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The use of regular expressions for text search is widely known and well understood. It is then
surprising that the standard techniques and tools prove to be of limited use for searching structured
text formatted with SGML or similar markup languages. Our experience with structured text
search has caused us to reexamine the current practice. The generally accepted rule of “leftmost
longest match” is an unfortunate choice and is at the root of the difficulties. We instead propose
a rule which is semantically cleaner. This rule is generally applicable to a variety of text search
applications, including source code analysis, and has interesting properties in its own right. We
have written a publicly available search tool implementing the theory in the article, which has
proved valuable in a variety of circumstances.
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1. INTRODUCTION

Regular expressions are widely regarded as a precise, succinct notation for speci-
fying a text search, with a straightforward efficient implementation. Many people
routinely use regular expressions to specify searches in text editors and with stand-
alone search tools such as the Unix grep utility. Formally, a regular expression
states a recognition problem: “Does a given string of text match a particular pat-
tern?” However, searching is a different problem: “Locate the substrings of a text
that match a particular pattern.”

It is widely assumed that it is straightforward to reduce the search problem to
the recognition problem while preserving the desirable properties of precision, suc-
cinctness and efficiency. This article illustrates difficulties with existing approaches
that compromise these properties. We offer a new perspective on the use of regular
expressions for searching text that preserves them. This perspective is particularly
relevant to the search of highly structured text formatted with a markup language
like SGML [Bryan 1988; ISO 1986].
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<act> <act-number> 1 </act-number>

<scene> <scene-number> 1 </scene-number>

<direction> Thunder and lightning. Enter three Witches. </direction>

<speech> <speaker> First Witch </speaker>

<line> When shall we three meet again? </line>

<line> In thunder, lightning, or in rain? </line> </speech>

<speech> <speaker> Second Witch </speaker>

<line> When the hurly-burly’s done, </line>

<line> When the battle’s lost and won. </line> </speech>

<speech> <speaker> Third Witch </speaker>

<line> That will be ere the set of sun. </line> </speech>

<speech> <speaker> First Witch </speaker>

<line> Where the place? </speech>

<speech> <speaker> Second Witch </speaker>

Upon the heath. </line> </speech>

Fig. 1. Excerpt from a structured text file.

We motivate our discussion with a simple example. Figure 1 presents a portion
of a structured text file containing the Shakespearean play Macbeth, with the text
formatted in the style of SGML. The start of each structural element is marked
with a tag of the form <name>, and the end of a structural element is marked
with a tag of the form </name>. The segment is taken from the play’s opening
scene, and it includes the act and scene numbers, stage directions, speakers, and
their speeches. A representative search of such a text might be informally stated as
“Locate speeches by witches that contain the words ‘Dunsinane’ or ‘Birnam.’ ” For-
mulating this search using standard tools can prove quite challenging, particularly
as the structural elements may be broken across multiple lines.

1.1 Regular Expressions

A regular expression r denotes a language L(r), a set of strings composed of symbols
from an alphabet Σ. Any regular language may be denoted by a regular expression
built from five primitives defined as follows:

r L(r)
λ {“”} (empty string)
a {“a”} (alphabet symbol a ∈ Σ)
r1 | r2 L(r1) ∪ L(r2) (alternation)
r1r1 L(r1) ◦ L(r2) (concatenation)
r∗ L(r)∗ (repetition)

where the concatenation of two languages L1 ◦ L2 is defined as

L1 ◦ L2 = {xy | x ∈ L1 and y ∈ L2} ,

and L∗, the closure of a language L, is defined as the smallest solution to

L∗ = {“”} ∪ (L ◦ L∗).
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.
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While these five primitives are sufficient to describe any regular language, the five
primitives alone do not yield a concise notation. In addition to these primitives,
we use the operators &, −, and + defined as follows:

r L(r)
r1 & r2 L(r1) ∩ L(r2) (inclusion)
r1 − r2 L(r1) \ L(r2) (exclusion)
r+ L(r) ◦ L(r)∗ (repetition at least once)

We use Σ as a regular expression denoting any symbol in the alphabet.
Regular expressions are easily recast in terms of the recognition problem: we say

that a string x matches the regular expression r if x ∈ L(r). For any regular expres-
sion, a finite automaton may be constructed that solves the recognition problem
in O(|x|) time where |x| is the number of symbols in x. A single left-to-right scan
is made over x. Storage requirements depend only on properties of r, not on the
length of x. A regular expression matching a speech by a witch is

<speech> Σ∗ <speaker> Σ∗ Witch Σ∗ </speaker> Σ∗ </speech>

The fundamental results in the theory of regular languages and finite automata
were developed in the 1950’s and early 1960’s. A standard account is given by
Hopcroft and Ullman [1979]. This account includes an algorithm for the conversion
of a regular expression to a nondeterministic finite automata (NFA) and a discussion
of the closure properties of regular languages. The remainder of the article assumes
basic familiarity with these results.

1.2 Substring Search

The search problem as stated at the beginning of the article is not precisely defined.
A more precise definition might be “Given a universe U identify all elements of U
that contain a substring x matching a particular pattern r.” For searching text, a
simple universe U is some a priori set of strings — file names in a directory, lines
in a file, or documents in a collection. A simple search algorithm enumerates U in
some order, reporting elements of U that contain matches to the pattern, until U
is exhausted. This simple search strategy is used in Unix utilities like sh to search
a universe of file names and grep to search a universe of lines from text files.

Requiring a priori that a search find a document, page, line, or word may yield
a result too coarse or too fine to be useful. Further difficulties arise when there
is no well-defined universe of possible solutions. This situation arises when the
text is a continuous stream or is divided into units that are not suitable as search
results. In our original example, it is clear that the desired universe is the set of all
speeches; however, the text of Figure 1 is divided into lines only loosely related to
the structure of the document, and most existing tools do not easily allow a search
over arbitrarily defined units.

At its most general, the problem of searching a continuous stream of text with
a regular expression may be characterized as follows: “Given a string x and a
regular expression r, locate all substrings of x that match r.” With respect to
this characterization, the universe is the set of all substrings of x. Unfortunately,
the cardinality of this set is quadratic in the length of x. Moreover, searching
this universe may yield a plethora of overlapping and nested results. For this
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reason, implementations attempting general search will restrict the search to find
and report only a linear subset of the possible solutions. These arbitrary linearizing
restrictions, which alter the semantics of the search, often appear simple, but are
difficult to formalize, difficult to use precisely, and may be difficult to implement
efficiently.

The most common restriction is the “leftmost longest match” rule. This is the
rule mandated by the POSIX standard [IEEE 1992] and used in many software
tools [Hargreaves and Berry 1992; Ousterhout 1994; Wall and Schwartz 1991]. The
rule is carefully stated in the rationale to the POSIX standard:

The search is performed as if all possible suffixes of the string were tested
for a prefix matching the pattern; the longest suffix containing a matching
prefix is chosen, and the longest possible matching prefix of the chosen suffix
is identified as the matching sequence.

Having said this, when performing a general search instead of looking for a single
match, we are left with the question of what is the next match? There are two
obvious choices: (1) begin the search again after the first character of the match or
(2) begin the search again after the last character of the match. The first choice may
result in a large number of nested solutions. The second of these choices is the one
usually taken, but creates a bias for reporting the leftmost of overlapping matches.
We refer to the technique of successively applying the leftmost longest-match rule,
starting each time after the last character of the match, as “longest-match disjoint
substring search.” We say “disjoint” to indicate that the solutions may not overlap
or nest. Using this rule, searching the Macbeth text file with the regular expression

<speech> Σ∗ <speaker> Σ∗ Witch Σ∗ <\speaker> Σ∗ <\speech>

results in a single match, starting at the fourth line of Figure 1 and continuing to
the end of the last speech in the file. This clearly is not the intended result of this
search. Furthermore, it is not obvious how to amend the regular expression to yield
the intended result.

In the next two sections we propose an alternative linearizing restriction. By
applying this restriction to a regular language we may search a text using a single
left-to-right scan and constant storage. The restricted search is most general in that
any solution to the general search will contain a solution to the restricted search.
Our linearizing restriction may be characterized informally as

Locate the set of shortest nonnested (but possibly overlapping) strings
that each match the pattern.

Using this rule, which we term “shortest-match substring search,” the result of
searching Macbeth with the above regular expression will include all speeches by
witches. It may also contain undesired matches. For example, an occurrence of
the word “witch” in the body of a speech will result in a match that starts at the
beginning of the current speech and continues to the end of the following speech.
This problem is addressed in the fourth section by using regular expressions under
shortest-match substring search to define universes for further search. The article
concludes with a brief discussion of scanning and source code analysis and with a
brief description of a new search tool based on shortest-match substring search.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.
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The work described in this article was inspired by the authors’ previous research
in the area of structured text databases [Clarke et al. 1995a; Clarke et al. 1995b],
where the linearizing restriction and its attendant properties proved key to the
development of a closed search algebra with an efficient implementation. The suc-
cess of the search algebra over indexed structured text suggested the application to
regular-expression search over flat text.

1.3 Background and Related Work

Aho [1980; 1990] reviews algorithms for patterning matching in text, with particular
emphasis on regular-expression search and practical experience gained with tools
developed in conjunction with the Unix system. He discusses three possibilities for
the output of a text search:

(1) If the target text is predivided into records, such as lines, the records containing
the pattern may be reported.

(2) The longest-match disjoint substring rule may be used.
(3) A “yes” or “no” may be reported, indicating if the target text contains the

pattern.

He assumes the last case for the purposes of his review.
Thompson [1968] gives a widely referenced construction for converting a regu-

lar expression to an NFA and provides an early description of the use of regular
expressions for searching text. Thompson’s algorithm reports each point in the
target text where a match ends. A number of variants of Thompson’s algorithm
are described by Aho et al. [1974]. The algorithm described in Section 3.2 of this
article is a extension of one of these variants.

An alternate to substring search is to report only one endpoint for each match to
a regular expression r. Formally, Thompson’s algorithm determines all m such that
the text as a whole matches the regular expression Σ∗rΣm. For his Ph.D. thesis,
Baeza-Yates [1989] formalized the problem as that of determining all m such that
the text matches the regular expression ΣmrΣ∗. Here, the values of m specify the
locations in the text where a match begins.

At least two existing text-searching tools allow the user to explicitly define search
universes, in one case by specifying an interrecord delimiter [Wu and Manber 1992a]
and in the other by using longest-match disjoint substring search [Pike 1987a;
Pike 1987b].

Considerable research has been devoted to addressing special cases of regular-
expression search. Search algorithms have been developed for locating single key-
words [Boyer and Moore 1977; Horspool 1980; Knuth et al. 1977], sets of keywords
[Aho and Corasick 1975], keywords separated by sequences of “don’t cares” [Abrahm-
son 1987; Fisher and Patterson 1974; Manber and Baeza-Yates 1991] and other sim-
ple patterns [Baeza-Yates and Gonnet 1992; Wu and Manber 1992b].

2. SHORTEST SUBSTRINGS

If L is a language over an alphabet Σ we define the language G(L) as follows:

Definition 2.1. The string x ∈ L is an element of G(L) if and only if 6 ∃y ∈ L
such that y is a proper substring of x.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.
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By proper substring we mean that y is a substring of x and that y 6= x. If L contains
the empty string then G(L) = {“”}. For the remainder of the article we will assume
that L does not contain the empty string.

We can now precisely state the search restriction advocated by this article:
“Given a string x and a language L, locate all substrings of x that are members of
G(L).” If x = a1a2...an, where the ai are symbols from Σ, we can represent the
result of such a search as a set of ordered pairs of integers, each giving a start and
end position in x corresponding to an element in the result. We use the notation
x[u, v] with u ≤ v to indicate the substring of x starting at au and ending at av.

Definition 2.2. If x ∈ Σ∗ and L is a language over Σ then

G(L, x) = {(u, v) | x[u, v] ∈ G(L)} .
For example,

G(ab | aΣ∗c, “abracadabra”) = {(1, 2), (4, 5), (8, 9)} .
Note that, although the string “abrac” is a member of the regular language de-
noted by ab | aΣ∗c, it is not a member of G(ab | aΣ∗c), and the pair (1, 5) is thus
not included in the set. Several simple but significant properties of G(L, x) are
immediately available.

Theorem 2.3. If (u, v) ∈ G(L, x) and (u′, v′) ∈ G(L, x) then either (1) u < u′

and v < v′, (2) u > u′ and v > v′, or (3) u = u′ and v = v′.

Proof. Shown by a straightforward case analysis. If u ≥ u′ and v < v′, or if
u > u′ and v = v′, then x[u, v] is a proper substring of x[u′, v′], and x[u′, v′] 6∈ G(L).
If u < u′ and v ≥ v′, or if u = u′ and v > v′, then x[u′, v′] is a proper substring of
x[u, v], and x[u, v] 6∈ G(L).

Theorem 2.4. The elements of G(L, x) are totally ordered. The start and end
points place identical total orders on the elements.

Proof. Immediate from Theorem 2.3. If u < u′ and v < v′ then (u, v) <
(u′, v′). If u > u′ and v > v′ then (u, v) > (u′, v′). If u = u′ and v = v′ then
(u, v) = (u′, v′).

As a further consequence of Theorem 2.3, the elements of G(L, x) do not nest
but may overlap. That is, we may have u < u′ ≤ v < v′ or u′ < u ≤ v′ < v, but
not u < u′ ≤ v′ < v or u′ < u ≤ v < v′.

Theorem 2.5. |G(L, x)| ≤ n.

Proof. If |G(L, x)| > n then two distinct elements of G(L, x) must share a
common start position. But by Theorem 2.3 their end positions would then be the
same, in which case the elements could not in fact be distinct.

The next theorem emphasizes the distinction between recognition and search. For
classes of languages closed under concatenation (such as the regular languages), the
problem of recognizing an element of L can be reduced to searching for elements
of G(L). For a class of such languages, if we have an algorithm that searches a
text for elements of G(L), then by the addition of start and end tokens, the same
algorithm may be used to recognize members of L.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.
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Theorem 2.6. If ^ and $ are not symbols in Σ then

G({“ ∧ ”} ◦ L ◦ {“ $ ”}) = {“ ∧ ”} ◦ L ◦ {“ $ ”} .
Proof. Assume there exists x =^w$ and y =^z$ such that y is a proper

substring of x, and x and y are elements of {“ ∧ ”} ◦ L ◦ {“ $ ”}. Since y is a
proper substring of x, y must either be a substring of ^w or a substring of w$. The
first case implies that $ appears in w; the second implies that ^ appears in w.

The members of L reported by a longest-match disjoint substring search are
dependent on the text being searched. For example, a longest-match search for
the regular expression ab | aΣ∗c in the string “ababab” results in three matches
of the form ab. If we add a final “c” to the end of the string (making the string
“abababc”) the result changes to a single match of the form aΣ∗c. The string still
contains three matches of the form ab, but these are no longer reported. In general,
if z ∈ L appears in the target text it is not possible to determine if a longest-match
substring search will find a particular occurrence of z without reference to the entire
text being searched. In contrast, over any text a shortest-match search reports all
occurrences of the members of L that are in G(L) and no others.

So far in this section of the article the exposition has not required that L be
a regular language. The principle of shortest match may in fact be treated as a
general principle for any text search application and has already proven itself for
retrieval from indexed text [Clarke et al. 1995a; Clarke et al. 1995b]. However, we
close the section by examining a specific property of regular languages.

Theorem 2.7. If L is a regular language then G(L) is a regular language.

Proof. G(L) = L\((L(Σ+)◦L◦L(Σ∗))∪(L(Σ∗)◦L◦L(Σ+))), which is regular
by the various closure properties of regular languages.

In a regular expression, we use the notation [r], where r is a regular expression,
to denote the language G(L(r)). For example, the expression [ab | aΣ∗c] denotes
G(L(ab | aΣ∗c)).

3. SUBSTRING SEARCH ALGORITHMS

In this section we compare algorithms for longest- and shortest-match substring
search. A string may be recognized as member of a regular language by a single
left-to-right scan with constant store. We argue informally that there is no longest-
match search algorithm that shares this property. Any longest-match search algo-
rithm using constant store can be forced to make multiple scans. In contrast, we
present a simple algorithm for shortest-match substring search that makes a single
left-to-right scan over the string and uses storage dependent only on the regular
expression to be matched. In both cases we assume that matches are reported as
they are discovered.

3.1 The Complexity of Longest-Match Disjoint Substring Search

Assume we have an algorithm that performs a longest-match search of a regular
expression with a single scan of the target string using only constant store. Consider
a longest-match search with the regular expression ab | aΣ∗c on a string of the form
(ab)nd for some fixed but arbitrary n. The string contains exactly n matches of
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the form ab. Since a is the initial symbol in the string, the algorithm must make
a full scan of the string, examining every character, to determine that this initial
symbol is not part of a match of the form aΣ∗c. Since n may be arbitrarily large,
no constant store may be used to maintain the potential matches that would be
discovered while this determination is being made. It appears that our supposed
algorithm cannot exist.

In this specific case, a longest-match search may be performed with two scans
and constant store. In practice, longest-match search algorithms may make multiple
scans of portions of their target strings, but this is not a serious problem as searches
are generally restricted to a small segment of text.

3.2 Shortest-Match Substring Search

We detail an algorithm for shortest-match substring search for members of the
regular language L over a text x = a1a2...an of length n. We assume that an NFA
M has been constructed to recognize L (perhaps from a regular expression). Let
M = (Q,Σ, δ, q0, F ) where Q is a set of states; Σ is an alphabet of symbols; δ is
a state transition function mapping each element of Q× Σ onto a subset of Q; q0
is the start state; and F is a set of final states. We are assuming that M has no
λ-transitions for simplicity.

For the purposes of the algorithm, we assume that states are designated by
numbers in the range 1 to |Q| where the start state q0 is assigned 1. The algorithm
appears in Figure 2. The two integer arrays P and P ′ are indexed by state number
with each element holding an index into x or the value 0. The symbols i and u
are integer variables designating positions in the text, and the symbols j and q are
integer variables designating states. The algorithm is a extension of a standard
regular-expression search algorithm [Aho et al. 1974]. Correctness of the algorithm
will be the subject of a later theorem.

Informally the algorithm operates as follows. The text is scanned from left to
right (lines 3–20) with a new execution of the NFA beginning at the start state
with each character scanned. For each state in the NFA, a position is recorded
indicating the start of an interval of text that ends at the current character and
that can leave the NFA in that state, if such an interval exists. The array P holds
the current set of positions, with the array P ′ used for update purposes. If two
intervals of text can leave the NFA in a particular state after the current character,
then the shortest-substring rule requires that only the smallest of the two, with
the largest start position, need be maintained by the algorithm. The use of the
“max” function at lines 9 and 12 reflects this observation. Similarly, when a match
is generated (line 14), only positions after the start of this match are kept (lines
15-16).

Storage requirements (except for the string itself) depend only on |Q|, the number
of states of M . The outermost loop at lines 3–20 makes a single left-to-right scan
over x. Now, let

T = max
1≤j≤|Q|,a∈Σ

(|δ(j, a)|).

T is the maximum cardinality of the transition function for any state and symbol.
States have at most T transitions labeled with the same symbol. The loop at lines
8–9 makes at most T iterations for each iteration of the outer loop at lines 7–9. It
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.
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1 for j ← 1 to |Q| do

2 Pj ← 0;
3 for i← 1 to n do begin
4 P1 ← i;
5 for j ← 1 to |Q| do
6 P ′j ← 0;

7 for j ← 1 to |Q| do
8 for q ∈ δ(j, ai) do
9 P ′q ← max(P ′q, Pj);
10 u← 0;
11 for j ← 1 to |Q| do
12 if j ∈ F then u← max(u, P ′j);

13 if u > 0 then begin
14 Output (u, i);
15 for j ← 1 to |Q| do
16 if P ′j ≤ u then P ′j ← 0;

17 end;
18 for j ← 1 to |Q| do
19 Pj ← P ′j ;

20 end;

Fig. 2. Shortest-match substring search algorithm.

is apparent from the structure of the loops that the algorithm has worst-case time
complexity of O(|Q|Tn).

That the algorithm correctly performs a shortest-match substring search is the
subject of the next theorem. As a final note, in an actual implementation of the
algorithm, the arrays P and P ′ are more efficiently represented as lists of states
and positions. States for which an array element would be 0 are omitted from this
list.

Theorem 3.2.1. A pair (u, v) is output by the algorithm of Figure 2 if and only
if (u, v) ∈ G(L, x).

Proof. We begin by establishing invariants for the array P over the loop at
lines 3–20. At any point in the execution of the algorithm let t be the first element
of the previous pair output or 0 if no pair has been output. When a pair is output
on line 14, t is effectively updated. The invariants are (1) if Pj 6= 0, then j is not a
final state, and the string x[Pj , i] is the shortest suffix of x[t+ 1, i] for which there
is a path in M from the start state to state j and (2) if Pj = 0, there is no suffix
of x[t+ 1, i] for which there is a path in M from the start state to j.

Within the body of the loop at lines 3–20, the array P ′ is used to compute the
updated value of P based on the previous value of P . Lines 18–19 effect the update.

The invariants for P ′ over the loop at lines 7–9 are as follows: (1) if P ′k 6= 0, then
x[P ′k, i] is the shortest suffix of x[t + 1, i] for which there is a path in M from the
start state to k where the last transition is from a state numbered j or lower and
(2) if P ′k = 0, then there is no suffix of x[t + 1, i] for which there is a path in M
from the start state to k where the last transition is from a state numbered j or
lower. Thus, after line 9, if P ′j 6= 0 then x[P ′j , i] is the smallest suffix of x[t + 1, i]
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for which there is a path in M from the start state to j, and if P ′j = 0 then there
is no suffix of x[t+ 1, i] for which there is a path in M from the start state to j.

After line 9, there may be final state for which P ′j 6= 0. If this is the case, the
loop on lines 10–12 discovers the largest u such that x[u, i] is an element of L, thus
x[u, i] is an element of G(L). The lines 13–17 output (u, i) (implicitly setting t← u)
and invalidate all partial or complete matches starting at or before u by setting the
appropriate elements of P ′ to 0. This implies that after line 17, P ′j = 0 if j is a
final state.

If (u, v) is a element of G(L) it will be the shortest suffix of x[t+ 1, i] for some t
and will be output at line 14.

4. EXPLICIT CONTAINMENT

A regular expression may be used to define an explicit universe for search. Using
the search restriction advocated by this article the regular expression

[ <speech> Σ∗ </speech> ]

defines the universe of speeches.
We define a new operator “containing” ( . ) to express a search over an explicit

universe. The regular expression r . s, where r and s are regular expressions, is
defined as [r] & (Σ∗sΣ∗).

Consider our original search statement: “Find speeches by witches that contain
the words ‘Dunsinane’ or ‘Birnam.’ ” Using the containing operator and assuming
our search restriction we may formulate this search as

(<speech> Σ∗ </speech>) .
(<speaker>Σ∗ WitchΣ∗ </speaker>Σ∗ (Birnam | Dunsinane))

To this point we have not discussed the conversion of a regular expression to an
NFA, but some explanation is required in connection with explicit containment. The
conversion may be accomplished by any of the standard techniques [Brzozowski 1964;
Berry and Sethi 1986; McNauthton and Yamada 1960; Thompson 1968], remem-
bering that the algorithm of Figure 2 assumes transitions are labeled with a single
symbol. Of some concern is the size of the NFA that may result from this conver-
sion. The size of an NFA generally grows additively for alternation, concatenation,
and the varieties of repetition; for inclusion it grows multiplicatively. For most
applications this growth is not a problem. Unfortunately, in order to implement
exclusion, the NFA must be converted to a DFA, with a possible exponential in-
crease in size. It is then not reasonable to implement the “containing” operator by
directly using the equation in the proof of Theorem 2.7.

Fortunately, explicit containment may be implemented without direct use of that
equation. We first observe that if an interval of the text contains a solution to the
regular expression s, then it contains a solution to [s]. It then follows that the
regular expression r . s is equivalent to [r] . [s]:

r . s = [r] & (Σ∗sΣ∗) = [r] & (Σ∗[s]Σ∗) = [r] . [s]

It is thus possible to implement explicit containment by running two concurrent
copies of the algorithm of Figure 2, one to locate occurrences of [r] and one to locate
occurrences of [s]. When a match to [r] is located, the location of the last match
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.



On the Use of Regular Expressions for Searching Text · 423

to [s] is checked. If that match to [s] is contained within the bounds of the match
to [r], the match to [r] is a solution to r . s. This technique is in fact a simple case
of a more general algorithm [Clarke et al. 1995a].

5. SCANNING, SEARCHING, AND SOURCE CODE ANALYSIS

In the same year that Thompson published his regular-expression search algorithm,
a group at MIT used regular languages for automatically constructing lexical an-
alyzers [Johnson et al. 1968]. This system used the longest-match rule to resolve
simple cases of matching ambiguity and reported errors in others. Since then, regu-
lar expressions, interpreted under the longest-match rule, have been widely used to
specify scanners for programming languages and other translators [Aho et al. 1986;
Lesk 1975]. Scanning is a somewhat different problem than searching, requiring a
partitioning of the input into tokens, essentially performing a transduction of the
text. The leftmost longest-match rule appears to be a more natural choice for scan-
ning. Consider the typical definition of an identifier in a programming language:
an alphabetic character followed by zero or more alphanumeric characters. This
definition must be interpreted under a longest-match rule to be correct.

However, Theorem 2.6 provides a hint on how to use shortest-substring search
to locate objects, such as identifiers, that have a longest-match component implicit
in their definitions. Instead of directly using the definition given earlier, we might
specify an identifier as a nonalphanumeric character, followed by an alphabetic
character, followed by zero or more alphanumeric characters, followed by a nonal-
phanumeric character. In the search results, a surrounding pair of nonalphanumeric
characters will be reported with each identifier.

Feature extraction from source code may be viewed as a specialized search prob-
lem to which regular-expression search may be applied. For example, Murphy and
Notkin [1995] used a pattern-matching language based on regular expressions to
assist in the construction of call graphs, cross reference lists, and similar code anal-
ysis output. Some features of program source code, comments in particular, may
be more easily identified using a shortest-match rule. Under some mild restrictions,
the regular expression

/*Σ∗*/

will match all comments in a group of C source files.
Global search-and-replace operations in text editors provide a further example

of a situation in which overlap among matches may not be considered appropri-
ate. Like scanning, global search-and-replace is a transduction operation. Non-
overlapping substrings appear to be desirable for this application, since the mapping
from input text to output text is clearly defined. Unfortunately, use of the leftmost
longest-match rule makes the arbitrary restriction of applying the edit only to the
leftmost of several overlapping intervals. The extension of the shortest-substring
rule to transduction is an area for future research.

6. THE CGREP SEARCH TOOL

The theory described in this article has been used as the basis for a search tool that
has proved to be of significant value in a number of applications. In searching and
organizing folders of mail messages and news articles, the tool allows the selection
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and extraction of articles based on combinations of the contents of the header
lines and patterns occurring in the body. The tool has been used by one of the
authors to assist in sorting, organizing, and indexing structured documents from the
TREC collection [Harman 1993]. Other applications have included the extraction
of World Wide Web hypertext links (URLs) from NetNews articles, searching files
of machine code in binary format, searching comments in source code files, and
counting actual occurrences of patterns in files (as opposed to lines containing the
patterns). Formulating equivalent operations with existing text-processing tools has
proven difficult and frustrating. The tool is made available through the MultiText
project repository (ftp://plg.uwaterloo.ca/pub/mt/cgrep). A technical report
distributed with the tool [Clarke and Cormack 1996] discusses the details of these
examples, discusses performance, and provides a comparison with more specialized
search tools.

7. CONCLUDING COMMENTS

This article formally defines and explores the properties of a “shortest-match”
search rule for regular expressions and describes practical results concerning the
application of regular languages to search. The shortest-substring rule provides
a precise definition of which strings will be selected during a search without any
dependence on the contents of the remainder of the text. Shortest substring search
can be performed with a single left-to-right scan over the text with storage require-
ments dependent only on properties of the regular expression.

The motivating application for our approach is in searching structured text that
is not divided into predefined retrieval units. The use of the shortest-substring rule
allows regular expressions to be used to define explicit search universes, which then
become the subject of further selection through regular-expression search. The
necessity of an a priori division of the text into search records is thereby avoided.

The extension of the shortest-substring rule to transduction is an area for future
research. The shortest-substring restriction may also be useful as a modification
to existing search algorithms, such as those for approximate regular-expression
search [Knight and Myers 1995; Myers and Miller 1989], or to extend other recog-
nition algorithms to the search problem [Chang and Paige 1992]. An independently
developed pattern-matching tool, sgrep [Jaakkola and Kilpeläinen 1995], is par-
tially based on earlier work by the present authors [Clarke et al. 1995a] and incor-
porates some of the ideas discussed in this article.
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