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1. INTRODUCTION

It has been attracting wide attention to make use of list homomorphisms in parallel
programming [Bird 1987; Chin 1996; Cole 1993b; Gorlatch 1995; 1996a; Hu et al.;
1996a; 1996c]. List homomorphisms [Bird 1987] are those functions on finite lists
that promote through list concatenation — that is, function h for which there
exists an associative binary operator ⊕ such that, for all finite lists xs and ys , we
have h (xs ++ ys) = h xs ⊕ h ys , where ++ denotes list concatenation. Intuitively,
the definition of list homomorphisms means that the value of h on the larger list
depends in a particular way (using binary operation ⊕) on the values of h applied
to the two pieces of the list. The computations of h xs and h ys are independent
of each other and can thus be carried out in parallel. This simple equation can
be viewed as expressing the well-known divide-and-conquer paradigm in parallel
programming.

Therefore, the implications for parallel program development become clear; if the
problem is a list homomorphism, then it only remains to define a cheap ⊕ in order to
produce a highly parallel solution. However, there are a lot of useful and interesting
list functions that are not list homomorphisms and thus have no corresponding ⊕.
One example is the function mss known as (one-dimensional) maximum segment
sum problem, which finds the maximum of the sums of contiguous segments within
a list of integers. For example, mss [3,−4, 2,−1, 6,−3] = 7, where the result is
contributed by the segment [2,−1, 6]. The mss is not a list homomorphism, since
knowing mss xs and mss ys is not enough to allow computation of mss (xs ++ ys).

To solve this problem, Cole [1993b] proposed an informal approach showing how
to embed these functions into list homomorphisms. His method consists of con-
structing a homomorphism as a tuple of functions where the original function is
one of the components. The main difficulties are to guess which functions must
be included in a tuple in addition to the original function and to prove that the
constructed tuple is indeed a list homomorphism. The examples given by Cole show
that this usually requires a lot of ingenuity from the programmer.

The purpose of this article is to give a systematic and formal derivation of such
list homomorphisms containing the original nonhomomorphic function as its com-
ponent. It is mainly based on our previous works reported in Hu et al. [1996a;
1996c]. Our main contributions are as follows:

—Unlike Cole’s informal study, we propose a systematic way of discovering extra
functions which are to be tupled with the original function to form a list homo-
morphism. We base our method on two main theorems, the Tupling Theorem and
the Almost Fusion Theorem, showing how to derive a true list homomorphism
from recursively defined functions by means of tupling and how to calculate a
new homomorphism incrementally from the old by means of fusion. It would be
interesting to see that our systematic construction of list homomorphisms is of
much help in discovering new efficient parallel programs (Section 5).

—Our main theorems for tupling and fusion are given in a calculational style
[Hu et al. 1996b; Meijer et al. 1991; Takano and Meijer 1995] rather than being
based on the fold/unfold transformation [Chin 1992; 1993]. Therefore, infinite
unfoldings, once inherited in the fold/unfold transformation, can be definitely
avoided by the theorems themselves. Furthermore, although we restrict ourselves
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to list homomorphisms, our theorems could be extended naturally for homomor-
phisms of arbitrary data structures (e.g., trees) with the theory of constructive
algorithmics [Fokkinga 1992].

—Our derivation of parallel program proceeds in a formal way, leading to a correct
solution with respect to the initial specification. We start with a simple, and
“obviously” correct, but possibly inefficient solution to the problem, and then
we transform it based on our rules and algebraic identities into a semantically
equivalent list homomorphism. Furthermore, as will be seen later, most of our
derivation is mechanical and thus could be made automatically and embedded
in a parallel compiler.

We shall illustrate our idea using the maximum segment sum problem mss as our
running example. This problem is of interest because there are efficient but non-
obvious algorithms to compute it, both in sequential [Bird 1987] and in parallel
[Cai and Skillicorn 1992; Cole 1993b].

This article is organized as follows. In Section 2, we review the notational con-
ventions and some basic concepts used in this article. After showing how to specify
problems in Section 3, we focus ourselves on deriving an efficient (almost) list ho-
momorphism from the specification by using our two important theorems, namely
the Tupling and the Almost Fusion Theorems in Section 4. In Section 5, we illus-
trate how our systematic way is also very useful in discovering new efficient parallel
programs. Concluding remarks are given in Section 6.

2. PRELIMINARY

In this section, we briefly review the notational conventions known as Bird-Meertens
Formalisms [Bird 1987] and some basic concepts which will be used in the rest of
this article.

2.1 Functions

Functional application is denoted by a space and the argument which may be writ-
ten without brackets. Thus f a means f (a). Functions are curried, and application
associates to the left. Thus f a b means (f a) b. Functional application is regarded
as more binding than any other operator, so f a ⊕ b means (f a) ⊕ b, but not
f (a ⊕ b). Functional composition is denoted by a centralized circle ◦. By defi-
nition, (f ◦ g) a = f (g a). Functional composition is an associative operator, and
the identity function is denoted by id. Infix binary operators will often be denoted
by ⊕,⊗ and can be sectioned ; an infix binary operator like ⊕ can be turned into
unary functions by (a⊕) b = a⊕ b = (⊕ b) a.

The followings are some important operators (functions) used in the article.

—The projection function πi will be used to select the ith component of tuples,
e.g., π1 (a, b) = a. The 4 and × are two important operators related to tuples,
defined by

(f 4 g) a = (f a, g a), (f × g) (a, b) = (f a, g b).

The 4 can be naturally extended to functions with two arguments. So, we have
a (⊕ 4 ⊗) b = (a⊕ b, a⊗ b).
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—The cross operator X⊕, which crosswisely combines elements in two lists with
operator ⊕, is defined informally by

[x1, · · · , xn] X⊕ [y1, · · · , ym] = [x1 ⊕ y1, · · · , x1 ⊕ ym, · · · , xn ⊕ y1, · · · , xn ⊕ ym].

The cross operator enjoys many algebraic identities, e.g., (f ∗) ◦ X⊕ = Xf◦⊕.
—The concat , a function to flatten a list, is defined by

concat [xs1, · · · , xsn] = xs1 ++ · · ·++ xsn.

—The zip-with operator Υ⊕, a function to apply ⊕ pairwisely to two lists, is infor-
mally defined by

[x1, · · · , xn] Υ⊕ [y1, · · · , yn] = [x1 ⊕ y1, · · · , xn ⊕ yn].

2.2 Lists

Lists are finite sequences of values of the same type. A list is either empty, a
singleton, or the concatenation of two other lists. We write [ ] for the empty list, [a]
for the singleton list with element a (and [·] for the function taking a to [a]), and
xs ++ ys for the concatenation of xs and ys . Concatenation is associative, and [ ] is
its unit. For example, the term [1] ++ [2] ++ [3] denotes a list with three elements,
often abbreviated to [1, 2, 3].

2.3 List Homomorphisms

A function h satisfying the following three equations will be called a list homomor-
phism:

h [ ] = ι⊕
h [x] = f x
h (xs ++ ys) = h xs ⊕ h ys

It soon follows from this definition that ⊕ must be an associative binary operator
with unit ι⊕. For notational convenience, we write ([f,⊕])1 for the unique function
h, e.g., sum = ([id,+]) and max = ([id, ↑]), where ↑ denotes the binary maximum
function whose unit is −∞. Note when it is clear from the context, we usually
abbreviate “list homomorphisms” to “homomorphism.”

Two important list homomorphisms are map and reduction. Map is the operator
which applies a function to every item in a list. It is written as an infix ∗. Informally,
we have

f ∗ [x1, x2, · · · , xn] = [f x1, f x2, · · · , f xn].

Reduction is the operator which collapses a list into a single value by repeated
application of some binary operator. It is written as an infix /. Informally, for an
associative binary operator ⊕, we have

⊕/ [x1, x2, · · · , xn] = x1 ⊕ x2 · · · ⊕ xn.
It is not difficult to see that ∗ and / have simple massively parallel implementations
on many architectures. For example, ⊕/ can be computed in parallel on a tree-like

1Strictly speaking, we should write ([ι⊕, f,⊕]) to denote the unique function h. We can omit the
ι⊕ because it is the unit of ⊕.
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structure with the combining operator ⊕ applied in the nodes, whereas f∗ is totally
parallel. The relevance of list homomorphisms to parallel programming can be seen
clearly from the Homomorphism Lemma [Bird 1987]: ([f,⊕]) = (⊕/) ◦ (f∗), saying
that every list homomorphism can be written as the composition of a reduction and
a map. This implies that a list homomorphism ([f,⊕]) can be simply implemented
using O(log n)×C(⊕)+C(f) parallel time where n stands for the size of input list,
C(⊕) for the cost of ⊕, and C(f) for the cost of f .

2.4 Almost Homomorphisms

Simple as they are, list homomorphisms cannot specify a lot of interesting func-
tions as explained in the introduction. To solve this problem, Cole [1993b] argued
informally that some of them can be converted into so-called almost (list) homo-
morphisms by tupling them with some extra functions so that the tupled function
can be specified by a list homomorphism. In other words, an almost homomor-
phism is a composition of a projection function and a list homomorphism. Since
projection functions are simple, almost homomorphisms are also suitable for parallel
implementation as list homomorphisms do.

In fact, it may be surprising to see that every function can be represented in
terms of an almost homomorphism [Gorlatch 1995]. Let k be a nonhomomorphic
function. Consider a new function g such that g x = (x, k x). The tupled function
g is homomorphic, i.e., g (xs++ ys) = (xs++ ys, k (xs++ ys)) = g xs⊕ g ys, where
(xs1, k1)⊕(xs2, k2) = (xs1 ++ xs2, k (xs1 ++ xs2)), and we have the following almost
homomorphism for k:

k = π2 ◦ g = π2 ◦ ([g ◦ [·],⊕]).

However, a closer look at the definition of operation ⊕ reveals the drawback: it
is quite expensive and meaningless in that it does not make use of the previously
computed values k1 (= k xs1) and k2 (= k xs2) and computes k from scratch! In
this sense, we say it is not an expected “true” almost homomorphism.

In order to derive a “true” almost homomorphism, a suitable tupled function
should be carefully defined, making full use of previously computed values. Cole
reported several case studies of such derivation with parallel algorithms as a result
and stressed that in each case the derivation requires a lot of intuition [Cole 1993a;
1993b]. In this article, we shall propose a systematic approach to this derivation.

3. SPECIFICATION

Given problems, we aim at a formal derivation of efficient parallel programs by con-
structing list homomorphisms including the original as its component (i.e., almost
homomorphisms).2 To talk about parallel program derivation, we should be clear
about specifications. It is advocated by transformational programming [Bird 1984;
Feather 1987; Pettorossi and Proietti 1993] that specifications should be given as
naive solutions to problems where we only focus on simple but correct solutions
without being concerned with efficiency or parallelism. More precisely, our spec-
ification for a problem p will be a simple, and “obviously” correct, but possibly

2Note that list homomorphisms can be considered as a special case of almost list homomorphisms
where the projection part is an identity function.
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inefficient solution with the form in a compositional style:

p = pn ◦ · · · ◦ p2 ◦ p1 (1)

where each pi is a (recursively defined) function. This reflects our way of solving
problems; a (big) problem p may be solved through multiple passes while in each
pass a simpler problem pi is solved by a recursion.

Consider our running example of maximum segment sum problem. An obviously
correct solution to the problem is mss : [Int ]→ Int defined by

mss = max ◦ (sum∗) ◦ segs

which is implemented by three passes: (1) computing all contiguous segments of
a sequence by segs , (2) summing up each contiguous segment by sum, and (3)
selecting the largest value by max.

The only unknown function in the specification is segs : [Int ]→ [[Int ]], computing
all segments of a list. It would be likely to define it simply as

segs (xs ++ ys) = segs xs ++ segs ys ++ (tails xs X++ inits ys).

The equation reads that all segments in the sequence xs ++ ys are made up of
three parts: all segments in xs, all segments in ys , and all segments produced by
crosswisely concatenating every tail segment of xs (i.e., the segment in xs ending
with the last element of xs) with every initial segment of ys (i.e., the segment in ys
starting with the first element of ys). Here, inits and tails are standard functions
in Bird [1987], though our definitions are slightly different as will be seen later.
Being simple, it is a wrong definition for segs, as you may have noticed that, for
example, segs ([1, 2] ++ [3]) 6= segs ([1] ++ [2, 3]) while they are expected to be equal
(to segs [1, 2, 3]). A closer look reveals that the two resulting lists indeed consist of
all segments of [1, 2, 3], but in different order. One way to remedy this situation is
to force segs to give the result of a sorted list of segments under a total order, say
≺, and thus we can define segs correctly as

segs (xs ++ ys) = segs xs ++≺ segs ys ++≺ (tails xs X++ inits ys)

where ++≺ merges two sorted lists into one with respect to the order of ≺.
Let us see how we can define such ≺ in a simple way. Let [xi1 , xi1+1, · · · , xj1 ] and

[xi2 , xi2+1, · · · , xj2 ] be two segments of the presumed list [x1, · · · , xn]. Then, ≺ is
defined by [xi1 , xi1+1, · · · , xj1 ] ≺ [xi2 , xi2+1, · · · , xj2 ] =def [i1, · · · , j1] <D [i2, · · · , j2],
where <D stands for the lexicographic order on indices. To capture the index
information in our specification, we extend the input type of mss and segs from
lists of integers, [Int ], to lists of pairs of indices and integers, [(Index , Int)]. Also,
we change max to max′ and sum′ to sum, taking account of this additional index
information.

So much for the specification of the mss problem, which is summarized in Fig-
ure 1. It is a naive solution of the problem without concerning efficiency and
parallelism at all, but its correctness is obvious.

4. DERIVATION

Our derivation of a “true” almost homomorphism from the specification (1) in a
compositional style is carried out incrementally by the following procedure:
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mss : [(Index , Int)]→ Int
mss = max′ ◦ (sum′∗) ◦ segs

where

max′ = ([π2, ↑′])
where (is, x) ↑′ (js, y)). x ↑ y

sum′ = ([λ(i, x).([i], x), +′])
where (is, x) +′ (js, y) = (is++ js, x+ y)

segs [ ] = [ ]
segs [x] = [[x]]
segs (xs ++ ys) = segs xs ++≺ segs ys ++≺ (tails xs X++ inits ys)
inits [ ] = [ ]
inits [x] = [[x]]
inits (xs ++ ys) = inits xs ++ (xs ++ ) ∗ (inits ys)
tails [ ] = [ ]
tails [x] = [[x]]
tails (xs ++ ys) = (++ ys) ∗ (tails xs) ++ tails ys

Fig. 1. Specification for mss problem

Step 1. Derive an almost homomorphism from the recursive definition of
p1 (Section 4.1).

Step 2. Fuse p2 into the derived almost homomorphism to obtain a new
almost homomorphism for p2 ◦p1, and repeat this derivation until
pn is fused (Section 4.2).

Step 3. Let π1 ◦ ([f,⊕]) be the resulting almost list homomorphism for
pn ◦ · · · ◦ p2 ◦ p1 obtained at Step 2. For the functions inside the
homomorphism, namely f and ⊕, try to repeat Steps 1 and 2 to
find efficient parallel implementations for them.

We are confronted with two problems here: (a) how an almost homomorphism
can be derived from a recursive definition and (b) how a new almost homomorphism
can be calculated out of a composition of a function and an old one.

4.1 Deriving Almost Homomorphisms

Although some functions cannot be described directly by list homomorphisms, they
may be easily described by (mutual) recursive definitions while some other func-
tions might be used (see segs in Section 3 for an example) [Fokkinga 1992]. In
this section, we propose a way of deriving almost homomorphisms from such (mu-
tual) recursive definitions, systematically discovering extra functions that should
be tupled with the original function to turn it into a “true” list homomorphism.
The “true” list homomorphism must fully reuse the previously computed values
in the sense that there are no redundant recursive calls to the original function
or to any newly-discovered extra function, as discussed in Section 2.4. Our ap-
proach is based on the following theorem. For notational convenience, we define
∆n

1fi = f1 4 f2 4 · · · 4 fn.
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Theorem 4.1.1 (Tupling). Let h1, · · · , hn be mutual recursively defined by

hi [ ] = ι⊕i

hi [x] = fi x (2)
hi (xs ++ ys) = ((∆n

1hi) xs)⊕i ((∆n
1hi) ys).

Then ∆n
1hi is a list homomorphism ([∆n

1 fi, ∆n
1⊕i]), and (ι⊕1 , · · · , ι⊕n) is the unit

of ∆n
1⊕i.

Proof. According to the definition of list homomorphisms, it is sufficient to
prove that

(∆n
1hi) [ ] = (ι⊕1 , · · · , ι⊕n)

(∆n
1hi) [x] = (∆n

1fi)x
(∆n

1hi) (xs ++ ys) = ((∆n
1hi) xs) (∆n

1⊕i) ((∆n
1hi) ys).

The first two equations are trivial. The last can be proved by the following calcu-
lation.

LHS
= { Definition of ∆ and 4 }

(h1(xs ++ ys), · · · , hn(xs ++ ys))
= { Definition of hi }

(((∆n
1hi) xs)⊕1 ((∆n

1hi) ys), · · · , ((∆n
1hi) xs)⊕n ((∆n

1hi) ys))
= { Definition of 4 and ∆ }
RHS 2

Theorem 4.1.1 says that if h1 is mutually defined with other functions (i.e.,
h2, · · ·hn) which traverse over the same lists in the specific form of (2), then tu-
pling h1, · · · , hn will definitely give a list homomorphism. It follows that every hi
is an almost homomorphism. Particularly, h1 can be represented in the way of the
projection function π1 composed with the list homomorphism for the tupled func-
tion. It is worth noting that this style of tupling can avoid repeatedly redundant
computations of h1, · · · , hn in the computation of the list homomorphism of ∆n

1hi
[Takeichi 1987]. That is, all previous computed results by h1, · · · , hn can be fully
reused, as expected in “true” almost homomorphisms.

Practically, not all recursive definitions are in the form of (2). They, however,
can be turned into such form by a simple transformation. Let us demonstrate how
the tupling theorem works in deriving a “true” almost homomorphism from the
definition of segs given in Section 3.

First, we determine what functions are to be tupled, i.e., finding h1, · · · , hn. As
explained above, the functions to be tupled are those which traverse over the same
lists in the definitions. So, from the definition of segs

segs (xs ++ ys) = segs xs ++≺ segs ys ++≺ (tails xs X++ inits ys),

we know that segs needs to be tupled with tails and inits , because segs and inits
traverse the same list xs whereas segs and tails traverse the same list ys as under-
lined. Going to the definition of inits

inits (xs ++ ys) = inits xs ++ (xs ++ ) ∗ (inits ys),
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.
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we find that the inits needs to be tupled with id , the identity function, since
xs = id xs . Similarly, the tails needs to be tupled with id . Note that id is the
identity function over lists defined by

id [ ] = [ ]
id [x] = [x]
id (xs ++ ys) = id xs ++ id ys .

To summarize the above, the functions to be tupled are segs , inits , tails , and id ,
i.e., our tuple function will be segs 4 inits 4 tails 4 id .

Next, we rewrite the definitions of the functions in the above tuple to the form
of (2), i.e., deriving f1,⊕1 for segs , f2,⊕2 for inits , f3,⊕3 for tails , and f4,⊕4 for
id . In fact, this is straightforward: just selecting the corresponding recursive calls
from the tuples. From the definition of segs we have

f1 x = [[x]]
(s1, i1, t1, d1)⊕1 (s2, i2, t2, d2) = s1 ++≺ s2 ++≺ (t1X++ i2).

It would be helpful for understanding the above derivation if we notice the following
correspondences: s1 to segs xs, i1 to inits xs, t1 to tails xs, d1 to id xs, s2 to segs ys ,
i2 to inits ys , t2 to tails ys , d2 to id ys . Similarly, for inits , tails , and id we have

f2 x = [[x]]
(s1, i1, t1, d1)⊕2 (s2, i2, t2, d2) = i1 ++ (d1++ ) ∗ i2
f3 x = [[x]]
(s1, i1, t1, d1)⊕3 (s2, i2, t2, d2) = (++ d2) ∗ t1 ++ t2
f4 x = [x]
(s1, i1, t1, d1)⊕4 (s2, i2, t2, d2) = d1++ d2.

Now we are ready to apply Theorem 4.1.1 and get the following list homomor-
phism:

segs 4 inits 4 tails 4 id = ([∆4
1fi,∆

4
1⊕i]).

And our almost homomorphism for segs is thus obtained:

segs = π1 ◦ ([∆4
1fi,∆

4
1⊕i]). (3)

It would be intersting to see that the above derivation is practically mechanical .
Note that the derivation of the unit of the new binary operator (e.g., ∆4

1⊕i) is
omitted because this is trivial; the new tuple function applying to empty list will
give exactly this unit (e.g., (segs 4 inits 4 tails 4 id) [ ]). The derivation of units
will be omitted in the rest of the article as well.

4.2 Fusion with Almost Homomorphisms

In this section, we show how to fuse a function with an almost homomorphism, the
second problem (b) as listed at the beginning of Section 4.

It is well known that list homomorphisms are suitable for program transformation
in that there is a general rule called Fusion Theorem [Bird 1987], showing how to
fuse a function with a list homomorphism to get another new list homomorphism.

Theorem 4.2.1 (Fusion). Let h and ([f,⊕]) be given. If there exists ⊗ such
that ∀x, y. h (x⊕ y) = hx⊗ h y, then h ◦ ([f,⊕]) = ([h ◦ f, ⊗]).
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.
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This fusion theorem, however, cannot be used directly for our purpose. As seen
in Eq. (3), we usually derive an almost homomorphism, and we hope to know how
to fuse functions with almost homomorphisms; namely, we want to deal with the
following case:

h ◦ (π1 ◦ ([∆n
1 fi,∆

n
1⊕i])).

We would like to shift π1 left and promote h into the list homomorphism. Our
fusion theorem for this purpose is given below.

Theorem 4.2.2 (Almost Fusion). Let h and ([∆n
1 fi, ∆n

1⊕i]) be given. If there
exist ⊗i (i = 1, · · · , n) and a map H = h1× · · · ×hn where h1 = h such that for all
j,

∀x, y. hi (x⊕i y) = H x⊗i H y (4)

then

h ◦ (π1 ◦ ([∆n
1 fi,∆n

1⊕i])) = π1 ◦ ([∆n
1 (hi ◦ fi),∆n

1⊗i]).
Proof. We prove it by the following calculation:

h ◦ (π1 ◦ ([∆n
1 fi,∆

n
1⊕i]))

= { By π1 and H }
π1 ◦H ◦ ([∆n

1 fi,∆
n
1⊕i])

= { Theorem 4.2.1, and the proofs below }
π1 ◦ ([∆n

1 (hi ◦ fi),∆n
1⊗i]).

To complete the above proof, we need to show that for any x and y,

H (x (∆n
1⊕i) y) = (H x) (∆n

1⊗i) (H y)
H ◦ (∆n

1 fi) = ∆n
1 (hi ◦ fi).

The second equation is easy to prove. For the first, we argue that

LHS
= { Expanding ∆, Definition of 4 }
H (x⊕1 y, · · · , x⊕n y)

= { Expanding H , Definition of × }
(h1(x⊕1 y), · · · , hn (x⊕n y))

= { Assumption }
(H x⊗1 H y, · · · , H x⊗n H y)

= { Definition of 4 , ∆ }
RHS 2

Theorem 4.2.2 suggests a way of fusing a function h with the almost homomor-
phism π1 ◦ ([∆n

1 fi, ∆n
1⊕i]) in order to get another almost homomorphism; trying

to find h2, · · · , hn together with ⊕1, · · · ,⊕n that meet Eq. (4). Note that without
loss of generality we restrict the projection function of our almost homomorphisms
to π1 in the theorem.

Returning to our running example, recall that we have reached the point

mss = max′ ◦ (sum′∗) ◦ (π1 ◦ ([∆4
1fi,∆

4
1⊕i]).

We demonstrate how to fuse sum′∗ with π1 ◦ ([∆4
1fi,∆

4
1⊕i]) by Theorem 4.2.2. Let

H = h1 × h2 × h3 × h4 where h1 = (sum′∗) and where h2, h3, h4 await to be
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determined. In addition, we need to derive ⊗1, ⊗2, ⊗3, and ⊗4 based on the
following equations according to Theorem 4.2.2:

sum′ ∗ ((s1, i1, t1, d1)⊕i (s2, i2, t2, d2))
= (sum′ ∗ s1, h2 i1, h3 t1, h4 d1)⊗i (sum′ ∗ s2, h2 i2, h3 t2, h4 d2) (i = 1, · · · , 4).

Now the derivation procedure becomes clear; calculating each LHS of the above
equations to promote sum′∗ into s1 and s2 and determining the unknown functions
(hi and ⊗i) by matching with its RHS. As an example, consider the following
calculation of the LHS of the the equation for i = 1.

(sum′∗) ((s1, i1, t1, d1)⊕1 (s2, i2, t2, d2))
= { Definition of ⊕1 }

(sum′∗) (s1 ++≺ s2 ++≺ (t1X++ i2))
= { Define (j1, x1) ≺1 (j2, x2) =def j1 <D j2 }
sum′ ∗ s1 ++≺1 sum

′ ∗ s2 ++≺1 sum
′ ∗ (t1X++ i2)

= { Cross operator }
(sum′ ∗ s1 ++≺1 sum

′ ∗ s2 ++≺1 (t1Xsum′◦++ i2))
= { Cross operator, sum′ }

(sum′ ∗ s1 ++≺1 sum
′ ∗ s2 ++≺1 ((sum′ ∗ t1)X+′(sum′ ∗ i2)))

Matching the last expression with

(sum′ ∗ s1, h2 i1, h3 t1, h4 d1)⊗1 (sum′ ∗ s2, h2 i2, h3 t2, h4 d2)

will yield

h2 = h3 = sum′∗
(s1, i1, t1, d1)⊗1 (s2, i2, t2, d2) = s1 ++≺1 s2 ++≺1 (t1X+′ i2).

The others can be similarly derived.

h4 = sum′

(s1, i1, t1, d1)⊗2 (s2, i2, t2, d2) = i1 ++ (d1+′) ∗ i2
(s1, i1, t1, d1)⊗3 (s2, i2, t2, d2) = (+′d2) ∗ t1 ++ t2

(s1, i1, t1, d1)⊗4 (s2, i2, t2, d2) = d1 +′ d2

To use Theorem 4.2.2, we also need to consider the f part whose results are as
follows:

f ′1 (i, x) = ((sum′∗) ◦ f1)x = [([i], x)]
f ′2 (i, x) = ((sum′∗) ◦ f2)x = [([i], x)]
f ′3 (i, x) = ((sum′∗) ◦ f3)x = [([i], x)]
f ′4 (i, x) = (sum′ ◦ f1)x = ([i], x).

According to Theorem 4.2.2, we soon have

(sum′∗) ◦ segs = π1 ◦ ([∆4
1f
′
i ,∆

4
1⊗i]). (5)

Again, we can fuse max′ with the above almost homomorphism (in this case,
H = max′ ×max′ ×max′ × id) and get the following almost homomorphism, the
final result for mss :

mss = π1 ◦ ([∆4
1π2,∆4

1⊗′i]) (6)
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where

(s1, i1, t1, d1)⊗′1 (s2, i2, t2, d2) = s1 ↑ s2 ↑ (t1 + i2)
(s1, i1, t1, d1)⊗′2 (s2, i2, t2, d2) = i1 ↑ (d1 + i2)
(s1, i1, t1, d1)⊗′3 (s2, i2, t2, d2) = (t1 + d2) ↑ t2
(s1, i1, t1, d1)⊗′4 (s2, i2, t2, d2) = d1 + d2.

Since the operators of ∆4
1π2 and ∆4

1⊗′i inside the obtained almost homomorphism
are simple and efficient enough, we need not repeat Steps 1 and 2 to make them
efficient according to our derivation procedure given at the beginning of this Section.
Thus we got our result, the same as informally given by Cole [1993b]. In practical
terms, the algorithm looks so promising that on many architectures, we can expect
an O(log n) parallel algorithm according to the simple parallel implementation of
list homomorphisms (Section 2), observing that C(∆4

1π2) = 1 and C(∆4
1⊗′i) = 1.

5. TWO-DIMENSIONAL MAXIMUM SEGMENT SUM PROBLEM

In this section, we consider a more complicated problem, namely two-dimensional
maximum segment sum problem. In Smith [1987], the tuple consisting of 11 func-
tions is used for the definition of a O(log2 n) parallel algorithm, but the detailed
derivation, which would be rather cumbersome with Smith’s approach, was not
given at all. In the following, we would like to show that although this problem
looks very difficult it can be solved in a quite similar way as we did for the (one-
dimensional) maximum segment sum problem resulting in a new efficient parallel
program. It would be very intersting to see that our systematic construction of list
homomorphisms is of much help in discovering new efficient parallel programs.

5.1 Specification of the Problem

Let us turn to the specification for the two-dimensional maximum segment sum
problem, mss2 , a generalization of mss, which finds the maximum over the sum of
all rectangular subregions of a matrix. The matrix can be naturally represented by
a list of lists with the same length as shown in Figure 2(a), and so does its rectan-
gular subregion as in Figure 2(b). Following the same thought we did for mss, we
define mss2 straightforwardly as in Figure 3. Here, segs2 computes all rectangular
subregions of a matrix; then sum2 is applied to every rectangular subregion and
sums up all elements; and finally max returns the largest value as the result.

Function segs2 is defined in a quite similar way to segs. The last equation
reads that all rectangular subregions of xss ++ yss, a matrix connecting xss and
yss vertically (Figure 2(c)), are made up from those in both xss and yss and those
produced by combining every bottom-up rectangular subregion in xss (depicted by
shallow-grey rectangle) with every top-down rectangular subregion in yss (depicted
by dark-grey rectangle) sharing the same edge.

Let us see the definition of the total order ≺′ among rectangular subregions.
Note that the index type Index ′ in this case should be a pair denoting the row
and column of elements. So we define ≺′ by [[((r1, c1), x1), · · ·], · · · , [· · · , ((r2, c2), x2)]] ≺′

[[((r′1, c
′
1), y1), · · ·], · · · , [· · · , ((r′2, c′2), y2)]] =def [(r1, c1), (r2, c2)) <D ((r′1, c

′
1), (r′2, c

′
2)].

For other functions in Figure 3, bots is used to calculate a list of lists, each of which
comprises all rectangles with the same bottom edge. Symmetrically, tops calculates
a list of lists, each of which comprises all rectangles with the same top edge. They
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(a) matrix in list of lists

[[x11, x12, ..., x1n],
 [x21, x22, ..., x2n],
  ...
 [xm1,xm2, ..., xmn]

(b) rectangular region
      (submatrix)

[[.....],
  ....
 [......]]

...

......

...

(c) 

xss

yss

segs2(xss++yss)

... ...
a1

b1

an

bm

[ ...      [a1,...,an],[b1,...bm],...]

(d)  bots yields a list of lists of
        bottom-up rectangles

ci

[  ...,               ci,                      ]

(e) bts yields a list of rectangles
       passing vertically

Fig. 2. The mss2 problem.

mss2 : [[(Index ′, Int)]]→ Int
mss2 = max′ ◦ (sum2∗) ◦ segs2

where

sum2 = sum′ ◦ sum′∗
segs2 [ ] = [ ]
segs2 [xs ] = [·] ∗ (segs xs)
segs2 (xss ++ yss) = segs2 xss ++≺′ segs2 yss ++≺′

concat ((bots xss)ΥX++ (tops yss))
bots [ ] = [ ]
bots [xs ] = [·] ∗ ([·] ∗ (segs xs))
bots (xss ++ yss) = ((bots xss) Υλ(x,y).(++y)∗x (bts yss)) Υ++ (bots yss)
tops [ ] = [ ]
tops [xs ] = [·] ∗ ([·] ∗ (segs xs))
tops (xss ++ yss) = (tops xss) Υ++ ((bts xss) Υλ(x,y).((x++)∗y) (tops yss))
bts [ ] = [ ]
bts [xs ] = [·] ∗ (segs xs)
bts (xss ++ yss) = (bts xss) Υ++ (bts yss)

Fig. 3. Specification for mss2 problem.
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are defined by using another function bts , which yields a list of rectangles passing
through the matrix vertically (Figure 2(e)).

It should be noted that segs , sum′, and max′ are in fact polymorphic functions
over any index type. This is why we can use them in the definition of segs2 even
though the index type is Index ′ instead of Index as in Figure 3.

5.2 Derivation of a List Homomorphism for mss2

Derivation of a List Homomorphism for mss2
Our derivation of an almost homomorphism for mss2 from the specification in

Figure 3 is carried out according to the procedure in Section 4. First, we derive
an almost homomorphism from the recursive definition of segs2 . Then, we fuse
(sum2∗) with the derived almost homomorphism to obtain another almost homo-
morphism and again repeat this fusion for max′. Finally, assuming that we have got
the almost list homomorphism π1 ◦ ([f,⊕]) for mss2 , we repeat the above procedure
to find an efficient parallel implementation for f and ⊕.

Step 1: Deriving an Almost Homomorphism for segs2 . We would like to apply
the tupling theorem for this derivation. First, we determine the functions that
should be tupled, similar as we did for segs in Section 4. From the definition of
segs2 ,

segs2 (xss ++ yss) = segs2 xss ++≺′ segs2 yss ++≺′ concat((bots xss)ΥX++ (tops yss)),

we know that segs2 should be tupled with bots and tops , because segs2 and bots
traverse over the same list xss whereas segs2 and tops traverse over the same list yss
as underlined. Similarly, the definitions of bots and tops requires that bts be tupled
with bots and tops . In summary, the functions to be tupled are segs2 , bots, tops ,
and bts , i.e., our tuple function will be

segs2 4 bots 4 tops 4 bts .

Next, we rewrite the definition of each function in the above tuple to be in the form
of (2), i.e., deriving f1,⊕1 for segs2 , f2,⊕2 for bots, f3,⊕3 for tops, and f4,⊕4 for
bts. This is straightforward. The results are as follows. For example, from the
definition of segs2 , we can easily derive that

f1 xs = [·] ∗ (segs xs)
(s1, b1, t1, d1)⊕1 (s2, b2, t2, d2) = s1 ++≺′ s2 ++≺′ concat (b1ΥX++ t2)
f2 xs = [·] ∗ ([·] ∗ (segs xs))
(s1, b1, t1, d1)⊕2 (s2, b2, t2, d2) = (b1 Υλ(x,y).(++y)∗x d2) Υ++ b2
f3 xs = [·] ∗ ([·] ∗ (segs xs))
(s1, b1, t1, d1)⊕3 (s2, b2, t2, d2) = t1 Υ++ (d1 Υλ(x,y).((x++)∗y) t2)
f4 xs = [·] ∗ (segs xs)
(s1, b1, t1, d1)⊕4 (s2, b2, t2, d2) = d1 Υ++ d2.

Finally, we apply Theorem 4.1.1 and get the following list homomorphism:

segs2 4 bots 4 tops 4 bts = ([∆4
1fi,∆

4
1⊕i]).

It follows that we have our almost homomorphism for segs2 :

segs2 = π1 ◦ ([∆4
1fi,∆

4
1⊕i]).
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Step 2: Fusion with Almost Homomorphisms. Recall that we have reached the
point where we have

mss2 = max′ ◦ (sum2∗) ◦ (π1 ◦ ([∆4
1fi,∆

4
1⊕i]).

We proceed to fuse sum2∗ with π1 ◦ ([∆4
1fi,∆

4
1⊕i]) by Theorem 4.2.2, and then we

repeat this fusion for max′, giving the following result:

mss2 = π1 ◦ ([∆4
1f
′
i ,∆

4
1⊕′i]) (7)

where

(s1, b1, t1, d1)⊕′1 (s2, b2, t2, d2) = s1 ↑ s2 ↑ (↑/ (b1 ΥX+ t2))
(s1, b1, t1, d1)⊕′2 (s2, b2, t2, d2) = (b1 Υ+ d2) Υ↑ b2
(s1, b1, t1, d1)⊕′3 (s2, b2, t2, d2) = t1 Υ↑ (d1 Υ+ t2)
(s1, b1, t1, d1)⊕′4 (s2, b2, t2, d2) = d1 Υ+ d2

and

f ′1 = max′ ◦ (sum ′∗) ◦ segs
f ′2 = (sum ′∗) ◦ segs
f ′3 = (sum ′∗) ◦ segs
f ′4 = (sum ′∗) ◦ segs.

Step 3: Improving Operators in List Homomorphisms. Equation (7) has given a
homomorphic solution to the two-dimensional maximum segment sum problem. It
is, however, not so obvious about efficient parallel implementation for f ′i . We need
to repeat Steps 1 and 2 to derive true (almost) list homomorphisms for them. In
fact, this has been done in Section 4 as given in Eqs. (5) and (6). It is not difficult
to check that they (f ′is) can be parallelly implemented in O(log n) parallel time.

Let n be the size of the input matrix. By a simple divide-and-conquer implemen-
tation of list homomorphisms, the derived program can expect a

max(C(∆4
1f
′
i), (O(log n) ∗ C(∆4

1⊕′i)))
parallel algorithm. With assumptions that Υ⊗ and X⊗ can be implemented fully
in parallel, i.e., C(Υ⊗) = C(⊗) and C(X⊗) = C(⊗), we can see that C(∆4

1⊕′i) =
O(log n) due to the inherited parallelism in the reduction (↑ /). It follows that
mss2 is a

max(C(∆4
1f
′
i), O(log2 n))

parallel algorithm. We, therefore, obtain a O(log2 n) parallel program for the two-
dimensional maximum segment sum problem.

6. CONCLUDING REMARKS

In this article, we propose a formal and systematic approach to the derivation
of efficient parallel programs from specifications of problems via manipulation of
almost homomorphisms, namely the construction of almost list homomorphisms
from recursive definitions (Theorem 4.1.1) and the fusion of a function with almost
homomorphisms (Theorem 4.2.2). It is different from Cole’s [1993b] informal way.

We demonstrate our idea through the derivation of efficient parallel algorithms
for several nontrivial problems. After the initial naive solution, all the derivations
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are proceeded in a formal setting based on our theorems and algebraic identities
of list functions. Therefore, the resulting parallel algorithm is guaranteed to be
semantically equivalent to the initial naive but inefficient solution. Furthermore,
most of our derivation is mechanical, which would be expected to be used in a
parallel compiler. As in Section 4.1, the derivation of almost homomorphisms
from mutually-recursive defined functions is fully mechanical. What is difficult
for being fully automatic is the fusion with almost homomorphism as shown in
Section 4.2 where new functions have to be derived based on the equation (4)
in the Almost Fusion Theorem. But some attempts have been made to make
the fusion process automatic with some suitable restrictions as in [Gill et al. 1993;
Takano and Meijer 1995; Hu et al. 1996b].

Tupling and fusion are two well-known techniques for improving programs. Chin
[1992; 1993] gave an intensive study on it. His method tries to fuse and/or tuple
arbitrary functions by fold-unfold transformations while keeping track of function
calls and using clever control to avoid infinite unfolding. In contrast to his costly and
complicated algorithm to keep out of nontermination, our approach makes use of
structural knowledge of list homomorphisms and constructs our tupling and fusion
rules in a calculational style where infinite unfoldings can be definitely avoided.

Our approach to the tupling of mutual recursive definitions is basically simi-
lar to the generalization algorithm [Takeichi 1987]. Takeichi showed how to define
a higher-order function common to all functions mutually defined so that multi-
ple traversals of the same data structures in the mutually recursive definition can
be eliminated. Because higher-order functions are suitable for partial evaluation
but not good for program derivation, we employ tupled functions and develop
the corresponding fusion theorem. A similar idea to tupling can also be found in
Fokkinga [1992].

Construction of list homomorphisms has gained great interest because of its im-
portance in parallel programming. Barnard et al. [1991] applied the Third Ho-
momorphism Theorem [Gibbons 1994] for the language recognition problem. The
Third Homomorphism Theorem says that an algorithm h which can be formally
described by two specific sequential algorithms (leftward and rightward reduction
algorithms) is a list homomorphism. Although the existence of an associative bi-
nary operator is guaranteed, the theorem does not address the question of the
existence — let alone the construction — of a direct and efficient way of calcu-
lating it. To solve this problem, Gorlatch [1995] imposed additional restrictions,
left associativity and right associativity, on the leftward and rightward reduction
functions so that an associative binary operator ⊕ could be derived in a systematic
way. However, finding left-associative binary operators is usually not easier than
finding associative operators. Recently, Gorlatch [1996a; 1996b] extended his previ-
ous work and proposed an idea of synthesizing list homomorphisms by generalizing
both leftward and rightward reduction functions. Since his idea is studied in an
informal way, and the generalization algorithm is not given, it is not so clear how to
do it in general. In comparison, rather than relying on the Third Homomorphism
Theorem we construct list homomorphisms based on tupling and fusion transfor-
mation. Our derivation is more constructive: we derive list homomorphism directly
from mutually recursive representations and then fuse it with other functions.

Smith [1987] applied a strategy of a divide-and-conquer approach to both one-
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and two-dimensional mss problems as applications. He constructs the composing
operator (analog to our associative operator ⊕) by employing the suitable mathe-
matical properties of the problem. Although our initial specification is less abstract
than his, our derivation is more systematic and less prone to errors. As seen in the
article, by our approach one could concisely derive a O(log2 n) parallel program
for the two-dimensional mss problem. In Comparison, in Smith [1987] the tuple
consisting of 11 functions is given for the two-dimensional mss problem, but the
corresponding manipulation with Smith’s approach is not presented at all, which
must be cumbersome.
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