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One of the numerical criteria for color image quantization is to minimize the maximum
discrepancy between original pixel colors and the corresponding quantized colors. This is
typically carried out by first grouping color points into tight clusters and then finding a
representative for each cluster. In this article we show that getting the smallest clusters
under a formal notion of minimizing the maximum intercluster distance does not guarantee an
optimal solution for the quantization criterion. Nevertheless, our use of an efficient clustering
algorithm by Teofilo F. Gonzalez, which is optimal with respect to the approximation bound of
the clustering problem, has resulted in a fast and effective quantizer. This new quantizer is
highly competitive and excels when quantization errors need to be well capped and when the
performance of other quantizers may be hindered by such factors as low number of quantized
colors or unfavorable pixel population distribution. Both computer-synthesized and photo-
graphic images are used in experimental comparison with several existing quantization
methods.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation—
display algorithms; I.4.1 [Image Processing]: Digitization—quantization

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Clustering, color quantization, image compression,
indexed image

1. INTRODUCTION

The field of color image quantization can trace its origin to the transforma-
tion of a continuous-tone black and white picture into a discrete grayscale
image. This digitization process maps intensity values from a continuous
spectrum into a series of gray levels. Since we limit the number of gray
levels between black and white, the two extremes of the intensity range,
the question arises as to how to choose and use these gray levels to
reproduce the original. As for the quantization of color pictures, the same
question can be asked regarding each component of a continuous color
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signal, with the additional complexity of the method of decomposition (e.g.,
trivariable color space) and the interplay of color components. This funda-
mental concept of color image quantization is further extended to include
the reproduction of an already quantized color image, typically with several
hundred to several hundred thousand colors in a 24-bit RGB format, using
a much smaller color palette, typically with 256 or less 24-bit colors (not
necessarily colors that appear in the original image) for an 8-bit frame
buffer display [Heckbert 1982].

Quantization inevitably introduces distortion. Ideally, a quantization
algorithm should distribute any visible distortion1 “evenly” throughout the
quantized image so that none stands out to be found particularly objection-
able by an average human observer. This means that many factors have to
be considered including color space, image context, viewing condition, and
viewer’s experience and aesthetic judgment. Although a number of re-
searchers have explored some of these factors,2 a lot more needs to be done
in order to understand all the intricacies involved.

On the other hand, a classical and less ambitious goal in quantizer
design is to satisfy certain statistical measures regarding discrepancies
between original pixel values and quantized pixel values (with the assump-
tion that some suitable color space, e.g., one that is visually homogeneous,
is used to define pixel values and discrepancies). One such numerical
criterion is to minimize the variance [Lloyd 1957; Max 1960]. This is first
used to quantize continuous-tone black and white pictures and later
applied to the quantization of color images. However, an efficient optimal
solution is probably nonexistent because the problem is proven to be
NP-complete [Garey et al. 1982]. Various approximation algorithms have
been investigated including Equitz [1989], Gray et al. [1980], Linde et al.
[1980], Selim and Ismail [1984], Wan et al. [1990], and Wu [1991, 1992].
Although minimizing variance provides a much better balance between
color discrepancy and pixel population than do such empirical algorithms
as the popularity algorithm and the median-cut algorithm, there are cases
where significant color shifts in a small image area result in eye-catching
distortion that renders the quantized image unacceptable [Xiang and Joy
1994a].

Another numerical criterion is to minimize the maximum discrepancy
between original and quantized pixel values. This means that no preference
is given to image colors that appear more frequently than others. Palette
colors are to be selected in such a way that the color shift of every pixel in
the quantized image is restricted by a minimal cap. One nonadaptive [Kurz
1983] and several adaptive quantizers [Gervautz and Purgathofer 1988;

1Note that visible distortion is a subjective/psychological notion whereas quantization error or
pixel color discrepancy is a well-defined and measurable quantity in a given color space. The
exact relationship between the two is not yet fully understood.
2Please see Balasubramanian et al. [1992, 1994], Crinon [1991], Gentile et al. [1990a, 1990b],
Giusto et al. [1990], Joy and Xiang [1996], Kasson and Plouffe [1992], Mahy et al. [1991],
Orchard and Bouman [1991], and Xiang and Joy [1994b].
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Joy and Xiang 1993; Xiang and Joy 1994a] approximating this principle
have been reported, along with experimental results indicating that gross
mismapping of unpopular colors is largely under control and the overall
quality of the quantized images can range from satisfactory to competitive.

The basic strategy employed by these recent adaptive minimum maxi-
mum-discrepancy quantizers is a two-step approach. The first step is to
group original image colors in a hierarchical fashion into clusters that are
as tight or as small as possible. The second step is to compute a cluster
representative or quantized color for each cluster. The rationale here is
that smaller clusters should lead to smaller maximum discrepancy between
an original color and the corresponding quantized color.

In this article we first show that getting the smallest clusters under a
formal notion of minimizing the maximum intercluster distance3 does not
in theory guarantee an optimal solution for the minimum maximum-
discrepancy criterion. Nevertheless, we want to bring an efficient nonhier-
archical clustering algorithm by Teofilo F. Gonzalez [1985] and some
theoretical results to the attention of researchers and practitioners working
on color image quantization. This clustering algorithm achieves the best
possible approximation to the optimal solution (with regard to the cluster-
ing problem), if P Þ NP. Our implementation of this algorithm using 24-bit
color vectors has resulted in a fast quantizer that is very effective in
capping maximum quantization error and in limiting visible distortion in
quantized images.

2. MINIMIZING THE MAXIMUM INTERCLUSTER DISTANCE

The problem of m-dimensional clustering to minimize the maximum inter-
cluster distance can be formally stated as finding a partition of n points in
m-dimensional Euclidean space into k disjoint clusters B1, B2, . . . , Bk
such that max(M1, M2, . . . , Mk), where Mi is the maximum distance
between two points in cluster Bi, is minimized. A corresponding decision
problem that is computationally not harder can be stated as deciding if
there is a partition into B1, B2, . . . , Bk such that max(M1, M2, . . . , Mk) #
some given w.

Intuitively a partition with minimal maximum intercluster distance
consists of tight or small clusters where datapoints in each cluster are close
to each other, providing an effective cap on the distance (discrepancy)
between any datapoint and its corresponding cluster representative (e.g.,
the cluster’s geometric center). In fact, this optimization clustering problem
is equivalent to the minimal maximum-discrepancy quantization criterion
when m 5 1. Since all datapoints in cluster Bi are now distributed along a
line segment and Mi is the length of the line segment (i.e., the distance
between the datapoint at one end of the line segment and the datapoint at

3Since we are trying to minimize the maximum distance between color points in each cluster it
might feel more appropriate to use the word intracluster. However, if we view each color point
as a singleton cluster we are indeed minimizing the maximum intercluster distance. We adopt
this second view in order to be consistent with the existing literature on clustering.
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the other end), we can simply choose the midpoint of the line segment to be
the cluster representative. Clearly, minimizing the length of the line
segment is equivalent to minimizing the distance between the midpoint
and the endpoints.

However, these two minimization problems are not exactly the same
when m . 1. Figure 1(a) shows a 2-dimensional example with four
datapoints. The two points on the top and the one in the middle form an
equilateral triangle of edge length L. The distance between the point in the
middle and the one at the bottom is greater than L but less than L/cos(p/6).
Now if we partition these four points into two clusters with minimal
maximum intercluster distance we will have Figure 1(b), where the maxi-
mum intercluster distance is L and the maximum distance between a
datapoint and the corresponding cluster representative is at least L/2cos(p/
6), which is the minimal value we can get when we choose the geometric
center of the equilateral triangle to be a cluster representative. On the
other hand, if we partition these four points into two clusters using the
minimum maximum-discrepancy criterion we will have Figure 1(c), where
each cluster representative is the midpoint of the line segment connecting
the two datapoints in the cluster, with the maximum distance between a
datapoint and the corresponding cluster representative being less than
L/2cos(p/6) and the maximum intercluster distance being greater than L.

Despite this theoretical difference between the two minimization prob-
lems we want to continue with the aforementioned two-step quantization
strategy where original image colors are first grouped into tight clusters
and a cluster representative is then calculated for each cluster. Instead of
using bounding boxes to measure clusters as in Gervautz and Purgathofer
[1988], Joy and Xiang [1993] and Xiang and Joy [1994a], we now use the
precise notion of maximum intercluster distance to define cluster size. Thus
the first quantization step is clustering to minimize the maximum inter-
cluster distance.

Fig. 1. (a) Example with four datapoints; (b) forming two clusters with minimum maximum
intercluster distance; (c) forming two clusters with minimum maximum discrepancy between
datapoints and their respective cluster representative.
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This minimization problem has been proven to be polynomial solvable
when m 5 1 [Brucker 1978]. However, when m 5 2 the corresponding
decision problem4 is NP-complete, making the minimization problem NP-
hard [Gonzalez 1985]5. Furthermore, when m 5 3, which is typically the
case in color image quantization, even finding a partition with maximum
intercluster distance less than two times the optimal solution value,
referred to as the (2 2 e)-approximation problem, is NP-hard for all e . 0
[Gonzalez 1985; Sahni and Gonzalez 1976].

Hence the best we can look for, if P Þ NP, is an efficient 2-approximation
algorithm. To this end we have found a solution by Gonzalez that has worst
case time complexity O(nk) [Gonzalez 1985]. The following is a slightly
modified description of the algorithm, with {c1, c2, . . . , cn} being the set of
color points to be clustered, hi being a designated point in Bi (hi is called
the head of Bi), and d(a, b) being the distance between point a and point b:

B1 5 {c1, c2, . . . , cn};
h1 5 c1;
for (x 5 1; x , k; x11) {

d 5 max{d(ci, hj) uci [ Bj and 1 # i # n and 1 # j # x};
c 5 one of the points whose distance to the head of the cluster it
belongs to is d;
move c to Bx11;
hx11 5 c;
for each c9 [ (B1 ø . . . ø Bx) {

let j be such that c9 [ Bj;
if (d(c9, hj) $ d(c9, c)) move c9 from Bj to Bx11;5

}
}

Initially all color points are in the same cluster B1 and the selection of h1
is arbitrary. The main “for” loop continues as long as the current number of
clusters is less than k. A new cluster is formed by first selecting a point
that is the farthest away from its corresponding cluster head (an arbitrary
selection is made to break any tie). This point is moved to the new cluster
as its head. Every other color point that is closer to this new cluster head
than to its own corresponding cluster head (or equally far away from the
two heads) is then moved to this new cluster.

Our current implementation of this nonhierarchical clustering algorithm
handles full 24-bit RGB color vectors since the usual bit-cutting color-
reduction technique6 can itself be the cause of some rather significant
visible distortion [Xiang and Joy 1994a]. A 2-dimensional pointer array
indexed by the red and green components serves as the basis of a hash
table-type data representation. Every original image color is represented by

4If we use nonnegative weights instead of Euclidean distances the decision problem is
NP-complete even for k 5 3 [Brucker 1978]. See problem MS9 in Garey and Johnson [1979].
5There is a typo in the original article [Gonzalez 1985], where Bl should have been Bl11.
6Taking a few least-significant bits off each of the three 8-bit color components is equivalent to
a uniform quantization step. This greatly consolidates original color points into a sparse color
space, making possible a practical implementation of some quantization algorithms that have
high complexity and memory requirement.
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a node in a simply linked list that starts from the corresponding red and
green-indexed array pointer. The list is maintained in ascending order
based on the blue component. The blue component is stored in the node,
along with an index to the representation of the cluster to which the image
color belongs, and the distance between the cluster’s head and the image
color. This means that unless an image color is moved to another cluster,
there is no need to recalculate the to-head-distance for that image color.

Each cluster is represented by a record containing the RGB value of its
head, the RGB value of a member color point that is the farthest away from
the head, and the cluster’s RGB bounding box. This means that unless the
cluster has been changed, there is no need to re-search the cluster to find a
candidate point for possible use as the head of a new cluster. Even if the
search is necessary, only color points within the cluster’s bounding box
need to be considered (some of them may not belong to this cluster). In
addition, the use of an RGB bounding box that is determined by the current
maximum intercluster distance and the point chosen to be the head of a
new cluster restricts the search of color points that may satisfy the
criterion for moving to the new cluster.

Following the clustering step comes the selection of cluster representa-
tive or quantized color. For this we have been using cluster centroid.
Although such a choice may seem somewhat inconsistent with the minimal
maximum-discrepancy criterion, our experience indicates that although the
outcome is mostly determined by the clustering step, treating popular
colors a bit more favorably at this stage is a good compromise. After all, as
we have noted before in Xiang and Joy [1994a] and early in this article,
optimal quantization results need more than carrying this numerical
criterion to its extreme.

3. EXPERIMENTAL COMPARISON

We now compare this new quantizer with three existing methods that use
the same two-step quantization strategy to minimize the maximum dis-
crepancy between original and quantized colors. All three take a hierarchi-
cal approach to clustering. The first is an agglomerative method (octree)
that is based on a predetermined subdivision of the RGB color space into
levels of octants [Gervautz and Purgathofer 1988]. The second is a divisive
method (center-cut) that repeatedly splits the cluster whose bounding box
has the longest side [Joy and Xiang 1993]. The third is an agglomerative
method (agglomerative clustering) that merges neighboring clusters using
their bounding boxes [Xiang and Joy 1994a]. In all cases we use 24-bit
colors without bit-cutting (except where noted otherwise) and choose clus-
ter centroids as cluster representatives.

Although conducting quantization in a standard reference color space
such as the CIE L*u*v* or L*a*b* along with accurate display calibration
should have positive impact (and make these experiments repeatable and
comparable with others in a more rigorous sense), there are other factors
such as image context that seem to affect quantization quality at least
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equally, if not more profoundly. A case in point7 is that a color shift is likely
to get the viewer’s attention when it occurs to the primary or familiar
object in the scene (e.g., the face of a portrait), whereas a shift of something
unimportant (e.g., wallpaper in the background), with the same or even
greater magnitude, may very well turn out to be much less objectionable.
This means that the full benefit achievable by going through device-
dependent transformation to make use of a reference color space awaits
further study.

In the following experiments we simply apply these quantizers to each
test image’s RGB values. Although in most cases we treat the three color
components equally (hereafter referred to as using the regular RGB color
space), in some cases we use an approximate ratio (based on their relative
contribution to luminance) to scale them in order to partially compensate
for the nonuniform nature of the RGB color space (hereafter referred to as
using the scaled RGB color space). Our experience indicates that using the
scaled RGB space often leads to better quantization results.8 All images are
displayed and photographed on a Sparc workstation color monitor. The
major quantization artifacts are significant enough to be clearly visible on
any ordinary color monitor in a typical office/lab setting.

We also want to highlight the difference between this minimum maxi-
mum-discrepancy criterion and the minimum variance criterion. The latter
attempts to better preserve popular colors at the expense of mapping
unpopular colors with relatively large quantization errors. Although this
controlled tradeoff often works well, the bias against unpopular colors can
lead to unpleasant artifacts. We can observe this phenomenon with all
three of the following test images, using a representative variance-based
quantizer [Wu 1991] to obtain experimental results.

Before proceeding to the test results we want to comment on the fact that
our implementation of the variance-based method is in its original form,
that is, with 3-3-3 bit-cutting and using the regular RGB space. Bit-cutting
is necessary in order to have a practical memory requirement. It should
actually help to put some adjacent colors in the same cluster as it does in
the center-cut method. Using the scaled RGB space might alleviate some
but not all of the following artifacts. The important point is that the reason
for the problem we show lies with the minimum variance criterion, not a
particular algorithmic and/or implementational approximation.

Figure 2(a) shows a projected view of the RGB color cube on a 512 3 512
black background (some contouring artifacts are introduced here and in
Figure 2(h) by the production-printing process). With 49,027 distinct 24-bit
colors this computer-synthesized image is very difficult, if not impossible,
to quantize without introducing eye-catching distortion (false contour).
However, it demonstrates clearly how these quantizers group original

7See another case concerning false contours in Xiang and Joy [1994b] and Joy and Xiang
[1996].
8See the 3-2-4 bit-cutting color-reduction technique in Joy and Xiang [1993] and the 2:1:4
proportional cluster size limit in Xiang and Joy [1994a].
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image colors into clusters. We first quantize Figure 2(a) in the regular RGB
space to 32 colors. Such a small number makes the weakness of a hierar-
chical clustering method more noticeable. The octree method produces
Figure 2(b), which actually has only 30 colors because in this approach each
cluster merging operation may involve up to 8 suboctants, reducing the
total number of clusters (i.e., quantized colors) by more than 1. The
imbalance in cluster sizes is rather significant. The center-cut method
produces Figure 2(c), which looks better but the size imbalance is still
evident because a large cluster is halved to become two smaller clusters.
The agglomerative clustering method produces Figure 2(d), which is only
comparable to Figure 2(c) because the merging of two similar size clusters
tends to create a cluster that is twice as large. In contrast, the new
quantizer produces Figure 2(e), which is clearly more homogeneous in
terms of both cluster size and cluster distribution.

Figure 2(f) shows the result from the variance-based quantizer. Since all
colors except the background black have very low pixel population, this
black color asserts great influence on how the quantizer partitions the
cluster to which it belongs. At the level of 32 colors a small corner of the
cube appears virtually black (same as the background) because the corre-
sponding original colors are grouped into the same cluster as the original
background black. When the image is quantized to 64 colors or more the
results are more or less what one can reasonably expect, with the varying
degree of unevenness in cluster size and distribution that is caused by the
biased positioning of some cutting planes.

The behavior of our new quantizer can be easily modified by scaling
red:green:blue by, say, 0.5:1.0:0.25, in the computation of Euclidean color
distances. Figure 2(g) shows the result of quantizing Figure 2(a) in this
scaled RGB space to 256 colors. Figure 2(h) shows the result of Floyd-
Steinberg error diffusion [Floyd and Steinberg 1975; Ulichney 1987] using
those quantized colors (with some visible artifacts that vary according to
the way the error terms are propagated).

Figure 3(a) shows a boy’s portrait at 574 3 820 with 120,066 distinct
24-bit colors. The image has been used before to demonstrate the center-cut
method with 3-2-4 bit-cutting and the agglomerative clustering method
with 2:1:4 proportional cluster size limit. We now use each of the four
minimum maximum-discrepancy methods to quantize Figure 3(a) to 64
colors in the regular RGB space. One can see that although the outcome of
the octree method (Figure 3(b)) exhibits some significant distortion (e.g.,
the white of the boy’s left eye being tinted blue and that of the right eye
brown; see enlarged eye areas in Figure 4), the results from the center-cut
method (Figure 3(c)), the agglomerative clustering method (Figure 3(d)),
and the new quantizer (Figure 3(e)) seem quite reasonable, with perhaps
the image from the agglomerative clustering method being the least objec-
tionable and the one from the new quantizer being the second least.
Slightly better results can be obtained for the center-cut, the agglomerative
clustering (shown in Xiang and Joy [1994a]), and the new method when
quantization is done in the scaled RGB space.
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The result of quantizing the boy’s picture to 64 colors using the variance-
based method was shown before in Xiang and Joy [1994a], where the white
of the boy’s left eye is tinted blue. We include here the enlarged eye area of
that image in Figure 4(f). Even at the commonly used quantization level of
256 colors, a careful observer can readily notice the discoloration (which
leads to some perceived disfigurement) of the white of his eyes. On the
other hand, with 256 colors and using the scaled RGB space, the center-cut
method (with or without 3-2-4 bit-cutting),9 the agglomerative clustering
method (shown in Xiang and Joy [1994a]), and the new quantizer all
produce very good results. The result from the new quantizer is shown here
in Figure 3(f), where one can see some slight false contours on the boy’s
face.

A third example here is an image from the Kodak Photo CD sampler disc:
image #4 entitled Portrait of Girl in Red, with base resolution 512 3 768
and 32,195 distinct 24-bit colors (Figure 5(a)). It was used before in Xiang
and Joy [1994b] and Joy and Xiang [1996] to demonstrate a feedback-
based, context-sensitive approach to quantization. This high-quality photo-
graphic image features both texture (e.g., the hat and hair) and smooth
shading (e.g., the satin backdrop and the skin tone). The result with 256
colors from the octree quantizer appears in Figure 5(b), where one can see
significant quantization artifacts. Using the scaled RGB space, both the
center-cut method (Figure 5(c)) (a better result can be obtained with 3-2-4
bit-cutting) and the agglomerative clustering method (Figure 5(d)) are able
to transform the image into good 256-color reproduction. However, one does
not have to be very picky to notice some cross-mapping between certain
skin colors and some shadow shades of the background curtain. Only the
new quantizer manages to achieve very good color separation (Figure 5(e)).

Although the variance-based method is capable of turning the girl’s
portrait into very good 256-color reproduction (with better texture on the
underside of the hat near the rim on her right and slightly smoother
shading in some skin areas), one can readily notice an unsightly aberration
on her teeth (see enlarged teeth from the original, the octree method, the
center-cut method, the agglomerative clustering method, the new quan-
tizer, and the variance-based approach in Figure 6).

Overall, this new quantizer delivers competitive performance over a wide
range of test images. It excels when the discrepancy between a pixel’s
quantized color and its original color needs to be well capped. This is
particularly important in cases where some relatively large color deviation
in a small image area catches a viewer’s attention.

Implemented in C on a Sparc 10 workstation, this new quantizer
achieves interactive or near-interactive speed. It quantizes the Kodak
Photo CD image, the RGB color cube image, and the boy’s image to 256

9Using 3-2-4 bit-cutting improves the performance of the center-cut method on this and some
other images because such a preprocessing step prevents certain adjacent color points from
being separated and grouped into different clusters by the cutting planes. See result with
3-2-4 bit-cutting in Joy and Xiang [1993].
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Fig. 3. (a) Boy’s portrait. The image is quantized to 64 colors using (b) the octree method, (c)
center-cut method, (d) agglomerative clustering method, and (e) new quantizer. The result
with 256 colors using the new method and the scaled RGB space is in (f).
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colors using the scaled RGB space in 9.0, 17.0, and 32.0 seconds, respec-
tively. Our implementation of the other quantizers can all perform at this
speed or faster. Although the memory requirement of the octree method is
O(k), that of the center-cut method, the agglomerative clustering method,
and the new method is O(n). Dealing with truncated colors, the variance-
based method has a memory requirement of O(32 3 32 3 32).

Finally we include some quantization statistics for the four minimum
maximum-discrepancy quantizers. The data are collected from the results
of quantizing the three test images in the regular RGB space without
bit-cutting. The numbers provide a glimpse of the relative effectiveness of
these techniques in their ability to bound quantization error. One can see
from Table I that the new method is the overall winner in minimizing the
maximum quantization error although other methods may occasionally do
better. This should be no surprise since the underlying clustering algorithm
in the new quantizer only guarantees two times the optimal solution value
for the clustering step. Although other methods do not guarantee anything
better, they may sometimes result in smaller clusters and as a consequence
smaller maximum quantization error. Table II shows the average quantiza-
tion error where one can see that the center-cut method, the agglomerative
clustering method, and the new method are more or less in the same
performance class.

4. CONCLUDING REMARKS

Although primarily of interest to researchers and practitioners in computer
graphics and image processing, color image quantization has close ties to

Fig. 4. Enlarged eye areas from the boy’s image and the 64-color quantization results: (a)
original, (b) octree method, (c) center-cut method, (d) agglomerative clustering method, (e) new
quantizer, and (f) variance-based method.
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color science, cluster analysis, and human vision. The recent proliferation
of 256-color graphics in the mass computing market and on the Internet
has also raised much curiosity on the subject.

What constitutes an optimal quantization method is still under investi-
gation. Although there exist sophisticated quantizers that can produce
some impressive results using “uniform” color space and/or image context,
quantizers based on simple statistical criteria enjoy a great advantage in
terms of speed and easy implementation. They also serve as important
benchmarks for comparing quantization performance.

Fig. 6. Enlarged teeth from the girl’s image and the 256-color quantization results: (a)
original, (b) the octree method, (c) center-cut method, (d) agglomerative clustering method, (e)
new quantizer, and (f) variance-based method.

Table I. Maximum Quantization Error in Regular RGB Space
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One of the numerical criteria is to minimize the maximum discrepancy
between original pixel colors and their corresponding quantized colors. The
basic philosophy here is that all image colors are equally important unless
the context of the image says otherwise. This helps to prevent “surprises”
from happening such as the corner of the RGB cube turning black or the
white of the boy’s eye turning blue.

Although this minimization problem is shown in this article to be
different from the problem of clustering for minimum maximum interclus-
ter distance, our use of Gonzalez’s clustering algorithm has produced an
efficient quantizer that effectively approximates the minimum maximum-
discrepancy criterion. Since the clustering algorithm is optimal, with
respect to the approximation bound of the clustering problem, this new
quantizer should be a critical benchmark, especially for all other clustering
first and finding representative second methods.

Our experimental results indicate that the new quantizer, striving for
minimally sized clusters and using centroids as cluster representatives, is
an excellent performer on a wide range of test images. On the other hand,
the center-cut method with 3-2-4 bit-cutting and the agglomerative cluster-
ing method seem to be able to compete from time to time at more or less the
same quality level and occasionally even do a little better. This means that
despite the inherent weakness of these hierarchical methods we can expect
them to deliver very good results in this practical application of color image
quantization.

ACKNOWLEDGMENTS

The author would like to thank the Associate Editor and the reviewers for
their valuable comments and suggestions.

REFERENCES

BALASUBRAMANIAN, R., BOUMAN, C. A., AND ALLEBACH, J. P. 1992. New results in color image
quantization. In Proceedings of SPIE 1657, 289–303.

Table II. Average Quantization Error in Regular RGB Space

274 • Z. Xiang

ACM Transactions on Graphics, Vol. 16, No. 3, July 1997.



BALASUBRAMANIAN, R., BOUMAN, C. A., AND ALLEBACH, J. P. 1994. Sequential scalar quanti-
zation of color images. J. Electron. Imag. 3, 1, 45–59.

BRUCKER, P. 1978. On the complexity of clustering problems. In Optimization and Opera-
tions Research, R. Henn, B. Korte, and W. Oettli, Eds., Springer-Verlag, Berlin, 45–54.

CRINON, R. J. 1991. Picture compression based on two-dimensional adaptive sampling and
adaptive quantization. Optic. Eng. 30, 10, 1490–1496.

EQUITZ, W. H. 1989. A new vector quantization clustering algorithm. IEEE Trans. Acous-
tics, Speech, Signal Process. 37, 10, 1568–1575.

FLOYD, R. AND STEINBERG, L. 1975. An adaptive algorithm for spatial gray scale. In Society
for Information Display 1975 International Symposium Digest of Technical Papers, 36–37.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York.

GAREY, M. R., JOHNSON, D. S., AND WITSENHAUSEN, H. S. 1982. The complexity of the
generalized Lloyd-Max problem. IEEE Trans. Inf. Theory IT-28, 2, 255–256.

GENTILE, R. S., ALLEBACH, J. P., AND WALOWIT, E. 1990a. Quantization of color images based
on uniform color spaces. J. Imag. Technol. 16, 1, 11–21.

GENTILE, R. S., WALOWIT, E., AND ALLEBACH, J. P. 1990b. Quantization and multilevel
halftoning of color images for near original image quality. In Proceedings of SPIE 1249:
Human Vision and Electronic Imaging (Santa Clara, CA, Feb. 12–14), 249–260.

GERVAUTZ, M. AND PURGATHOFER, W. 1988. A simple method for color quantization: Octree
quantization. In New Trends in Computer Graphics, N. Magnenat-Thalmann and D.
Thalmann, Eds., Springer-Verlag, Berlin, 219–231.

GIUSTO, D. D., REGAZZONI, C. S., SERPICO, S. B., AND VERNAZZA, G. 1990. A new adaptive
approach to picture coding. Annales Telecommun. 45, 9–10, 503–518.

GONZALEZ, T. F. 1985. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 2–3, 293–306.

GRAY, R. M., KIEFFER, J. C., AND LINDE, Y. 1980. Locally optimal block quantizer design. Inf.
Control 45, 178–198.

HECKBERT, P. 1982. Color image quantization for frame buffer display. Comput. Graph. 16,
3, 297–307.

JOY, G. AND XIANG, Z. 1993. Center-cut for color image quantization. Visual Comput. 10, 1,
62–66.

JOY, G. AND XIANG, Z. 1996. Reducing false contours in quantized color images. Comput.
and Graph. 20, 2, 231–242.

KASSON, J. M. AND PLOUFFE, W. 1992. An analysis of selected computer interchange color
spaces. ACM Trans. Graph. 11, 4, 373–405.

KURZ, B. J. 1983. Optimal color quantization for color displays. In IEEE Proceedings of
Computer Vision and Pattern Recognition, 217–224.

LINDE, Y., BUZO, A., AND GRAY, R. M. 1980. An algorithm for vector quantizer design. IEEE
Trans. Commun. 28, 1, 84–95.

LLOYD, S. P. 1957. Least squares quantization in PCM. Unpublished Bell Laboratories
memorandum; also IEEE Trans. Inf. Theory IT-28 (1982), 129–137.

MAHY, M., VAN MELLAERT, B., VAN EYCKEN, L., AND OOSTERLINCK, A. 1991. The influence of
uniform color spaces on color image processing: A comparative study of CIELAB, CIELUV,
and ATD. J. Imag. Technol. 17, 5, 232–243.

MAX, J. 1960. Quantizing for minimum distortion. IRE Trans. Inf. Theory IT-6, 7–12.
ORCHARD, M. T. AND BOUMAN, C. A. 1991. Color quantization of images. IEEE Trans. Signal

Process. 39, 12, 2677–2690.
SAHNI, S. AND GONZALEZ, T. 1976. P-complete approximation problems. J. ACM 23, 3,

555–565.
SELIM, S. Z. AND ISMAIL, M. A. 1984. K-means-type algorithms: A generalization conver-

gence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach.
Intel. PAMI-6, 1, 81–87.

ULICHNEY, R. 1987. Digital Halftoning. MIT Press, Cambridge, MA.
WAN, S. J., PRUSINKIEWICZ, P., AND WONG, S. K. M. 1990. Variance-based color image

quantization for frame buffer display. Color Res. Appl. 15, 1, 52–58.

Color Image Quantization • 275

ACM Transactions on Graphics, Vol. 16, No. 3, July 1997.



WU, X. 1991. Efficient statistical computations for optimal color quantization. In Graphics
Gems II , J. Arvo, Ed., Academic Press, San Diego, CA, 126–133.

WU, X. 1992. Color quantization by dynamic programming and principal analysis. ACM
Trans. Graph. 11 , 4, 348–372.

XIANG, Z. AND JOY, G. 1994a. Color image quantization by agglomerative clustering. IEEE
Comput. Graph. Appl. 14, 3, 44–48.

XIANG, Z. AND JOY, G. 1994b. Feedback-based quantization of color images. In Proceedings
of SPIE 2182: Image and Video Processing II (San Jose, CA, Feb. 7–9, 1994), 34–42.

Received May 1996; accepted February 1997

276 • Z. Xiang

ACM Transactions on Graphics, Vol. 16, No. 3, July 1997.


