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A Study on Parallelizing XML Path Filtering Using Accelerators

ROGER MOUSSALLI, IBM T. J. Watson Research Center
MARIAM SALLOUM, ROBERT HALSTEAD, WALID NAJJAR, and
VASSILIS J. TSOTRAS, University of California Riverside

Publish-subscribe systems present the state of the art in information dissemination to multiple users.
Such systems have evolved from simple topic-based to the current XML-based systems. XML-based pub-
sub systems provide users with more flexibility by allowing the formulation of complex queries on the
content as well as the structure of the streaming messages. Messages that match a given user query are
forwarded to the user. This article examines how to exploit the parallelism found in XPath filtering. Using
an incoming XML stream, parsing and matching thousands of user profiles are performed simultaneously
by matching engines. We show the benefits and trade-offs of mapping the proposed filtering approach onto
FPGAs, processing streams of XML at wire speed, and GPUs, providing the flexibility of software. This is
in contrast to conventional approaches bound by the sequential aspect of software computing, associated
with a large memory footprint. By converting XPath expressions into custom stacks, our solution is the first
to provide support for complex XPath structural constructs, such as parent-child and ancestor descendant
relations, whilst allowing wildcarding and recursion. The measured speedups resulting from the GPU and
FPGA accelerations versus single-core CPUs are up to 6.6X and 2.5 orders of magnitude, respectively. The
FPGA approaches are up to 31X faster than software running on 12 CPU cores.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing; B.5.1
[Register-Transfer-Level Implementation]: Design; C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems

General Terms: Design, Performance, Experimentation

Additional Key Words and Phrases: Publish-subscribe systems, hardware accelerators, field-programmable
gate arrays (FPGAs), graphics processing units (GPUs), XML
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1. INTRODUCTION

Increased demand for timely and accurate event-notification systems has led to the
wide adoption of Publish/Subscribe Systems (or simply pub-sub). A pub-sub is an asyn-
chronous event-based dissemination system which consists of three components: pub-
lishers, who feed a stream of documents into the system; subscribers, who post their
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interests (also called profiles); and an infrastructure for matching subscriber interests
with published messages and delivering matched messages to the interested subscriber.

Pub-sub systems have enabled notification services for users interested in receiving
news updates, stock prices, weather updates, etc; examples include alerts.google.com,
news.google.com, pipes.yahoo.com, and www.ticket-master.com. Pub-sub systems
have greatly evolved over time, adding further challenges and opportunities in their
design and implementation. Earlier pub-subs involved simple topic-based communica-
tion. That is, subscribers could subscribe to a predefined collection of topics or channels
(e.g., news, weather, etc.) and would receive every document published on the channel.
The second generation of pub-subs consists of predicate-based systems, where user
profiles are described as conjunctions of (attribute, value) pairs, thus improving profile
selection. The wide adoption of the eXtensible Markup Language (XML) as the stan-
dard format for data exchange, due to its self-describing and extensible nature, has
led to the third generation, namely, XML-enabled pub-sub systems. Here, messages
are encoded with XML, and profiles are expressed using XML query languages, such
as XPath.1 Such systems take advantage of the powerful querying that XML query
languages offer: profiles can now describe requests not only on the document values
but also on the structure of the messages.2

XML-based pub-sub systems have been adopted for the dissemination of Micronews
feeds, which are short fragments of frequently updated information in XML-based for-
mats, such as RSS. Feed readers, such as Bloglines and NewsGator, check the contents
of micronews feeds periodically and display the returned results to the user.

The core of the pub-sub system is the filtering algorithm, which supports complex
query matching of thousands of user profiles against a high volume of published mes-
sages. For each message received in the pub-sub system, the filtering algorithm deter-
mines the set of user profiles that have one or more matches in the message. Many soft-
ware approaches have been presented to solve the XML filtering problem [Al-Khalifa
et al. 2002; Diao et al. 2003; Green et al. 2004; Kwon et al. 2005]. These memory-
bound solutions, however, suffer from the Von Neumann bottleneck and are unable
to handle large volumes of input streams. On the other hand, field-programmable
gate arrays (FPGAs) have been shown to be particularly suited for stream processing
large amounts of data and do not suffer from the memory offloading problem faced by
software implementations.

Graphical processing units (GPUs) are also a favorable option for applications re-
quiring massively parallel computations [He et al. 2008; Ao et al. 2011; Kim et al.
2010; Lieberman et al. 2008]. GPUs serve as co-processors to the CPU such that se-
quential computations are run on the CPU while the computationally-intensive part
is accelerated by the highly parallel GPU architecture. The architecture is favorable
for single-instruction multiple data (SIMD) applications, where multiple threads are
running on multiple cores executing the same program on different data.

The contributions of this work are as follows.

—We provide a novel dynamic programming-inspired approach for XML path filtering
which does not result in false positives. Wildcard and recursion (nesting) support is
offered using this solution.

—We present the first implementation and study of an FPGA-based solution to XML
path filtering, using the aforementioned approach. In particular, we examined the
trade-offs of two FPGA-based implementations:

1XML Path Language Version 1.0. http://www.w3.org/TR/xpath.
2In this manuscript, we use the terms “profile” and “query” interchangeably.
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Table I. Summary of Impact of Several Factors on All the Studied Approaches

Factor Software GPU Prog. FPGA Cust. FPGA

Document Size Decreases
throughput rapidly
and greatly affects
the memory
footprint.

Minimally
increases
throughput due to
the reduced
CPU-GPU
transfers.

No effect on the
filtering core.

No effect on the
filtering core.

Query Length Some impact on
throughput (28%)
and large impact
on memory
footprint.

Minimal effect on
throughput, until
over-utilization.

Linear impact on
utilization of
pre-mapped
resources; no effect
on throughput.

Small impact on
area, minimal on
throughput.

Number of Queries Small impact on
throughput.

No effect, until
over-utilization /
the common prefix
opt. helps with
scalability.

Linear impact on
utilization of
pre-mapped
resources; no effect
on throughput.

Linear effect on
area, less on
throughput until
over-utilization.

Percentage of
‘*’ and ‘//’

6% to 30% decrease
in throughput per
10% added.

No effect. No effect. No effect.

(i) using fully customized query matching engines, thus resulting in low resource
utilization.

(ii) using programmable query matching engines to allow (fast) dynamic query
updates.

—We present the first implementation and study of a GPU-based solution to XML path
filtering.

—We provide an extensive performance evaluation of the preceding approaches with
leading software implementations. Our experimental focus is directed towards
batches of small XML documents, which is the most common scenario in practical
pub-sub applications.

This article is an extension of work presented in Moussalli et al. [2010, 2011a].
The additional material specific to this article includes the presentation of a unified
solution to perform path matching queries on accelerators, which can apply to both
FPGAs and GPUs. We also present the first implementation of a programmable FPGA-
based accelerator for XML query matching, allowing on-the-fly updates. An in-depth
evaluation considering mapping queries fully into GPU processing cores is offered. In
addition, a complete new set of experiments is presented, focused on batches of small
XML documents (a common consideration of pub-sub systems), rather than single large
documents (which was the focus in Moussalli et al. [2010, 2011a]). Finally, we include
an extensive end-to-end performance evaluation of the FPGA- and GPU-based ap-
proaches with leading software implementations. A complete comparison (see summary
Table I) is offered, detailing the effect of several factors on CPU, GPU, custom-FPGA-
and programmable-FPGA-based filtering.

The rest of the article is organized as follows. In Section 2, we define the require-
ments and challenges of the XML filtering problem. Section 3 presents related work.
Section 4 provides an in-depth description of the proposed solution targeted for XML
query filtering, while Section 5 describes the filtering architecture on FPGAs. Section 6
presents an experimental evaluation of the FPGA-based and GPU-based hardware ap-
proaches compared to the state-of-the-art software counterparts. Finally, conclusions
appear in Section 7.
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Fig. 1. Example XML Document in (a) textual and (b) tree representations. (c) Sample XML path queries
are displayed, querying the XML document.

2. PROBLEM DEFINITION

XML filtering is the core problem in a pub-sub system. Formally, given a collection of
user profiles and a stream of XML documents, the objective of the filtering algorithm
is to determine, for each document D, the set of profiles that have at least one match
in D.

An XML document has a hierarchical (tree) structure that consists of markup and
content. Markups, also referred to as tags, begin with the character ‘<’ and end with
‘>’. Nodes in an XML document begin with a start-tag (e.g., <author>) and end with
a corresponding end-tag (e.g., </author>). Figure 1(a) shows a small XML document
example, while Figure 1(b) shows the XML document’s tree representation. In this ar-
ticle, we shall use the terms ‘tag’ and ‘node’ interchangeably. For simplicity, Figure 1(b)
shows the tags/nodes (i.e., the structural relationship between nodes) in the XML doc-
ument of Figure 1(a), but not the content (values). The values can be thought as special
leaf nodes in the tree (not shown).

XPath1 is a popular language for querying and selecting parts of an XML document.
In this article, we address a core fragment of XPath that includes node names, wild-
cards, and the /child:: and /descendant-or-self:: axis. The grammar of the supported
query language is given next.

Path := Step | Path Step
Step := Axis Node Test
Axis := ‘/’ | ‘//’
Node Test := name | ‘ ∗ ’

The query consists of a sequence of location steps, where each location step consists of
a node test and an axis. The node test is either a node name or a wildcard ‘*’ (wildcards
can match any node name). The axis is a binary operator that specifies the hierarchical
relationship between two nodes. We support two common axes: the parent/child axis
(denoted by ‘/’), and the ancestor/descendant axis (denoted by ‘//’).

Example path queries are shown in Figure 1(c). Consider Q1 (/dblp/article/year),
which is a path query of depth three and specifies a structure which consists of nodes
‘dblp’, ‘article’, and ‘year’, where each node is separated by a ‘/’ operator. This query
is satisfied by nodes (dblp, 1), (article,2), and (year, 5) in the XML tree shown in
Figure 1(b). Q2 (/dblp//url) is a path query of depth two and specifies a structure which
consists of two nodes: ‘dblp’ and ‘url’ are separated by the ‘//’ operator. Q2 specifies that
the node ‘url’ must be descendant of the ‘dblp’ node. The nodes (dblp,1) and (url,8)
in Figure 1(b) satisfy this query structure. Q3 (/dblp/*/title) specifies a structure that
consists of two nodes and a wildcard. The nodes (dblp,1), (article,2), and (title,4) satisfy
one match, while nodes (dblp,1), (www,6), and (title,7) satisfy another match for Q3.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 93, Publication date: February 2014.
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In a pub-sub system, XML documents are received in a streaming fashion, and
they are parsed by a SAX parser,3 the latter generating startElement(name) and
endElement(name) events. Designing an XML pub-sub system raises many technical
challenges due to the high volume of XML messages and the complexity and size of
user profiles.

3. RELATED WORK

As traditional platforms are increasingly hitting limitations when processing high vol-
umes of streaming data, researchers are investigating FPGAs and GPUs for database
applications. The performance advantages of such platforms arise from the ability
to execute thousands of computations in parallel, relieving the application from the
sequential limitations of software execution on Von-neumann-based platforms.

The Glacier component library is presented in Mueller et al. [2009], which includes
logic circuits of common operators, such as selection, aggregation, and grouping, for
stream processing. The use of FPGAs in a distributed network system for traffic con-
trol information processing is demonstrated in Vaidya et al. [2010]. Predicate-based
filtering on FPGAs was investigated by Sadoghi et al. [2010], where user profiles are
expressed as a conjunctive set of boolean filters. Our focus differs from this work, since
we consider XML streams and complex query profiles expressed using a fragment of
the XPath query language, which includes complex relationships between elements,
such as parent-child, ancestor-descendant, and wildcards.

GPUs have evolved to the point where many real-world applications are easily imple-
mented and run significantly faster than on multicore systems; thus, a large number
of recent work has investigated GPUs for the acceleration of database applications [He
et al. 2008; Ao et al. 2011; Kim et al. 2010]. He et al. [2008] utilized GPUs to accelerate
relational joins, while Kim et al. [2010] present a CPU-GPU architecture to accelerate
tree-search, which was shown to have low latency and to support online bulk updates
to the tree. Recently, Ao et al. [2011] proposed the utilization of GPUs to speed up
indexing by offloading list intersection and index compression operations to the GPU.

3.1. Software Approaches to XML Filtering

The popularity of XML has triggered research efforts in building efficient XML filtering
systems. Several software-based approaches have been proposed and can be broadly
classified into three categories: (1) FSM-based, (2) sequence-based, and (3) other.

Finite state machine (FSM)-based approaches use a single or multiple machines to
represent user profiles [Altinel and Franklin 2000; Diao et al. 2003; Green et al. 2004;
He et al. 2006; Moro et al. 2007]. An early work, XFilter [Altinel and Franklin 2000],
proposed building an FSM for each profile such that each node in the XPath expression
becomes a state in the FSM. The FSM transitions are executed as XML tag events are
generated. The profile is as a match when the final state of its FSM is reached. YFilter
[Diao et al. 2003] built upon the work of XFilter and proposed a nondeterministic
finite automata (NFA) representation of user profiles (i.e., path expressions) which
combines all profiles into a single machine, thus reducing the number of states needed
to represent the set of user profiles. Whereas YFilter exploits prefix commonalities,
the BUFF system builds the FSM in a bottom-up fashion to take advantage of suffix
commonalities in profiles [Moro et al. 2007]. Several other FSM-based approaches were
introduced that use different types of state machines [Green et al. 2004; Gupta and
Suciu 2003; Peng and Chawathe 2003; Ludäscher et al. 2002].

Sequence-based approaches (e.g., [Kwon et al. 2005; Salloum and Tsotras 2009])
transform the XML document and user profiles into sequences and employ subsequence

3Simple API for XML. http://sax.sourceforge.net.
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matching to determine which profiles have a match in the XML sequence. FiST [Kwon
et al. 2005] was the first to propose a sequence-based XML filtering system which
transforms the query profiles and XML streams into Prufer sequences, then employs
subsequence matching to determine if the query has a match in the XML stream.

Several other approaches have been proposed [Chan et al. 2002; Candan et al. 2006;
Gou and Chirkova 2007]. XTrie [Chan et al. 2002] uses a trie-based data structure
to index common substrings of XPath profiles, but it only supports the /child:: axis.
AFilter [Candan et al. 2006] exploits both prefix and suffix commonalities in the set
of XPath profiles. More recently, Gou and Chirkova [2007] have proposed two stack-
based stream-querying (and filtering) algorithms, LQ and EQ, which are based on lazy
strategy and eager strategy, respectively.

3.2. Hardware-Accelerated Approaches to XML Processing

Previous works [Dai et al. 2010; El-Hassan and Ionescu 2009; Lunteren et al. 2004] that
have used FPGAs for processing XML documents have mainly dealt with the problem
of parsing and validation of XML documents. An XML parsing method which achieves
a processing rate of two bytes per clock cycle is presented in El-Hassan and Ionescu
[2009]. This approach is only able to handle a document with a depth of at most 5, and
assumes the skeleton of the XML is preconfigured and stored in a content-addressable
memory. These approaches, however, only deal with XML parsing and do not address
XPath filtering.

Lunteren et al. [2004] proposed the use of a mixed hardware/software architecture
to solve simple XPath queries having only parent-child axis. A finite-state machine
implemented in FPGAs is used to parse the XML document and to provide partial
evaluation of XPath predicates. The results are then reported to the software for further
processing. This architecture can only support simple queries with only parent-child
axis.

When considering FPGAs, a tempting solution is to implement previously proposed
XML filtering approaches on hardware without modification. However, although a
given approach is efficient on traditional platforms, the same approach may not be
the best implementation in hardware, given that FPGAs have completely different
design constraints. For instance, DFA was shown to provide advantages over NFA-
based approaches [Green et al. 2004]. However, FPGAs are limited by area and DFAs
may suffer from state explosion, thus NFAs are a better approach when considering
FPGAs.

Our previous work [Mitra et al. 2009] was the first to propose a pure-hardware
solution to the XML filtering problem. We adopted an NFA approach to XML filtering
by representing queries as regular expressions, and improvements of over one order of
magnitude were reported when compared to software. However, that method is unable
to handle recursion (nesting) in XML documents or wildcards ‘*’ in XPath profiles;
such issues, as well as various optimizations, are handled by the novel architecture we
present in this article.

We presented [Moussalli et al. 2011a] the first implementation of the XML filtering
problem onto GPUs. By extending the approach described in Moussalli et al. [2010],
we made use of the programmability aspect of GPUs to tackle the issue of static
queries. We also studied common prefix optimizations to the query set, with the goal of
speeding up execution, by minimizing computation. Speedup was reported over state-
of-the-art CPU approaches. In this work, we provide a more thorough evaluation of
the implementation of an GPU-based XML query matching engine. We also provide a
performance comparison with FPGA-based approaches.

In Moussalli et al. [2011b], we considered complex twig matching on FPGAs (i.e.,
the profiles can be complex trees). Instead, we concentrate here on path profiles due to
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Fig. 2. Overview of the matching of pair {a/b}. Each step refers to an open(tag) or close(tag) event, relative
to the highlighted tag. A ‘1’ in the b column indicates a match.

their less complex nature and inherent parallelism that can be exploited by the FPGA
and GPU. We also show how to support path profiles with on-the-fly updates using
FPGAs.

4. PARALLEL XPATH FILTERING SOLUTION

We now introduce a solution that identifies the parallelism inherent in path matching
and thus applies to both FPGA and GPU approaches.

A user query expressed in the XPath language is comprised of J nodes and J-
1 relations, where each pair of nodes shares a relationship: parent/child or ances-
tor/descendant. A path query of length J is said to have matched if a sequence of nodes
in the XML document sharing the same relations as the tags in the query has occurred;
this is only true if the subpath of length J-1 has moreover matched. Next, we present
a stack-based generic XPath filtering algorithm which will be used for our parallel
implementations. We first focus on the matching of the base case (i.e., paths of length
2, or simply pairs), and then extend it to general paths.

4.1. Pairs Matching

Using an XML stream as input, we look at the matching of pairs’ relationships.

4.1.1. Parent/Child Relationships. Stacks are an essential feature of XML filtering sys-
tems, where the respective states of all open (non-closed) nodes in the XML tree are
saved. Using the presented solution, an open(tag) is translated into a push event, and
conversely, a close(tag) is equivalent to a pop event. Matching for {a/b} now requires a
stack as deep as the maximal depth of the XML document and as wide as 2: one column
for each a and b. This is a binary stack that can be filled with 1’s and 0’s based on the
match state, as explained next, where a ‘1’ indicates a match.

Each query node is allocated a match state for every tree level (node in the tree). As
such, nesting (recursion) in the XML document is supported, where the level of each
tag in the tree differentiates it from other similar tags. Furthermore, two tags cannot
simultaneously coexist at the same tree level (one has to be popped before pushing the
other).

Through the streaming of the XML document, for every open(a) event, a ‘1’ is pushed
on the first column (the a column), indicating that a has been opened at that level. On
the other hand, every time an open(b) event occurs, if the first column contains a ‘1’
on the previous top of the stack, only then can a ‘1’ be pushed onto the second column
(diagonally upwards propagating ‘1’), indicating that b as a child of a has been found.
Checking for levels is implied, since neighboring rows share a parent/child relation by
design. Note that on each push event all columns are simultaneously updated at the
top of the stack.

Figure 2 shows the event-by-event matching of the pair {a/b} in a sample XML
document. The XML document to be streamed is drawn on the left-hand side, whereas
a stack of width 2 is shown to the right. Each column is labeled with the corresponding
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Fig. 3. Overview of the matching of pair {c//d}. Each step refers to an open(tag) or close(tag) event, relative
to the highlighted tag. A ‘1’ in the d column indicates a match.

tag of the {a/b} pair. Note that support for recursion is depicted under event 3, where
each occurrence of the a tag in the XML document has a corresponding state (row) in
the stack.

4.1.2. Ancestor/Descendant Relationships. Using the stack-based approach, every
ancestor/descendant pair is also mapped to a two-column stack as deep as the XML
document. When matching for {c//d}, a ‘1’ is pushed on the first column (the c col-
umn) at every open(c) event. However, d does not require c to be its parent, rather its
ancestor; therefore, as long as c has not been closed (i.e., for all its descendants), a
‘1’ is pushed alongside each pushed descendant. Hence, any descendant open(d) event
should result in a ‘1’ being written to the second column. The tree node c is popped
(upon a close(c) event) after all its descendants are popped (i.e., each respective stack
row of each descendant), and with it any record of c being pushed.

To highlight this property, a ‘1’ is allowed to propagate vertically upwards in the
column of the ancestor (here, the first column). It is also true that the top of the stack
at both columns can be updated simultaneously. Figure 3 shows the event-by-event
matching of the pair {c//d} in a sample XML document.

4.2. Custom Stacks for Path Matching

We can now move to general paths by considering their pairs. For instance, the path
{a/b//c/d} can be broken down into pairs {a/b}, {b//c}, and {c/d}. The mechanisms
described in Section 4.1 hold for all pairs, where, based on the relation, a ‘1’ is allowed
to propagate vertically or diagonally upwards (or both). Matching a path of length J
requires a stack of width J columns (one for each node): all pair stacks are merged at
the common node’s columns. A ‘1’ in the jth column ( j ≤ J) indicates that the path of
length j was found in the XML document. Thus, for a successful match to occur, a ‘1’
has to propagate from the path’s root (1st column) to the leaf (Jth column).

The matching approach can be thought of as dynamic programming, where the
stacks are binary stacks, and a ‘1’ in the query leaf (jth) column indicates a match.
The recurrence equation encompasses both checks described for parent/child and an-
cestor/descendant relations, as needed per query node.

Figure 4 shows an event-by-event overview of all the steps required for the matching
of the XPath {a/c/a/c/b}.

When the open(a) event takes place initially, the first column of the stack would
store a ‘1’. Consequently, with an open(c) event occurring, a ‘1’ is stored in the second
column, allowing the previous partial match stored in column 0 of the previous top
of the stack to propagate diagonally upwards. In other words, an open(c) event alone
is not enough to validate the matching of tag ‘c’. The fourth column (under the same
event) demonstrates this behavior, for no matching was reported, due to no diagonally
propagating ‘1’.

Support for recursion is depicted under the third event, where both the first and
third columns indicate a match for tag ‘a’ simultaneously, thus, allowing two possible

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 93, Publication date: February 2014.
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Fig. 4. Overview of the matching of XPath {a/c/a/c/b}. Each step refers to an open(tag) or close(tag) event,
relative to the highlighted tag. A ‘1’ in the right-most column indicates a match.

matches of the same XPath to be in progress concurrently: one having started at event
1, the other at event 3.

With an open(c) as the fourth event, both previous partial possible matches propagate
diagonally. The occurrence of tags irrelevant to the XPath query has no negative effect
on the matching process. For instance, with d pushed onto the stack at the fifth event,
no partial matches are propagated. Moreover, roll-back to the previous state took place
with the close(d) event taking place, thus popping the top of stack.

A third partial possible match spawns off on at event 7 (first column), while the first
partial match that awaited an open(b) event had to stop propagation for the moment
being and can only resume matching until the currently pushed a is popped.

Propagation of partial matches resumes in event 8. Ultimately, a match has been
found in event 9, thanks to the partial matching starting propagation from event 3. A
match can be seen as a diagonal of 1’s, ending in the fifth column.

4.3. Matching Stack Properties

We refer to our stacks as path-specific stacks (PSS), where every path is mapped to
a stack whose width is defined by the path length, and conditions to write to every
column are determined by the path nodes and the relations connecting them. Here are
some properties of the PSS.

—A PSS is written to push events only.
—Pop events only affect the pointer to the top of the stack.
—A ‘1’ can propagate diagonally upwards from and to any two adjacent columns con-

necting a parent or ancestor to a child or descendant, respectively.
—If the node mapped to a column is an ancestor, then a ‘1’ can propagate vertically

upwards; this helps indicate matches to all descendants.

4.4. Inherent Parallelism

Since an XML-enabled pub-sub system involves multiple profiles processed over
the same document data stream, it is possible to utilize parallel architectures for
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accelerating its filtering performance. Using our proposed stack-based approach, two
levels of parallelism can be pursued here.

(1) Inter-query parallelism. All queries (stacks) can be processed in a parallel fashion,
even when stack columns are shared among queries (e.g., when applying the com-
mon prefix optimization). This parallelism is available due to the embarrassingly
parallel nature of the filtering problem.

(2) Intra-query parallelism. Updating the state of all nodes within a query (top of stack
at every column) can be achieved in parallel.

Each user profile can be implemented on the FPGA unit as a hardware datapath cir-
cuit, and with appropriate optimizations, it is possible to fit up to tens of thousands of
queries on a single FPGA chip. Moreover, having the parallel processing modules imple-
mented on the same chip eliminates the need for expensive communications between
them. This in turn allows for full pipelining of the parsing and filtering processes: as
an event is produced by the parser, it is immediately forwarded to the filtering module,
implemented on the same FPGA chip (added level of parallelism). Section 5 elaborates
on the details of a full-hardware XPath filtering engine using FPGAs.

Similarly, GPUs are suitable for general-purpose applications where thousands of
simple computing cores perform one common operation (at a time). We look into map-
ping query stacks and columns to each of those computing cores to process XML docu-
ments and perform filtering at a high throughput.

When mapped to FPGAs, the proposed approach has virtually no memory footprint:
as the XML document is streamed, filtering is performed in the FPGA at wire speed
without relying on external memory. Similarly for GPUs, memory offloading is minimal,
with stacks localized to low-latency shared memories, whereas pure CPU approaches
build data structures up to two orders of magnitude larger than the XML document
streamed. It is typical for large data structures to result from software techniques due
to intermediate state saving. While two orders of magnitude is not characteristic, it
has been reached.

4.5. Support for Predicate Expression Evaluation

The preceding discussion focused on identifying whether a profile structure appears
within a document. Nevertheless, user profiles can specify not only the XML structure,
but may also content predicate expressions. The XPath query language allows the
specification of predicates to filter the node set with respect to the current axis.

Predicate expressions perform comparisons using <, >, ≥, ≤, =, and ! = operations,
and these expressions can be combined by and and or. Though the XPath language
provides support for even more complex functions, such as mod for evaluating numbers,
generally simple predicate comparisons are most common for XML filtering.

While structure evaluation is more challenging and requires the use of stacks, etc.,
predicate evaluation comprises of content identification and can thus be migrated to
the parser. Predicates can then be treated as additional tag identifiers in intercolumn
relations. Conditions to propagate a ‘1’ across two columns will be slightly modified to
incorporate predicates; thus, in the parser, predicate output must also evaluate to ‘1’.
In addition, by migrating predicate evaluation to the parser, we can take advantage of
the commonalities in predicates across queries.

Thanks to the massive parallelism of FPGAs, all predicates can be evaluated in
parallel. In the case where one or more predicates require more than a cycle to be com-
puted, we envision that predicate evaluation can be performed in a pipelined manner;
hence, there would be no impact on throughput. Further, since XML events are less
frequent than the parsing rate, the time window allocated to compute predicates could
be large enough not to incur any extra pipelining.
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Fig. 5. High-level FPGA-based system overview.

The discussion on predicate support here helps as proof of concept. There are several
types of predicates, and different efficient evaluation engines can be tailored to each
type. This opens several research questions. Moving predicate evaluation to the parsers
allows it to be abstracted from querying the structure of XML documents. We leave
further related discussion and in-depth study on predicate evaluation to future work.

Our work targets mainly the (more complex) filtering on the structure of the XML
profiles, rather than content; thus parsers are orthogonal to our filtering system. High
performance and optimized parsers can be deployed in our system with minimal mod-
ification required.

5. XPATH FILTERING ON FPGAS

Using an XML stream as input, we present a full-hardware XPath filtering system on
FPGAs; this section describes the details of the proposed approach. Two implemen-
tations of the stack algorithm described in Section 4 are explored; the first targeting
setups where the query lifetime is considerably longer than that of the streamed XML
document (Section 5.2); the second implementation targets queries that are updated
regularly (Section 5.3). In the first approach, the soft circuit is fully customized and
thus more profiles are “packed”, but to update profiles, one has to regenerate the cir-
cuit description and go through the lengthy synthesis/place and route process. Instead,
the focus of the second approach is on supporting dynamic profile updating through a
generic circuit where each profile is configured, at the cost of fitting fewer profiles on
the FPGA.

5.1. System Architecture

Our hardware filtering architecture assumes an XML document stream as input. As the
document is streamed, it is being parsed on the fly, and open(tag) and close(tag) events
are generated and passed to the query matching engines (i.e., path-specific stacks).
Using these, all query matching engines are updating states to find occurrences of
paths within the streamed document. As a result, matching ends when the XML stream
is complete, and all match states can then be reported. Figure 5 illustrates a high-level
view of the system architecture.

Parsing is achieved using a lightweight hardware implementation of the Simple
API for XML (SAX) Parser.3 The SAX parser is an event-driven XML parser, ideal for
streaming applications. Unlike other parsers (such as DOM4), where the entire XML
document needs to be stored in memory before processing can start, SAX Parsers would
generate open(tag) and close(tag) events on the fly.

The deployed FPGA lightweight parser operates at a rate of one byte of XML
per cycle. As (open(), close()) events are less frequent than bytes, the parser will not

4w3.org/DOM. http://www.w3.org/DOM.
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produce one event per cycle. Efficient hardware parsers based on the implementation in
El-Hassan and Ionescu [2009] parse at a rate of up to 4 bytes per cycle, with an average
of 2 bytes per cycle.

The SAX parser makes use of a tag decoder, resulting in considerable savings in FPGA
resources, since tags are shared across several queries. The tag decoder is implemented
as a content addressable memory (CAM) which, when given a tag, searches through all
entries in parallel and requires a single cycle to generate the decoded tag address.

Figure 5 shows how a tag decoder would operate in parallel with a SAX parser in
order to generate open and close tag events, with a tag being a single bit-line out of the
possible n decoded ones. Note that only one of those bit-lines is high at a given event,
and all lines are cleared otherwise.

Since all stacks on chip would be updating concurrently, the top of stack address
(common to all stacks) is centralized, being generated from a common structure, which
in turn requires push (open) and pop (close) notifications from the SAX parser. This
is depicted in Figure 5, where the top of stack (TOS) address is routed to a structure
referred to as the global stack and to all remaining path-specific stacks.

The decoded tag ID output of the tag decoder is pushed onto the global stack upon
open() events. Moreover, the global stack uses the common top of stack address structure
and passes its output to all the matching engines. The global stack is added to keep track
of the XML node at one level lower and is only used in the matching engines described
in Section 5.2.2. The global stack is mapped to on-chip block RAMs (BRAMs)5—highly
configurable hard-wired memory blocks that are embedded in most Xilinx FPGAs.

Finally, with up to tens of thousands of matching engines coexisting on chip, re-
porting matches becomes a more complicated issue, where mapping each match signal
exclusively to an FPGA pin is not an option. Our previous approach [Mitra et al. 2009]
suggested the use of priority encoders, where upon the event of a match, the unique
encoded ID of the expression is returned. However, such an approach fails to acknowl-
edge multiple matches occurring concurrently. XPath profiles {a//b} and {c/a/d/b}
are such examples.

For the application of interest (filtering), the number of matches of each profile is of
no relevance, rather whether or not there was at least one match. Thus, the matching
logic is enhanced with one-bit buffers relative to each PSS (Buffering Logic, Figure 5);
these buffers are connected serially. Upon the completion of the input stream, all
of these results would be streamed out in a pipelined fashion, with a single bit-port
required. There would be N cycles of overhead required for this mechanism to complete
streaming out, with N being the number of profiles. This overhead is typically minimal
when compared to the size of the documents streamed through the FPGA. In order to
reduce this overhead, reporting results back can be parallelized with the streaming
in of a new XML document. This is achieved through the buffering of the final match
state of each query.

5.2. Fully Customized FPGA Hardware

In this section, we describe the low-level implementation details of the path-specific
stacks (PSS), that is, the matching engines as described in Section 4.

5.2.1. Matching XPaths Using Path-Specific Stacks. Stacks are implemented using dis-
tributed memory blocks, that is, memory structures on Xilinx FPGAs that comprise
of slice LUTs. The stack width (number of stack columns) is equal to the length of the
XPath mapped to it, whereas the stack depth is the maximum streamed XML document
depth. The latter is determined offline at compile time.

5Block RAM v1.00a. http://www.xilinx.com.
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Fig. 6. Hardware logic connecting two PSS columns with the jth and ( j + 1)th column sharing (a) a par-
ent/child relation, and (b) an ancestor/descendant relation. If the child/descendant node is a wildcard, the
AND gate and a tag bit are not needed.

Based on the relation of every two nodes in the path mapped to the PSS, the input to
every column is determined as depicted in Figures 6(a) and 6(b). In case of a parent/child
relation (Figure 6(a)), a ‘1’ is pushed to the jth column:

—on the open() event of the tag mapped to the jth column (as determined by the parser
and decoder)

—only if a ‘1’ is stored at the top of stack of the ( j − 1)th column.

On the other hand, in case of an ancestor/descendant relation (Figure 6(b), where
the jth node is an ancestor), the same conditions as a parent/child relation hold, with
the addition of OR-ing the output of the jth column to the output of the AND gate,
which would force pushing a ‘1’ once it was written, thus preserving the property of the
ancestor.

If the child/descendant node is a wildcard (e.g., {.../A/*/...}, {.../A//*/...}), any tag would
result in the propagation of the match from the ( j−1)th column. Thus, there would be no
need for a comparison with any decoder bit, resulting in the omission of the AND gates
shown in Figures 6(a) and 6(b). In the case of a parent/child relation with a wildcard
as child (Figure 6(a)), the output of the ( j − 1)th column is connected to the input of
the jth column, with no extra logic in between. In the case of an ancestor/descendant
relation with a wildcard as descendant (Figure 6(b)), the output of the ( j − 1)th column
is connected to the OR gate preceding the jth column.

5.2.2. Applied Optimizations for PSS-Reduced Resource Utilization. As described in Sec-
tion 5.2.1, the width of every PSS is equivalent to the depth of the XPath profile
mapped to it. In this section, three optimizations are proposed with the goal of mini-
mizing the number of required stack columns, hence utilized FPGA resources. We focus
on optimizing the PSS mapping of the same XPath profile used as a base example in
Figure 4.

The first optimization relates to removing the column respective to the last query
node. This is a simple optimization. When the last node is evaluated to match, the
match bit is instead stored in some buffering logic. There is no need to keep track of
the match state of the last node at every document level, since no other nodes depend
on it.

The remaining two optimizations make use of the global stack, a structure shared
by all matching engines (hence global), first introduced in Section 5.1 and Figure 5.
At every open() XML event, the decoded representation of the respective opened tag is
pushed onto the Global Stack. Conversely, every close() XML event results in popping
from the global stack. The top of the global stack output (TOS) is made to reflect the
parent tag of the currently active tag.
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Fig. 7. Hardware logic depicting the implementation of the filtering engine respective to query {a/c/a/c/b},
(a) without and (b) with the third stack optimization.

The second optimization relates to removing the column respective to the query
root node. The top of the global stack reflects the decoded representation of the active
XML tree tag. It hence also represents the match state of all query root nodes through a
respective TOS bit. Evaluating the match state of the second node in a query is achieved
by reading the TOS bit of the root node (implicit root stack column) and the current
decoded tag. Figure 7(a) depicts a query implementation based on this optimization.
Further explanation is provided next.

The third optimization helps reduce the number of PSS columns to the maximum
number of node matches that can be set per XML event. A given node in a query
can become in a matched state if the previous node is in a matched state and if the
current active XML document node’s tag matches that of the node in question (as seen
in Figure 6(a)). In other words, at a given node in the XML document, the only query
nodes that could result in being matched are the nodes whose tag is identical to the
XML node’s tag.

For example, assuming queries Q1{A/B/C} and Q2{D/C/E}, upon an open(C) XML
document event, only node 3 of Q1 and node 2 of Q2 could result in being in a matched
state (the nodes with tag C).

This implies that some column entries are not utilized, and this can be deduced from
the decoded XML tag at a given level, alongside the tag of the node mapped to this
given column. For instance, an entry in a ‘C’ column can be only set to ‘1’ (matched)
at a level where the XML document has a ‘C’ tag. The latter can be deduced from the
global stack.

Therefore, query nodes are nonconflicting if they cannot be in a matched state at the
same XML level. Nonconflicting nodes can share a stack column.

Wildcard and ancestor/descendant nodes conflict with any other node, since they
can be in a matched state at any given XML node. Therefore, wildcard and ances-
tor/descendant nodes can under no conditions share stack columns.

When building the PSS with the third optimization on, the added rule is to map every
node to the first column to which no conflicting nodes are mapped. Tested columns for
mapping start from the root of the query up to the node in question. If no such column
is found, a new column is instantiated.

We show in Figures 7(a) and 7(b) the hardware logic depicting the implementation of
the PSS’s respective to query {a/c/a/c/d}, without and with the third optimization on;
the first two optimizations are applied to both implementations. Note that the event-
by-event detailed matching steps of this query were previously presented in Figure 4.

Looking at Figure 7(a), stmatching for the first query node {a/} is achieved by using
the global stack, as described in the second optimization earlier. The advantage of
using a global stack is relevant with multiple query engines on the FPGA, rather than
just one. The last query node does not require a stack, as described by the first stack
optimization earlier. All other query nodes require a 2-input AND gate alongside a
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stack column. When reading from the global stack and tag decoder, a single bit of each
tag is forwarded to the AND gate based on the respective tag. Every AND gate in
Figure 7(a) reflects the node implemented through it.

On the other hand, when making use of the third stack optimization, the second and
third nodes ({c/} and {a/}) can share a stack column, since they are nonconflicting. The
fourth node {c/} conflicts with the second, since they share the same tag. Thus, two AND
gates are connected at the input of the first column, with their outputs merged (OR-ed).

The AND gate respective to node {a/} reads the output of the first column (though
it writes to it), while also reading the global stack tag(c) output bit; the latter will
ensure whether a match indicated at the output of the first column was resulting from
a previous {c} as a parent of the current XML document node.

Similarly, since the first column stores information respective to more than one node,
the AND gate reading from that first column requires a global stack bit to filter out the
matches resulting from the previous {c/} node.

Finally, since the second column stores the match state of only one node, the AND
gate reading from it does not make use of the global stack.

Savings in Resources. Every stack column is implemented through an FPGA LUT
(look-up table); the number of LUTs needed to implement the logic between columns is
dependent on the number of unique input bits to this logic versus the physical number of
LUT input bits. For instance, a 6-input boolean function can be implemented using one
6-input LUT or two 5-input LUTs. The LUT size is a physical constraint of the FPGA
used. Typically, modern FPGAs make use of 5-input LUTs. Assuming such LUTs, the
PSS implementation in Figure 7(a) requires seven LUTs (four for logic, three for stack
columns), while the implementation in Figure 7(b) requires five LUTs (three for logic,
two for stack columns).6

5.3. Programmable FPGA Hardware for Fast Update Time

In this section, we introduce an FPGA-based approach for XML filtering, targeting ap-
plications requiring frequent query updates. In the approach presented in Section 5.2,
the profiles are identified prior to synthesis, and every hardware PSS is connected
to exactly the signals needed for filtering. Updating queries would require an up-
dated hardware description. Going from hardware description to FPGA configuration
includes synthesis/place and route—processes that can take up to several hours de-
pending on the resulting circuit size. Here, the latter is mostly bounded by the total
number of query profiles. Hence, using a fully-customized accelerator works well when
targeting applications where the lifetime of the query is much longer than that of the
document.

5.3.1. Programmable Path-Specific Stacks. For applications where user profiles are up-
dated regularly, we present a generic customizable PSS whose functionality is similar
to that of a custom non-optimized PSS. So far, select wire signals are routed to each
stack column from the tag decoder and global stack. Here, focus is shifted to allow
a stack column to match for any tag followed by any relation. Every column will be
programmed to support matching for one tag and relation per configuration.

The optimization of mapping several distinct tags to one column, as described in
Section 5.2.2, is not applied to the programmable path-specific stacks. Instead, exactly
one query node is mapped to a respective column. A ‘1’ propagates diagonally only
between two adjacent columns.

6These results were generated through Synplify Pro 2010-09 (synthesis) and Xilinx ISE 14 (PAR). Although
LUT sharing did not take effect here, column optimizations would still result in area savings when LUT
sharing is applied on XPath queries.
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Fig. 8. Programmable FPGA hardware overview, with emphasis on the column connections. The XML input
passes through the parser and programmable tag decoder. Every decoded tag bit is connected to the logic
preceding one column; every query node is mapped to a column. The connections between two columns can
be programmed by writing to the (striped) flip-flops. A node can be a root node in the query (see Root), can
be a wildcards (see ‘*’), or can be followed by a parent/child relation or ancestor/descendant (see ‘//’). The use
of any of these is optional and node-dependent.

The programmable FPGA logic consists of a set of stack columns connected serially
(see Figure 8). In between each two columns lies the programmable logic implementing
a single query node, enabling the propagation of ‘1’s.

The XML input stream passes through the parser and tag decoder. The tag decoder
is now made programmable such that every tag-decoded tag bit is connected one query
node. Hence, tag decoder contents could contain duplicates. The number of tags in the
decoder is equal to the number of available hardware columns.

Figure 8 shows the configurability of the connecting logic between two columns and
the support for the following.

—Any Tag. The tag required by a query node is stored in the programmable decoder
and forwarded to this column logic only.

—Roots. A query node can be a root by logically disconnecting it from the previous col-
umn. A ‘1’ stored in the leftmost flip-flop would overwrite any output of the previous
column (see OR gate with Root).

—Wildcards. In case of a wildcard, a ‘1’ is stored in a flip-flop and OR-ed with the
respective tag decoder bit (see OR gate with ‘*’). The OR gate has no effect in case
of a ‘0’ stored in the input flip-flop and would otherwise nullify the effect of the
multiplexer output.

—Parent/Child Relations. As in the custom PSS, an AND gate is required to ensure
that a ‘1’ is stored in the top of stack of the previous column and that the required
tag has been opened (see AND gate with ‘/’).

—Ancestor/Descendant Relations. Similar to a PSS, if a node mapped to a column is an
ancestor, then the input to the column is OR-ed with its top of stack output. Support
for ancestor/descendant relations is provided by using an OR gate (labeled with ‘//’)
that takes as input the output of a multiplexer. The select bit (stored in a flip-flop) is
used to forward to the OR gate either the output of that column (feedback signal) or
ground (a ‘0’), the latter having no effect on the output of the AND gate.

Every column has a ‘match’ bit-buffer indicating whether or not a match occurred
at its query node. Once streaming of the XML document is completed, all the column
match bits are read as results. The match state of the leaf nodes would be of interest.

All configuration flip-flops are shown as striped, and all flip-flops across all tags
in the decoder and all column configuration flip-flops are connected as a single shift
register; generic stacks are programmed in a serial fashion. A query is now repre-
sented as a sequence of bits that control the hardware. The FPGA logic needs to be
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Fig. 9. Design space exploration on 2K queries mapped to customized stacks on a Xilinx V6LX240T FPGA:
as the cluster size is varied, the effect on performance is studied. The low frequency in the inner fan-out region
is due to the many queries per cluster. Pipelining the input stream across clusters will fight over-clustering
(effect visible through a maintained high frequency in the outer fan-out region).

synthesized/placed and routed only once initially, and all query updates are applied by
streaming the bits that represent the queries, one bit at a time.

We provide [Moussalli et al. 2011b] a description of custom FPGA hardware for
matching queries expressed as twigs. These are more complex queries that require two
types of stacks: push stacks which are updated on push events as described earlier, and
pop stacks which update mostly on pop events. Twig queries are broken up as several
split node to split node paths; each path requiring one push stack and one pop stack
for filtering. As a first natural exploration step, we focus on adapting path queries to
programmable hardware and GPUs; as part of our future work and based on the work
detailed in this article, we will be investigating a similar, yet more complex, framework
targeting twig queries. With twigs, the stacks respective to the smaller broken-down
paths should be connected. These connections between several stacks should become
programmable, which adds another level of complexity to the resulting architecture.

5.4. Performance Optimizations

A limiting factor in FPGA performance is the frequency at which the circuit will run
on-chip. This operational frequency is bound by the length of the longest wire (i.e., the
critical path).

With respect to our design, the tag decoder and global stack outputs are forwarded
tens of thousands of matching engines. This creates a fan-out problem, where a single
wire is used all over the FPGA chip. In order to minimize the effect of fan-out, we resort
to clustering by replicating the parser, tag decoder, and global stack, and distributing
queries across clusters.

Figure 9 depicts a design space exploration to determine the adequate cluster size in
order to achieve a good balance between fan-out within clusters (i.e., too many queries
per cluster), and overclustering (i.e., too few queries per cluster). Results are generated
using Synplify Pro 2010-09 (synthesis) and Xilinx ISE 14 (PAR) targeting a Xilinx
V6LX240T FPGA. While setting the total number of user profiles to 2K, the cluster
size was varied from 8 to 2K in steps of doubling the cluster size. The operational
frequency peaks for clusters of size 256 (tolerable inner-fanout). As the number of
clusters doubles, this peak in operational frequency is only maintained when buffering
the XML stream across clusters; otherwise, the operational frequency deteriorates due
to overclustering. Moreover, overclustering increases resource utilization to replicate
the parser and global stack, and it reduces opportunities to exploit commonalities
across queries if desired; this occurs when mapping less than 64 queries to a single
cluster. Therefore, we conclude that the cluster size should be of size 128 or 256 queries
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in order to achieve resource/performance balance. Note that when doubling the query
size, the cluster size should be halved.

5.5. Query Compiler Overview

Hardware is automatically generated from user-defined XPath queries using a
query compiler developed in C++. The automatic hardware generation step requires
around one second. The most notable compiler options include setting a cluster size
(Section 5.4), generating custom (Section 5.2) or programmable (Section 5.3) hardware,
enabling column-level optimizations (Section 5.2.2), setting the max XML document
depth, and setting the number of stack columns (programmable stacks).

When specifying customized hardware, the query-to-hardware compilation is re-
quired for every query set. Conversely, programmable stacks need to be generated
once, initially. Another tool is needed to generate the configuration bits for every query
set. This tool is aware of the underlying architecture specifications (number of columns,
number of configuration bits per column, etc.), and generates configuration bits within
a second.

6. EXPERIMENTAL EVALUATION

In this section, the performance of all the aforementioned FPGA approaches is evalu-
ated, alongside an adaptation of our filtering mechanism on GPUs, and two state-of-
the-art software (CPU-based) approaches namely, YFilter [Diao et al. 2003] and FiST
[Kwon et al. 2005].

For the experiments, we utilize the DBLP DTD provided by the University of Wash-
ington Repository7 to generate XML documents and user profiles. XML documents of
maximum depth 16 and varying sizes were generated using the ToXGENE XML Gen-
erator [Barbosa et al. 2002]. We make use of two main batches of documents for our
experiments.

—Batch ‘small documents’. 5,000 documents of average size 220 KB each.
—Batch ‘medium documents’. 500 documents of average size 2.2 MB each.

Each XML document consists only of open and close tag events, one per line. Each
tag was replaced with a 2-byte ID. Using this scheme, the number of XML events per
document can be deduced by dividing the document size (bytes) by 5.5, the latter being
the average line size: an open tag is 5 bytes long ‘< >\n ’, whereas a close tag is 6 bytes
long ‘</ >\n ’. The total size of all documents of each batch is around 1,100MB; hence,
every batch corresponds of around 200 million events, across all documents.

Query datasets, each containing distinct queries, with varying depth, percentage
occurrence of ancestor-descendant axis and wildcards, were generated using the YFilter
query generator [Diao et al. 2003].

The properties of query profiles are as follows.

—Max query depth = 4 or 8 nodes.
—Number of queries = 32, 64, 128, 256, . . . 32K.
—Percent occurrence of ancestor-descendant axis (‘//’) and wildcard path nodes (‘*’) =

5, 15, & 25 % occurrence.

Due to the streaming nature of pub-sub systems, throughput (MB/s, events/s) is used
in our experiments as a performance metric. Throughput is inversely proportional to
the wall-clock running time and is derived using the total size of all documents per
batch. Throughput denotes how much information can be processed per unit time.

7http://www.cs.washington.edu/research/xmldatasets.
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Here, a filtering setup with higher throughput is one less likely to drop packets and
able to process documents faster. Furthermore, the choice of a fixed XML tag size
(regardless of the size itself) is made in order to derive throughput as measured in
events/s, from throughput as measured in MB/s. The former is important for measuring
the performance of filtering engines regardless of the XML data based solely on the
structure.

End-to-end performance is measured for all platforms (FPGA, GPU, CPU) such that
the XML documents start off as located on the CPU RAM, filtering is performed, and
finally the filtering results reside on the CPU RAM. Since XML parsing is orthogonal to
this work, parsing time is not included in performance measurements. With respect to
the FPGA implementation, a lightweight parser is deployed in order to be able to stream
a raw XML document. Otherwise, the FPGA would be at a higher and an unrealistic
advantage. Furthermore, the parser is just another (single) stage in the FPGA XML
filtering pipeline, affecting latency and throughput. By omitting parsing time for CPU-
based approaches, we assume that CPU parsers are at least as efficient as hardware
parsers. That is, in fact, opposite to practical implementations, where hardware parsers
outperform their software counterpart. In conclusion, reported FPGA speedup would
be even higher when compared to a parsing+filtering software setup.

6.1. Experimental Evaluation of FPGA-Based Approaches

A study on the resource utilization and performance of the proposed FPGA-based
solutions follows.

6.1.1. Setup and Platform. Our FPGA platform consists of a Pico M-501 board connected
to an Intel Xeon processor via eight lanes of PCI-e Gen. 2.8 We make use of one
Xilinx Virtex 6 FPGA LX240T, a low- to mid-size FPGA relative to modern standards.
The PCIe hardware interface and software drivers are provided as part of the Pico
framework.

Our hardware XML filtering circuit communicates with the input and output PCIe
interfaces through one stream each way, with dual-clock BRAM FIFOs in between
our logic and the interfaces. Hence, the clock of the filtering logic is independent of
the global clock. The PCIe interfaces incur an overhead of ≈8% of available FPGA
resources.

The RAM on the FPGA board does not reside in the same virtual address space of
the CPU RAM. Data is streamed from the CPU RAM to the FPGA. Since the proposed
solution does not require memory offloading, RAM on the FPGA board is not used (i.e.,
stacks are built using the FPGA logic).

Synplify Pro 2010-09 is used for synthesis, and Xilinx ISE 14 for PAR. FSM explo-
ration, resource pre-packing, and resource-sharing optimizations are activated during
synthesis.

6.1.2. Trade-Offs and Resource Utilization. The resource utilization of FPGA slices is
shown in Figure 10(a), corresponding to the three implementations of the filtering
algorithm on FPGAs, namely, as follows.

(1) Customized (Query length = 4). An implementation of the custom hardware ap-
proach described in Section 5.2 with PSS optimizations on and clusters of size
256 queries.

(2) Customized (Query length = 8). An implementation of the custom hardware ap-
proach described in Section 5.2 with PSS optimizations on and clusters of size
128 queries.

8Pico Computing M-Series Modules. http://www.picocomputing.com/m series.html.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 93, Publication date: February 2014.



93:20 R. Moussalli et al.

Fig. 10. (a) FPGA slice resource utilization and (b) operational frequency (MHz) of FPGA-based XML
filtering approaches on a Xilinx Virtex 6 LX240T FPGA, as part of a PICO M-501 platform. Lower frequencies
are due to the larger filtering circuits.

(3) Programmable. An implementation of the programmable hardware approach de-
scribed in Section 5.3 with a cluster size of 128 columns.

Note that the programmable implementation makes use of smaller clusters (i.e.,
size 128) than the customized counterpart. This smaller cluster size is preferable,
since programmable clusters are bigger (i.e., use more resources) than customized
ones, hence negatively affecting the critical path.

The XML maximum depth is assumed to be 16—a relaxed limitation on the average
XML document depth to be processed. Deeper XML documents can be supported with
minimal penalty on resource utilizations due to the availability of 32-row LUTs on
modern FPGAs.

The data depicted in Figure 10(a) is respective to query nodes rather than queries.
The programmable hardware consists of hardware columns, regardless of the number
of queries or size of the queries mapped. Moreover, looking from a node perspective, we
can see that stack optimizations are more effective with longer queries, saving around
25% in resources when supporting the same number of nodes (custom length 8 vs.
length 4).

As expected, the custom hardware benefits from the reduced resource utilization,
and that is not solely due to the PSS optimizations. Custom hardware uses on aver-
age seven times less resources than a programmable approach (up to 12 times less).
Note that we can further optimize the custom circuitry by making use of the common
prefix optimization. This optimization can be combined with the stack optimizations
presented in Section 5.2.2. The expected reduction in query nodes would be as studied
in Moussalli et al. [2011a]. We omit further exploration of this option here for brevity.

Doubling the query length requires on average two times more resources with the
programmable implementations, and that is due to the doubling of the stack size
(i.e., number of columns) and the resulting need for intercolumn logic. Conversely,
doubling the query length would incur on average 1.4 times more resources when
considering custom logic. This ratio is smaller than that of generic hardware due
to stack compaction which minimizes stack depth for any query width. Note that
nonlinear behavior in resource utilization while doubling the number of queries is due
to the heuristic-based nature of the tools. Moreover, in the case of a circuit easily fitting
on chip, certain resource utilization optimization constraints are relaxed in order to
achieve higher performance at the cost of added resources.

Though custom hardware approaches utilize considerably less resources than their
programmable counterpart, this comes at the cost of high reconfiguration time, where
updating queries in the custom hardware reconfiguration requires a new run through
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Fig. 11. Throughput of the FPGA-based XML filtering approaches for (a) a batch of 5K documents ≈220KB
each, and (b) a batch of 500 documents, ≈2.2MB each. Throughput measured in XML events/s can be directly
derived such that every 5.5 bytes of XML constitute one event (by design of the test documents).

the synthesis, place, and route tools, which could take hours to complete with larger de-
signs. On the other hand, updating queries in the programmable architecture requires
updating the configuration stream and streaming it to hardware, a process requiring
less than a second overall.

6.1.3. Performance Evaluation. The filtering mechanisms on the FPGA chip depict re-
spective deterministic throughputs; this is in contrast to CPU- and GPU-based filtering,
where throughput is affected by the document size and contents.

The parser deployed on the FPGA is able to process a stream of up to one character
(8 bits) per hardware cycle, generating events (push/pop) that are then forwarded to the
stacks. The stacks guarantee processing one event per cycle, as no memory external to
the FPGA chip is used. Note that XML events generated by the parser are less frequent
than document characters; in other words, the rate of events is once per several cycles.
As a result, the throughput of the filtering mechanisms is deterministic, is rated at
one event/cycle, and is independent of the document size and contents. However, the
throughput of the FPGA platform as a whole is not deterministic, since data has to
be sent from the CPU to the FPGA and filtering results back to the CPU memory.
Communication between the CPU and FPGA is penalized by the setup time of every
transfer and the amount of transfers.

With respect to parsing performance, the number of characters in a tag only affects
parsing and not filtering. However, it does not affect the performance of parsers, which
is measured in characters/cycle, and is irrespective of the tag size. The number of
unique tags could have an effect on parser performance. In practice, the number of
unique tags needed by queries in a cluster is not large (in the range of at most a few
hundreds), and will not limit parsing performance.

Reading an XML document, parsing it and filtering are all performed in parallel,
a noted advantage versus CPU- and GPU-based approaches. Furthermore, since the
input and output PCIe interfaces are independent, streaming results back to the CPU
can also be parallelized with the parsing/filtering, as long as match states are buffered.

The operational frequencies at which the FPGA filtering circuits run are shown in
Figure 10(b). The physical platform limitation on the operational frequency is 250MHz,
which is easily achieved by many filtering circuits (for 1K query nodes and less, and 2K
custom FPGA query nodes). As the FPGA utilization increases through doubling the
number of queries, the frequency then deteriorates due to the added complexity and
area (longer delays) of the resulting circuits.

Figures 11(a) and 11(b) depict the throughput of FPGA-based XML filtering ap-
proaches for a batch of 5K small (≈220KB) and 500 medium (≈2.2MB) XML docu-
ments, respectively. Measuring performance in XML events/s can be directly derived
such that every 5.5 bytes of XML constitute one event (by design of the test documents).
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Throughput includes the end-to-end time of streaming the XML documents from CPU
RAM to the FPGA, filtering, and reading the results back for each document from the
FPGA to the CPU RAM. Note that filtering results can be kept on the local FPGA
memory (and not streamed to a CPU host memory) in case the routing mechanism to
subscribers is implemented on chip (this is not applicable to GPU filtering systems).

Initially, the throughput of individual architectures is limited by the maximum op-
erational frequency in addition to a small overhead incurred for transfer setup and
reading back results from the FPGA. As noted earlier, the on-chip throughput is
independent of the document size and contents. Nonetheless, overall system perfor-
mance deteriorates for batches of small documents with a high number of query nodes
(≥16K), where the time to report matches becomes comparable to the time to receive
each document. This is in contrast to the performance noted for larger documents
(Figure 11(b)), where the operational frequency is always the main limitation, regard-
less of the number of matches to report, being minimal compared to each document.
Also, since there are fewer 2.2MB documents than 220KB ones, there will be fewer
transfers to/from the FPGA respective to the former.

The next consideration is the effect of wildcards and ancestor-descendant relations
on the FPGA resource utilization and performance (operational frequency). By design,
no effect is to be witnessed on the programmable FPGA approach, where support for
‘*’ and ‘//’ is deployed by default for all stack columns, even when not used by a given
configuration. We ran several experiments to study the effect of varying the percentage
of occurrence of wildcards and ancestor/descendant relationships on the customized
approach (data omitted for brevity). The witnessed fluctuations in resource utilization
and operational frequency were minimal and subsumed by the heuristic nature of the
synthesis/place-and-route tools. As a result, all FPGA architectures were not affected
by wildcards and ancestor-descendant relations.

It should be noted that the performance of our filtering system can be further im-
proved through the use of high-performance XML parsers, as in El-Hassan and Ionescu
[2009]. Such parsers are able to sustain a processing rate of of two bytes per cycle, on
average. This would double the maximum filtering throughput. High performance XML
parsers can be deployed in our system with little modification required. Another ap-
proach would be to run the parser at a higher frequency than the filtering mechanism,
a highly plausible approach, since XML events are less frequent than document char-
acters. Nonetheless, such parser optimizations are orthogonal to our work and are
out of the scope of this article. Using optimized parsers would help fight the lower
operational frequency of certain circuits (Figure 10(b), >16K customized and 2K pro-
grammable nodes), and would help filter at higher bandwidth links when needed (10G
ethernet).

6.2. Performance of GPU-Based Approaches

The performance of the GPU-based approaches is measured on an NVIDIA TESLA
C1060 GPU; a total of 30 streaming multiprocessors (SMs) comprising of 8 streaming
processors (SPs) each are available.

An in-depth description of the adaptation of the proposed filtering solution
(Section 4) is provided [Moussalli et al. 2011a]. Here, a complete new set of experi-
ments is presented, focused on batches of small XML documents (a common consider-
ation of pub-sub systems), rather than single large documents (which was the focus in
Moussalli et al. [2011a]) .

A new study is further presented here, comparing the performance of mapping
queries holistically to a GPU thread each, versus mapping queries to GPU blocks
(one stack column per GPU thread). Through the latter, several streaming processors
(SPs) are processing a single query.
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Fig. 12. (a) Speedup of mapping queries to GPU blocks versus mapping queries to GPU threads. (b) Through-
put (MB/s) of the GPU-based approaches with queries mapped to blocks, for queries of length 4 and 8, with
respect to a batch of 5K XML (small) documents of size 220KB each and 500 XML (medium) documents of
size 2.2MB each.

Figure 12(a) depicts the speedup of mapping queries (of length 8) to GPU blocks
versus one query per thread, with (Opt) and without (No Opt) the common prefix
optimization applied, for a 220KB and a 2.2MB XML document (no batches). Note that
the common prefix optimization is not applicable to the query set when one query is
matched per thread.

With too few query matching engines on the GPUs (less than 1K queries), the GPU is
underutilized, and the speedup is highest. At 1K queries, we exhibit a breaking point,
where speedup lowers due to the overutilization of the GPU; more parallelism (queries)
results in linearly more time (less speedup) due to the unavailability of processors.

Mapping queries to blocks results in speedup initially (around 2.9X) due to the fact
that the parallelism offered by the GPU is exploited in a more efficient manner. For
instance, when mapping 32 queries of length 8 to threads, 32 SPs are used (out of the
available 240). On the other hand, when mapping 32 queries of length 8 to blocks, more
SPs are used (one per column), and more columns can be evaluated in parallel. This
advantage is exploited less with more stack columns to be evaluated.

Furthermore, from Figure 12(a), we observe that the document size has virtually no
effect on speedup until the breaking point, where a larger document results in more
speedup.

The common prefix optimization results in fewer stack columns, hence less work to
be done on the GPU. This in turn results in more speedup, notably at 1K queries, where
speedup remained almost constant for a 2.2MB document, and beyond 16K queries,
where slowdown is depicted with No Opt and a 220KB document.

For the remainder of this section, we will only consider mapping queries to GPU
blocks (one stack column per GPU kernel), with the common prefix optimization
applied.

Figure 12(b) depicts the GPU filtering throughput (MB/s) for queries of length 4
and 8, with respect to a batch of 5K XML (small) documents of size 220KB each and
500 XML (medium) documents of size 2.2MB each. Throughput measured in XML
events/s can be directly derived such that every 5.5 bytes of XML constitute one event
(by design of the test documents). This metric is relevant to the GPU platform because
it only receives events from parsed documents and no XML data.

As XML parsing is orthogonal to our work, throughput measurements do not include
the time to parse XML documents. Throughput includes the time to send parsed docu-
ments from the CPU RAM to the GPU, and to retrieve the parsing results back to the
CPU RAM.
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Throughput here is much lower than the throughput provided by the FPGA-based
XML filters; when filtering using GPUs, throughput of few MB/s is witnessed versus
hundreds of MB/s when using FPGA-based filtering. Even though GPUs offer a cer-
tain level of parallelism, all processing cores are general-purpose cores, whereas the
circuitry on the FPGA is highly optimized for the application at hand. Also, in spite of
GPUs being able to (virtually) filter any number of queries, the parallelism provided by
FPGAs is not bound by time multiplexing, where a single computing module is used by
different queries at different time instances. Hence, all queries on the FPGA are being
filtered in parallel, and the document is being read exactly once. Finally, (all the) GPU
processors have to read the document from global memory, thus limiting performance.

Throughput starts off as constant until reaching a breaking point where the GPU
becomes overutilized. Beyond the breaking point, throughput almost halves as the
number of queries doubles. The breaking point affects queries of length 8 earlier than
queries of length 4, since queries in length 8 imply almost double the number of
stack columns (effective GPU work), with minor differences due to the common prefix
optimization. The throughput of queries of length 4 is approximately one step behind
that of length 8 queries in terms of deterioration. Making use of a GPU with more
cores while using the same architecture and memory hierarchy will not result in better
performance prior to the breaking point. However, it would linearly help delay the
occurrence of the breaking point (i.e., moving the breaking point to the right of the
plot).

For a given query set, throughput is minimally higher for larger documents. This is
due to the extra CPU-GPU communication implied by using smaller documents, since
the latter are more in number than the larger documents. However, as seen in Fig-
ure 12(b) (gap in the throughput between length 4 queries, and gap in the throughput
between length 8 queries), this overhead is minimal, and we can deduce that the time
to send documents to the GPU and receive filtering results back is minor compared to
the filtering time spent on the GPU. The CPU-GPU send-receive time was measured
to be less than 0.2% of the overall filtering time (data omitted for brevity).

We ran several experiments varying the percentage of occurrence of ‘*’ and ‘//’ (results
omitted due to the lack of space). Negligible fluctuations in performance were witnessed
(average <1%). Increasing the percentage of occurrence has no effect, since ‘*’ and ‘//’
are supported by default for all stack columns.

6.3. Performance of CPU-Based Approaches

Numerous software approaches have been proposed for the XML filtering problem.
Here, two leading software approaches are considered: YFilter and FiST, that are
representative of the different strategies proposed for XML filtering. Despite their dif-
ferences, for each XML stream event consumed, both approaches identify a set of active
states, the event buffered, and the next set of active states are maintained in memory
before the next input event is considered. Our results showed that the maintenance
and processing of a large number of active states degrades the performance of these
approaches. The number of active states increases when query complexity (i.e., query
length or percentage occurrence of ‘//’ and ‘*’) or XML document size is increased, in-
curring up to 7GB memory footprint and reducing the throughput. The memory usage
increases slightly when doubling the number of queries but is more sensitive to the
document size.

The CPU-based approaches were run on a single core of a 2.33GHz Intel Xeon
machine with 8GB of RAM running Linux Red Hat 2.6. In our experiments, YFilter
and FiST exhibited comparable performance and behavior; hence, for the remainder
of this section, we will only show results for the YFilter approach. Since YFilter and
FiST are optimized to run on single processors, we first run software experiments on a
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Fig. 13. Throughput (MB/s) of the CPU-based approach (YFilter) for queries of length 4 and 8 with 15%
probability of occurrence of ‘*’ nodes and ‘//’ relations, and varying documents sizes (namely 5K documents
≈220KB each, and 500 documents, ≈2.2MB each).

single CPU, as intended by design. These numbers give us a good understanding
of the characteristics of the three used platforms (summarized in Table I). We later
show many (independent) instances of YFilter running on a multicore, splitting
the document set equally among all YFilter threads/instances. As XML parsing is
orthogonal to this work, throughput measurements do not include parsing time;
further, prior to filtering, XML documents reside on the CPU RAM.

Figure 13 depicts the throughput using YFilter with input XML document sizes of
≈220KB (5K documents) and ≈2.2MB (500 documents), respectively, both for queries
of depth of 4 and 8, whilst doubling the number of queries.

Three main observations can be made from Figure 13. First, the performance slowly
deteriorates while doubling the number of queries, and unlike the GPU-based ap-
proaches, there is no breaking point; CPU-based approaches are able to scale very well
with added queries due to the optimized data structures used. These cannot be mapped
as-is on the GPU due to the nature of the memory hierarchy and the lack of parallelism
offered by the CPU approaches (complexity vs. parallelism trade-off). Second, docu-
ment size has a considerable effect on throughput: larger documents resulted in an
average 2.8X slowdown. This is in contrast with FPGA and GPU filtering, where larger
documents resulted in a higher throughput, since CPU-accelerator communication is
minimized with larger documents. On the other hand, YFilter is negatively affected by
larger documents, since larger data structures need to be maintained. Third, doubling
the query length results in an average 28% slowdown. This is in contrast to the GPU
accelerator, where throughput halves after the breaking point (and is not affected oth-
erwise); similarly for the FPGA accelerators, doubling the query length has minimal
effect on the operational frequency, until most of the FPGA resources are utilized.

Finally, the effect on performance of varying percentages of ‘*’ and ‘//’ was studied by
varying the percentage of occurrence of ‘*’ and ‘//’ from 5% to 25% (data is not shown
for brevity). Increasing the percentage showed to constantly have a negative effect by
deteriorating performance anywhere from 6% to 30% by 10% more ‘*’ and ‘//’ in a given
query set. This is due to the added level of freedom, hence complexity, to be supported.

6.4. Comparing FPGA-, GPU-, and CPU-Based Filtering

We proceed with the performance comparison of the customized FPGA circuit to the
GPU-based filtering and to a reference CPU-based approach (YFilter) while setting the
percentage of occurrence of ‘*’ and ‘//’ to 15%.

Speedup (on a log scale) is shown in Figures 14(a) and 14(b) for the customized
FPGA- and GPU-based approaches over the CPU-based approach for batches of XML
documents of size 220KB and 2.2MB, respectively. Slowdown is depicted for speedup
values less than 1.
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Fig. 14. Speedup of the customized FPGA-based and the GPU-based approaches over a CPU-based approach
for queries of length 4 and 8, with varying document sizes. Slowdown is depicted for speedup values less
than 1.

Fig. 15. Speedup of the custom FPGA approach versus a multithreaded version of YFilter running on a
12-core machine. 2K queries of length 8 are assumed, with a 15% probability of occurrence of ‘*’ and ‘//’.
Batches of 5K 220KB documents and 500 2.2MB documents are used.

Overall, using FPGAs provides up to 2.5 orders of magnitude speedup (average
of 79X and 225X for batches of 220KB and 2.2MB documents, respectively). On the
other hand, using GPUs provides up to 6.6X speedup (average of 2.7X) before the
throughput saturation at the breakpoint. Prior to hitting the break point, speedup
slightly increases gradually, since the GPU throughput is constant, whereas that of
the CPU-based approaches is not. Moreover, speedup is higher for length 8 queries
prior to the breaking point, which is reached faster with length 8 queries. Slowdown is
witnessed beyond 8K queries for batches of 220KB documents, and at 32K queries of
length 8 for batches of 2.2MB documents.

We (naively) extended YFilter to run on multicores by filtering every document using
a separate thread. Hence, every thread is practically an instance of YFilter, and filtering
for a single document is performed on a single core.

Figure 15 shows the speedup of the custom FPGA approach versus the multithreaded
version of YFilter running on a 12-core machine. 2K queries of length 8 are assumed,
with a 15% probability of occurrence of ‘8’ and ‘//’. Batches of 5K 220KB documents and
500 2.2MB documents are used.

Making use of more CPU cores will almost linearly result in a higher performance
from YFilter, until the number of threads exceeds the number of CPU cores. The custom
FPGA approach is still 17X and 31X faster than YFilter, when all 12 cores are used,
for batches of 200KB and 2MB documents, respectively.

In summary, the effects of the factors studied on the different filtering platforms are
encapsulated in Table I.

Note that it is possible to map the stack-based approach onto CPUs while borrowing
some of the advantages of hardware approaches, such as low memory footprint. Some
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optimizations can be applied in order to only update the needed stack columns based
on each XML events. However, the GPU implementation of our stack-based algorithm
provides a clear insight on what to expect from software; instead, here all stacks are
updated in parallel using low-latency memories, potentially providing higher perfor-
mance than CPUs.

7. CONCLUSIONS

This article examines how to exploit the parallelism found in XPath filtering systems
using accelerators. By converting XPath expressions into custom stacks, our archi-
tecture is the first to provide support for complex XPath structural constructs, such
as parent-child and ancestor-descendant relations, whilst allowing wildcarding and
recursion. We also present a novel method for matching user profiles that supports
dynamic query updates using a programmable FPGA. This is in addition to the GPU-
based filtering based on the presented filtering algorithm. An exhaustive performance
evaluation of all accelerators is provided with comparison to state-of-the-art software
approaches.

Using an incoming XML stream, thousands of user profiles are matched simulta-
neously with minimal memory footprint by stack-based matching engines. This is in
contrast to conventional approaches bound by the sequential aspect of software com-
puting, associated with a large memory footprint (over 7GB).

On average, using customized circuitry on FPGAs yields speedups of up to 2.5 orders
of magnitude, whereas using GPUs provides up to 6.6X speedup, and in some cases,
slowdown, versus software running on a single CPU core. The FPGA approaches are
up to 31X faster than software running on a 12-CPU core. Finally, a novel approach
for supporting on-the-fly query updates on the FPGA was presented, resulting in an
average of 7X more resources than the custom FPGA approach.
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