
P R A C T I C A L P R O G R A M M E R

There was a problem with my last
column ("Hat Racks for Unders tand-
ing," Oct. 1992, p. 21). It claimed
good software helps people in their
quest for understanding. Although it
ment ioned a few strategies for im-
proving a tool's ability to facilitate
understanding, we were still left
with an elusive and gauzy goal.
How do you know when you have
understood an object of study? If
you looked a little harder or tried
another angle, you might discover
some hidden qua l i ty -a quality that
reveals the object's true nature. Then
again, maybe not.

Anything so hard to measure pre-
sents a p r o b l e m for technology.
While "facilitating unders tanding" is
a worthy goal, it is a poor guiding
principle of design. As designers, we
can come up with ways to help peo-
ple examine their da ta and learn
about it, but since we cannot measure
unders tanding it is difficult to tell it
we have done our job well. We do not
really unders tand understanding.

Treating Stupidity
Neil Postman, in his t remendous
book, Conscientious Objections, points
out that other fields have the same
problem. In his essay, "The Educa-
tionist as Painkiller," he observes that
physicians do not completely under-

o stand health, so they give their atten-
t ion to relieving s ickness - -cur ing
disease, halt ing its spread, and treat-
ing symptoms. The same can be said

z of lawyers, Postman points out, who
z are not consulted to "improve the qual- m
o ity of justice or good citizenship."
z Ins tead , they t roub le themselves
o about injustice and bad citizenship,
7- "of which they know more than any-

one else, and which, it turns out,
are much more profitable fields of
enterprise. Doctors and lawyers, in
other words, are painkillers. They

.a
- are sought out by people who in

trouble and are in need of
remedies."

Postman goes on to suggest that
educationists abandon their "vague,
seemingly arrogant, and ul t imately
futile at tempts to make children in-
t e l l i gen t , a n d c o n c e n t r a t e . . . o n
helping them avoid being stupid.
. . . T h e educationist should become
an expert in stupidity and be able to
prescr ibe specific p rocedures for
avoiding it."

Perhaps it will be fruitful for soft-
ware designers to think about curing
ignorance and stupidity. It will be
easier to invent t reatments and to
measure our success.

Some software does try to act as a
"painkiller," in that it expects its

Marc Rettig

lem or question, and it
responds with whatever its designers
thought would be a t reatment for that
need. The typical database front end
is an example.

O n the other hand, general pur-
pose software, like spreadsheets, are
very powerful tools for unders tand-
ing. Tha t is, if you already under-
stand the subject area well and know
how to use the tool. Otherwise there
is a large gap between "where you
are" and "where you want to be." To
find an answer to your question you
must accurately formulate the prob-
lem in the tool's terms, select from its
large inventory of analysis tools, and
know how to employ those tools cor-
rectly. No wonder so many people sit
staring blankly at their screen, or
c u r s e t h e i r m a n u a l s a n d h e l p
systems, or build inadequate solu-
tions that tell them lies.

¢OMMUl l ICAT |ON l l OP THE A ¢ ~ / A p r i l 1993/Vo1.36, No.4 23

http://crossmark.crossref.org/dialog/?doi=10.1145%2F255950.153593&domain=pdf&date_stamp=1993-04-01

P R A C T I C A L P R O G R A M M E R

There are many angles to this
problem, one of the great problems
of these early days of computing.
The best "cures for stupidity" on the
market are not general purpose
tools, but task-specific applications
with a large amount of domain
knowledge built into them. Chip-
soft's MacInTax is a good example. It
knows what all the IRS forms look
like, it contains the instructions for
every form and entry blank, it knows
what it means for a form to be com-
plete, and what kinds of things might
t r igger an audit. I t can lead tender-
foot tax-tilers th rough the entire
process (it knows what forms to fill
out, and in what order), and can
coach or remind exper ienced labor
slaves. The world would be a better
place if more software t reated people
with as much considerat ion as
MacInTax.

This is where the "software as
painkiller" analogy leads. Why not
make more tools like this? Why not
build more domain-specific tools that
contain enough knowledge to sup-
por t people in the problem-solving
p rocess - - to become a work partner?

One group who is making impor-
tant contributions to this area has
Gerha rd Fischer of the University of
Colorado as a prolific spokesperson.
He and his colleagues have given us a
body of l i terature on "domain-
specific cooperative problem-solving
systems" well-stuffed with good
ideas, fruitful points of view, and
working examples. The i r systems
could be characterized as at tempts to
create cures for stupidity, in that they
try to bolster human weaknesses and
suppor t human strengths• (For the
sake of readability, I will refer to
Fischer when discussing this work,
al though he usually coauthors with
colleagues. I do not mean to discount
the contributions of others who are
listed in the bibl iography at the end
of the column.)

Use People's Strength, Support
Their weakness
The term "cooperative problem-
solving" means the software and the
person using it are par tners in the
task-at-hand, br inging complemen-
tary strengths and weaknesses to the
job. (Recall Brenda Laurel 's sugges-

tion, in Computers as Theater, that de-
signers think of a system as a collec-
tion of agents, some human, others
software. Laurel and Fischer don ' t
cite each other, but I expect they
might like one another 's work.)

Fischer observes that the strengths
and weaknesses of computers and
humans complement each other
nicely. "Cooperative problem-solving
approaches exploit the asymmetry of
the communicat ion process. Humans
use common sense, define the com-
mon goal, decompose problems into
subproblems, and so on. Computers
provide external memory for the
human, insure consistency, hide ir-
relevant information, and summa-
rize and visualize information.
• . . Cooperat ive problem-solving sys-
tems serve as cognitive amplifiers of
the human." Strong artificial intelli-
gence isn't necessary for a really in-
telligent solution. Instead, a team
made up of a person's natural intelli-
gence enhanced by good computer
software may be cheaper, more ef-
fective, and more fulfilling to use.

The screen shot in Figure 1, f rom
a system called Framer, illustrates
these ideas. Framer is a tool for de-
signing "program f rameworks" - -
components of user interfaces on
Symbolics Lisp machines• The soft-
ware contains a knowledge base of
design rules called "critics." The
rules evaluate "hard" aspects of a
design, such as its syntactic correct-
ness and completeness, as well as
"soft" aspects, such as its conform-
ance to r ecommended style guide-
lines. Each critic rule is classified as
mandatory or optional, and each is
associated with an explanation that
explains the motivation behind the
rule and suggests ways to achieve the
desired effect.

The bottom two panes are where
the user carries on the work of build-
ing a framework, by dragging items
from the palette on the r ight into the
work area on the left. The rest of the
screen is where Framer supports the
user with various "cures for stupid-
ity." The checklist in the uppe r left
breaks the task of building a pro-
gram framework into several sub-
tasks. It shows which steps are com-
plete or in progress, and highlights
the step current ly being per formed.

The top r ight pane shows the goal
for the current step, and lists the pos-
sible actions. The middle pane is
where the critics do their stuff.
F ramer has noticed some problems
with the design as it stands, and is
offer ing suggestions.

Fischer is working to improve both
the usefulness and usability of what
he calls "high-functionality computer
systems." He points out that software
tools are offer ing increasing num-
bers of functions, which present
problems for both designers and
users. He compares Pascal, with its
29 fimctions, 19 infix operators , and
300 pages of documentat ion, with
Symbolics Lisp, which has tens of
thousands of functions, methods,
and special control structures all doc-
umented in 4,400 pages. "The more
powerful systems become, the more
difficult they are to use. Before users
will be able to take advantage of the
power of high-functionali ty com-
puter systems, the cognitive costs of
master ing them must be reduced."
Fischer lists four problems of high-
functionality systems:

• Users do not know about the
existence of tools
• Users do not know how to
access tools
• Users do not know when to
use tools
• Users cannot combine, adapt , and
modify tools according to their spe-
cific needs

Even from this superficial look at
Framer, you can see how it addresses
these problems. Whatever you think
about the aesthetics of the interface,
this is a good example of a design
that seeks to facilitate unders tanding,
that supports people 's weaknesses
and enhances their strengths.

Inside a Cooperative
Environment
Fischer and his colleagues have ex-
per imented with a series of working
systems and spent a lot of time
watching people in problem-solving
situations. They even hung a round a
hardware store (a high-functionali ty
system) and taped conversations be-
tween customers (users) and clerks
(domain experts). From this experi-

24 April 1993/Vol.36, No.4 / | | l i l l l l l C A T I O - ' l l l O F T I l l l l l | i

P R A C T I C A L P R O G R A M M E R

ence they have evolved a general ar-
chitecture for domain-oriented, co-
operative problem-solving systems,
which is worth an overview so you
can see how different it is from the
applications the rest of us have been
building. The architecture consists of
five components which contain the
domain knowledge and support co-
operative problem-solving:

The construction kit is the work-
space in which people build their
design, and the palette of available
components. This corresponds to the
entirety of what we are used to call-
ing "applications." We are used to
delivering a tool and a manual, then
waiting for our pat on the back. In
Fischer's eyes this is not enough, at
least for design-intensive tasks.

The specification component lets de-
signers specify some of the high-level
requirements of the design, and
weight their importance. For exam-
ple, when using Fischer's Janus to
design a kitchen, you could tell its
specification component you are only

5'4" tall, you are left-handed, you
don' t want a dish washer, you have
small children (safety is important),
and you value energy efficiency.

An issue-based argumentative hyper-
media system captures knowledge
about the domain--especially an-
swers to all aspects of the question,
"What makes a good design?" It
holds issues, answers, and argu-
ments, with enough description for
people to understand the reasoning
behind the system's suggestions. All
this is linked into a hypertext: terms
are defined, cross-references are ac-
tive, and items can point into the
construction, specification, and cata-
log components.

The catalog is a collection of design
objects--partial and complete de-
signs, and construction "idioms."
They serve as starting points, exam-
ples, and jolts to the creativity gland.
The simulation component, a comple-
ment to the argumentation compo-
nent, lets people try out their designs
to see how they will work in various
usage scenarios.

These components are integrated
by tools that draw from and link to-
gether the knowledge, and apply it in
context:

The construction analyzer detects
and critiques the contents of the con-
struction kits' workspace. Critiques
are based on domain knowledge of
design principles. When a critic fires,
it puts a message in the critic pane,
and provides entry into the relevant
information in the argumentation
component.

The argumentation illustrator helps
people understand the principles in
the argumentative hypertext by of-
fering designs from the catalog as
concrete examples.

The catalog explorer is a sort of
browser or front end for the catalog,
which finds examples similar to t h e
current construction, and orders
them according to their appropriate-
ness for the situation.

Flscher's Power fu l Ideas
Fischer writes at length about the

Framer2 Version 5.0 I Figure 1.
A cooperat ive
tool called
Framer,
In t h e process
O f h e l p i n g
someone
c o n s t r u c t
a window.

COUMUNICATIOUIOIe THIS ACM/April 1993/Vol.36, No.4 2 5

P R A C T I C A L P R O G R A M M E R

Domain-oriented design environments reduce the
gap between the knowledge in a designer's head

and the language of the tools.
ideas behind these systems, the do-
main- independent architecture un-
der lying them, and the design princi-
ples which they embody. I have room
here only to summarize some of the
ideas.

Domain Orientation. Domain-
or iented design environments re-
duce the gap between the knowledge
in a designer 's head and the lan-
guage of the tools. I f the impor tant
concepts and constructs of the do-
main are represented inside the tool,
work becomes a matter of "human
problem-domain communication," as
opposed to human-compute r com-
munication. Instead of encoding a
design in a symbolic language, peo-
ple will feel as if they are construct-
ing a design from a set of intelligent
building blocks, learning and clarify-
ing as they go.

Critics and "'Back Talk." A tool can
talk back to the person using it,
th rough "critics." Critics are feed-
back-generat ing rules that examine
the work in progress and the domain
knowledge to offer nonintrusive con-
structive critiques. Some critics detect
problems in the work, some detect
inconsistencies between the work and
the specifications, and others help
designers examine their work from
different points of view.

Sometimes it is appropr ia te for the
system to volunteer criticism. Other
times it is better to wait until a person
asks. Critics suppor t both kinds of
dialog, yielding what Fischer calls
"mixed-initiative dialog."

Integrate Problem Setting and
Problem Solving. Many design prob-
lems are poorly unders tood when the
designer sits down to create a solu-
tion. Without precise goals, it is diffi-
cult or impossible to decide which of
the available tools to use. Fischer's
systems allow people to propose a
partial solution (by choosing from a
catalog of parts or starting from
scratch), reflect on the "back talk"
from the critics, then plan their next
move. This is a far more natural pro-

cess than most systems encourage,
and especially valuable for complex
systems which evolve th rough a long,
iterative process of prototyping, eval-
uation, and revision.

Integrate Action and Reflection.
Design is an action that proceeds
until some sort of breakdown occurs.
Tha t is, until the designer hits a
stump. Reflection is then used to
overcome the b r e a k d o w n - - t h e de-
signer thinks about the design, the
requirements, and the teachings of
the t rade until a solution is found.
Fischer's systems part icipate in this
process. They "talk back," so people
can unders tand, consider, and repai r
problems the minute they arise. This
repai r process may tr igger new in-
sights, which the designer can add to
the tool as a new critic rule or catalog
entry.

Integrate Construction and Argu-
mentation. The reflection p rocess - -
reasoning out a solution to a break-
down in the design p rocess - -can be
suppor ted by computer-based argu-
mentat ion tools. Tha t is, a critic not
only points out a problem, it provides
access to information about the na-
ture of the problem, and the ration-
ale behind it. The tool's domain
knowledge should not only include
facts and issues, but information
about their dependencies and rela-
tionships.

As you can see from all this,
Fischer advocates a tight integrat ion
of the user interface mechanisms
with the under lying domain knowl-
edge. This stands in contrast to most
modern systems, which separate the
interface and knowledge into sepa-
rate "layers." He gives an analogy to
suppor t his claim: "a person who can
communicate well but knows very lit-
tle has severe limitations as a cooper-
ative par tner , jus t as a person who
knows a lot but cannot communi-
cate."

The re is much more. I hope this is
enough for you to see that these
ideas are based on a theory of

problem-solving, and could be fruit-
fully' appl ied far outside the uses that
the originators have tried.

Performance Support:
Learners vs. Students
There is a related, but less formal ly
grounded movement heading in the
same direction as Fischer and his col-
leagues. They call their products
"Electronic Performance Suppor t
Systems" (EPSS), or jus t PSS for
short. The people building these sys-
tems are start ing to coalesce into a
communi ty of l ike-minded believers,
most of them working in industry (as
opposed to universities). The second
conference was held last fall in Dal-
las. This work grew out of efforts to
build effective computer-based train-
ing systems. Someone realized the
best time to provide training is at the
very moment the learner needs to
apply the knowledge. So the best
place for computer-based training is
inside the tool needed to accomplish
the work.

That point bears some elabora-
tion, since it is so di f ferent than the
way we have been conduct ing techni-
cal training. For o ther things, like
learning to swim, training on de-
mand seems natural to us.

In the June 1981 issue of National
Geographic, there is a pair o f photo-
graphs I enjoy very much. The first
is an underwater view of a child
learning to swim. She is stroking
away under water, her instructor
swimming alongside observing and
providing a sense o f security. The
second is an old Red Cross photo-
graph o f a swimming s tudent en-
gaged in a "land drill." She's
equipped for the exe rc i se - -ha i r up
on her head and bathing dress
d raped a round her. But the learning
environment is not very realistic. She
is laying prone across a piano stool in
an awkward imitation of a swimmer.
She's moving her arms and kicking
her feet, but she's not going any-
where.

2 6 April 1993/Vo1.36, No.4 / C H H U N I U T I O N | O P T H N A | N

P R A C T I C A L P R O G R A M M E R

Instead of encoding a design in a symbolic language, people
will feel as if they are constructing a design from a set of

intelligent building blocks, learning and clarifying as they
I first saw these photos in a book

about language learning, on a page
entitled "Learner vs. Student." I be-
lieve the ideas on that page, para-
phrased here, are somehow a part of
all great software.

1. The learner is pr imari ly involved
with the subject of study and the peo-
ple who deal with it, in a normal con-
text.

The student is pr imari ly involved
with the books and studies of the
course, in an isolated study context.
2. The learner revels in the immer-
sion of the real-life experience.

The student is fearful of immer-
s ion- - " l and drills" are more the
style.
3. The learner learns, and the very
process is a means of communicat ing
interest and care. Learning is doing.

The student studies in hopes of
p repar ing to someday be able to do.
4. The goal of the learner is to ac-
complish the task.

The goal of the student is usually
to "learn" the subject.
5. The att i tude of the learner en-
ables one to implement a strategy
that will foster a love o f doing the
task.

The att i tude of the student often
results in a strategy of comfortable
isolation, in te r rupted with occasional
forays into the world of "doers."
6. The learner values the culture
and body of knowledge that sur-
rounds the task, seeing it as a br idge
to learning.

For the student, the culture and
requisite knowledge may be viewed
as a barr ier , not a bridge.

Performance suppor t systems, tak-
ing these ideas very much to heart,
try to provide everything a person
needs to train him- or herself to do a
task on the job, at the moment the
training is needed. A PSS goes far
beyond a help system or even com-
puter-based t r a in ing - - a large one
may have an advisory system, an "in-
formation base" o f reference mate-

rial, video and still images, databases,
interactive training modules, a help
system, preformat ted templates and
scripts, as well as applications soft-
ware. The whole thing is designed to
guide people through tasks, present-
ing appropr ia te resources, and giv-
ing jus t the r ight amount of training
or assistance at just the r ight time.

This is an ambitious goal, but
there are already a dozen or more
working performance supports sys-
tems in existence, at companies like
IBM, Dow, AT&T, Intel, American
Express, and Amdahl . Some of these
companies are repor t ing remarkable
cuts in training costs, with significant
increases in people 's performance,
and fewer errors. These benefits
were gleaned by giving people the
oppor tuni ty to be "learners" instead
of "s tudents" - - to immerse them-
selves in the work, pursue questions
on their own, and acquire knowledge
on the way to meeting their goals.

Gloria Gery has written a fine
overview of the motivation, goals,
and philosophy behind performance
suppor t systems, and describes many
of the working systems in her book,
Electronic Performance Support Systems.
I f you are intr igued by anything in
this column, I suggest reading her
book. She not only deals with tech-
nology, but with the large and hard
problems of organizational change
necessary to develop and use perfor-
mance suppor t systems.

Nice, but Implementation
Is a Bear
Now we have two new goals for our
application designs: "facilitate un-
derstanding," and "treat stupidity."
The areas of conceptual model ing
and information design help with the
first goal, and the ideas behind coop-
erative environments and perfor-
mance suppor t systems help with the
second. In tegrat ing these ideas into
your work is likely to change the soft-
ware you design, inside and out. It
will also change the process you go

through to design and build soft-
ware. Your customers will have a dif-
ferent role in the process, and they
may have to be sold on the benefits of
these ideas. Otherwise they will never
make the organizational changes
they must make to accommodate
these systems.

It is not enough to think of com-
puter-based tools as isolated bits of
technology we can d rop into people's
hands, then step back while they reap
the benefits. Instead, computers are
part of a web of people and tools
(good managers have always known
this; p rogrammers are jus t starting to
learn). Putting a new item into the
web affects the others, and it is silly to
design something without consider-
ing how it will be used, and by whom.

The technology is only half the
solution. The material referenced in
the bibl iography will give you all
kinds of ideas about technology. But
to turn these ideas into effective solu-
tions means acquiring good domain
knowledge, represent ing it well,
doing good instructional design, in-
formation design, human factors,
and visual design. It means manag-
ing the technology well, shaping it to
fit the organization and making sure
people know how to use it.

The easy thing would be to pick a
few ideas and add them to your exist-
ing designs: a to-do pane, critics,
mixed-initiative dialogs, some do-
main knowledge behind the help sys-
tem, and so on. Adding these things
piecemeal may improve your prod-
ucts. But bigger benefits will come
from adopt ing the philosophy be-
hind the ideas and building a whole
project a round it.

Bibliography
Fischer, G. Domain-oriented design envi-
ronments. In Proceedings of the Seventh
Knowledge-based Software Engineering Con-
ference. IEEE Computer Society Press,
1992. pp. 204-213.

Fischer, G., Lemke, A., Mastaglio, T. and
Morch, A. The role of critiquing in coop-

COIIMUNICA'nONlll OP TIIll ACM / April 19931Vo1,36, No.4 2 7

IT'sA
BEYOND l

>

/

/
/

96,000 acres of irreplaceable rain forest are being burned
~ .e ry day. These once lush forests are being cleared for

grazing and farming. But the tragedy is wi thout the forest
this delicate land quickly turns barren.

~ ~ In the smoldering ashes are the remains of what had
~ ~ t taken thousands of years to create. The life-sustaining

~ ~ nutrients of the plants and living matter have been
destroyed and the exposed soil quickly loses its fertility.

Wind and rain reap fur ther damage and in as few as five years
a land that was t eeming with life is turned into a wasteland.

T h e National .Arbor Day Foundation, the world's largest tree-planting envi-
ronmenta l organization, has launched Rain Forest Rescue. By jo in ing the
Foundation, you will help stop fur ther burning. For the future of our
planet, for hungry people everywhere, suppor t Rain Forest Rescue. Call now.

, ~ g ~ . Call Rain Forest Rescue.
1 - 8 0 0 - 2 5 5 - 5 5 0 0 ~, The Nat ional

Arbor Day F o u n d a t i o n

erative problem solving, ACM Trans. Info.
Syst. 9, 2 (Apr. 1991), 123-151.

Fischer, G., Grudin, J., Lemke, A.,
McCall, R., Oswald, J., Reeves, B. Ship-
man, F. Supporting indirect collaborative
design with integrated knowledge-based
design environments. Human-Computer
Interaction, Vol. 7, Lawrence Erlbaum,
Hillsdale, NJ, (1992), pp. 281-314.

Fischer, G. and Reeves, B. Beyond intelli-
gent interfaces: Exploring, analyzing, and
creating success models of cooperative
problem solving. J. Appl. Intel. 1, Kluwer
Academic Publishers (1992), 311-332.

Gery, G.J. Electronic Performance Support
Systems. Weingarten Press, Boston, Mass.,
1991. (Weingarten also offers a video
demonstration of several EPSS applica-
tions.)

Laurel, B. Computers as Theatre. Addison-
Wesley, Reading, Mass., 1991.

Postman, N. Conscientious Objections. New
York: Vintage Books, 1988.

Follow-ups and Pointers
Clark, R.C. Developing Technical Training.
Addison-Wesley, Reading, Mass., 1989. (I
didn't mention this book in the column,
but it relates directly to the topic and is
useful for plenty of things besides train-
ing. Clark describes five basic types of
content, and tells us how to communicate
each type. This is basically the informa-
tion mapping approach, concisely and
directly stated.)

Information Mapping, Inc., 300 Third
Ave., Waltham, MA 02154. 607-890-
7003. Robert Horn came up with infor-
mation mapping concepts almost 20 years
ago, but the ideas haven't penetrated the
software development community very
deeply. To hear it from the source, attend
an information mapping seminar. All
aspects of technical communication are
addressed, including computer-based
tools.

The Practical Programmer wants to
hear your stories. What worked for
you, and why? What didn ' t work, and
what were the horrible results? Send
your braggardly tales and autopsy
reports to:

Marc Rettig
Academic Computing
Summer Institute of Linguistics
7500 West Camp Wisdom Road
Dallas, TX 75236
Email 76703.1037@compuserve.com

Marc Rettig is a member of the technical staff at the
Summer Institute of Linguistics, and a freelance
write)'.

28 Apr i l 1993/'v'ol.36, No.4 / C O M M U N I C A T I O N S O F THE ACM

