
Specifying Representations of Machine Instructions

NORMAN RAMSEY

University of Virginia

and

MARY F. FERNÁNDEZ

AT&T Labs

We present SLED, a Specification Language for Encoding and Decoding, which describes ab-
stract, binary, and assembly-language representations of machine instructions. Guided by a SLED
specification, the New Jersey Machine-Code Toolkit generates bit-manipulating code for use in
applications that process machine code. Programmers can write such applications at an assembly-
language level of abstraction, and the toolkit enables the applications to recognize and emit the
binary representations used by the hardware. SLED is suitable for describing both CISC and RISC
machines; we have specified representations of MIPS R3000, SPARC, Alpha, and Intel Pentium
instructions, and toolkit users have written specifications for the Power PC and Motorola 68000.
The article includes representative excerpts from our SPARC and Pentium specifications. SLED
uses four elements; fields and tokens describe parts of instructions; patterns describe binary repre-
sentations of instructions or groups of instructions; and constructors map between the abstract and
binary levels. By combining the elements in different ways, SLED supports machine-independent
implementations of machine-level concepts like conditional assembly, span-dependent instructions,
relocatable addresses, object code, sections, and relocation. SLED specifications can be checked
automatically for consistency with existing assemblers. The implementation of the toolkit is
largely determined by our representations of patterns and constructors. We use a normal form
that facilitates construction of encoders and decoders. The article describes the normal form and
its use. The toolkit has been used to help build several applications. We have built a retargetable
debugger and a retargetable, optimizing linker. Colleagues have built a dynamic code generator,
a decompiler, and an execution-time analyzer. The toolkit generates efficient code; for example,
the linker emits binary up to 15% faster than it emits assembly language, making it 1.7–2 times
faster to produce an a.out directly than by using the assembler.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—sys-
tems specification methodology; D.3.2 [Programming Languages]: Language Classifications—
specialized application languages; D.3.4 [Programming Languages]: Processors—translator
writing systems and compiler generators

General Terms: Languages

Additional Key Words and Phrases: Compiler generation, decoding, encoding, machine code,
machine description, object code, relocation

This work has been funded by a Fannie and John Hertz Fellowship, an AT&T Ph.D. Fellowship,
an IBM Graduate Research Fellowship, and by Bellcore.
Authors’ addresses: N. Ramsey, Department of Computer Science, University of Virginia, Char-
lottesville, VA 22903; email nr@cs.virginia.edu; M. F. Fernández, AT&T Labs — Research, 180
Park Avenue, Florham Park, NJ 07932-0971; email mff@research.att.com.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/0500-0492 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997, Pages 492–524.

http://www.acm.org/pubs/citations/journals/toplas/1997-19-3/p492-ramsey
http://crossmark.crossref.org/dialog/?doi=10.1145%2F256167.256225&domain=pdf&date_stamp=1997-05-01

Specifying Representations of Machine Instructions · 493

1. INTRODUCTION

This article describes SLED—Specification Language for Encoding and Decoding—
and its implementation in The New Jersey Machine-Code Toolkit. SLED specfica-
tions define mappings between symbolic, assembly-language, and binary represen-
tations of machine instructions. We have specified representations of MIPS R3000,
SPARC, Alpha, and Intel Pentium instructions; toolkit users have written specifi-
cations for the Power PC and Motorola 68000. The specifications are simple, which
makes it practical to use the toolkit to write applications for multiple architectures.
The toolkit uses SLED specifications to help programmers write applications that
process machine code—assemblers, disassemblers, code generators, tracers, profil-
ers, and debuggers. The toolkit lets programmers encode and decode machine
instructions symbolically. Guided by a SLED specification, it transforms symbolic
manipulations into bit manipulations.

Traditional applications that process machine code include compilers, assem-
blers, linkers, and debuggers. Newer applications include profiling and tracing tools
[Ball and Larus 1994; Cmelik and Keppel 1994], testing tools [Hastings and Joyce
1992], protection enforcers [Wahbe et al. 1993], run-time code generators [George
et al. 1994], and link-time optimizers [Fernández 1995; Srivastava and Wall 1993].
There are even some frameworks for creating applications that manipulate exe-
cutable files, although none that work on more than one machine [Johnson 1990;
Larus and Schnarr 1995; Srivastava and Eustace 1994]. Graham et al. [1995] de-
scribe auxiliary information needed to facilitate machine-code manipulations; they
report support for the MIPS and SPARC architectures.

A few applications avoid machine code by using assembly language, e.g., many
Unix compilers emit assembly language, not object code. It is not always practical,
however, to use an assembler, e.g., when generating code at run time or adding
instrumentation after code generation. Some machine-code applications can be
duplicated by source-code transformation; such applications usually work on many
machines, but they cannot be used as often as applications that work on object
code, because source code is not always available. Our toolkit makes it easier to
build applications and frameworks that work with object code and therefore can
be used on any executable file.

Applications that cannot use an assembler currently implement encoding and
decoding by hand. Different ad hoc techniques are used for different architectures.
The task is not intellectually demanding, but it is error prone; bit-manipulating
code usually harbors lingering bugs. Our toolkit automates encoding and decoding,
providing a single, reliable technique that can be used on a variety of architectures.
It is intended less to support traditional compilation than to support nontraditional
operations like rewriting executable files or run-time code generation.

Applications use the toolkit for encoding, decoding, or both. For example, as-
semblers encode; disassemblers decode; and some profilers do both. All applications
work with streams of instructions. Decoding applications use matching statements
to read instructions from a stream and identify them. A matching statement is
like a case statement, except its alternatives are labeled with patterns that match
instructions or sequences of instructions. Encoding applications call C procedures
generated by the toolkit. These procedures encode instructions and emit them

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

494 · Norman Ramsey and Mary F. Fernández

into a stream, e.g., the SPARC call fnegs(r2, r7) emits the word 0x8fa000a2.
Streams can take many forms; for example, a debugger can treat the text segment
of a target process as an instruction stream. The toolkit’s library provides a repre-
sentation of streams that should be convenient for many encoding applications.

The toolkit has four parts. The translator takes a program with embedded match-
ing statements and translates these statements into ordinary code. It handles pro-
grams written in C or Modula-3 [Nelson 1991]. The generator generates encoding
and relocation procedures in C. These procedures call code in the library. The
library implements both instruction streams and relocatable addresses, which refer
to locations within the streams. The checker checks specifications for consistency
with existing assemblers. The translator, generator, and checker need an instruc-
tion specification; encoding procedures and checking code are generated from the
specification, and matching statements can match the instructions or parts thereof
defined in the specification. The library is machine independent.

The SLED specification language is simple, and it is designed so that specifica-
tions can resemble instruction descriptions found in architecture manuals. SLED
uses a single, bidirectional construct to describe both encoding and decoding, so
their consistency is guaranteed. The toolkit checks specifications for unused con-
structs, underspecified instructions, and internal inconsistencies. An instruction en-
coding can be specified with modest effort; our Alpha, MIPS, SPARC, and Pentium
specifications are 118, 127, 193, and 460 lines. The SLED specification language is
the primary subject of this article.

Simplicity in specification is more than a personal preference. Simple specifi-
cations are more likely to be correct, and correct specifications are more valuable
if they can be used in a variety of applications. To make the toolkit simple and
general, we avoid describing the semantics of instructions, because too often se-
mantic information is both hard to get right and of use only to a single application.
Instead, SLED focuses describing an abstract representation of instructions and on
automating the translation to and from that abstract representation.

We have personal experience with two applications that use the toolkit. mld, a
retargetable, optimizing linker [Fernández 1995], uses the toolkit to encode instruc-
tions and emit executable files. ldb [Ramsey 1992; Ramsey and Hanson 1992], a
retargetable debugger, uses the toolkit to decode instructions and to implement
breakpoints. Others have used the toolkit to help develop a run-time code gen-
erator, a decompiler, an execution-time analyzer [Braun 1996], and an optimizing
compiler for object-oriented languages [Dean et al. 1996].

Using the toolkit reduces retargeting effort and makes code more reliable. For
example, ldb’s disassembler for the MIPS requires less than 100 lines of code, and
mld has replaced 450 lines of hand-written MIPS code with generated encoding and
relocation procedures. By hiding shift and mask operations, by replacing case state-
ments with matching statements, and by checking specifications for consistency,
the toolkit reduces the possibility of error. The toolkit can speed up applications
that would otherwise have to generate assembly language instead of binary code.
For example, mld creates executable files 1.7 to 2 times faster when using toolkit-
generated encoding procedures than when using assembly language and calling a
native assembler. To realize such speedups without the toolkit, mld would need
hand-written encoding and relocation procedures for each target architecture.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 495

The primary contribution of our work is the SLED specification language, which
is expressive enough to write clear, concise, and reusable specifications of instruction
representations for a variety of widely used architectures. Our processor for these
specifications derives code for both encoding and decoding problems, eliminating a
significant source of retargeting effort. Our model of machine instructions makes
several machine-level concepts general enough to be specified or implemented in
a machine-independent way. These concepts include conditional assembly, span-
dependent instructions, relocatable addresses, object code, sections, and relocation.

Most of this article is devoted to SLED. We begin with an extended example:
a specification for a representative subset of the SPARC instruction set. This
example shows how a typical specification is structured and how SLED is used
idiomatically. We then cover the details of syntax, semantics, and implementation,
followed by smaller examples from our Pentium specification, which show CISC
addressing modes and variable-sized operands. We explain how applications use
the code generated by the toolkit, and we conclude with a discussion of related
work and an evaluation of the toolkit and its specification language.

2. SPECIFYING INSTRUCTION REPRESENTATIONS

To illustrate SLED, we specify a subset of the SPARC instruction set. The illustra-
tion is drawn from our complete, annotated specification of the SPARC [Ramsey
and Fernández 1994a]. It includes the SPARC’s integer instructions, but it omits
floating-point instructions, several types of load and store, and many synthetic
instructions. Before beginning the illustration, we explain the elements of the spec-
ification language and our strategy for using the language to describe a machine.

Because machine instructions do not always fit in a machine word, the toolkit
works with streams of instructions, not individual instructions. An instruction
stream is like a byte stream, except that the units may be “tokens” of any size,
not just 8-bit bytes. An instruction is a sequence of one or more tokens, so “token
stream” might be a more precise term. Tokens may come in any number of classes,
which help distinguish different parts of complex instructions. For example, a
Pentium instruction might include several 8-bit prefixes, an 8-bit opcode, 8-bit
format bytes, and a 16-bit immediate operand. Most likely, the prefixes and opcode
would be tokens from the same class, but the format bytes and operand would be
from different classes.

Each token is partitioned into fields; a field is a contiguous range of bits within
a token. Fields contain opcodes, operands, modes, or other information. Tokens
of a single class may be partitioned in more than one way. Patterns constrain the
values of fields; they may constrain fields in a single token or in a sequence of tokens.
Patterns describe binary representations of instructions, groups of instructions, or
parts of instructions. For example, simple patterns can be used to specify opcodes,
and more complex patterns can be used to specify addressing modes or to specify
a group of three-operand arithmetic instructions.

Constructors connect abstract, binary, and assembly-language representations of
instructions. At an abstract level, an instruction is a function (the constructor)
applied to a list of operands. An operand may be as simple as a single field, or
as complex as a set of fields taken from several tokens in sequence. Applying the
constructor produces a pattern that gives the instruction’s binary representation,

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

496 · Norman Ramsey and Mary F. Fernández

which is typically a sequence of tokens. Each constructor is also associated with a
function that produces a string, which is the instruction’s assembly-language repre-
sentation. Specification writers use constructors to define an abstract equivalent of
an assembly language. Application programmers use constructors to emit instruc-
tions, by calling procedures derived from constructor specifications, and to decode
instructions, by using constructors in matching statements to match instructions
and extract their operands.

Machine designers might expect binary representations to be untyped. We have
found it useful to associate type information with binary representations or with
fragments of binary representations, for the same reason that programming lan-
guages do so—to help detect and prevent errors. The classes of tokens are like
types. We also require that each constructor have a type. We provide a pre-
defined, anonymous type for constructors that produce whole instructions, and
specification writers may introduce more constructor types. We typically use such
types to describe effective addresses or structured operands. When used in this
way, the constructor type corresponds to the “operand class” of Cattell [1980], and
each constructor of the type corresponds to one “access mode.” The toolkit maps
constructor types onto types in the code it generates, which helps find errors in
application code as well as in specifications.

To describe a machine, we begin by specifying tokens and fields, which are the
basic components of instructions. Next come patterns that specify opcodes and
groups of related opcodes, then constructors that specify structured operands, like
effective addresses. Having specified opcodes and operands, we define constructors
that specify instructions. When possible, we specify many constructors concisely
by using “opcode patterns,” which group related instructions.

Many architecture manuals use the term “synthetic” to describe instructions
that are supported by an assembler, but not directly by the hardware. The assem-
bler synthesizes such instructions by using special cases or combinations of other
instructions. SLED specifications can include synthetic instructions, for which bi-
nary representations are given by applying previously defined constructors. We
typically specify synthetic instructions in a separate file, since they are useful only
in some applications.

The rest of this section gives excerpts from our specification of the SPARC.
We have engineered SLED’s syntax to foster resemblances between specifications
and architecture manuals, and we refer to relevant pages of the SPARC manual
[SPARC International 1992] by page number. When concatenated, the excerpts
form a complete SLED specification for a subset of the SPARC architecture. The
specification is included in the toolkit’s source distribution.

We use bit numbers to specify the positions of fields within tokens. Since different
manuals use different conventions, the toolkit supports both little-endian and big-
endian bit numberings. The SPARC manual uses the little-endian numbering.

bit 0 is least significant

Architecture manuals usually have informal field specifications. For example, the
fields for some SPARC load instructions are [SPARC International 1992, p. 90]:

op rd op3 rs1 i simm13

31 30 29 25 24 19 18 14 13 12 0

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 497

fields declarations give the locations and sizes of fields. The declaration below
defines the fields used in all SPARC instructions. The first line defines the fields in
the picture above. The remaining lines define all the other fields used in the SPARC
manual, even those used only in floating-point instructions, which are otherwise
omitted from this article.

fields of itoken (32)

op 30:31 rd 25:29 op3 19:24 rs1 14:18 i 13:13 simm13 0:12

disp30 0:29 op2 22:24 imm22 0:21 a 29:29 cond 25:28 disp22 0:21

asi 5:12 rs2 0:4 opf 5:13 fd 25:29 cd 25:29 fs1 14:18 fs2 0:4

We often want to give auxiliary information about some fields, which we do with
fieldinfo directives. This directive gives mnemonic names to the two possible
values of the a field.

fieldinfo a is [names ["" ",a"]]

a is the “annul” bit, and the toolkit uses its names below to help derive the names
of branch constructors.

Architecture manuals often define opcodes in tables. The SPARC manual uses
a hierarchy of tables; we show specifications for several. Tables F-1 and F-2
[SPARC International 1992, p. 227] are specified by

patterns

[TABLE_F2 call TABLE_F3 TABLE_F4] is op = {0 to 3}

[unimp _ Bicc _ sethi _ fbfcc cbccc] is TABLE_F2 & op2 = {0 to 7}

The expressions in braces generate lists of patterns, and each pattern name in the
bracketed list is bound to the corresponding pattern on the right. For example,
call is bound to the pattern op = 1, and Bicc is bound to op = 0 & op2 = 2.
Bindings to the wildcard “ ” are ignored. The second line of the excerpt corresponds
to Table F-1, but the identifier TABLE F1 does not appear, because there are no
references to Table F-1 from other tables.

Table F-3 [SPARC International 1992, p. 228] defines opcodes for integer arith-
metic; it is specified by

patterns

[add addcc taddcc wrxxx

and andcc tsubcc wrpsr

or orcc taddcctv wrwim

xor xorcc tsubcctv wrtbr

sub subcc mulscc fpop1

andn andncc sll fpop2

orn orncc srl cpop1

xnor xnorcc sra cpop2

addx addxcc rdxxx jmpl

_ _ rdpsr rett

umul umulcc rdwim ticc

smul smulcc rdtbr flush

subx subxcc _ save

_ _ _ restore

udiv udivcc _ _

sdiv sdivcc _ _]

is

TABLE_F3 & op3 = { 0 to 63 columns 4 }

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

498 · Norman Ramsey and Mary F. Fernández

The toolkit can handle opcode tables in row-major or column-major form. The ex-
pression {0 to 63 columns 4} generates the integers from 0 to 63 in the sequence
(0, 16, 32, 48, 1, 17, 33, . . . , 63), so that, for example, addcc is bound to the pattern
op = 2 & op3 = 16, effectively using a column-major numbering.

Table F-4 [SPARC International 1992, p. 229] defines the load and store opcodes;
it is specified by

[ld lda ldf ldc

ldub lduba ldfsr ldcsr

lduh lduha _ _

ldd ldda lddf lddc

st sta stf stc

stb stba stfsr stcsr

sth stha stdfq stdcq

std stda stdf stdc

_ _ _ _

ldsb ldsba _ _

ldsh ldsha _ _

_ _ _ _

_ _ _ _

ldstub ldstuba _ _

_ _ _ _

swap swapa _ _]

is

TABLE_F4 & op3 = {0 to 63 columns 4}

Most operands to instructions are fields or integers, but some operands, like ef-
fective addresses, have more structure. We use typed constructors to define such
operands. The address operands [SPARC International 1992, p. 84] have four pos-
sible formats:

constructors

dispA rs1 + simm13! : Address is i = 1 & rs1 & simm13

absoluteA simm13! : Address is i = 1 & rs1 = 0 & simm13

indexA rs1 + rs2 : Address is i = 0 & rs1 & rs2

indirectA rs1 : Address is i = 0 & rs2 = 0 & rs1

Each line specifies a constructor by giving its opcode, operands, type, and pattern.
Usually, as here, the opcode is simply the constructor’s name. The plus signs among
the operands indicate the preferred rendering of these constructors in assembly
language. The operand specification simm13! indicates a signed integer operand
destined for field simm13. Each of these constructors has type Address, which is
effectively a disjoint union type containing an element for each constructor. We
use the Address type below to specify operands of constructors for load and store
instructions. When a field name is used as a pattern, as is rs1 on the right-hand
side of the dispA constructor, it is an abbreviation for the more verbose pattern
rs1 = rs1, which forces the field rs1 to be equal to the operand named rs1. This
abbreviation appears frequently because operands are often placed directly in fields.

We also use typed constructors to specify “register or immediate” operands:
constructors

rmode rs2 : reg_or_imm is i = 0 & rs2

imode simm13! : reg_or_imm is i = 1 & simm13

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 499

Architecture manuals often group definitions of related instructions, like the load-
integer instructions in the SPARC manual [SPARC International 1992, p. 90]. We
use disjunctions of patterns to represent such groupings, which can make specifica-
tions more concise. The specification

patterns loadg is ldsb | ldsh | ldub | lduh | ld | ldstub | swap

constructors

loadg [Address], rd

defines a group of untyped constructors, one for each general-purpose load instruc-
tion. The specification demonstrates two features of SLED: opcode expansion and
implicit patterns. When the pattern loadg is given as the opcode in a constructor
specification, it is expanded into individual disjuncts, and the construct is equiva-
lent to repeated specifications of ldsb, ldsh, etc. Omitting the right-hand side tells
the toolkit to compute a pattern by conjoining the opcode and all the operands.
This idiom is ubiquitous in specifications of RISC machines. Finally, the square
brackets and comma indicate assembly-language syntax.

These examples show how different elements of the specification interact. The
constructor type Address is an abstraction representing “addressing mode.” The
four constructors of that type specify the different operands of addressing modes as
well as their representations. The type Address is used in the loadg specification,
so the load constructors take a first operand that represents an addressing mode.
That operand must be the result of applying one of the four constructors of type
Address defined above. For example, to load register %l0 from a location on the
stack, a compiler might make the call loadg(dispA(r fp, -12), r l0). This
example assumes that r fp and r l0 are suitably defined constants.

We use the same techniques to specify the logical, shift, and arithmetic instruc-
tions, which take two register operands and one operand of type reg or imm. The
last line specifies 38 constructors at once:

patterns

logical is and | andcc | andn | andncc

| or | orcc | orn | orncc

| xor | xorcc | xnor | xnorcc

shift is sll | srl | sra

arith is add | addcc | addx | addxcc | taddcc

| sub | subcc | subx | subxcc | tsubcc

| umul | smul | umulcc | smulcc | mulscc

| udiv | sdiv | udivcc | sdivcc

| save | restore | taddcctv | tsubcctv

alu is arith | logical | shift

constructors

alu rs1, reg_or_imm, rd

Using reg or imm as an operand means that the second operand to any of these
constructors must have been produced by applying either the imode constructor or
the rmode constructor defined above.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

500 · Norman Ramsey and Mary F. Fernández

The first column of Table F-7 [SPARC International 1992, p. 231] defines branch
opcodes:

patterns

branch is any of

[bn be ble bl bleu bcs bneg bvs ba bne bg bge bgu bgeu bpos bvc],

which is Bicc & cond = {0 to 15}

This compound binding is a notational abbreviation that relieves us from writing
the names in square brackets (“bn be. . . ”) twice. It both defines these names and
makes branch stand for the pattern matching any of them.

To specify the branch instructions, we need two more features of SLED: relocat-
able operands and sets of equations. Designating an operand as relocatable means
its value may be unknown at encoding time:

relocatable addr

If an application tries to encode an instruction with such an operand, and if the
operand’s value is unknown, the encoding procedure emits a placeholder for the
instruction, together with a relocation closure that can be used to overwrite the
placeholder when the missing value becomes known [Ramsey 1996a]. The most
common example of such an instruction is a branch to an unknown label.

For convenience, we choose an invalid instruction as a placeholder. Because the
execution of an invalid instruction causes a fault, it is easy to detect application
bugs that cause placeholders to be executed:

placeholder for itoken is unimp & imm22 = 0xbad

Although the target address is an operand to a branch, it is not found in any field
of the instruction; instead, it is computed by adding a displacement to the program
counter. The equation in curly braces shows the relationship, which is taken from
SPARC International [1992, pp. 119–120]:

constructors

branch^a addr { addr = L + 4 * disp22! } is L: branch & disp22 & a

The label L refers to the location of the instruction, and the exclamation point is
a sign-extension operator. The toolkit solves the equation so that the encoding
procedure can compute disp22 in terms of addr and the program counter. The
toolkit expands the 16 alternatives for branch and the two alternatives for a, so
this line specifies 32 constructors.

We specify synthetic instructions by applying the constructors that correspond
to the instructions from which they are synthesized. Here are definitions of bset
(bit set) and dec (decrement) [SPARC International 1992, p. 86]:

constructors

bset reg_or_imm, rd is or(rd, reg_or_imm, rd)

dec val!, rd is sub(rd, imode(val), rd)

The patterns on the right-hand sides are notated as constructor applications.
Some synthetic instructions may stand for more than one instruction sequence,

depending on the values of operands. We specify such instructions by putting
alternative branches on the right-hand side of a constructor specification. Each
branch may have its own set of equations. The toolkit encodes the first pos-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 501

sible branch whose equations have a solution and whose operand values fit in
the fields to which they are bound. For example, the synthetic instruction set
[SPARC International 1992, p. 84] expands to a single instruction when possible,
but requires two in the general case:

constructors

sethi val!, rd is sethi & rd & imm22 = val@[10:31]

set val!, rd

when { val@[0:9] = 0 } is sethi(val, rd)

otherwise is or(0, imode(val), rd)

otherwise is sethi(val, rd); or(rd, imode(val@[0:9]), rd)

The bit-extraction operator, @[low:high], extracts the bits in the positions from
low to high. The first branch, sethi, can be encoded whenever the least-significant
10 bits of val are zero. The second branch works when imode(val) can be encoded,
i.e., when val fits in 13 signed bits. The final branch can always be encoded.

3. SLED SYNTAX AND SEMANTICS

Now that we have illustrated SLED with an extended example, we present its syntax
and semantics in detail. We also describe the toolkit’s internal representation in
enough detail so that our techniques could be used in other systems.

SLED solves not only the intellectual problem of describing instruction repre-
sentations, but also several practical problems in the generation of encoding and
decoding applications. Throughout this section, we associate language constructs
with problems that they solve, and we identify constructs that are motivated by
the special needs of encoding, decoding, or other applications.

To describe syntax, we use an EBNF grammar with standard metasymbols for{
sequences

}
,
[
optional constructs

]
, and

(
alternative

∣∣ choices
)
.

We use large metasymbols to help distinguish them from literals. Terminal symbols
given literally appear in typewriter font. Other terminal symbols and all nonter-
minals appear in italic font. Excerpts from the grammar always begin with the
name of a nonterminal followed by the ⇒ (“produces”) symbol.

Specification is the grammatical start symbol for SLED specifications. Within
a specification, definitions must appear before uses, but otherwise the parts of a
specification may appear in any order; so a specification is a list of spec:

specification ⇒
{

spec
}

3.1 Tokens and fields

The toolkit supports both little-endian and big-endian bit numberings.

spec ⇒ bit 0 is
(
most

∣∣ least) significant
The default numbering makes bit 0 the least-significant bit.
fields declarations specify how to divide tokens into fields. One fields dec-

laration is given for each class of tokens; only fields named in the declaration can
be extracted from tokens of that class. Each field appears in tokens of exactly one
class. The fields declaration binds field names to bit ranges and specifies the
number of bits in tokens of its class. The toolkit generates the shifts and masks

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

502 · Norman Ramsey and Mary F. Fernández

needed to manipulate the value of a field in a token. The fields syntax is as
follows:

spec ⇒ fields of class-name (width)
{

field-name low-bit :high-bit
}

Field values are always unsigned; storing signed values in fields requires the explicit
sign-extension operator, a postfix exclamation point. For example, this operator
is applied to the displacement field disp22 in the definition of the SPARC branch
constructors. We make all field values unsigned because implicit sign extension can
be confusing—people reading specifications should not have to remember which
fields are signed and which are unsigned. Explicit sign extension also supports the
use of the same field in different contexts with or without sign extension.

Fields solve the problem of specifying binary representations at the lowest level.
They offer several advantages over bit strings, a more usual alternative. To make
a token from bit strings, the strings must be concatenated in the right order; the
order of fields is implicit in their declarations. One cannot assign the wrong number
of bits to a field, and the toolkit detects cases in which fields overlap or leave gaps.

When instructions vary in size, more than one class of tokens may be needed.
On the Intel Pentium, instructions are composed of 8-, 16- and 32-bit tokens, which
must be given different classes because they are of different sizes. It can even be
useful to put tokens of the same size in different classes. For example, the Pentium
uses a “ModR/M” byte to specify addressing modes and an “SIB” byte to identify
index registers [Intel Corp. 1993, p. 26-3]:

ModR/M mod reg/opcode r/m

7 6 5 3 2 0

SIB ss index base

7 6 5 3 2 0

The fields declarations for these bytes are

fields of ModRM (8) mod 6:7 reg_opcode 3:5 r_m 0:2

fields of SIB (8) ss 6:7 index 3:5 base 0:2

Dividing tokens into classes helps detect errors in specifications. For example,
putting the ModR/M and SIB tokens in different classes ensures that a user cannot
mistakenly match both a mod field and an index field in the same byte.

One could also divide SPARC tokens into classes, e.g., by using a different class
for each instruction format. One would have to define several replicas of fields that,
like op, are common to multiple formats, because each field belongs to exactly one
class. We judge that the extra effort would not pay off; the toolkit checks that the
fields used in instructions partition the instructions’ tokens, and this check seems
adequate to detect errors on machines like the SPARC.

SLED specifications can include information about the names of field values and
about the way fields are expected to be used in an application. The syntax used is
as follows:

spec ⇒ fieldinfo
{

field-specifier is [
{

field-item
}
]
}

field-specifier ⇒ field-name | [
{

field-name
}
]

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 503

field-item ⇒ sparse [binding
{
, binding

}
]

| names [
{

Ident
∣∣ String

}
]

| checked | unchecked | guaranteed

binding ⇒
(
Ident

∣∣ String
)
= integer

sparse and names specify names of fields. names is used when all values have
names; sparse is used otherwise. Naming field values solves no single problem; the
names are used in a variety of ways. The most unusual use may be SLED’s use of
field names in constructor specifications; when fields are used to specify constructor
opcodes, the names of the values become part of the names of constructors. For
example, our SPARC specification uses the names "" and ",a" for the values 0 and 1
of the a field, and these names become part of the names of branch constructors.
The toolkit also uses the names when generating encoding procedures that emit
assembly language and when generating disassemblers. Finally, the toolkit can
generate tables of field names so applications can print names of field values.

The other information about fields helps solve the problem of generating efficient
encoders. The toolkit normally checks field values at encoding time to be sure they
can be represented in the number of bits available. These safety checks are needed
only when field values are supplied by an application; no safety checks are gener-
ated when the toolkit can infer that values are representable. The checks can be
fine-tuned using the checked, unchecked, and guaranteed attributes of fields. Ap-
plication writers unwilling to pay for a compare and branch can designate fields as
unchecked, in which case encoding procedures do not check their values but simply
mask out high bits so tokens are not corrupted by bogus values. Those unwilling
to pay even the cost of masking can designate fields as guaranteed, in which case
their values are used without checking or masking; the application guarantees that
the value fits. For example, code generators typically guarantee fields denoting reg-
isters, since the register allocator can easily ensure that register numbers fall in the
proper range. Such a guarantee could be added to our SPARC example by writing

fieldinfo [rs1 rs2 rd fs1 fs2 fd cd] is [guaranteed]

Fields are checked by default.

3.2 Patterns

Patterns constrain both the division of streams into tokens and the values of
the fields in those tokens. When instructions are decoded, patterns in matching
statements identify interesting inputs; for example, a pattern can be defined that
matches any branch instruction. When instructions are encoded, patterns in the
machine specification specify what tokens are written into the stream.

Patterns are composed from constraints on fields. A constraint fixes the values a
field may have. Constraints come in two forms: range constraints and field bindings.
Range constraints are used when the values permitted in a field are known statically.
Range constraints are represented internally in the form lo ≤ f < hi , forcing the
value of the field to fall in a range. The external syntax is more restrictive; it requires
that the field name be to the left of a single relational operator. The general form
can be obtained by conjoining two constraints on the same field. The restricted

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

504 · Norman Ramsey and Mary F. Fernández

syntax presents no burden in practice, because almost all range constraints use a
range that contains one value, and we write them with an equals sign, e.g., op = 1.

Field bindings are used when the value of a field is not known until encoding
time. A field binding forces a field to be equal to a value computed dynamically, and
the dynamic computation is represented as an expression containing free variables.
Field bindings are also written with equals signs.

Patterns are composed by conjunction (&), concatenation (;), and disjunction (|).
They can also be computed by applying constructors. The syntax for patterns is
as follows:

pattern ⇒ name name of pattern, field, or constructor type
| field-name rel-op expr Constrains or binds field
| opcode (arguments) Constructor application
| pattern pat-op pattern Conjoins, concatenates, disjoins patterns
| some class-name Matches a single token of the class named
| label-name : pattern Labels pattern
| pattern ... Less restrictive conjunction
| ... pattern Less restrictive conjunction

Patterns and their composition are most easily understood by looking at the rules
for matching patterns. Patterns are tested for matching against sequences of tokens;
the special pattern epsilon matches the empty sequence. For each constraint, the
toolkit checks the field named therein to see if it falls in the range specified in a
range constraint or is equal to the value bound in a field binding.

Patterns can be combined by conjunction, concatenation, or disjunction. When
p and q are patterns, a conjunction “p & q” matches if both p and q match. We
typically use conjunction to constrain multiple fields within a single token. A
concatenation “p; q” matches if p matches an initial sequence of tokens and if q
matches the following tokens. We typically use concatenation to build up patterns
matching sequences of more than one token, for example, to match effective ad-
dresses on the Pentium. A disjunction “p | q” matches if either p or q matches.
We typically use disjunction to group patterns for instructions that are related,
e.g., to group the SPARC integer-arithmetic instructions.

The wildcard constraint “some class” matches any token of class class; for exam-
ple, on the SPARC, “some itoken” matches any 32-bit token.

The labeled pattern L: p matches whenever p matches, and it binds the identi-
fier L to the location in the instruction stream where p matches.

The ellipsis has no effect on matching, but it relaxes restrictions on conjunction,
as described below.

Patterns solve the intellectual problem of describing binary representations. Each
composition operator addresses a different need. Conjunction specifies how val-
ues in fields are combined to form tokens. Concatenation describes representa-
tions containing multiple tokens in sequence. Disjunction describes alternatives.
Concatenation and disjunction operators are found in regular expressions. Un-
like regular expressions, patterns do not have a Kleene closure (repetition) op-
erator. This omission, together with the ability to examine fields in any order,
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 505

Component Contains. . . combined with Matches when. . .

Pattern (disjunction) disjuncts | any disjunct matches

Disjunct (sequence) sequents ; each sequent matches a token

Sequent (conjunction) constraints & token satisfies every constraint

Range constraint lo ≤ f < hi field falls within range

Field binding f = expression always

Fig. 1. Some components of the normal form of patterns.

distinguishes the problem of matching patterns from the problem of matching
regular expressions.

3.2.1 Representing Patterns. This section presents a detailed description of the
toolkit’s representation of patterns. Studying the details of the representation is
the best way to understand the meanings of patterns and the pattern operators
and to understand the utility of patterns in generating encoders and decoders. The
details can be confusing, because we use similar but not identical list structures at
several levels, and because the structures play different roles in different contexts.
Suggestive terminology helps distinguish structures and roles at each level.

Patterns are represented in a disjunctive normal form. The normal form has a
three-level structure; the levels correspond to the three ways to combine patterns.
Figure 1 shows the components of the normal form, the terminology used to refer
to them, and the rules for matching them. We use several synonyms for each
component, changing synonyms as we shift our focus from the component’s role on
its own to the component’s relationship with the component above.

Every pattern is represented as a disjunction, that is, a list of alternatives. An
empty list is permitted, even though the empty disjunction never matches.1 Each
disjunct, or alternative, is a sequence. Each item in a sequence is a conjunction
of constraints. A pattern matches a sequence of tokens when one of its disjuncts
(alternatives) matches. That disjunct matches a sequence of tokens when every
sequent (conjunction) matches the corresponding token. The empty sequence, de-
noted by epsilon, always matches, consuming no tokens. Finally, a conjunction
matches a token if the token satisfies all of the constraints in the conjunction. Each
conjunction applies to a particular class of tokens, and all the constraints in the
conjunction must constrain fields from that class. The empty conjunction, which is
denoted by some class, is permitted; it matches any token of the associated class.

We define the shape of a sequence to be the list of token classes associated with
the conjunctions of that sequence. Encoding and decoding choose a particular
disjunct (sequence) to emit or match, and the shape of the sequence determines
which tokens are emitted or matched when that sequence is encoded or decoded.

We can define simple constraints and the pattern operators in terms of the normal
form of patterns. It is not hard to show that these definitions, combined with the
rules for matching in normal form, imply the matching properties described above.

The normal form of a simple constraint is a pattern with a single disjunct, which
is a sequence of length 1, in which the single sequent contains the constraint. (A
wildcard constraint has a form in which the sequent contains no constraints, i.e.,

1One can obtain an empty disjunction by conjoining mutually exclusive constraints.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

506 · Norman Ramsey and Mary F. Fernández

it is the empty conjunction.) The normal forms of p | q and p; q are straightfor-
ward. We form p | q by concatenating the disjuncts of p and q to form one large
disjunction. We form p; q by distributing concatenation over disjunction; and we
concatenate two sequences by concatenating their sequents.

We also form p & q by distributing over disjunction, but the rules for conjoining
two sequences are more complicated. The basic rule is that the sequences to be
conjoined must have the same shape, i.e., they must be the same length, and the
classes associated with corresponding sequents must be the same. For example,
all of the conjunctions in the SPARC example operate on sequences of length 1,
and each sequent comes from the itoken class. The Pentium is more complicated.
For example, the pattern mod = 0 & r m = 5 is permitted, because both conjuncts
constrain fields from the ModRM class. The pattern mod = 0 & index = 2 is not
permitted, because mod is from the ModRM class, but index is from the SIB class.
We conjoin two sequences of identical shape by conjoining their individual sequents,
elementwise. Conjoining two sequents simply means conjoining their constraints; if
both sequents constrain the same field, their conjunction constrains the field to lie
in the intersection of the two ranges.

The basic rule for conjunction is too restrictive on a machine like the Pentium,
in which effective addresses of varying shapes must be conjoined with opcodes of
a fixed shape. If the shape of one sequence is a prefix of the shape of another, we
can conjoin two sequences elementwise until we run out of elements in the shorter
sequence, and then we can take the remaining elements from the longer sequence
unmodified. A similar technique works when one sequence is a suffix of another.

If the toolkit used prefixes or suffixes automatically, it might silently accept an
unintended, incorrect conjunction, so it uses them only when told to do so. The
specification writer uses an ellipsis (“...”) before or after any pattern to liberalize
conjunctions with that pattern. The pattern p & q ... is defined whenever q’s
shape is a prefix of p’s shape. q is conjoined with the prefix of p whose shape matches
its shape, and the rest of p is concatenated to the result. Similarly, p & ... q is
defined whenever q’s shape is a suffix of p’s shape, and the patterns are aligned at
the end instead of the beginning. The ellipsis has the effect of making a pattern
“lose its shape” where the ellipsis appears; so p ... & ... q is never legal, because
p ... has no well-defined suffix, and ... q has no well-defined prefix.

The restrictions on conjunction, with or without the ellipsis, guarantee that each
disjunct in a valid pattern corresponds to a sequence of tokens. The toolkit uses this
invariant to generate both encoders and decoders. These rules prohibit “mixing”
tokens of different classes; in each instruction, each sequence of bits comes from a
token of a unique class.

3.2.2 Conditions and Names. Free variables may appear not only in field bind-
ings, but also in conditions associated with a pattern. No conditions appear in
the grammar for patterns; instead, conditions are implicit in other parts of the
specification and are associated with patterns in the toolkit’s internal represen-
tation. For example, encoding of a field binding is subject to the condition that
the computed value fit in the field; the condition becomes part of the pattern in
which the field binding appears. Internally, this condition is derived from an oper-
ator that narrows a value to fit in the number of bits available. The toolkit uses
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 507

Component Contains Matches when. . . To encode. . .

Pattern disjuncts, name Any disjunct matches. Encode first disjunct with
satisfied conditions.

Disjunct conditions,
sequents+labels,
ellipses, name

Conditions are satisfied, and
each sequent matches.

Encode each sequent as one
token.

Sequent constraints,
field bindings

Constraints and bindings
match.

Set fields of token using
constraints and bindings;
emit token.

Label Always matches; binds
identifier to location.

Not encoded, but may be
used in equations.

Range
constraint

lo ≤ f < hi ,
lo & hi constant

Field value falls in range. If range has one element, set
field.

Field binding f = expression Always matches; equates
expression to value of field.

Set field to value of
expression.

Fig. 2. Normal form of patterns, with matching and encoding rules.

a signed narrow for sign-extended fields and an unsigned narrow for other fields.
From the unsigned narrow, the toolkit derives the condition 0 ≤ f < 2n, for a
value f put into a field of n bits. From the signed narrow, the toolkit derives the
condition −2n−1 ≤ f < 2n−1. Other conditions may be derived from equations in a
constructor definition. For example, most RISC branch instructions are described
by equations that have solutions only under the condition that the target address
differs from the program counter by a multiple of the word size.

We associate conditions with each disjunct. Although conditions could be asso-
ciated with each constraint or each sequent, the disjunct is a better choice, because
it is the largest component of a pattern that must be matched in its entirety. The
disjunct is also the natural place to put conditions associated with constructor def-
initions. For example, the binary representation of a SPARC branch instruction
is represented by a pattern of one disjunct; the disjunct includes the condition
(addr −L) mod 4 = 0, where L represents the location of the instruction, and addr
represents the target address of the branch instruction.

Both patterns and disjuncts have names. A pattern’s name can be used wherever
a pattern is expected. Disjunct names are used to compute constructors’ names
when patterns are used in constructor opcodes.

Figure 2 shows the full representation of patterns, together with the rules for
matching and encoding them. As an example, the alu pattern from the SPARC
specification has 38 disjuncts and the name alu. The first disjunct has no condi-
tions, one sequent, no labels, no ellipses, and the name add. The single sequent of
that disjunct is a sequent of class itoken. It has two range constraints, 2 ≤ op < 3
and 0 ≤ op3 < 1, and no field bindings.

3.2.3 Using and Naming Patterns. Patterns are used in specifications in two
ways. Opcodes are defined by binding names to pattern values, which contain no
field bindings and are computed statically. Constructors and matching statements
are defined using pattern expressions, which may contain free variables whose values
are not known until encoding or decoding time. Such variables must be operands
of the constructor; that is, they must be bound by the constructor’s definition.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

508 · Norman Ramsey and Mary F. Fernández

The patterns declaration binds names to pattern values; pattern expressions
are used in constructor definitions and matching statements, which are described
below. Pattern bindings are typically used to define opcodes and to group related
opcodes, e.g., they are used to define the SPARC opcodes. Their syntax is

spec ⇒ patterns
{

pattern-binding
}

pattern-binding ⇒ pattern-name is pattern
| [

{
pattern-name

}
] is pattern

| pattern-name is any of [
{

pattern-name
}
],

which is pattern

Patterns bound to the special name “ ” are ignored. Such patterns may correspond
to unused opcodes, as in Table F-3 in the SPARC example. A pattern binding can
bind one name to one pattern or each of a list of names to one of a list of patterns.
Lists of patterns are created by using generating expressions in constraints. Gen-
erating expressions are modeled on expressions in Icon, which can produce more
than one value [Griswold and Griswold 1990]. They are ranges or lists:

generating-expression ⇒ { lo to hi
[
columns n

]
} | [

{
integer

}
]

The values generated are enumerated in left-to-right LIFO order. For example,
the SPARC example’s declaration for Table F-1 binds the names TABLE F2, call,
TABLE F3, and TABLE F4 to the patterns op = 0, op = 1, op = 2, and op = 3,
respectively.

3.3 Constructors

A constructor maps a list of operands to a pattern, which stands for the binary
representation of an operand or instruction. Typed constructors produce operands;
untyped constructors produce instructions. Because most manuals describe instruc-
tions in terms of their assembly-language syntax, we designed constructor specifi-
cations to resemble that syntax. A constructor specification begins with an opcode
and a list of operands. It also gives a type and zero or more “branches,” which
designate possible representations.

spec ⇒ constructors
{

constructor
}

constructor ⇒ opcode
{

operand
} [

: type-name
] [

branches
]

A constructor without explicit branches is given the representation obtained by
conjoining the opcode with the operands.

The type of a constructor determines how the corresponding encoding procedure
can be used. Although a constructor with no explicit type is called “untyped,” in
fact it has a predefined, anonymous type—the type of instructions. Correspond-
ing encoding procedures emit instructions. The encoding procedures for explicitly
typed constructors produce values that can be used as operands to other construc-
tors, as described below.

Opcodes are tricky. They can be simple strings, or they can be combinations of
strings, pattern names, and field names, which are expanded to define multiple
constructors with one specification. For example, the SPARC alu constructor
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 509

specification expands the alu pattern to define 34 constructors at once. Compound
opcodes are formed by joining strings or names using the ^ symbol.

opcode ⇒ opname
{
^ opname

}
An opname can be the name of a field or pattern, or it can be an unbound name
or a string. Unbound names mean the same as strings; for example, in the SPARC
example, because the opname dispA is not previously defined, it is equivalent to
"dispA". This notational convenience means that the names of constructors seldom
need to be quoted.

When any opname is the name of a pattern or field, the toolkit expands opcodes
by enumerating the disjuncts of patterns and the named values of fields. For ex-
ample, the toolkit expands the branch^a opcode by expanding the pattern branch
to the 16 disjuncts named in its definitions, and it expands the field a to the two
named values "" and ",a". The SPARC example’s single constructor definition of
branch^a is therefore equivalent to a series of 32 definitions:

constructors

"bn" addr { addr = L + 4 * disp22! } is L: bn & disp22 & a = 0

"bn,a" addr { addr = L + 4 * disp22! } is L: bn & disp22 & a = 1

...

"bvc,a" addr { addr = L + 4 * disp22! } is L: bvc & disp22 & a = 1

Because architecture manuals often use the same name to refer both to an opcode
and to its instruction, we put constructors in a separate name space, so the same
name can be used to refer both to constructors and to patterns.

Operands may be fields, integers, or patterns. Field and integer operands may
be signed or unsigned, and they may be designated relocatable. Pattern-valued
operands must result from applying constructors of a designated type. Operand
types are distinguished by their names; an operand is a field or pattern if its name
is that of a field or a constructor type, and it is an integer otherwise.

The type of an operand determines how its name can be used on the right-hand
side of a constructor. Integer operands can be used only in integer expressions,
which appear in field bindings. Field operands can be used as integers, but they
can also be used as patterns, in which case the field name stands for the pattern
binding that field to the corresponding operand, as shown in the SPARC example.
Finally, pattern-valued operands can be used only as patterns.

A list of operands may be decorated with spaces, commas, brackets, quoted
strings, and other punctuation. The punctuation represents assembly-language
syntax, and the toolkit uses it to generate encoding procedures that emit assembly
language and to generate a grammar that recognizes assembly language.

Constructors solve several intellectual problems. They give an abstract structure
to an instruction set, they connect that structure both to binary representations
and to assembly language, and they formalize instructions as functions mapping
operands to binary representations. An instruction set’s abstract structure comes
from the types of the constructors and their operands. This structure is isomor-
phic to a grammar in which the start nonterminal corresponds to the anonymous
type “instruction,” and in which each explicit constructor type corresponds to an
additional nonterminal. Each constructor corresponds to a production in which the
constructor’s type appears on the left-hand side, and its operands appear on the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

510 · Norman Ramsey and Mary F. Fernández

right. The terminal symbols of the grammar are the operands that are fields, inte-
gers, or relocatable addresses. The patterns on the right-hand sides of constructor
definitions are equivalent to synthesized attributes of the grammar. Field names,
constructor names, and punctuation define an assembly-language representation
that is implicit in every constructor definition, and these representations are also
equivalent to synthesized attributes of the grammar.

Relocatable addresses are not essential to the intellectual task of specifying rep-
resentations; instead, they support separate compilation in encoding applications.
Any field or integer operand can be designated relocatable by

spec ⇒ relocatable
{

identifier
}

For example, the addr operand of the SPARC branch constructor is declared relo-
catable. Labels that appear in constructors’ patterns are also relocatable. Applica-
tions typically use relocatable addresses to refer to locations bound after encoding,
at link time. Allowing any operand to be relocatable simplifies implementation
of applications that usually emit assembly language. For example, it simplifies
construction of mld’s code generators, because it enables automatic translation of
existing assembly-emitting code generators into mld’s binary-emitting code gener-
ators. Without the ability to make any operand relocatable, large parts of mld’s
code generators would have to be written by hand.

When a constructor that uses relocatable operands is applied, it checks to see if
their values are known (e.g., they have been assigned absolute addresses). If so,
it treats them as ordinary integers and emits the instruction. Otherwise, it emits
placeholder patterns and creates a relocation closure [Ramsey 1996a]. The appli-
cation holds the closure until the addresses on which it depends become known, at
which point it applies the closure to overwrite the placeholder with the correct en-
coding of the instruction. Alternatively, the toolkit provides a machine-independent
representation that can be used to write the closure to a file, from which another
application could read and apply it.

Placeholder patterns are associated with token classes:

spec ⇒ placeholder for class-name is pattern

The toolkit uses the shape of a constructor’s pattern to compute its placeholder, so
the placeholder is the same size as the relocated instruction that will overwrite it.

The branches of a constructor specification contain equations and patterns. The
patterns specify binary representations, and the equations relate the constructor’s
operands to the variables used in the patterns.

branches ⇒
[
{ equations }

] [
is pattern

]
|
{
when { equations } is pattern

∣∣ otherwise is pattern
}

When a constructor has a single branch, the pattern can be omitted, in which case
it is taken to be the conjunction of the constructor’s opcode with its operands.
The ability to specify multiple branches supports conditional assembly, as with
the SPARC set constructor. When encoding, the toolkit emits the first branch for
which all conditions are satisfied. As explained above, conditions are satisfied when
(1) all values bound to fields fit in those fields and (2) all equations used in the
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 511

branch have solutions. When decoding, the toolkit matches any of the branches.
Otherwise is syntactic sugar for when { }.

Equations express relationships between operands and fields. As written, they
relate sums of terms with integer coefficients. Terms include field and integer
variables, from which one can extract bits by n@[lo:hi]. One can also sign-
extend a variable or extracted bits with the postfix exclamation point, as shown
in the descriptions of the SPARC branch constructors. Equations may include
inequalities, which become conditions attached to disjuncts of a branch’s pat-
tern. Conditions may also arise from solving equations; for example, the condition
(addr − L) mod 4 = 0, which is attached to the patterns in the SPARC branch
constructors, is derived from the equation for those constructors. All conditions
must be satisfied for the constructor to be matched or encoded.

The toolkit uses a simple equation solver [Ramsey 1996b]. To encode, the toolkit
takes operands as known and solves for fields. To decode, the toolkit takes fields
as known and solves for operands.

Constructors are represented essentially as lambda terms mapping operands to
patterns. The results of solving equations are represented in the patterns as condi-
tions or as expressions in field bindings, so the only free variables in a constructor’s
pattern are the constructor’s operands. Constructors with multiple branches, like
the set constructor in the SPARC example, result in patterns with multiple dis-
juncts. The encoding procedure associated with the constructor emits the first
disjunct whose conditions are known to be satisfied. If a condition depends on
the value of an unknown relocatable operand, the toolkit conservatively assumes
that the eventual value may not satisfy the condition, and it moves on to the next
disjunct. If all disjuncts depend on relocatable operands, the toolkit uses the fi-
nal disjunct. This technique, while safe, is unsuitable for emitting span-dependent
instructions; for example, it uses the most general representation for all forward
branches. We believe that standard techniques for resolving span-dependent in-
structions [Szymanski 1978] can be applied to our specifications.

3.4 Matching Statements and Decoding

Decoding applications use the toolkit’s matching statements. Matching statements
provide a notation for writing instruction recognizers that are efficient and easily
understood. Matching statements resemble ordinary case statements, but their
arms are labeled with patterns. The first arm whose pattern matches is executed.
The syntax for matching statements is

matching-statement ⇒ match code to{
| pattern

[
{ equations }

] [
[name]

]
=> code

}[
else code

]
endmatch

The terminal symbol code stands for a fragment of Modula-3 or C code. The code
next to match evaluates to a location in an instruction stream. The representation
of the instruction stream is implicit in code templates supplied by the application
writer, as described below. Each arm may include equations that must be satisfied
for the arm to match. A name in square brackets is bound to the name of the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

512 · Norman Ramsey and Mary F. Fernández

PROCEDURE Follow(m:Memory.T; pc:Word.T):FollowSet.T =

BEGIN

match pc to

| nonbranch; L: epsilon => RETURN FollowSet.T{L};

| call(target) => RETURN FollowSet.T{target};

| branch^a(target) &

(ba | fba | cba) => RETURN FollowSet.T{target};

| branch^a(target); L: epsilon => RETURN FollowSet.T{L, target};

| jmpl(dispA(rs1, simm13), rd) => RETURN FollowSet.T{GetReg(m,rs1)+simm13};

| jmpl(indexA(rs1, rs2), rd) => RETURN FollowSet.T{GetReg(m,rs1)+

GetReg(m,rs2)};

| some itoken => Error.Fail("unrecognized instruction");

endmatch

END Follow;

Fig. 3. Matching statement used for control-flow analysis of SPARC instructions.

pattern that matched. If an arm’s pattern matches, the code on the right-hand side
of => is executed.

Matching-statement is itself a grammatical start symbol; it cannot be derived
from specification. When generating decoders, the toolkit’s translator reads a spec-
ification from one file, then transforms a different file containing one or more match-
ing statements.

In a matching statement, every free variable in a pattern is a binding instance;
the toolkit computes a value for each such variable, and the values can be used
in the host-language code on the right-hand side of the arm labeled by the pat-
tern. Free variables associated with typed constructors are bound to locations in
the instruction stream. The generated decoder converts such bound locations to
integers.

Matching statements can be embedded in programs written in Modula-3 or in C.
The toolkit’s translator acts as a simple preprocessor—it finds embedded matching
statements and rewrites them into pure Modula-3 or C code.

Matching statements make an application’s decoding code clear and concise. For
example, ldb, a retargetable debugger for ANSI C, uses matching statements to
implement control-flow analysis. Most of ldb’s breakpoint implementation is ma-
chine independent; the only machine-dependent part is the analysis of control flow
[Ramsey 1994a]. Figure 3 shows a simplified version of the SPARC code in ldb’s
breakpoint implementation, omitting subtleties associated with delayed branches.
This code finds which instructions could be executed immediately after an instruc-
tion at which a breakpoint has been planted [Ramsey 1994a]. After an ordinary
instruction, the only instruction that can follow is its inline successor, as computed
by the first arm of the matching statement. FollowSet.T{L} is a set of addresses
containing the single element L, which is the location of the successor instruction.
Calls and unconditional branches also have only one instruction in their “follow
set,” but conditional branches have two. The two jmpl patterns are indirect jumps
through registers; the GetReg procedure gets the value in the register in order
to compute the target address. The matching statement in Figure 3 expands to
nested case statements totaling about 90 lines of Modula-3 code. The count does
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 513

not convey the difficulty of writing the code by hand, because the toolkit elimi-
nates unnecessary tests by combining seemingly unrelated opcodes if they result in
execution of the same code.

Application writers can use any representation of instruction streams; in par-
ticular, the toolkit does not constrain the application to use integers to represent
locations. An application writer specifies a representation by supplying the toolkit
with four code fragments: the data type used to represent locations, a template
used to add an integer offset to a location, a template used to convert a location to
an unsigned integer, and a template used to fetch a token of a specified width from
a location. The templates are specified by

spec ⇒ fetch
(
width

∣∣ any) using template
| address type is template
| address add using template
| address to integer using template

The template symbols stand for quoted strings containing fragments of Modula-3 or
C code mixed with escape sequences that stand for addresses, widths, and offsets.
Widths are measured in bits; offsets are measured in units of pc unit bits:

spec ⇒ pc unit bits width

This size must evenly divide the width of every token; the default size is 8 bits.
The toolkit builds a decision tree for each matching statement. The decision tree

checks all applicable range constraints while examining each field at most once. If
patterns in two arms use the same range constraints but have different conditions,
the toolkit checks conditions sequentially, but this situation is rare. The toolkit tries
to minimize the number of tests needed to identify an arm. No polynomial-time
algorithm is known for this problem, and even though the toolkit builds decision
trees at tool-compile time, it would take too long to generate and evaluate all
possible decision trees. Our heuristics yield trees that are at least as good as trees
we would write by hand.

4. SPECIFYING CISC INSTRUCTIONS

Tools may work well for RISC architectures without being very useful for CISC
architectures. To demonstrate the utility of our specification language, we show two
complex aspects of our Pentium specification: addressing modes and variable-sized
operands. Figure 4 shows constructor specifications for the Pentium’s addressing
modes. We have given each constructor the type Eaddr, which we have chosen to
represent effective addresses. Values of type Eaddr are used as operands to untyped
constructors, as shown below. Again, the brackets and asterisks in the specification
are punctuation indicating suggested assembly-language syntax. Figure 5 depicts
the structures of the patterns used in Figure 4.

Effective addresses begin with a one-byte ModR/M token, which contains an
addressing mode and a register. In indexed modes, the ModR/M token is followed
by a one-byte SIB token, which holds index and base registers and a scale factor ss.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

514 · Norman Ramsey and Mary F. Fernández

constructors

Reg reg : Eaddr is mod = 3 & r_m = reg

Indir [reg] : Eaddr {reg != 4, reg != 5} is mod = 0 & r_m = reg

Disp8 d![reg] : Eaddr {reg != 4, d = i8! } is mod = 1 & r_m = reg; i8

Disp32 d![reg] : Eaddr {reg != 4} is mod = 2 & r_m = reg; i32 = d

Abs32 a : Eaddr is mod = 0 & r_m = 5; i32 = a

constructors

Index [base][index * ss] : Eaddr { index != 4, base != 5 } is

mod = 0 & r_m = 4; index & base & ss

Index8 d![base][index * ss] : Eaddr { index != 4, d = i8! } is

mod = 1 & r_m = 4; index & base & ss; i8

Index32 d![base][index * ss] : Eaddr { index != 4 } is

mod = 2 & r_m = 4; index & base & ss; i32 = d

ShortIndex d![index * ss] : Eaddr { index != 4 } is

mod = 0 & r_m = 4; index & base = 5 & ss; i32 = d

Fig. 4. Constructor definitions for the Pentium’s 32-bit addressing modes.

mod r m

Reg reg 3 · · · reg

Indir [reg] 0 · · · reg

Disp8 d[reg] 1 · · · reg i8 = d

Disp32 d[reg] 2 · · · reg i32 = d

Abs32 a 0 · · · 5 i32 = a

Index [base][index*ss] 0 · · · 4 ss index base

Index8 d[base][index*ss] 1 · · · 4 ss index base i8 = d

Index32 d[base][index*ss] 2 · · · 4 ss index base i32 = d

ShortIndex d[index*ss] 0 · · · 4 ss index 5 i32 = d

Fig. 5. Tokens used in the Pentium’s 32-bit addressing modes. Token sizes are not to scale.

Finally, some modes take immediate displacements [Intel Corp. 1993, Tables 26-2
to 26-4]. The tokens and fields used in effective addresses are as follows:

fields of ModRM (8) mod 6:7 reg_opcode 3:5 r_m 0:2

fields of SIB (8) ss 6:7 index 3:5 base 0:2

fields of I8 (8) i8 0:7

fields of I16 (16) i16 0:15

fields of I32 (32) i32 0:31

The fields i8, i16, and i32 occupy whole tokens.
We define constructors of type Eaddr to create effective addresses in 32-bit mode.

The first group of constructors specifies the nonindexed addressing modes. The
simplest mode is encoded by mod = 3; it is a register-direct mode that can refer
to any of the machine’s 8 general registers. The next 3 modes are register-indirect
modes with no displacement, 8-bit displacement, and 32-bit displacement. The 8-
bit displacement is computed by sign-extending the i8 field. Semicolons separate
ModR/M tokens from the displacement tokens that follow.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 515

The inequality reg != 5 shows that r m may not take the value 5 in simple
indirect mode. Instead of denoting indirect use of the base pointer, which is the
register normally encoded by 5, the combination mod = 0 & r m = 5 encodes a
32-bit absolute mode. The inequality reg != 4 shows that the value 4 may not
be used to encode indirect use of the stack pointer, which is the register normally
encoded by 4. This value is used instead to encode the indexed modes, which use
an SIB token as well as the ModR/M token.

The indexed modes are the second group in Figures 4 and 5. The ModR/M token
in which r m = 4 is followed by an SIB token. The stack pointer may not be used
as an index register (index != 4). Depending on the value of mod in the ModR/M
token, the SIB token may end the address, or an 8-bit or 32-bit displacement may
follow. Finally, “mod = 0 & base = 5” denotes an indexed address with no base
register and a 32-bit displacement.

None of the addressing modes specifies a value for the reg opcode (middle) field
of the ModR/M token. This field is not part of the effective address; depending on
the instruction, it can be part of the opcode, or it can denote a register operand.
Effective addresses are used by conjoining them with a pattern that constrains
reg opcode; the resulting pattern specifies every bit of the ModR/M token. We
need the ellipsis operator to make the conjunction work. Even though effective
addresses have several different shapes, all the shapes begin with ModRM, so it is
legal to write Eaddr & p ... whenever p’s shape is ModRM. The move-byte and
move-byte-immediate instructions show the use of the ellipsis:

constructors

MOV^"mrb" Eaddr, reg is MOV & Eb.Gb; Eaddr & reg_opcode = reg ...

MOV.Eb.Ib Eaddr, i8! is MOV.Eb.Ib; Eaddr & reg_opcode = 0 ...; i8

Our specifications of the Pentium’s opcodes, which are not shown in this article,
mimic the tables in the manual [Intel Corp. 1993]. The manual uses families of
opcodes (ADD, MOV, etc.) that are distinguished by suffixes indicating the locations
and sizes of the destination and source operands. The suffix “Eb,Gb” indicates
that the destination is given by an effective address, that the source is in a general-
purpose register, and that both source and destination operand are one byte wide.
In many cases, as with “MOV Eb,Gb”, we specify the operation and the suffix
separately, then conjoin them to get an opcode, thereby writing m+n specifications
instead of m × n specifications. The “Eb,Ib” suffix, which uses an immediate
operand as the source, cannot use this scheme, so we specify the full opcode as
MOV.Eb.Ib.

The Pentium uses an unusual method of identifying the sizes of operands. Most
instructions come in three variants: one each for 8-bit, 16-bit, and 32-bit operands.
Typically the 8-bit variant has a distinct opcode, but the 16- and 32-bit variants
share an opcode and are distinguished by the presence or absence of an instruction
prefix. We specify an “object varying” pattern as a sequence that is empty or that
contains the prefix

patterns ow is OpPrefix

od is epsilon

ov is ow | od

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

516 · Norman Ramsey and Mary F. Fernández

where ow is mnemonic for “object word” and od for “object doubleword.” This
specification assumes that the hardware codes for 32-bit doubleword operands by
default; the alternate assumption could be specified by exchanging the definitions
of od and ow. To specify both the 16- and 32-bit variants of the memory-to-register
move instruction, we write

constructors

MOV^"mr"^ov Eaddr, reg is ov; MOV & Ev.Gv; Eaddr & reg_opcode = reg ...

This specification differs from the move-byte specification in that we have used the
suffix “Ev,Gv”, which codes for operands of either word or longword (“variable”)
size, depending on the presence or absence of a prefix. The pattern ov expands to
the prefix for the 16-bit variant and to the empty sequence for the 32-bit variant.

When immediate operands are used, all three variants must have separate spec-
ifications, because the operands are different sizes. The 8-bit move-immediate in-
struction appears above; the remaining variants are specified by

constructors

MOV.Eb.Iv^ow Eaddr, i16! is

ow; MOV.Ev.Iv; Eaddr & reg_opcode = 0 ...; i16

MOV.Eb.Iv^od Eaddr, i32! is

od; MOV.Ev.Iv; Eaddr & reg_opcode = 0 ...; i32

Again, only one of these instructions has a prefix, since od stands for the empty
sequence.

Two features of SLED exist only to enable the description of CISC machines.
One, the ability to define tokens of different sizes and classes, is used only to
describe the Pentium and the Motorola 68000. The other, the ability to form
sequences of tokens, is used in both CISC and RISC specifications, but we have
used it only rarely in RISC specifications, typically to synthesize “instructions”
from multi-instruction sequences.

Owen C. Braun’s description of the 68000 [Braun 1996] exposes several shortcom-
ings of SLED. Some addressing modes have different representations, depending on
where they are used; currently, they must be associated with distinct sets of con-
structors of distinct types. For example, a compiler writer must call one of two
procedures to encode a register-direct mode, depending on whether it is to be the
source or the destination operand of a move instruction. Not all of the 68000’s ad-
dressing modes are valid in all instructions; there are several different subsets, such
as the “data-alterable” modes, for example. Our (incomplete) specification of the
DSP56000 exhibits similar problems. These problems can be handled by defining
multiple sets of constructors, but the resulting specifications are ugly and difficult
to maintain.

We are considering two extensions that would help improve specifications of the
68000 and the DSP56000 and would help specify address prefixes on the Pentium.
One would enable us to attach multiple pattern-valued attributes to constructors
and to use different attributes to specify alternate representations or parts of rep-
resentations. Another would support simple specification of subsets of typed con-
structors, which we could use to specify restrictions on addressing modes. In both
cases, we believe that simplifications in CISC specifications will justify the extra
complexity in SLED. Because we have not implemented these extensions, we con-
sider the details beyond the scope of this article.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 517

5. IMPLEMENTATION

The toolkit’s translator, generator, and checker are combined in a single Icon pro-
gram [Griswold and Griswold 1990] of about 10,000 lines. We omit the details of
the implementation, but we do explain what the implementation does, what it
assumes, and how the toolkit’s library supports those assumptions.

For each matching statement, the toolkit generates an efficient decoder using
nested case statements. These decoders manipulate instruction streams using the
code templates supplied by the application writer. Because the decoders need only
what is in the templates, they are isolated from other properties of the decoding
application, including byte order. They are also independent of any generated
encoders and of the toolkit’s library.

The toolkit creates an encoding procedure from each constructor in a specifica-
tion. Procedures that come from typed constructors are useful only for producing
operands to be passed to other encoding procedures. In particular, such procedures
never have side effects; they return values. Procedures generated from untyped con-
structors do have side effects; they emit instructions. If the constructor’s pattern
has no disjunct whose conditions are satisfied, the encoding procedure calls an error
handler supplied by the application. Here are signatures for the C procedures that
are generated from the Address constructor dispA and the untyped constructor
ldsb, which appear in the SPARC example:

Address_Instance dispA(unsigned rs1, int simm13);

void ldsb(Address_Instance Address, unsigned rd);

The result of dispA could be used as the first argument to ldsb.
Normal encoding procedures emit binary representations, as determined by the

encoding rules in Figure 2. The toolkit can also generate “encoding” procedures
that emit assembly language. The assembly language is usually inferred from punc-
tuation in constructor specifications, but it is possible to specify assembly syntax
separately, as described in the toolkit’s reference manual [Ramsey and Fernández
1994b]. This ability is useful when several assembly languages are in common use
for a single architecture, as is the case for the Pentium.

The toolkit can generate direct or indirect interfaces to encoding procedures.
Indirect interfaces use interface records—structures containing function pointers.
Applications can choose binary or assembly language at run time by using a pointer
to the appropriate interface record.

Binary encoding procedures have side effects on a global instruction stream.
When values of relocatable operands are not available, they also create relocation
information in the form of closures. The encoding procedures make certain assump-
tions about instruction streams and relocatable operands. Here we enumerate the
assumptions and explain the implementations in the toolkit’s library, which satisfy
the assumptions.

A relocatable address represents the value of a relocatable operand. It is an
abstraction with two operations: force and known. Force takes a relocatable address
and produces an (integer) absolute address. Known tells whether force can be
applied. Generated encoding procedures use known to decide whether to emit
tokens or to create relocation closures, and they use force to get the values of the
operands themselves.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

518 · Norman Ramsey and Mary F. Fernández

An instruction stream holds tokens emitted by encoding procedures. It has a
location counter that marks the location of the next token to be emitted. Like re-
locatable addresses, the location counter supports the known and force operations.
Encoding procedures assume that they can manipulate the location counter and
that they can call emitters to put tokens into the instruction stream. Emitters
write bits and advance the location counter. The library includes a little-endian
emitter, a big-endian emitter, and two emitters that use the native byte order of
the host machine, or an application can supply its own emitters. One of the native
emitters is faster than the other, but it requires that the location counter always
be aligned on a multiple of the token size.

Most encoding applications need a richer model of instruction stream than that
assumed by the toolkit’s encoding procedures. The toolkit’s library provides re-
locatable blocks, which implement the instruction-stream abstraction. They also
support many other operations, including changing blocks and locations, assigning
addresses to blocks, emitting tokens into blocks, and writing blocks into files or
memory. An application can use any number of relocatable blocks, and it can emit
tokens into a block before the block’s address has been assigned. For example, a
UNIX assembler might use three blocks, one each for the code, initialized data,
and uninitialized data sections. The assembler would let the linker determine and
assign the addresses of those blocks.

A label, which points to a location in a relocatable block, provides the basic
known and force operations.2 The toolkit does not associate names with labels;
applications can use any method to name and find labels. For more flexibility, the
library also provides an implementation of relocatable addresses that represents an
address as the sum of a label and a signed offset. This representation is adequate for
applications like compilers and linkers. Authors of other applications can use more
sophisticated representations (e.g., linear expressions over addresses and labels)
without changing the code generated by the toolkit.

The toolkit needs little support from applications. Applications’ primary obliga-
tions are to manage memory and to supply or select code for fetching and storing
tokens. Encoding applications must supply a routine that the library uses to allo-
cate memory for closures, labels, and relocatable blocks. Saving, applying, writing,
and discarding closures are also the application’s responsibility. In return, the
application can choose its own policies for allocating memory and for managing
closures. The toolkit is careful not to require large blocks of contiguous memory,
not even to store large relocatable blocks. Finally, the toolkit provides no code to
associate names with relocatable blocks, labels, or other abstractions; applications
must supply their own.

The toolkit generates efficient code. When safety checks are elided, each encoding
procedure executes about a dozen instructions. Generated decoders test each field
at most once, and they test them in an order that quickly identifies the right arm
of the matching statement.

The toolkit’s generator can detect many internal inconsistencies in specifications,
but it cannot identify specifications that are internally consistent but do not match

2This “label” is different from the labels introduced by the L: p construct, although both kinds
serve the same function.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 519

a target machine. There are several ways to write such incorrect specifications, for
example, by getting operand order wrong or by interchanging names in an opcode
table. The toolkit’s checker [Fernández and Ramsey 1997] finds inconsistencies be-
tween the mapping specified in SLED and the mapping implemented by a trusted,
independent assembler. The checker exploits the generator’s ability to create en-
coding procedures for both binary and assembly representations. It exercises each
constructor at least once, emitting both representations. The trusted assembler
translates the assembly into binary, and the checker compares the two binary rep-
resentations. If they are identical, the toolkit’s specification is probably consistent
with the assembler; if not, the toolkit and the assembler encode some instruction
differently, and there is probably an error in the specification. A disassembler,
which can be generated by the toolkit, makes it easier to find the source of the
error.

6. RELATED WORK

Ferguson [1966] describes the “meta-assembler,” which creates assemblers for new
architectures. A meta-assembler works not from a declarative machine description
but from macros that pack fields into words and emit them; it is essentially a macro
processor with bit-manipulation operators and special support for different integer
representations.

Most architecture-description languages emphasize the instruction semantics nec-
essary for building tools that verify and simulate an instruction set, not the encoding
and decoding descriptions necessary for building tools that process machine code.

Wick [1975] describes a tool that generates assemblers based on descriptions
written in a modified form of ISP [Bell and Newell 1971]. His work investigates
a different part of the design space; his machine descriptions are complex and com-
prehensive. For example, they describe machine organization (e.g., registers) and
instruction semantics as well as instruction encoding.

LISAS [Cook and Harcourt 1994] is another specification language that includes
distinct semantic and syntactic descriptions. It specifies binary representations by
mapping sequences of named fields onto sequence of bits, a technique that works
well for RISC machines, but is awkward for CISC.

The nML specification language [Fauth et al. 1995] uses an attribute grammar
to specify instruction sets. The underlying grammar, without attributes, should
be the same as the grammar induced by our constructors and their types. For
specification, nML uses “OR-rules” and “AND-rules.” The OR-rules are sums.
They correspond to our constructor types when viewed as disjoint unions, and they
also correspond to alternatives in a grammar. The AND-rules are products. They
correspond to Cartesian products of operands of our constructors, and they also
correspond to sequences of symbols in a production of a grammar.

nML and SLED use different notations and types to associate information with
instruction sets. nML uses synthesized attributes to represent register-transfer
semantics, assembly-language syntax, and binary representations. Writers can in-
troduce extra attributes to represent things like addressing modes. The values of
attributes may be integers, character strings, bit strings, or “register-transfer se-
quences.” Binary representations are represented as bit strings. Attribute values
are specified by writing explicit attribute equations for every production in the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

520 · Norman Ramsey and Mary F. Fernández

grammar, and they can be computed using C-like arithmetic functions, a printf-
like formatting function, and a special notation for register-transfer sequences. An
nML description can be used to build a simulator, which includes an instruction de-
coder, and a code generator, which includes a binary encoder. Using nML attribute
equations to build an encoder appears straightforward, but the authors seem not to
have published a description of how they invert the equations to produce a decoder.

SLED provides a more concise and less error-prone way of specifying binary
representations than nML’s binary-string attributes. SLED’s generating expres-
sions and constructor opcodes make it easy to specify many representations with few
integer literals. Using patterns instead of bit strings relieves the specification writer
from having to get the fields in the right order, and it helps the toolkit detect missing
and duplicate fields. Finally, SLED specifications resemble architecture manuals;
nML specifications do not. Our ideas could be exploited in the nML framework
by including the pattern sublanguage (tokens, fields, and patterns) in nML and us-
ing pattern-valued attributes to specify binary representations. Conversely, nML’s
ideas could be exploited in our framework by adding nML’s register-transfer sub-
language and by permitting users to attach arbitrary attributes to constructors and
their operands. We expect that named, pattern-valued attributes would help users
describe machines like the 68000 and DSP56000.

The GNU assembler provides assembly and disassembly for many targets, but dif-
ferent techniques are applied ad hoc to support different architectures [Elsner et al.
1993]. For example, Pentium instructions are recognized by hand-written C code,
but MIPS instructions are recognized by selecting a mask and a sample from a ta-
ble, applying the mask to the word in question, then comparing the result against
the sample. On both targets, operands are recognized by short programs written
for abstract machines, but a different abstract machine is used for each target. An-
other set of abstract machines is used to encode instructions during assembly. The
implementations of the abstract machines contain magic numbers and hand-written
bit operations. The programs interpreted by the abstract machines are represented
as strings, and they appear to have been written by hand.

Larus and Schnarr [1995] use a machine description related to ours to provide
machine-independent primitives that query instructions. The syntactic part of their
machine description is derived from a subset of our language having only fields and
patterns. They have added semantic information by associating register-transfer
semantics with particular pattern names. From this combined syntactic and se-
mantic information, the spawn tool generates classifiers that put instructions into
categories like jump, call, store, invalid, etc. It finds the registers that each instruc-
tion reads and writes, and it generates C++ code to replicate such computations
as finding target addresses. The descriptions used by spawn are both more and
less powerful than ours. The semantic information makes it possible to derive a
variety of predicates and transformations that are indispensable for instrument-
ing object code. The limited syntactic specification assumes there is only a single
token (the “current instruction”), and it has no notion comparable to construc-
tor, which makes it more difficult to understand how specifications are factored.
Finally, spawn descriptions do not support encoding; instrumenters must provide
preencoded “snippets” of machine code. The encoding is done by standalone com-
pilers or assemblers, and the snippets are extracted from the resulting object code.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

Specifying Representations of Machine Instructions · 521

In spirit, our work is like ASN.1 [ISO 1987], which is used to create symbolic de-
scriptions of messages in network protocols, but there are many differences. ASN.1
data can be encoded in more than one way, and in principle, writers of ASN.1
specifications are uninterested in the details of the encoding. ASN.1 encodings
are byte-level, not bit-level encodings; ASN.1 contains an “escape hatch” (OCTET
STRING) for strings of bytes in which individual bits may represent different val-
ues. Finally, ASN.1 is far more complex than our language; for example, it contains
constructs that represent structured values like sequences, records, and unions, that
describe optional, default, or required elements of messages, and that distinguish
between tagged and “implicit” encodings of data.

7. EVALUATION

For code generation in traditional compilers, the toolkit is somewhat less suitable
than a vendor’s assembler. The toolkit does not easily support standard, machine-
dependent formats for relocatable object code, and it does not provide optimizations
that vendors may build into assemblers, like MIPS instruction scheduling.

SLED evolved from a simpler language used to recognize RISC instructions in
a retargetable debugger [Ramsey 1992, Appendix B]. That language had field con-
straints and patterns built with conjunction and disjunction, but no concatenation
and no constructors. There was no notion of instruction stream; instructions were
values that fit in a machine word. We extended that language to specify encoding
procedures by writing a constructor name and a list of field operands to be con-
joined. This extension sufficed to describe all of the MIPS and most of the SPARC,
and we used it to generate encoding procedures for mld. It could not, however,
describe all of the SPARC, and it was completely unable to describe the Pentium,
even after we added concatenation to the pattern operators. Two changes solved
all our problems: making patterns explicit on the right-hand sides of constructor
specifications and using constructor types to permit patterns as operands. We then
realized there was no reason to restrict constructors to specifying encoding proce-
dures, so we made it possible to apply constructors both in pattern definitions and
in matching statements, yielding SLED as described in this article.

Patterns are a simple yet powerful way to describe binary representations. Field
constraints, conjunction, and concatenation are all found in architecture manuals,
and together they can describe any instruction on any of the four machines we have
specified, as well as four other machines whose specifications are incomplete or
have been written by our users. Patterns are not limited to traditional instruction
sets in which opcode and operand are clearly separated; the machines we have
described use instruction formats in which opcode bits are scattered throughout
the instruction. Disjunction does not make it possible to specify new instructions,
but it improves specifications by making it possible to combine descriptions of
related instructions. By removing the need to specify each instruction individually,
disjunction eliminates a potential source of error.

Constructor specifications provide clean, abstract representations of instructions
and their operands, and they connect these abstractions to binary representations
and to assembly language. Equations, though seldom used, are needed to describe
instructions like relative branches, whose assembly-level operands differ from their

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

522 · Norman Ramsey and Mary F. Fernández

machine-level fields. Equations can also express restrictions on operands, which are
part of the definitions of some architectures, like the Intel Pentium.

We maximize SLED’s expressive power by minimizing restrictions on the way
patterns, constructors, and equations can be combined. For example, patterns and
constructors can be used in each other’s definitions, which makes it possible to
factor complex architectures like the Pentium. Equations in constructor specifi-
cations are used for both encoding and decoding, and equations can also be used
in matching statements. Because the elements of SLED work together, it is hard
to see how the language could be simplified without destroying it. The simplicity
of the specifications and the checking done by the toolkit combine to give users
confidence in the correctness of the generated code.

8. AVAILABILITY

Version 0.5 of the toolkit implements SLED as described in this article, except that
integer operands of constructors are always signed. It is available by anonymous
ftp from ftp.cs.princeton.edu in directory pub/toolkit. The toolkit also has a home
page at http://www.cs.princeton.edu/software/toolkit .

9. PRODUCTION NOTE

We prepared this article using the noweb tools for literate programming [Ramsey
1994b]. The examples have been extracted from this article and run through the
toolkit, and they work with version 0.5.

ACKNOWLEDGEMENTS

The editor and anonymous referees suggested a restructuring that helped improve
the article. We are especially grateful for Referee 2’s thorough reading and pointers
to related work.

REFERENCES

Ball, T. and Larus, J. R. 1994. Optimally profiling and tracing programs. ACM Trans. Pro-
gram. Lang. Syst. 16, 4 (July), 1319–1360.

Bell, C. G. and Newell, A. 1971. Computer Structures: Readings and Examples. McGraw-Hill,
New York.

Braun, O. C. 1996. Retargetability issues in worst-case timing analysis of embedded systems.
Bachelor’s thesis, Dept. of Computer Science, Princeton Univ., Princeton, N.J.

Cattell, R. G. G. 1980. Automatic derivation of code generators from machine descriptions.
ACM Trans. Program. Lang. Syst. 2, 2 (Apr.), 173–190.

Cmelik, B. and Keppel, D. 1994. Shade: A fast instruction-set simulator for execution profiling.
In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems. ACM, New York, 128–137.

Cook, T. and Harcourt, E. 1994. A functional specification language for instruction set archi-
tectures. In Proceedings of the 1994 International Conference on Computer Languages. ACM,
New York, 11–19.

Dean, J., DeFouw, G., Grove, D., Litvinov, V., and Chambers, C. 1996. Vortex: An optimizing
compiler for object-oriented languages. In OOPSLA ’96 Conference Proceedings. SIGPLAN
Not. 31, 10 (Oct.), 83–100.

Elsner, D., Fenlason, J., et al. 1993. Using as: The GNU Assembler. Free Software Foundation,
Cambridge, Mass.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

http://www.cs.princeton.edu/software/toolkit
http://www.cs.virginia.edu/protect unhbox voidb@x penalty @M {}nr/noweb
http://www.acm.org/pubs/citations/journals/toplas/1994-16-4/p1319-ball/

Specifying Representations of Machine Instructions · 523

Fauth, A., Praet, J. V., and Freericks, M. 1995. Describing instruction set processors using
nML. In The European Design and Test Conference. IEEE Computer Society, Washington,
D.C., 503–507.

Ferguson, D. E. 1966. The evolution of the meta-assembly program. Commun. ACM 9, 3,
190–193.

Fernández, M. F. 1995. Simple and effective link-time optimization of Modula-3 programs. In
Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language Design and
Implementation. SIGPLAN Not. 30, 6 (June), 103–115.

Fernández, M. F. and Ramsey, N. 1997. Automatic checking of instruction specifications. In

Proceedings of the 19th International Conference on Software Engineering. ACM, New York,
326–336.

George, L., Guillame, F., and Reppy, J. H. 1994. A portable and optimizing back end for the
SML/NJ compiler. In the 5th International Conference on Compiler Construction. 83–97.

Graham, S. L., Lucco, S., and Wahbe, R. 1995. Adaptable binary programs. In Proceedings of
the 1995 USENIX Technical Conference. USENIX Assoc., Berkeley, Calif., 315–325.

Griswold, R. E. and Griswold, M. T. 1990. The Icon Programming Language. 2nd ed. Prentice-
Hall, Englewood Cliffs, N.J.

Hastings, R. and Joyce, B. 1992. Purify: Fast detection of memory leaks and access errors. In
Proceedings of the Winter USENIX Conference. USENIX Assoc., Berkeley, Calif., 125–136.

Intel Corp. 1993. Architecture and Programming Manual. Intel Corp., Mount Prospect, Ill.

ISO. 1987. Information Processing — Open Systems Interconnection — Specification of Abstract
Syntax Notation One (ASN.1). ISO 8824 (CCITT X.208). International Standards Organiza-
tion, Geneva, Switzerland.

Johnson, S. C. 1990. Postloading for fun and profit. In Proceedings of the Winter USENIX
Conference. USENIX Assoc., Berkeley, Calif., 325–330.

Larus, J. R. and Schnarr, E. 1995. EEL: Machine-independent executable editing. In Proceed-
ings of the ACM SIGPLAN ’95 Conference on Programming Language Design and Implemen-
tation. SIGPLAN Not. 30, 6 (June), 291–300.

Nelson, G., Ed. 1991. Systems Programming with Modula-3. Prentice-Hall, Englewood Cliffs,
N.J.

Ramsey, N. 1992. A retargetable debugger. Ph.D. thesis, Dept. of Computer Science, Princeton
Univ., Princeton, N.J. Also available as Princeton. Univ. Tech. Rep. CS-TR-403-92.

Ramsey, N. 1994a. Correctness of trap-based breakpoint implementations. In Proceedings of the
21st ACM Symposium on the Principles of Programming Languages. ACM, New York, 15–24.

Ramsey, N. 1994b. Literate programming simplified. IEEE Softw. 11, 5 (Sept.), 97–105.

Ramsey, N. 1996a. Relocating machine instructions by currying. In the ACM SIGPLAN ’96 Con-
ference on Programming Language Design and Implementation. SIGPLAN Not. 31, 5 (May),
226–236.

Ramsey, N. 1996b. A simple solver for linear equations containing nonlinear operators. Softw.
Pract. Exp. 26, 4 (Apr.), 467–487.

Ramsey, N. and Fernández, M. F. 1994a. New Jersey Machine-Code Toolkit architecture spec-
ifications. Tech. Rep. TR-470-94, Dept. of Computer Science, Princeton Univ., Princeton, N.J.
Oct. Revised Dec., 1996.

Ramsey, N. and Fernández, M. F. 1994b. New Jersey Machine-Code Toolkit reference man-
ual. Tech. Rep. TR-471-94, Dept. of Computer Science, Princeton Univ., Princeton, N.J. Oct.
Revised Dec., 1996.

Ramsey, N. and Hanson, D. R. 1992. A retargetable debugger. In the ACM SIGPLAN ’92 Con-
ference on Programming Language Design and Implementation. SIGPLAN Not. 27, 7 (July),
22–31.

SPARC International. 1992. The SPARC Architecture Manual. Version 8. SPARC Interna-
tional, Englewood Cliffs, N.J.

Srivastava, A. and Eustace, A. 1994. ATOM: A system for building customized program analysis
tools. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming Language Design
and Implementation. SIGPLAN Not. 29, 6 (June), 196–205.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

524 · Norman Ramsey and Mary F. Fernández

Srivastava, A. and Wall, D. W. 1993. A practical system for intermodule code optimization.
J. Program. Lang. 1, 1–18. Also available as WRL Res. Rep. 92/6, Dec. 1992.

Szymanski, T. G. 1978. Assembling code for machines with span-dependent instructions. Com-

mun. ACM 21, 4 (Apr.), 300–308.

Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. 1993. Efficient software-based fault
isolation. In Proceedings of the 14th ACM Symposium on Operating System Principles. ACM,
New York, 203–216.

Wick, J. D. 1975. Automatic generation of assemblers. Ph.D. thesis, Yale Univ., New Haven,
Conn.

Received December 1995; revised August 1996; accepted October 1996

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 3, May 1997.

	Introduction
	Specifying Instruction Representations
	SLED Syntax and Semantics
	Tokens and fields
	Patterns
	Constructors
	Matching Statements and Decoding

	Specifying CISC instructions
	Implementation
	Related Work
	Evaluation
	Availability
	Production note

