased the gap between the nor-
mal representat ion of the interface
and the textual encoding needed for
current scripting languages. Also, as
the increased general usability of
computers allows users to learn (and

thus use) a larger number of differ-
ent software packages, the inconsis-
tency in having separate scripting
languages for each application has
become more of a problem. The so-
lution to the inconsistency problem is
obviously to designate scripting as a
system-level service that can apply to
all applications. System-wide user
scripting may be easier to achieve in
coming object-oriented operat ing
systems, but some advances are al-
ready being made in building appli-
cation p rog ra mme r interfaces that
can react appropr ia te ly to events
generated by other applications, in-
cluding scripting facilities.

In spite of the poor quality of
many current macro and script lan-
guages, they are widely used for tasks
ranging from the building of custom
spreadsheet applications to the cus-
tomization of individual users' envi-
ronments , indicating the need for
end-user programming. Approaches
to making end-user p rogramming
easier include the introduction of
object-oriented ideas to allow inheri-
tance and specialization so that users
can build customized environments
through gradual changes and copy-
ing of o ther users' programs that are
made explicit on the screen as but-
tons. Also, it is likely that next-gener-
ation languages for end users will be
graphical or at least include graphi-
cal elements to minimize the mis-
match between programs and expe-
r ienced interactions. For example,
B I T P I C T [8] is a rule-based graphi-
cal p rogramming language as shown
in Figure 1, that allows users to re-
quest changes in a graphical environ-
ment by specifying the way interface
elements looked before and after
the change. As another example,
editable graphical histories [14] allow
users to manipulate previous system
states th rough a comic-strip meta-
phor.

The re is a conceptual conflict be-
tween the desire for end-user pro-

g ramming and the t rend toward
noncommand interfaces as discussed
in this article. One development that
is likely to alleviate the user of much
of the burden of generat ing program
code is p rogramming by demonstra-
tion. The basic principle is that the
user enacts examples of the behav-
iors that need to be automated and
lets the computer write an appropr i -
ate p rogram to cause such activities
in the future.

In some programming-by-exam-
ple systems, users may need to go
into a special demonstra t ion mode
when they want to construct a new
program. Other systems allow users
to continue focusing on their work
and allocate the responsibility also
for the p rogramming aspect of the
interface to the computer , thus fol-
lowing two addit ional next-gener-
ation principles from Table 1. An
example is Eager [4] which automati-
cally constructs macros for repetitive
tasks based on observing the user,
identifying repeated actions, and
making inferences about how to au-
tomate such actions. For example, a
user might decide to copy the subject
fields from a set of email messages to
a single overview file. At first, the
user manually copies a field, moves
to the destination file, and pastes it,
but when the user repeats this exact
same sequence of actions with the
second subject line as the operand,
Eager pops up and informs the user
that it has detected a pattern. As the
user performs the third copy action,
Eager continuously marks the inter-
face elements that it predicts the user
will operate on next, and the user can
finally allow Eager to go ahead and
complete the task, confident that it
has induced the correct interaction
pattern. Eager thus provides the user
with information about what it will
do before it does it, and such "pro-
spective feedback" is likely to be a
necessary usability principle as long
as this type of system does not have

COIdMUHICATIOHSOFTHIACJl/ApFil 1993/Vo1.36, No.4 91

mmmmmmm
• •

mmm • •
• • • •
• • • •
• • • •

mmmmmmmmmmmmmmmmmmmmmm
• •
• •
• •
• •
• •
• •
• •
• •
• •
mmmmmmmmmmmmmmmmmmmmmm

mm mm
,mmm mmm

mmmmmmm
• •

mmm • •
• • • •
• • • •
• • • •

mmmmmmmmmmmmmmmmmmmmmm
• •
• •
• •
• •
• •
• •
• •
• •
• •
mmmnnmnmmmmmmmmmmmmmmm

mm mm
mmm mmm

mmmmmmm
g •

mnm • •
m • • •
• • • •
g • • •

mmmlmmmmmmmmmmmmmmmmmmm
• •
• •
• •
• •
• •
• •
• •
• •
• •
mmmlnmmmmmmmmmmmmmmmmmm

Imm mm
immm mum

mmm
• •
mnm
• mmmmmmm

• •
mmm • •
• • • •
• • • •
• • • •

mmmmmmmmmmmmmmmmmmmmmm
• •
• •
• •
• •
• •
• •
• •
• •
• •
mmmmmmmmmumnmnmmmmmmmm

mm mm
mmm mmm

F i g u r e 1. E x a m p l e
BITPICT p r o g r a m .

T h e s e p r o d u c t i o n
r u l e s I m p l e m e n t

a n a n i m a t i o n o f a
s t e a m t r a i n . T h e

T r a i n - M o v e r u l e
c a u s e s t h e t r a i n t o
m o v e l e f t , o n e p l x e l

a t a t i m e a s l o n g
a s t h e r e Is w h i t e

s p a c e t o t h e l e f t o f
t h e t r a i n . T I ra ln -Pu f f

c a u s e s s m o k e t o
a p p e a r f r o m t h e

s m o k e s t a c k w h e n
I t h a s b e e n c l e a r e d
o f p r e v i o u s s m o k e

(n o t e t h e m a n y
w h i t e p l x e l s a b o v e
t h e t r a i n) , a n d t h e

S m o k e - U p r u l e
c a u s e s t h e s m o k e

t o r i s e o n e p l x e l a t a
t i m e . T h i s p r o g r a m

w a s g e n e r a t e d
b y t h e a u t h o r

t h e f i r s t t i m e h e
u s e d BITPICT.

perfect inference capabilities.

Software Packaging
It is possible that future opera t ing
systems will become object-oriented
and will abandon the model of mon-
olithic applications as the way func-
tionality is packaged. Because I am
still using a system based on the tra-
ditional applications model, I cur-
rently have about six spelling check-
ers on my personal computer , since
each application has its own. This
profusion of spelling checkers leads
to problems with inconsistent inter-
faces and the resulting increase in
learning time and usage errors, and
it requires me to update six di f ferent
'personal ' dictionaries with the spe-
cialized terms and p rope r names
used in my writing. Also, my wealth
of spell checking functionality is re-
stricted to work within some applica-
tions and does not help me with oth-
ers, such as my email package.

An object-oriented software struc-
ture would allow me to add various

types of ' language servers' to my sys-
tem as needed, including a high-
powered spelling checker, a thesau-
rus, and a g rammar assistant. The
increasing need to design UIs for in-
ternational and muhil ingual use cer-
tainly implies major benefits f rom an
ability to exchange the language of
the ' language server' in a single loca-
tion in the system and have the new
language apply to all o ther system
features without the need to repro-
gram them.

Case Studies of Noncommand-
Based Interactions
This section presents several exam-
ples of next-generat ion interfaces
that can be characterized as noncom-
mand-based dialogues. This term
may be a somewhat negative way o f
characterizing a new form of interac-
tion, but the unifying concept does
seem to be exactly the abandonment
of the principle under ly ing all earl ier
interaction paradigms: that a dia-
logue has to be control led by specific

g ~ April 19931Vol.36, No.4 /CONINUNICATIONII OF T I l l A C N

and precise commands issued by the
user and processed and replied to by
the computer. These new interfaces
are often not even dialogues in the
traditional meaning of the word,
even though they obviously can be
analyzed as having some dialogue
content at some level, since they do
involve the exchange of information
between a user and a computer.

Virtual reality may be the ultimate
example of a noncommand-based
interface as it is based on immersing
the user in a simulated world in
which the user can move about in the
same way as in a physical world. For
example, a virtual reality hockey
game will allow users to play goalie
by stretching their arms to place their
hands in the way of the puck. Of
course, virtual reality systems may
still include some traditional com-
mands, for example the use of a spe-
cial gesture to materialize a menu of
additional games. Even though a
user interface may rely on noncom-
mand interactions for some tasks, it is
likely that there are many other tasks
that are more naturally accomplished
by explicit commands.

Certainly, noncommand-based
interactions can take place with more
limited hardware, even though the
high-bandwidth devices allow more
flexibility in matching interface ex-
pressiveness to the user's needs. For
example, the card table system [20]
allows two users to play cards on two
linked computer screens by dragging
cards with their mouse. Each screen
shows the cards in the local user's
hand face up and the cards in the
remote user's hand face down, and as
cards are dragged onto the table,
they are automatically flipped to be
visible to both players. Both users can
thus concentrate on the game and on
moving the cards as they would in
real life without having to issue spe-
cific commands to the computer.
Note that this example is different
from the canonical direct manipula-
tion example of deleting a file by
dragging its icon to the trash can,
which is still a command-based inter-
action. The user only operates on the
icon as a surrogate representation of
the true object of interest (the docu-
ment), and the user is thus in effect
issuing a command to the system,

since the user's actual intent is to
remove the document from the disk
and not to remove the icon from the
window.

Eye Tracking
Eye tracking has traditionally been
considered an esoteric and very ex-
pensive technique, but recent eye
trackers are becoming cheaper and
more practical, though there are still
unresolved problems. For example,
some eye trackers observe the user by
a video camera instead of requiring
the user to wear special glasses. Users
do not have full control over their
eye movements and the eyes "run all
the t ime"- -even when the user does
not intend to have the computer do
anything. Eye tracking is thus a po-
tential input device for noncom-
m a n d - b a s e d interfaces to the extent
that the computer can figure out
what the user means by looking at
something. Minimally, the computer
can assume that users tend to look
more at things in which they are in-
terested than at things in which they
are not interested, and this property
has been exploited by systems such as
The Little Prince discussed later.

Since it is impossible to distinguish
when users' looks are meaningful
from when they are just looking
around or are resting their gaze, one
cannot use an eye tracker as a direct
substitute for a traditional pointing
device such as a mouse. Instead, spe-
cial interaction techniques are
needed. For example, it is possible to
move an icon on the screen, selecting
it by looking at it, and then pressing a
selection button (to prevent acciden-
tal selection), and finally looking
where the icon should go [12].

Consider two different ways of
controlling a paddleball video game,
that is, a game with a sliding paddle
that has to be positioned under user
control so that a bouncing ball will
bounce back off the paddle rather
than fall through the bottom of the
screen. The standard control for
such a video game uses a direct ma-
nipulation interface in which the
user moves a joystick in the direction
he or she wants the paddle to go. The
paddle keeps moving until the user
returns the joystick to its neutral po-
sition. Alternatively, the paddle

could be controlled by an eye tracker,
positioning it at the x-coordinate of
the location of the user's current
gaze.

My experience with the eye
tracker version was that I could just
follow the ball on the screen, and get
the paddle right under it with no real
effort. This is a noncommand-based
interface because I was not con-
sciously controlling the paddle. I was
looking at the ball, and the paddle
automatically did what I wanted it to
do as a side effect. In contrast, direct
manipulat ion control involves some
kind of command to explicitly move
the paddle as such. The difference is
one of the level of the dialogue: In
eye-tracking paddleball the user
looks at the ball and the paddle keeps
up by itself, whereas the user has to
tell the computer to move the paddle
left and right in a direct manipula-
tion paddleball game. Therefore, the
user's focus of attention remains on a
higher and more task-oriented level
in the eye-tracking version of the
game. Of course, the game may not
be as much fun when one can 'cheat'
by just looking at the ball, so an ap-
propriate game design based on eye
tracking might involve quite differ-
ent types of games. This observation
is a reflection of the fact that the
user's real task in playing a game is to
have fun and not to score as many
points as possible.

Another example where the user's
task is more traditional is an experi-
mental naval display of ships on a
map developed at the Naval Re-
search Laboratory [12]. The screen
contains a window showing a map of
an ocean with icons for the ships of
interest. There is also a window with
more detailed information about the
ships, and whenever the user looks
from the map window to the infor-
mation window, the information
window is updated to contain infor-
mation about the last ship the user
had looked at on the map. This inter-
action technique is appropriate for
eye tracking because no harm is done
by updat ing the information window
as the user looks around on the map.
Therefore, it does not matter
whether a look at a ship is intentional
or not. The noncommand-based na-
ture of this interface comes from the

COMMUNICATION| OP THli ACM / Apri| 1993 / Vo1.36, No-4 g ~

usage situation: The user goes back
and forth between looking at the
overview map and the detailed infor-
mation, and always finds the relevant
information without ever having to
issue any explicit selection or re-
trieval commands.

My final example of a noncom-
mand-based eye-tracking system is
an interactive fiction system called
The Little Prince [25]. This system is
based on the pat terns of the user's
eye movements aggregated over time
instead of the individual movements.
This application is a children's story
based on the book The Little Prince.
The compute r screen shows a 3D
graphic model of the miniature
planet where the Prince lives, and
synthesized speech gives a continu-
ous narra t ion about the planet. As
long as the user 's pat tern of eye
movements indicates that the user is
glancing about the screen in general ,
the story will be about the planet as a
whole, but if the user starts to pay
special attention to certain features
on the planet, the story will go into
more detail about those features. For
example, if the user gazes back and
forth between several staircases, the
system will infer that the user is in-
terested in staircases as a g roup and
will talk about staircases. And if the
user mostly looks at a part icular stair-
case, the system will provide a story
about the one staircase.

The point about The Little Prince
from an interaction perspective is
that the user never explicitly in-
structs the computer about what to
say. In contrast to tradit ional hyper-
text systems, links to addit ional text
are activated implicitly based on the
computer ' s observations of the user
and its conclusions about the user's
probable interests.

Computer Music
Several systems have been built to
allow the computer to provide ac-
companiment to music played by the
user. The basic principle of music
accompaniment is that a small num-
ber of users (often only a single user)
play their instruments in the way
they normally would, and that the
computer synthesizes the instru-
ments that would normally be played
by the rest of the orchestra. The

computer provides appropr ia te ac-
companiment to the specific way the
users play their instruments, based
on its observations of the way the
users are playing. These observations
could in principle be made th rough a
microphone and acoustic analysis,
but are more commonly accom-
plished by special measurement de-
vices at tached to the user 's instru-
ment, since data from such
instruments are much easier to ana-
lyze for under ly ing musical intent
than are sound waves.

From a UI perspective, some in-
teresting attributes of music accom-
paniment are the use of untradi-
tional input devices (e.g., flutes,
pianos, violins) that are specialized
for the user 's tasks, the sound-based
nature of the output , and the non-
command-based way the user con-
trols the interaction.

In contrast, a computer ized music
synthesizer that follows the gestures
of a human conductor as a live sym-
phony orchestra would is not a t rue
noncommand system. Even though a
conductor 's commands are much
higher-level than tradit ional pro-
g ramming and command languages,
and even though gestures may be
more natural than text for express-
ing musical intentions (especially the
beat), the main point dist inguishing
the conductor interface from the ac-
companiment interfaces is that the
user's focus of attention is to control
the computer and instruct it to act in
a certain way.

The interactive per formance at
the CHI'92 c o m p u t e r - h u m a n inter-
face conference provided several
examples of dancers generat ing
computer music as a result of their
movements, which thus served as
' input devices' to the system. Leslie-
Ann Coles was observed by a video
camera doing gesture recognition,
Chris Van Raalte was wired with elec-
t rodes on his skin to sense muscle
contractions, and Derique McGee
wore a data-suit that could sense
when he s lapped his body. All three
dancers demonst ra ted not jus t untra-
ditional input devices, but also the
use of the entire stage as interactive
space, thus l iberating the computer
interface from being tied to the
workstation.

Agents
Interface agents are another a p -
proach to alleviating the user o f the
bu rden of having to explicitly com-
mand the computer . Agents are au-
tonomous processes in the computer
that act on behalf of the user in some
specified role. The eventual goal of
some researchers is to have highly
intell igent agents that know the
user 's schedule, can retr ieve exactly
the desired informat ion at any given
time, and in general combine the
functions of but ler and secretary. For
example, a very effective demo of the
conversational desktop system [23]
had the computer r emind the user o f
a scheduled flight (possible th rough
knowledge of the user's calendar),
that traffic to the a i rpor t current ly
was heavy (possible th rough a link to
the city's traffic computer) , and of-
fer ing to call a cab (possible th rough :~
speech synthesis or a direct compute r
link to the taxi company).

Agents can also be very simple.
For example, an agent might count
the number of times a user gives an
invalid command and then offer the
user an explanat ion when the count
reaches a certain number .

Even without the high level of arti-
ficial intelligence and the excessive
requirements for s tandardizat ion of
informat ion exchange needed to
suppor t some of the more fancy sce-
narios, agents can still help users with
marly tasks. For example, Object
Lens [15] allowed users to construct
agents to sort and filter their incom-
ing email according to various crite-
ria. A typical agent could search for
talk announcements and place them
in a special mail folder from which
they could be automatically deleted
after the announced date of the talk
unless the user had moved them to a
pe rmanen t archive first.

Agents allow the compute r to initi-
ate interactions with the user. Tradi-
tional help systems are all passive in
that they do not offer help unless the
user explicitly asks for it. This has the
obvious problem of being one more
thing to do (and possibly to do
wrong). Also, users do not always
know when they might benefit f rom
asking for help. In contrast, active
help systems use an agent to moni tor
the user 's interactions with the sys-

9 4 April 1993/%1.36, No.4 / C O N U U N I C A T I O M S O F THm mCm

tem. I f the agent senses that the user
is in trouble or is using the system in
an inappropr ia te manner , it can de-
cide on its own to initiate a help dia-
logue and offer help to the user.

Embedded Help
Even though active help may solve
some of the problems with tradi-
tional passive help, there is a major
risk that users will find the computer
intrusive and nagging if it interrupts
their work too frequently with ad-
vice. Also, active help is still at hear t a
separate help system and thus still
adds to the user's overhead in using
the computer . Alternatively, embed-
ded help is an approach where help
is integrated with the user's pr imary
task environment and made available
as needed without any explicit user
actions. An example of embedded

h e l p is the way building directories
are often found in e leva tors - -
sometimes even integrated with the
buttons or the floor indicator (the
elevator's UI).

Some computers already offer a
simple form of embedded help in the
form of context-sensitive help mes-
sages that appear whenever the user
touches specific parts of the inter-
face. Such context-sensitive help can
take the form of an extended cursor
with explanations of the function of
each of the buttons on a mult ibutton
mouse, pop-up annotations with
short descriptions of icons, menus, or
dialog box elements being pointed
to, or even the line at the bottom of
the screen used by some systems to
preview the result of choosing each
option as the user moves through a
menu.

Help systems may also use knowl-
edge about the user's data objects to
generate tailored animations show-
ing how the users' would manipulate
their own data to achieve a desired
result. Super imposing help anima-
tions over the regular screen display
of the interface provides a t ighter
level of integration than tradit ional
help systems that show help informa-
tion in separate windows. Such
highly context-sensitive help ap-
proaches the embedded help ideal,
but normally still requires an explicit
user command to be activated and
also maintains some distinction be-

tween the help system (where user
actions may be animated, but cannot
be carr ied out) and the "real" inter-
face.

Next-generat ion interfaces may
provide true embedded help by the
use of animated and audi tory icons,
thus employing their mult imedia
capabilities to make the computer
easier to use, and not jus t pre t t ier to
look at. Animated icons [1] show
looping animations that sometimes
illustrate the meaning of an icon bet-
ter than a static image. For example,
many paint programs use an icon of
an eraser to indicate the erase func-
tion. Experience has shown, how-
ever, that novice users often do not
recognize such icons as being pic-
tures of erasers. Some users think the
icon represents a feature for drawing
boxes on the screen, and others are
simply mystified. Erasing is a diffi-
cult concept to illustrate in a static
picture because it is a dynamic pro-
cess ra ther than a concrete object or
attribute. In contrast, an animated
icon could show an eraser being
moved across a pa t terned surface
and how the pat tern had been erased
in the path of the movement.

A screen filled with several con-
stantly animating icons would proba-
bly be distracting to users. Alterna-
tively, animated icons can be
designed to only animate when the
user indicates an increased level of
interest in them, for example, by
placing the mouse cursor within such
an icon. By only animating the icons
when they are being pointed at, the
animations serve the role of embed-
ded help.

Audi tory icons are characteristic
sound effects that are played to pro-
vide addit ional information about
user actions or system states. For ex-
ample, when the user clicks on a file
icon, the computer can play different
sounds as feedback, depending on
what type of file is being selected.
Computer -genera ted files could be
assigned, e.g., more metallic sounds
than user-generated files. When the
user deletes a file by put t ing it in the
trash can, the computer can play a
dramatic crashing sound if the file
was large, and a puny sound if the
file was small, jus t as physical trash
cans sound different, depend ing on

what is thrown away. The reason this
example is a kind of embedded help
is that the user 's natural actions can
be made to reveal addit ional infor-
mation about the system without in-
terfer ing with those actions. Hear ing
a small sound whenever files are dis-
carded assists the novice user in un-
ders tanding what is going on, but
soon becomes an expected part o f
the interface. The audi tory icons re-
emerge as a helping par t of the inter-
face in cases where users trash large
files, believing they only contained,
say, a few short notes. The mis-
matching sound will startle the users
and cause them to retrieve the files
for a closer examination.

The point here is that interface
elements such as sound can add to
the richness of the dialogue and thus
provide addit ional cues to the user
without adding to the complexity of
the pr imary interaction. Alternative
interface techniques for providing
addit ional information, such as a dia-
log box to confirm deletion, add
overhead by necessitating ,explici t
user action. Also, they require the
user to pay conscious attention to
them if they are to be of any help,
whereas audi tory icons remain in the
background as long as no exceptional
cases are encountered.

Impact on Usability Engineering
Even though the next-generat ion
UIs have a potential for increased
usability, any given next-generat ion
design might still have usability prob-
lems, in the same way as experience
shows that the current generat ion of
modern graphical interfaces can
have usability problems. Many well-
known usability principles will prob-
ably continue to apply. For example,
a study of a handwri t ing system
found that user performance in-
creased significantly when better
feedback was given [22]. Unfortu-
nately, the next-generat ion inter-
faces that have been implemented so
far have mostly not been subjected to
user testing, so there is almost no
data available with respect to the ac-
tual usability of these interfaces or
regard ing the new usability guide-
lines they may need.

In one of the tew controlled stud-
ies compar ing next-generat ion inter-

¢ O M M U N | C A T I O N I O F T H E A C M / A p r i l 1993/Vol .36, No.4 SS

faces with current interfaces, C.G.
Wolf [28] found that certain spread-
sheet editirlg operat ions could be
pe r fo rmed ,fignificantly faster with a
pen-based gesture interface than
with a tradit ional mouse-and-
keyboard interface, and that the ad-
vantage of the pen was especially
great for inexper ienced users. Both
experienced and inexperienced
users had a mean task time of 13 sec-
onds with the pen, exper ienced users
had a mean task time of 18 seconds
with the mouse and keyboard, and
inexper ienced users had a mean task
time of 30 seconds with the mouse
and keyboard. Other studies have
found small improvements in user
learning due to animated demon-
strations and embedded help [1].

One should obviously beware of
assuming that any advanced or fancy
UI technology automatically im-
proves usability jus t because it can be
re fe r red to as "next-generat ion" ac-
cording to certain criteria. As an ex-
ample, Lynn Schaefer and I recently
conducted a study of a paint pro-
gram using sound effects to empha-
size the result of its various features.
Younger users, including most of the
research staff in our lab, were
thril led about the neat interface, but
when we tesl-ed it with older users (70
to 75 years old), they found the inter-
face more difficult to use when they
were exposed to the sounds, possibly
because they were overwhelmed by
the mult imedia effects.

Because of the lack of formal us-
ability studies of the existing proto-
types of next-generat ion interfaces, it
is difficult to predict the usability
engineer ing lifecycle for these inter-
faces and to assess which usability
methods will prove the most efficient
in evaluating their usability. This sec-
tion provides an initial discussion o f
these issues based on the limited
available evidence and extrapolat ions
from current usability engineer ing
practice based on the characteristics
of the new interfaces.

User testing of virtual reality inter-
faces could well present new difficul-
ties. Dur ing testing of traditional,
screen-based interfaces, the user and
the exper imente r have the screen as
a shared reference for exchanging
comments and questions: The exper-

imenter can often directly observe
which parts of the interface cause
problems for the user, and the ex-
per imenter can point to parts of the
screen and ask questions such as,
"what do you think this menu option
will do?"

In contrast, virtual reality inter-
faces envelop the user in its simu-
lated world, excluding the experi-
menter who will often be relegated to
watching a moni tor with a 2D repli-
cation of the image from one of the
user's goggles. The experiences of-
fered to the user and to the experi-
menter differ drastically, making it
more difficult for the exper imente r
to hermeneutical ly empathize with
the user and unders tand the user's
problems. Even if the exper imente r
wore a second head-mounted display
slaved to the user's display, the expe-
rience of rapidly being moved a round
a 3D world (rather than moving
yourself) could well be nauseating
and would certainly feel different
from controll ing your own move-
ments.

These problems should certainly
not prevent user testing of virtual
reality interfaces, but they do indi-
cate a need for special t raining for
exper imenters and possibly also for
the invention of special tools to facili-
tate the test process. For example, a
combination of an eye-tracker and a
virtual reality system would allow the
exper imente r to observe what parts
of the simulated world the user was
current ly watching. Also, a magic
tele-pointer control led by the experi-
menter might appear in the user's
simulated space to point out objects
when the exper imente r wished to
query the user 's unders tanding of
specific interface elements.

The difficulties in user testing
some next-generat ion interfaces may
mean greater reliance on the heuris-
tic evaluation method, where user
interface evaluators (preferably with
some usability exper t i se) judge a de-
sign based on their own experience,
while using it and compar ing it to a
set o f established usability heuristics.
One such study, in which two inter-
face specialists evaluated a virtual
reality interface to a 3D brain model
[17], indicated the presence of an in-
teresting usability problem with re-

spect to user navigation. Users wear-
ing a headmounted display and a
glove could move a round an en-
larged scanning of a human brain by
two means. Smaller movements
could be achieved by simply walking
about the room, having the com-
puter translate the user's physical
movement to a movement in the
brain model. The testers found "the
correspondence between real-world
movement and movement in the vir-
tual world so accurate that there was
no need for a conscious translation of
intent to user interface action" [17],
thus conf i rming the usability of the
noncommand-or ien ted aspect of the
interface. The second navigation
mechanism involved having the user
point a f inger as a gestural command
to initiate 'flying' th rough the brain.
The testers found this very unnatu-
ral, since they sometimes made the
point ing gesture by mistake without
wanting to fly, and since the feeling
of the interface was not actually that
of flying toward the brain but that of
having the brain move toward them
in the opposi te direction of their
pointing. 1

Most of the o ther next-generat ion
UI technologies are easier to test
than virtual realities, thus user test-
ing should still form a major part of
usability efforts for new interfaces.
This is especially t rue given that we
do not initially have good intuitions
for what aspects o f these interfaces
will make for usable systems. I t is
likely that most o f the tradit ional
general principles for usable inter-
face design will continue to hold for
next-generat ion interfaces, but new
usability heuristics will probably also
be needed. Some changes can cer-
tainly be expected. The tradit ional
usability goal of consistency in the
form of a single, uni form interface
style may be replaced with a goal of
multiple interface styles where an
appropr ia te style is chosen for each
application, since noncommand in-
terfaces may only be feasible with a

INote that the distinction between having the
user fly toward the brain model and having
the model fly toward the user is similar to the
traditional distinction on regular computer
screens between windowing (the beginning of a
file is seen by moving the viewpoint up) and
scrolling (the beginning of a file is seen by mov-
ing its content down).

96 April 1993/Vol.36, No.4 / ¢ O M l l U H I I : A V l O N S O F T H I A C l l

tight match between the UI and the
user's task. Thus, external consis-
tency may become a more impor tant
factor than internal compute r consis-
tency, given that the user is supposed
to focus on operat ing the task do-
main and not on operat ing the com-
puter.

Since next-generat ion interfaces
are likely to be fairly complicated to
implement (at least initially), it will be
preferable to conduct usability stud-
ies at an early stage in the develop-
ment life cycle, so that as little devel-
opment effort as possible is wasted
on unusable designs. Such early test-
ing is of course r ecommended also
for tradit ional interfaces, but the
exact methods to be used are likely to
change somewhat. For example,
there might be less reliance on paper
mockups due to the inherent dy-
namic and mult imedia nature of
some next-generat ion interfaces. At
the same time, it is likely that early
testing of next-generat ion designs
will see increased use of Wizard of
Oz techniques, where the intelligence
of a human test assistant is used to
simulate not-yet- implemented com-
puter intelligence. A very elaborate
Wizard of Oz-type exper iment was
pe r fo rmed at Carnegie Mellon Uni-
versity in 1990 to test a user's interac-
tion with a computer -genera ted
immersive interactive fiction [16]. As
no such system can currently provide
sufficient dramatic or interactive
graphics quality, the entire interac-
tion with the test user was simulated
by three live human actors connected
to a human director th rough wireless
headsets.

Since many aspects of next-gener-
ation UIs are supposedly tightly re-
lated to the physical world, some
forms of user testing may be con-
ducted with physical objects instead
of computers . For example, an early
study of gestural interfaces for both
pen-based interfaces and 3D inter-
faces used a puzzle, a set of building
blocks, and a doll with removable
parts for the 3D tasks instead o f a vir-
tual reality system [9]. The study
found that users naturally generate a
large number of di f ferent possible
gestures for common edit ing opera-
tions, thus replicating the "verbal dis-
agreement" f inding f rom textual

UIs, where a large number of differ-
ent words are used by different peo-
ple to describe the same command. 2

In addi t ion to any fundamenta l
usability problems or issues with
noncommand interfaces, there will
be initial transit ion problems as users
have to t ransform their tradit ional
computer skills to a new interaction
paradigm. For example, I observed
an exper ienced computer user trying
to use a pen computer with a very
nice interface design. This user had
jus t installed a new software package
on the computer and wanted to test it
out. He searched the interface for
the location of the application so he
could start it up. Only after failing to
find the application did he realize the
way to access it was to use the Create
menu to initiate a new document that
was specified to include the function-
ality of the new application. Basically,
the user was confused because the
system used the object-oriented doc-
ument model discussed earl ier in this
article and did not have the explicit
representat ion of the concept o f an
'application' which he had been con-
di t ioned to expect based on his pr ior
computer usage.

A similar problem was seen in the
transfer from the previous genera-
tion of character-based interfaces to
the current graphical interfaces.
When graphical interfaces were first
starting to see widespread use in the
mid-1980s, I observed several expe-
r ienced computer users being unable
to rename files. They were used to
having a separate opera t ing system
command for this operat ion and
searched th rough all the system
menus for a rename command.
These users did not realize the new
principle of generic commands made
the change of a file name jus t one
more instance of text edit ing to be
accomplished by selecting the old
name with the mouse and typing in
the change.

In an analogy to these examples,

~A lesson from this f inding is that one cannot
follow the usability principle of "speaking the
user's language" simply by finding one user and
observing that user's gestures. Another user is
likely to have other gestures for the same task,
and the best gestures can only be found by con-
sidering the full gestural vocabulary of the
users and taking other usability considerations
such as cross-application consistency into ac-
count.

one might expect initial users of non-
command interfaces to search for
commands to direct secondary tasks
the computer would pe r fo rm with-
out any fur ther instructions as soon
as the users initiated their main use
of the system. Also, some users might
f ind it discomfort ing at first to have
the computer second-guess their in-
tentions.

Traditionally, the user has had the
ult imate responsibility for ensuring
that the dialogue was progressing in
the desired direction. Therefore , in-
terface designers could rely on hav-
ing human ingenuity correct any
mismatches between the system and
the user's task. Obviously, such mis-
matches are never desirable, but
under the command-or ien ted para-
digm, the user could often put to-
gether commands in new and unex-
pected ways to work a round any
poorly designed features. For non-
command interfaces, the computer
takes on much of the responsibility to
react correctly, and the design needs
to rely on a much more detailed task
analysis to increase the probability
that the computer 's interpretat ions
of the situation are indeed appropr i -
ate.

Conclusions
This article has identif ied 12 dimen-
sions (listed in Table 1) across which
next-generat ion UIs may differ from
current ones. The interface ideas dis-
cussed in this article are not all new,
many of them being more than five
years old. Even so, it is only recently
that they have reached a stage where
they seem to define a direction for
the next generat ion of UIs in the
form of a true interface paradigm.
Many next-generat ion interface
ideas can be seen as contr ibuting to
the development of a generat ion of
noncommand-based UIs which will
be significantly different from the
user interfaces in common use today.

To some extent, this article has
been trying to predict the future,
which is notoriously difficult to do.
Doubtless, some of the predictions
will fail to come true, ei ther because
some of the ideas described here
turn out to be too difficult to make
practical, o r because some trends not
described in the article (omitted as

COMNBNICATIORI Op TNI ACn/Apri11993/Vol.36, No,4 9 7

too esoteric or unforeseen alto-
gether) turn out to have major im-
pact on next-generat ion UIs anyway.
As an exercise in retrospective pre-
diction, one can consider how one
would have predicted the future of
UIs based on the state of the art at
the time o f Doug Engeibart 's famous
demonstra t ion of the NLS system at
the 1968 Fall Joint Computer Confer-
ence. At that time, most of the ele-
ment of cur:rent s tandard WIMP sys-
tems had been invented, including
the mouse, windows, interactive
compute r graphics, hypertext , icons,
and menus (though not pop-up
menus). Not all of these elements
were present in the NLS interface,
however. NLS was based on a time-
shared mult iuser system, and it
would probably have been difficult to
predict the current generat ion of
personal computers from the 1968
demo. Instead, one would probably
have predicted extensive use of tight
integrat ion between documents
using pervasive hyper text capabili-
ties, but this potential was (at least
temporari ly) lost in the transfer from
centralized comput ing to personal
comput ing suppor ted by an explod-
ing shrink-wrap software industry.
Engelbart 's 1968 demo included
addit ional features such as an ability
to overlay the data with live video
images of o ther users, which proba-
bly seemed convincing at the time,
but which have not shown up in
GUIs so far, with the exception o f a
few recent research efforts.

Admittedly, the examples in this
article are mainly from somewhat
unusual application areas such as in-
teractive fiction, games, naval display
maps, computer music, and the plan-
ning o f radiation treatment. It
should be noted that these applica-
tions are impor tant in their own right
and form the basis for major indus-
tries with huge annual revenues. It is
true that cur rent applications of
computers have tended to center
a round o ther human activities, but
that does not necessarily imply that
fu ture uses will do so too. For exam-
ple, consider the use o f the technol-
ogy o f printing. Initial uses o f print-
ing may mostly have involved
religious and scholarly applications,
but cur rent pr int technology is prob-

ably used much more for pr int ing of
daily news, advertising, and fiction.

Tradit ional computer applications
may also benefit from some o f the
next-generat ion UI principles dis-
cussed in this article. A major re-
search question to be resolved is
whether the next generat ion of UIs
will follow a single interface style for
all applications or whether extremely
disparate interface styles will be nec-
essary for di f ferent tasks and usage
situations. The previous generat ions
of character-based interfaces had
widely diverging and inconsistent
interfaces, partly because their inter-
active bandwidth was so low that tai-
lored interaction techniques were
needed for each interface. In con-
trast, cur ren t graphical interfaces are
powerful enough that consistent in-
terface elements could be combined
to satisfy most interaction needs, thus
ensur ing that most applications have
similar looks and feels. Future inter-
faces may reverse this t rend toward
interface uniformity because their
even more expressive interface lan-
guages allow close matches between
the interface and the user's task with-
out the penalty suffered by users of
inconsistent character-based dia-
logues.

An interest ing question is when
should we expect regular use o f
next-generat ion UIs outside the re-
search laboratories. To a small ex-
tent, some next-generat ion charac-
teristics are already to be found in
some present-day personal computer
opera t ing systems and applications,
though the overwhelming feeling of
using these systems is still that of tra-
ditional WIMP interfaces. Going to
the o ther extreme, it is very unlikely
that we will see the ult imate next-
generat ion interface combining all
the characteristics discussed in this
article in a single system within the
next I 0 years, which is about as far as
one can predict in the compute r field
with a min imum of credibility. The
major impediment to arriving at such
a fully integrated next-generat ion
system is probably the lack of suffi-
ciently high-level data interchange
and system integrat ion standards,
and such s tandards can hardly be
def ined before one knows what to
aim for. In spite o f these problems, it

is likely that the UIs that will be re-
leased in the coming years will in-
clude more and more next-genera-
tion facilities; thus the change will
probably be evolutionary ra ther than
revolutionary, as was the case when
GUlls took over from character-
based interfaces.

Aclolowledgments
The author would like to thank
Ralph Hill, and J im Hollan, for help-
ful comments on previous versions of
the manuscripts. The author also
thanks Roger Dannenberg for help
with compute r music and Kent Wit-
tenburg for help with gestures. []

References
1. Baecker, R.M., Small, I. and Mander,

R. Bringing icons to life. In Proceed-
ings ACM CH1'91 Conference Human
Factors in Computing Systems (New Or-
leans, La., Apr. 28-May 2, 1991), 1-
6.

2. Bolt, R.A. Put-That-There: Voice
and gesture at the graphics interface.
ACM SIGGRAPH Comput. Graph. 14,
3 (1980), 262-270.

3. Buxton, W. and Myers, B. A study in
two-handed input. In Proceedings
ACM CH1'86 Conference Human Fac-
tors in Computing Systems (Boston,
Mass., Apr. 13-17, 1986), 321-326.

4. Cypher, A. Eager: Programming re-
petitive tasks by example. In Proceed-
ings ACM CHI'91 Conference Human
Factors in Computing Systems (New Or-
leans, La., Apr. 28-May 2, 1991), 33-
39.

5. Dourish, P. and Bly, S. Portholes:
Supporting awareness in a distrib-
uted work group. In Proceedings ACM
CHI'92 Conference Human Factors in
Computing Systems (Monterey, Calif.,
May 3-7, 1992), 541-547.

6. Druin, A. Noobie: The animal design
playstation. ACM S1GCHI Bulletin 20,
1 (July 1988), 45-53.

7. Feiner, S. and Shamash, A. Hybrid
user interfaces: Breeding virtually
bigger interfaces for physically
smaller computers. In Proceedings of
ACM U1ST'91 Symposium on User Inter-
face Software and Technology (Hilton
Head, SC, Nov. 11-13, 1991), 9-17.

8. Furnas, G.W. New graphical reason-
ing models for understanding graph-
ical interfaces. In Proceedings ACM
CHI'91 Conference on Human Factors in
Computing Systems (New Orleans, La.,
Apr. 30-May 2, 1991), 71-78.

9. Gould, J.D. and Salaun, J. Behavioral
experiments on handmarkings. ACM

9 8 April 1993/Vol.36, No.4 / ~ I W U N I f J I , ' I ' I O ~ O F ' I ~ H I A ~

Trans. Off. Inf. Syst. 5, 4 (Oct. 1987),
358-377.

10. Greenberg, S. and Whitten, I.H.
Adaptive personalized interfaces--A
question of viability. Behaviour and
Inf. Tech. 4, 1 (Jan. 1985), 31-45.

11. Helm, R., Marriott, K. and Odersky,
M. Building visual language parsers.
In Proceedings ACM CHI'91 Conference
on Human Factors in Computing Systems
(New Orleans, La., Apr. 30-May 2,
1991), 105-112.

12. Jacob, R.J.K. The use of eye move-
ments in human-computer interac-
tion techniques: What you look at is
what you get. ACM Trans. Inf. Syst. 9,
2 (Apr. 1991), 152-169.

13. Krueger, M. VIDEOPLACE--An
artificial reality. In Proceedings ACM
CHI'85 Conference Human Factors in
Computing Systems (San Francisco,
Calif., Apr. 14-18, 1985), 35-40.

14. Kurlander, D. and Feiner, S. Editable
graphical histories: The video. ACM
SIGGRAPH Video Review 63, 1991.

15. Lai, K-Y., Malone, T.W. and Yu, K-C.
Object Lens: A spreadsheet for coop-
erative work. ACM Trans. Off. Inf.
Syst. 6, 4 (Oct. 1988), 332-353.

16. Laurel, B. Computers as Theatre. Ad-
dison-Wesley, Reading, Mass., 1991,
189-191.

17. Mercurio, P.J. and Erickson, T.D.
Interactive scientific visualization: An
assessment of a virtual reality system.
In Proceedings INTERACT'90 3d IFIP
Conference Human-Computer Interaction
(Cambridge, U.K., Aug. 27-31,
1990), 741-745.

18. Newman, W. and Wellner, P. A desk
supporting computer-based interac-
tion with paper documents. In Pro-
ceedings ACM CH1'92 Conference
Human Factors in Computing Systems
(Monterey, Calif., May 3-7, 1992),
587-592.

19. Pausch, R. Virtual reality on five dol-
lars a day. In Proceedings ACM CHI'91
Conference Human Factors in Computing
Systems (New Orleans, La., Apr. 28-
May 2, 1991), 265-270.

20. Rohall, S.L., Patterson, J.F. and Hill,
R.D. Go fish! A multi-user game in
the Rendezvous system. ACM SIG-
GRAPH Video Rev. 76, 1992.

21. Rubine, D. Combining gestures and
direct manipulation. In Proceedings
ACM CHI'92 Conference Human Fac-
tors in Computing Systems (Monterey,
Calif., May 3-7, 1992), 659-660.

22. Santos, P.J., Bahzer, A.~., Badre,
A.N., Henneman, R.L. and Miller,
M.S. On handwriting recognition sys-
tem performance: Some experimen-
tal results. In Proceedings of Human
Factors Society 36th Annual Meeting

(Atlanta, Ga., Oct. 12-16, 1992), 283-
287.

23. Schmandt, C. Conversational desktop
(videotape). ACM SIGGRAPH Video
Review 27 (1987).

24. Schmandt, C.M. and Davis, J.R. Syn-
thetic speech for real time direction-
giving. IEEE Trans. Consumer Electr.
35, 3 (Aug. 1989), 649-653.

25. Starker, I. and Bolt, R.A. A gaze-
responsive self-disclosing display. In
Proceedings ACM CHI'90 Conference
Human Factors in Computing Systems
(Seattle, Wa., Apr. 1-5, 1990), 3-9.

26, Weiser, M. The computer for the 21st
century. Sci. Am. 265, 3 (Sept. 1991),
94-104.

27. Williamson, C. and Schneiderman, B.
The Dynamic HomeFinder: Evaluat-
ing dynamic queries in a real-estate
information exploration system. In
Proceedings ACM SIGIR'92 Fifteenth
International Conference on Research
and Development in Information Re-
trieval (Copenhagen, Denmark, June
21-24, 1992), 338-346.

28. Wolf, C.G. A comparative study of
gestural, keyboard, and mouse inter-
faces. Behaviour Inf. Tech. 11, 1 (Jan.
1992), 13-23.

A m o r e extens ive list o f re fe rences is
available. For m o r e in format ion ,
send any emai l message to nielsen-
in fo@bel lcore .com and an auto-
ma ted server will r e t u r n an email
message with fu r t he r in format ion .

CR Categories and Subject Descrip-
tors: D.2.10 [Software Engineering]:
Design--Methodologies; H. 1.2 [Models
and Principles]: User/Machine Systems--
Human Factors; H.4.3 [Information Sys-
tems Applications]: Communications
Applications--Computer Conferencing and
Teleconferencing; H,5.1 [Information In-
terfaces and Presentation]: Multimedia
Information Systems--Animations, Artifi-
cial Realities, Video; H.5.2 [Information
Interfaces and Presentation]: User Inter-
faces--Input Devices and Strategies, Interac-
tion Styles; 1.2.1 [Artificial Intelligence]:
Applications and Expert Systems; K.2.
[History of Computing]--Software; K.8.0
[Personal Computing]: General--Home
Computing

General Terms: Design, Human Fac-
tors

Additional Keywords and Phrases:
Agents, animated icons, BITPICT,
DWIM, embedded help, eye tracking,
generations of user interfaces, gestural
interfaces, help systems, home comput-
ing, interactive fiction, interface para-
digms, noncommand-based user inter-

faces, prototyping, usability heuristics,
virtual reality, Wizard of Oz method

About the Author:
JAKOB NIELSEN is a member of the
Computer Sciences Department at
Bellcore (Bell Communications Re-
search). His interests include usability
engineering, hypertext, and next-genera-
tion interaction paradigms. Author's
Present Address: Bellcore, 445 South
Street, Morristown, NJ 07962-1910.
emaih nielsen@bellcore.com. For more
information send any email message to
the automated electronic business card
server at nielsen-info@bellcore.com

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/93/0400-082 $1.50

O
The Th**e

. . . to s e n d fo r t h e
l a t e s t c o p y of t h e
f r ee C o n s u m e r
I n f o r m a t i o n
Catalog.

I t l i s t s m o r e
t h a n 2 0 0 f ree o r
l ow-cos t g o v e r n -
m e n t p u b l i c a t i o n s
o n t op i c s l ike
m o n e y , food, jobs ,
children, cars,

h e a l t h , a n d f ede ra l
bene f i t s .

S e n d y o u r n a m e
a n d a d d r e s s to:

C o m e . m e t
I n f o r m a t i o n C e n t e r
D e p a r t m e n t TH
P u e b l o , Colorado
8 1 0 0 9

U.8. General Services Administration.

COIdldUNICA'IPIONIIOlUVHIIAq:M/April 1993/Vol.36, No.4 g 9

