
Optimally packed chains of bulges in multishift QR algorithms∗

Lars Karlsson† Daniel Kressner‡

August 8, 2012

Abstract

The QR algorithm is the method of choice for computing all eigenvalues of a dense
nonsymmetric matrix A. After an initial reduction to Hessenberg form, a QR iteration
can be viewed as chasing a small bulge from the top left to the bottom right corner
along the subdiagonal of A. To increase data locality and create potential for parallelism,
modern variants of the QR algorithm perform several iterations simultaneously, which
amounts to chasing a chain of several bulges instead of a single bulge. To make effective
use of level 3 BLAS, it is important to pack these bulges as tightly as possible within the
chain. In this work, we show that the tightness of the packing in existing approaches is
not optimal and can be increased. This directly translates into a reduced chain length
by 33% compared to the state-of-the-art LAPACK implementation of the QR algorithm.
To evaluate the impact of our idea, we have modified the LAPACK implementation to
make use of the optimal packing. Numerical experiments reveal a uniform reduction of
the execution time, without affecting stability or robustness.

1 Introduction

The real Schur decomposition of a general matrix A ∈ Rn×n takes the form

QTAQ = T, (1)

where Q ∈ Rn×n is orthogonal and T ∈ Rn×n is block upper triangular with each diagonal
block having size 1× 1 or 2× 2. The 1× 1 diagonal blocks correspond to real eigenvalues of
A, while the 2× 2 diagonal blocks correspond to complex conjugate pairs of eigenvalues. The
goal of the QR algorithm is to compute such a Schur decomposition.

After an initial reduction of A to a Hessenberg matrix H [8, Section 7.4], the QR algorithm
iteratively reduces H further to the desired Schur form. Given m� n shifts σ1, . . . , σm ∈ C
closed under complex conjugation, a QR iteration consists of a QR factorization

(H − σ1I)(H − σ2I) · · · (H − σmI) = QR

and the update H ← QTHQ. Equivalently, a QR iteration can be viewed as creating an
(m + 1) × (m + 1) bulge in the top left corner of the Hessenberg matrix and chasing it
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downwards along the subdiagonal until the bulge disappears at the bottom right corner. This
bulge chasing mechanism was already explained in Francis’ original description [7] of the QR
algorithm; see, e.g., [13, 18] for more recent accounts.

Originally, the number of shifts in the QR algorithm was chosen to be tiny, say m = 1
or m = 2. However, such a choice comes with the disadvantage that a single QR iteration
performs relatively few operations while still accessing the whole matrix, leading to a per-
formance that is bound by memory bandwidth. In theory, this poor ratio between floating
point operations (flops) and memory accesses can be improved by increasing m. This has
been suggested by Bai and Demmel [3], who also observed that the convergence deteriorates
in finite-precision arithmetic if m is chosen too large, leading to the default choice m = 6 in
the initial LAPACK [1] implementation of the QR algorithm. This undesirable phenomenon
is called shift blurring: The relation between the shifts and the bulges becomes exponentially
ill-conditioned as m increases [17, 14].

A numerically more suitable alternative to increasing m is to chase not only one but
several small bulges simultaneously. This allows for the use of a large number of shifts without
suffering from shift blurring. Braman, Byers, and Mathias [4] as well as Lang [15] proposed
to chase a tightly packed chain of bulges. In effect, most of the operations performed during
the QR iterations can be rephrased effectively in terms of matrix–matrix multiplications.
Improved data locality and being able to make use of highly optimized level 3 BLAS lead to
significant performance improvements for larger matrices, despite the fact that an increased
number of flops is needed. To limit this increase, it is important to pack the bulges as
tightly as possible. They should, however, not start interfering with each other, which would
compromise the convergence of the QR algorithm. For m = 2, the packing proposed in [4, 15]
arranges nb bulges (and thus 2nb shifts) in a chain of length 3nb. Asymptotically, such a
packing leads to a flops increase of 140%.

The main contribution of this paper is to show that the bulges can be packed even tighter.
For m = 2, our new packing arranges nb bulges in a chain of length 2nb+1. The impossibility
to reduce the chain length further has tempted us to call this an optimally packed chain. In
effect, the growth of flops mentioned above is reduced to a mere 60% and data locality is
improved. As we will see, this directly translates into reduced execution times.

The parallel variant of the QR algorithm suggested by Henry, Watkins, and Dongarra [11]
and implemented in ScaLAPACK also makes use of several bulges, placed sufficiently separate
from each other to be able to chase them in parallel. On the process node level, this amounts
to the use of a single bulge (i.e., nb = 1) and suffers from the poor flops per memory access
ratio explained above. Recent work [9, 10] has shown that the use of several tightly packed
chains of bulges in the parallel QR algorithm improves performance, often significantly. It can
be expected that the use of optimally packed chains will lead to even further improvements.
However, for the sake of simplicity, we keep the focus of this paper on serial implementations.

The rest of this paper is organized as follows. Section 2 briefly recalls the basic bulge
chasing mechanism. In Section 3, the existing approach of packing bulges is explained. In
Section 4, our new optimal packing is introduced. In Section 5, we analyze the impact of this
packing on the number of flops required by the QR algorithm and provide some implementa-
tion details concerned with performing updates by means of matrix–matrix multiplications.
Finally, in Section 6, various numerical experiments demonstrate that the new packing con-
sistently reduces the execution time of the LAPACK implementation of the QR algorithm.
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2 The bulge chasing mechanism

For the rest of the paper, we assume that the initial Hessenberg reduction of the QR algorithm
has been performed and focus on the QR iterations applied to the Hessenberg matrix H ∈
Rn×n.

An implicit shifted QR iteration starts by choosing m shifts σ1, . . . , σm ∈ C closed under
complex conjugation and computes the vector

v = (H − σ1I) · · · (H − σmI)e1,

where e1 denotes the first unit vector. Note that v is zero except for the first m+ 1 entries.
Using a Householder reflector, an orthogonal matrix Q0 is computed such that QT

0 v becomes
a scalar multiple of e1. Then the update H ← QT

0HQ0 is performed. Since Q0 differs from
the identity matrix only in the leading (m + 1) × (m + 1) principal submatrix, this update
perturbs the Hessenberg form of H only locally. For m = 2, H will take the shape illustrated
in Figure 1. The shaded 3× 3 box in the figure contains the newly introduced entries and is

QT
0

Q0

Figure 1: Illustration of the introduction of a bulge during the first step of a QR iteration.

usually referred to as the bulge. For general m, the bulge has size (m+ 1)× (m+ 1).
The rest of the QR iteration consists of chasing the bulge downwards along the first

subdiagonal until it disappears at the bottom right corner. In the jth step of this process, a
Householder reflector is used to construct an orthogonal matrix Qj that annihilates the entries
below the subdiagonal in the first column of the bulge. Performing the update H ← QT

j HQj

effectively moves the bulge one step downwards. This is illustrated in Figure 2. In total, n−2
steps are needed until the bulge reaches the bottom right corner and disappears there.

Algorithm 1 Bulge chasing

Input: Hessenberg matrix H ∈ Rn×n perturbed by an (m+ 1)× (m+ 1) bulge starting at column i.
Number of steps k to chase the bulge.

Output: Updated Hessenberg matrix H perturbed by an (m+ 1)× (m+ 1) bulge starting at column
i+ k.

1: for j ← i, . . . , i+ k − 1 do
2: Construct Householder reflector V ∈ R(m+1)×(m+1) such that V TH(j + 1 : j + m + 1, j) is a

multiple of e1.
3: Update from the left: H(j + 1 : j +m+ 1, j : n)← V TH(j + 1 : j +m+ 1, j : n).
4: Update from the right: H(1 : j+m+ 2, j+ 1 : j+m+ 1)← H(1 : j+m+ 2, j+ 1 : j+m+ 1)V .
5: end for
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QT
j

Qj

Figure 2: Illustration of a typical bulge chasing step. The first column of the bulge is reduced
by a reflector, which is then applied to the corresponding rows and columns of the matrix.
The net effect of these two transformations is that the bulge moves one step downwards.

Algorithm 1 gives a description of k bulge chasing steps and will serve as a building block
for our further developments. It requires approximately 4kmn+ 2kn flops.

3 Tightly packed chains of bulges

The computational intensity of chasing a single bulge is proportional to the bulge size m. As
explained in the introduction, increasing m leads to the shift blurring phenomenon, which
slows down the convergence of the QR algorithm in finite-precision arithmetic. To avoid this
phenomenon and still benefit from increased computational intensity, it is preferable to use
a chain of small bulges instead of one big bulge. In this section, we briefly summarize the
concept of tightly packed chains proposed in [4, 15].

The first part consists of introducing a chain of bulges in the top left corner of H. For this
purpose, the first bulge is introduced and initially chased only m+ 1 (instead of O(n)) steps
using Algorithm 1. This creates sufficient room for the next bulge to be introduced. Then
both bulges are chased m+ 1 steps, creating sufficient room for a third bulge, and so on. By
the end of this procedure, nb bulges are lined up in a chain covering (m+ 1)nb columns. The
shape of H at that point is illustrated in Figure 3 for m = 2 and nb = 3.

Figure 3: Illustration of a tightly packed chain of bulges introduced in the top left corner.

It is important to note that none of the bulges (except the first one) can advance another
step without colliding with the bulge in front of it. This point is illustrated in Figure 4, which
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shows that the collision creates one (2m + 1) × (2m + 1) bulge from two (m + 1) × (m + 1)
bulges. As already pointed out, the use of such large bulges is not advisable and prone to the
shift blurring phenomenon.

QT
1

Q1

Figure 4: Illustration of the unwanted fill-in (red crosses) caused by chasing the blue bulge
one step too far and letting it collide with the green bulge in front of it.

Now that the bulges are lined up in a chain, the process continues by chasing the whole
chain simultaneously, see Figure 5 for an illustration. We chase the chain only k � n steps,

QT
3

QT
2

QT
1

Q3 Q2 Q1

Figure 5: Illustration of chasing a tightly packed chain of bulges one step.

allowing us to restrict the updates of H during the chase to a principal submatrix of size
(m + 1)nb + k + 1. In the following, we will refer to this submatrix as the computational
window, which is the blue region denoted by W in Figure 6. All orthogonal transformations
applied within the window are accumulated into an orthogonal matrix U . This enables us to
apply the transformations above and to the right of the window in terms of matrix–matrix
multiplications with U . More specifically, the submatrices denoted by A and B in Figure 6
are updated via A ← AU and B ← UTB. At the end, the chain resides in the bottom right
corner of the current computational window. The whole process is repeated by choosing a new
computational window of the same size holding the chain in its top left corner. Eventually,
the chain of bulges reaches the bottom right corner of the Hessenberg matrix and disappears
there.

The algorithm described above performs most of its operations in terms of multiplications
with the matrix U . The typical nonzero pattern of U is illustrated in Figure 7. In particular,
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W

A

B

Figure 6: Illustration of the process of moving a tightly packed chain of bulges within a com-
putational window W before updating the off-diagonal submatrices A and B using matrix–
matrix multiplications with an accumulated transformation matrix.

U can be partitioned as

U =

[
U11 U12

U21 U22

]
, (2)

where U12 is lower triangular and U21 is upper triangular. The LAPACK implementation of
the QR algorithm offers two options for exploiting the structure in multiplications with U :
(1) completely ignore it and use one call to xGEMM; (2) exploit the triangular shapes of U12 and
U21 by calls to xGEMM and xTRMM. To be advantageous, Option (2) requires a fairly well-tuned
implementation of xTRMM, which may sometimes not be available. When using Option (1)

Figure 7: Sparsity pattern of the accumulated transformation matrix U for a tightly packed
chain with m = 2, nb = 5, and k = (m+ 1)nb + 1 = 16 (optimal).

with m = 2, the analysis in [4] shows that the flop overhead caused by applying U instead of
the Householder reflectors directly is minimized when choosing k = 3nb.

Remark 3.1 When chasing a bulge one step downwards, it may happen that the updated
subdiagonal element just above the bulge becomes so small that it can be safely set to zero,
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giving rise to a so called vigilant deflation [16]. If the next bulge is moved immediately before
checking for such deflations, the update from the right will engage this subdiagonal element,
making it more difficult to perform the check. On the other hand, to keep the code structure
simple and allow for compiler optimizations, one would like to move all bulges simultaneously
and avoid to perform such checks in between. The LAPACK bulge-chasing routine xLAQR5

achieves this by postponing the update of the last row for each bulge until after the deflation
checks. Interestingly, this postponing of updates will be the key idea for our optimally packed
chains introduced in the next section.

4 Optimally packed chains of bulges

In this section, we aim at condensing the packing of the bulges in a chain. For this purpose,
it is helpful to reconsider Figure 4, illustrating what prevented us from creating a more
condensed packing. The reason why we cannot move the second bulge one step further is
because the application of the corresponding Householder reflector from the right would mix
up the second bulge with the first column of the first bulge. However, this can be prevented
by annihilating the first column of the first bulge by another Householder reflector before
attempting to move the second bulge. Of course, if we immediately applied all updates with
the new Householder reflector then this would just correspond to moving the first bulge one
step away and nothing would be gained in terms of a condensed packing. Hence, the idea is
to delay parts of the updates.

At the minimum, we have to delay the update of the last row. This is shown in the left
illustration of Figure 8, where a bulge is located at column 2 but its last row has not been
formed yet, which is indicated by hollow squares. In each step of chasing the bulge, the
last row is first formed by applying the previous Householder reflector. In its final position,
when the bulge has been chased k steps, the last row of the bulge is again not formed. The
right illustration of Figure 8 shows this configuration after k = 3 steps. This idea leads to
Algorithm 2, which performs bulge chasing with delayed row updates.

Figure 8: Illustration of a bulge with an unformed last row (left) and the same bulge after
being moved k = 3 steps, again with an unformed last row (right).

As explained above, the delayed row updates avoid the interference of the bulges shown in
Figure 4. Hence, we can achieve the packing displayed in Figure 9, where the hollow squares
again denote delayed updates. Comparing this figure with Figure 3 clearly reveals the reduced
length of the optimally packed chain.

When chasing such an optimally packed chain one step, we start with the first bulge and
apply one step of Algorithm 2. This is repeated for the second bulge, for the third bulge,
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Algorithm 2 Bulge chasing with delayed row update

Input: Hessenberg matrixH ∈ Rn×n perturbed by a bulge starting at column i. Previous Householder
reflector V . Number of steps k to chase the bulge.

Output: Updated Hessenberg matrix H perturbed by a bulge starting at column i+ k. Next House-
holder reflector V .

1: for j ← i, . . . , i+ k − 1 do
2: Apply delayed update to last row: H(j +m+ 1, j : j +m)← H(j +m+ 1, j : j +m)V .
3: Construct Householder reflector V̂ ∈ R(m+1)×(m+1) such that V̂ TH(j + 1 : j + m + 1, j) is a

multiple of e1.
4: Update V ← V̂ .
5: Update from the left: H(j + 1 : j +m+ 1, j : n)← V TH(j + 1 : j +m+ 1, j : n).
6: Incomplete update from the right:

H(1 : j +m+ 1, j + 1 : j +m+ 1)← H(1 : j +m+ 1, j + 1 : j +m+ 1)V .
7: end for

Figure 9: Illustration of an optimally packed chain of bulges introduced in the top left corner.
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and so on until all bulges have been processed. Note that it is important that this order is
obeyed.

This completes the basic description of the concept of optimally packed chains. As de-
scribed in Section 3, a chain is chased in a computational window and the updates outside
the window are performed by matrix–matrix multiplications.

5 Analysis and Implementation

5.1 Choice of parameters and flops

The implementation of chasing a chain of bulges depends on a number of parameters, such as
the size of the bulge (m+ 1), the number of bulges in the chain (nb), and the number of steps
(k) the chain is chased inside the computational window. In this section, we will discuss the
choice of these parameters.

To set the stage, we first provide some analysis for tightly packed chains. For the moment,
let us assume fixed m = O(1) and nb � n. The chain length, defined as the number of
rows/columns occupied by the bulges, is given by nb(m + 1), see also Figure 3. The size of
the computational window is given by nb(m + 1) + k + 1. To choose k optimally, we make
the following two assumptions:

1. The number of flops performed inside the computational window is negligible.

2. The structure of the orthogonal transformation matrix U , see Figure 7, is not exploited.

In particular, the second assumption implies that the updates outside the computational
window require approximately

2n(nb(m+ 1) + k + 1)2

flops. On the other hand, chasing a chain of nb bulges k steps effects knb total bulge chasing
steps. Hence, to obtain a minimal ratio between effort and progress, we should minimize the
cost per step:

2n(nb(m+ 1) + k + 1)2

knb
.

It is straightforward to check that the minimum is attained for k = nb(m + 1) + 1. Since in
total nbn steps are needed to chase nb bulges from the top left to the bottom right corner of
the Hessenberg matrix, this optimal choice of k leads to an overall cost of

Ctight = 8n2(nb(m+ 1) + 1).

For an optimally packed chain, the chain length is given by nbm + 1, see also Figure 9,
and the computational window has size nbm+ k + 2. The resulting cost per step is

2n(nbm+ k + 2)2

knb
,

whose minimum is attained for k = nbm+ 2, leading to an overall cost of

Coptimal = 8n2(nbm+ 2).
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To summarize, the use of an optimally packed chain reduces the flops by approximately
1/(m+ 1), amounting to 33% for the usual choice m = 2.

It remains to discuss the choice of m and nb. For optimally packed chains, there is no
apparent advantage of using m > 2. Unlike for tightly packed chains [14], an increase of m
does not lead to a more condensed packing. So we fix m = 2. The choice of nb is much more
subtle, regardless of the packing scheme. An optimal choice depends on the matrix size n
and the performance of the BLAS. It even depends on the matrix entries, as a change of nb
has a hard-to-predict impact on the convergence of the QR algorithm and the behavior of the
aggressive early deflation technique [5] used in modern implementations. In lack of a better
alternative, we suggest to follow the recommendations for tightly packed chains specified in [6,
Table 2] and provided as default option in the LAPACK function IPARMQ.

5.2 Structure of orthogonal transformations

On the computing environments we have considered, exploiting the structure of U , as dis-
cussed in Section 3, only led to negligible speedups at best. Therefore we apply U as a dense
matrix in all our experiments. However, for completeness, we discuss the structure of U also
for optimally packed chains.

The typical nonzero pattern of the orthogonal transformation matrix U obtained by chas-
ing an optimally packed chain is illustrated in Figure 10 for the case m = 2, nb = 7, and
k = 16. This figure should be compared to Figure 7, which illustrates the corresponding
nonzero pattern for a tightly packed chain (with nb = 5). Note that U can again be parti-
tioned as

U =

[
U11 U12

U21 U22

]
,

where U21 is upper triangular and U12 is lower triangular for m = 2. This allows to apply U
by means of calls to the BLAS xGEMM and xTRMM.

Figure 10: Typical nonzero pattern of the orthogonal transformation matrix for an optimally
packed chain with m = 2, nb = 7, and k = mnb + 2 = 16 (optimal).
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6 Numerical experiments

To compare the performance of the new optimally packed chains versus the tightly packed
chains currently used in LAPACK, we have modified the corresponding LAPACK routine
DLAQR5 to make use of optimally packed chains. Very few changes of the code were necessary
and the overall structure of the code remains as described in [6]. Some care needed to be taken
to keep the vigilant deflation strategy intact, see also Remark 3.1. Our new implementation
can be downloaded from http://anchp.epfl.ch.

We have performed tests on two different architectures hosted by the High Performance
Computing Center North (HPC2N) in Ume̊a (Sweden):

• Akka Two Intel Xeon L5420 processors at 2.5 GHz with four cores each and a total of
16 GB RAM. Each core has a private 32 KB L1 cache and pairs of cores share a 6 MB
L2 cache. The code was compiled by the PathScale pathf95 compiler version 4.0.12
using the flags -march=auto -O3 and linked to sequential GotoBLAS2 version 1.13 and
LAPACK version 3.2.2.

• Abisko Four AMD Opteron 6238 (Interlagos) processors at 2.6 GHz with twelve cores
each and a total of 128 GB RAM. Each core has a private 16 KB L1 cache, pairs of
cores, called modules, share a 2 MB L2 cache, and groups of three modules share a
6 MB L3 cache. The code was compiled by the PathScale pathf95 compiler version
4.0.12.1 using the flags -march=bdver1 -msse -msse2 -msse3 -mavx -O3 and linked
to sequential ACML version 5.1.0 and LAPACK version 3.4.0.

In all our experiments, the full Schur form including the orthogonal factor Q is computed.
Both the norm of the residual and the orthogonality of Q have been verified. In none of the
test cases did we observe an essential difference in accuracy.

6.1 Experiments with random matrices

For the first set of experiments, we have generated full matrices with pseudorandom entries
uniformly distributed in [0, 1]. The execution time spent by the LAPACK routine DGEHRD for
reducing these matrices to Hessenberg form is not included in the figures below.

Unless otherwise noted, we have used the default parameters from the LAPACK routine
IPARMQ with the following exception. Throughout all experiments, we explicitly switched
off the exploitation of the 2 × 2 triangular block structure when performing matrix–matrix
multiplications with the orthogonal transformation matrices U , see Section 5.2.

Figures 11 and 12 show the obtained execution times relative to the LAPACK implementa-
tion with the default setting for ns = 2nb (number of shifts), that is, ns = 64 for n ∈ [590, 3000)
and ns = 128 for n ∈ [3000, 6000). For both the LAPACK and the new implementation, we
also show the results obtained when choosing the optimal value of ns ∈ {2, 4, . . . , 170}. Note
that this optimized value of ns is only used in calls to DLAQR5 by the top-level routine DLAQR0.
The lower-level routine DLAQR3, which performs aggressive early deflation, also indirectly calls
DLAQR5, but the size of the involved matrices varies and is typically much smaller. The size
of the aggressive early deflation window is always set to 3nb = 3ns/2, in accordance with the
suggestion in [6].

A number of observations can be made from Figures 11 and 12 Our new implementation
is consistently faster than LAPACK, both for the default and the optimized choice of ns;
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Figure 11: Execution times of the current LAPACK implementation and our new implemen-
tation using the default and optimal number of shifts. The execution times are given relative
to LAPACK with the default number of shifts. Results from Akka.
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Figure 12: Execution times of the current LAPACK implementation and our new implemen-
tation using the default and optimal number of shifts. The execution times are given relative
to LAPACK with the default number of shifts. Results from Abisko.
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the reductions in execution time range between 14% and 23%. Although the optimized and
default choices for ns may differ to a large extent, the impact of this difference on the execution
times is less dramatic. This is illustrated in Figure 13, showing not only that ns strikes a
balance between the time for aggressive early deflations and QR iterations but also that the
target function is quite flat near the minimum.
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Figure 13: The optimal choice of ns is found by trading off the cost for QR iterations against
the cost of aggressive early deflation (AED). This figure was obtained on Abisko using the
new implementation on a random matrix of size n = 3000.

6.2 Experiments with examples from the Matrix Market

Apart from random matrices, we have also tested several matrices from the benchmark collec-
tion [2] available from the Matrix Market. Throughout all experiments, the default choice of
ns has been used. Figures 14 and 15 show the obtained execution times on Akka and Abisko,
respectively. Note that the number in each matrix name refers to the matrix size. With two
exceptions, the results reflect a consistent reduction of the execution time by 16% or more.
This is quite remarkable when taking into account that the reference time by LAPACK may
vary strongly for different matrices of (nearly) the same size.

The Tolosa matrices of size 2000 (tols2000) and 4000 (tols4000) behave exceptionally on
Akka, with only 12% decrease and 9% increase, respectively. A closer investigation reveals
that this effect is caused by a mechanism for avoiding convergence failures, see [6, Pg. 17].
After five multishift QR iterations without any converged eigenvalues, the LAPACK routine
xLAQR0 doubles the size of the aggressive early deflation window after each iteration until
it cannot be increased any further due to workspace limitations. If still no eigenvalues have
converged, the deflation window size is slowly decreased. While the LAPACK implementation
happens to require one large deflation window for tols4000, our new implementation requires
three such large windows until eigenvalues converge, leading to the increased execution time.
A similar situation arises for tols2000. We believe this effect to be purely coincidental and
not related to the use of optimally packed chains. Even the slightest perturbation (e.g., due
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to differences in roundoff error) may make it disappear or even reverse. In fact, this happens
when performing the same experiments on Abisko.
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Figure 14: Comparison between LAPACK and the new implementation for a selection of
examples from the Matrix Market on Akka.

7 Conclusion

We have introduced the concept of optimally packed chains of bulges in the context of multi-
shift QR algorithms, allowing for a significant increase of the computational intensity. Numer-
ical experiments with a modified LAPACK implementation that incorporates the proposed
technique demonstrate its effectiveness. The concept of optimally packed chains is quite gen-
eral and certainly carries over to other bulge-chasing algorithms, such as the multishift QZ
algorithm [12] or parallel implementations of the QR algorithm.
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Figure 15: Comparison between LAPACK and the new implementation for a selection of
examples from the Matrix Market on Abisko.
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