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ABSTRACT
In this paper, we study energy and mean-payoff timed games.
The decision problems that consist in determining the exis-
tence of winning strategies in those games are undecidable,
and we thus provide semi-algorithms for solving these strat-
egy synthesis problems. We then identify a large class of
timed games for which our semi-algorithms terminate and
are thus complete. We also study in detail the relation be-
tween mean-payoff and energy timed games. Finally, we
provide a symbolic algorithm to solve energy timed games
and demonstrate its use on small examples using HyTech.

1. INTRODUCTION
Timed automata [1], respectively timed games [34, 20], are
fundamental models to verify, respectively to synthesize con-
trollers for, timed systems which have to enforce hard real-
time constraints. Those models were introduced in the nine-
ties and the underlying theory has since then been success-
fully implemented in efficient analysis tools such as Kro-
nos [17] and UppAal [33] for verification, and UppAal-
Tiga [5] for synthesis. The latter has been used to solve
industrial case studies, e.g. [29, 21].

Recently, there has been an important research effort to
lift verification and synthesis techniques from the Boolean
case to the quantitative case, see [27] and references therein.
More specifically, lots of progress has been made recently
on zero-sum two-player games played on weighted graphs,
in which edges are decorated with costs or rewards, see for
example [15, 23, 24, 19], with the objective of setting up
a framework for the synthesis of optimal controllers (see
also [36] for applications in linear control systems). Impor-
tant examples of such games are mean-payoff and energy
games [15, 19, 24]. In those games, two players move a
token along the edges of a weighted graph whose vertices
are partitioned into vertices that belong to player 1, and
player 2 respectively. In each round of the game, the player
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that owns the vertex with the token chooses an outgoing
edge and target vertex to move the token to. By playing in
such a way, the two players form an infinite path through
the graph. Player 1 wins the mean-payoff objective if the
long-run average of the edge-weights along this path is non-
negative, and he wins the energy objective, if there exists a
bound c ∈ Z such that the running sum of weights of the
traversed edges along the infinite path never goes below c

(this can model for example that the system never runs out
of energy). As the games we consider are zero-sum, player 2
wins when he can enforce the complementary objectives. In
the finite state case, the mean-payoff and energy objectives
are inter-reducible, and this fact was used recently to provide
algorithmic improvements to solve mean-payoff games [19].

Extensions of timed automata with costs and rewards have
also been studied. In [3, 6], timed automata are extended
with continuous variables that are used as observers, and
allow for modeling accumulation of costs or rewards along
executions. The main motivation for studying those exten-
sions is to offer an extra modeling power while avoiding se-
vere intractability of richer models like hybrid automata.
Indeed, it has been shown that the reachability problem for
weighted/priced timed automata remains decidable [3, 6],
and more precisely PSPACE-c [10], while the reachability
problem is undecidable already for the class of stopwatch
automata [22] (a simple class of hybrid automata). Also
the existence of executions in a weighted automaton that
ensure a bound on the mean-payoff can also be decided in
PSPACE [12]. In this paper, we consider timed extensions of
the important classes of mean-payoff and energy games.
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Figure 1: Turn-Based Energy Timed Game A.

Example 1. Fig. 1 gives an example of an energy (turn-
based) timed game. Eve (player 1) owns the left location and
decides when to take the transition from left to right, while
Adam (player 2) owns the right location and decides when
to take the transition from right to left; x is a dense-time
clock. Each transition resets the clock x, and when time
elapses the energy level grows with derivative 3 in Eve’s lo-
cation and decreases with derivative 2 in Adam’s location. In
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Figure 2: Winning Zones for Timed Game A.

the remaining of this paper, we use the following conven-
tions: plain (resp. dashed) arrows are Eve’s (resp. Adam’s)
transitions; a location invariant is enclosed in brackets (e.g.[x ≤ 2]) and must be satisfied by the valuation of the clocks
when the control is in that location; when an edge weight
is non zero, we attach it to the edge. Fig. 2, left, depicts
the initial energy levels that are sufficient for Eve in order to
have a winning strategy against any strategy of Adam, i.e. to
ensure an infinite execution in which the energy level never
falls below 0. For instance, if the infinite game starts in
Eve’s location, then if the value of clock x is less than 2

3
, an

initial energy level 0 is sufficient; for x > 2

3
, the initial energy

level should be larger than or equal to 3 ⋅ x − 2. Similarly,
the winning zone in Adam’s location is depicted on the right
hand side of Fig. 2. The main purpose of this article is to
propose algorithmic methods to compute such information.

Unfortunately, for weighted extensions of timed games, even
the cost bounded reachability problem is undecidable [18],
and we show here that both mean-payoff and energy games
are undecidable. This is unfortunate as such cost extensions
of timed games are very natural and well-suited to model
optimality problems in embedded control [21]. Neverthe-
less, we believe that the undecidability result should not
be an end to the story and we study in this paper semi-
algorithms (completeness and/or termination is not guaran-
teed) to solve those two synthesis problems. We also iden-
tify a large class of timed games where our semi-algorithms
are complete. To the best of our knowledge, there are the
first positive results for those objectives on timed automata.
There are related works in the literature but they apply to
orthogonal classes of games, or to other objectives. Indeed,
in [11], it is shown that mean-payoff games are decidable for
O-minimal hybrid automata, this class is different from the
one identified here as timed automata are not O-minimal hy-
brid automata. In [31], the authors study the average time
per transition problem for turn-based timed games; their re-
sults do not apply to mean-payoff, nor to energy objectives.

Contributions. Our contribution is threefold. First, we
study the relation between mean-payoff and energy timed
games. As we already mentioned, in the finite state case, the
mean-payoff and energy objectives are inter-reducible [19]:
given a weighted game G, Eve wins the mean-payoff objec-
tive if, and only if, she wins the energy objective. We show
here that the relationship between the two types of games
is more complex in the timed case. We identify conditions

under which it is possible to transfer winning strategies for
one objective into winning strategies for the other objective,
and we show that those conditions are also necessary. Those
results are formalized by Thm. 1 and Thm. 2.

Second, Thm. 3 establishes the undecidability of the deci-
sion problems associated with energy and mean-payoff timed
games. This result is unfortunate but not surprising (it was
already conjectured in [9], see page 89). This negative result
motivates the main contribution of this paper: we propose
two semi-algorithms for synthesizing winning strategies. We
first consider a cycle forming game (in the spirit of [8]) on
the region graph associated with the underlying weighted
timed game: the two players move a token on the region
graph and the game is stopped as soon as a cycle is formed.
In Sect. 3.5, we partition the set of simple cycles of the re-
gion graph into those that are good for Eve, those that are
good for Adam, and those that are neither good for Eve nor
for Adam. If the formed cycle belongs to the first set then
Eve is declared winner of the cycle forming game, if the cy-
cle belongs to the second then Adam is the winner, otherwise
it is a draw. Thm. 4 establishes that if Eve wins the cy-
cle forming game then she has also a winning strategy in
associated energy games, and Thm. 5 proves a similar re-
sult for Adam. Then, we identify a class of weighted timed
games, that we call robust, for which this reduction to the
cycle forming game on the region graph is complete: in this
case the good cycles for Eve and the good cycles for Adam

partition the set of simple cycles of the region graph. This
class covers the class of timed games where costs appear
on edges only. Thm. 11 establishes the decidability of the
membership problem for the class of robust weighted timed
games.

Finally, as the cycle forming game is defined on the re-
gion graph, it does not lead to a practical algorithmic so-
lution. This is why we propose in addition a symbolic semi-
algorithm to solve energy timed games. In Thm. 16, we show
that our symbolic algorithm is also complete on the class of
robust weighted timed games. In order to show the feasibil-
ity of our approach, we have implemented this algorithm as
a script for HyTech [28] and ran it on small examples.

Our main theorems and their relation with the different
classes of games we consider are depicted in Fig. 3 and 4.

Structure of the paper. In Sect. 2, we define the mean-
payoff and energy timed games. In Sect. 3, we develop semi-
algorithms based on reductions to cycle games played on the
region graph. In Sect. 4, we identify a class robust games, for
which the reduction to cycle games is complete. In Sect. 5,
we propose a symbolic semi-algorithm which is also complete
for robust games.

2. PRELIMINARIES
In this section, we first recall the definition of concurrent
games. Then we review a useful result from [30] that defines
a canonical decomposition of infinite paths in a graph into
simple cycles. Next, we introduce weighted timed games, the
semantics of which is given in term of infinite concurrent
games. Starting from the notion of weight (or cost/reward),
we define mean payoff and energy objectives. We close the
section with a study of the relationships that exist between
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mean-payoff and energy objectives in timed games.

We let N be the set of natural numbers, Z the set of integers,
R the set of reals and R+ the set of non-negative reals.

2.1 Concurrent Games
Definition 1. ([2]) A concurrent game between two play-

ers Eve and Adam is a tuple C = ⟨St, ι,Act,Mov,Tab,Ω⟩, where:

● St is the set of states;

● ι ∈ St is the initial state;

● Act is the set of actions;

● Mov ∶ St × {Eve,Adam} ↦ 2Act ∖ {∅} gives for a state
and a player the set of allowed actions, we let Mov(s) =
{(a, b) ∣ a ∈ Mov(s,Eve), b ∈ Mov(s,Adam)};

● Tab ∶ St × Act × Act↦ St is the transition function;

● Ω ⊆ (St ⋅ (Act × Act))ω is the objective for Eve.

A concurrent game is finite if St and Act are finite. It is
turn-based if in each state s, one of the players has only one
allowed action.

A round of the game consists in Eve and Adam to choose in-
dependently and simultaneously some actions, say a∃ and a∀
respectively, such that a∃ ∈ Mov(s,Eve) and a∀ ∈ Mov(s,Adam).
The pair m = (a∃, a∀) is an allowed move i.e. m ∈ Mov(s).
By playing finitely (resp. infinitely) many rounds from state
s ∈ St, the players build a finite (resp. infinite) path. For-
mally, a path is a finite or infinite sequence s0 ⋅ m0 ⋅ s1 ⋅

m1⋯sk ⋅ mk⋯ of alternating states and moves, such that
∀i ≥ 0,mi ∈ Mov(si) and si+1 = Tab(si,mi). We also write a

path as s0
m0ÐÐ→ s1

m1ÐÐ→ ⋯. The length, ∣ρ∣, of an infinite path
ρ is ∞ and the length of a finite path ρ with n moves (end-
ing in sn) is n and last(ρ) = sn. We write ρn, n ≤ ∣ρ∣, for
sn, the n + 1-th state in ρ, and first(ρ) = ρ0 = s0. Given a

path ρ = s0
m0ÐÐ→ s1

m1ÐÐ→ ⋯, we write ρ≤n, n ≤ ∣ρ∣ for the prefix

of ρ up to sn that is the finite path s0
m0ÐÐ→ ⋯

mn−1ÐÐÐ→ sn.

A play is an infinite path in (St ⋅ (Act × Act))ω, and a history
is a finite path in (St ⋅ (Act × Act))∗ ⋅ St. The set of plays
from s is Play(C, s) and Play(C) = Play(C, ι). A play is
winning for Eve if it belongs to the objective Ω.

Definition 2. (Strategies) A strategy for Eve (resp. Adam)
is a function which associates with a history h an Eve-action
in Mov(last(h),Eve) (resp. an Adam-action). A pair of strate-
gies (σ∃, σ∀) forms a strategy profile. Given a strategy pro-
file, its outcome from state s, written Outs(σ∃, σ∀), is the
unique play ρ such that: ρ0 = s and ∀n ≥ 0, ρn+1 = Tab(ρn,
σ∃(ρ≤n), σ∀(ρ≤n)). Given a strategy σ∃ of Eve, its out-
comes from state s, written Outs(σ∃), are the set of plays ρ
for which there is a strategy σ∀ of Adam, such that ρ =
Outs(σ∃, σ∀). A strategy σ∃ of Eve is winning, if for all
strategies σ∀ of Adam, Outι(σ∃, σ∀) ∈ Ω; strategy σ∀ of Adam
is winning, if for all strategies σ∃ of Eve, Outι(σ∃, σ∀) /∈ Ω.

2.2 Decomposition in Simple Cycles
In the sequel we will reduce energy and mean payoff games
to games played on the region with cycles objectives. In
this paragraph we recall the key results [30] related to the
decomposition of a play into simple cycles. A history h =
s0 ⋅m0 ⋅s1 ⋅m1⋯sn is a cycle if s0 = sn, n ≥ 1. A simple cycle
is a cycle such that for all i and j, 0 ≤ i < j < n, si ≠ sj . We
write C(C) (C when C is clear from the context) for the set
of simple cycles in the concurrent game C.

Every history h of a finite game can be uniquely decomposed
into a sequence of simple cycles, except for a finite part. The
decomposition process maintains a stack, st(h), of distinct
states and moves. We write the stack content s1 ⋅m1 ⋅s2 ⋅ ⋯ ⋅

mn−1 ⋅ sn where s1 is at the bottom of the stack and sn the
top. We use the notation s ∈ st(h) for s ∈ {s1, s2,⋯, sn}.
The decomposition, dec(h), is a set of simple cycles. We
define dec(h) and st(h) inductively as follows:

● for the single state history s, dec(s) = ∅ and st(s) = s.

● let h′ = h ⋅m ⋅ s, m a move, s ∈ St, be a history.

– If s ∈ st(h), and st(h) = α ⋅ s ⋅ β, then st(h′) =
pop(st(h), ∣β∣) and dec(h′) = dec(h)∪{s ⋅β ⋅m ⋅s}.

– else dec(h′) = dec(h), st(h′) = push(st(h),m⋅s).

Note that the stack always contains distinct elements, there-
fore only simple cycles are added to the decomposition. The
elements in the stack from the bottom to the top, form a
history s0 ⋅m0 ⋅ s1 ⋅m1 ⋯ sn, where n + 1 is the height of
the stack. The decomposition of a play is the union of the
decompositions of the finite prefixes of the play.

2.3 Weighted Timed Games
Let X be a finite set of variables called clocks. A clock valua-
tion is a mapping v ∶X → R+. We let RX

+ be the set of clock
valuations over X. We let 0X be the zero valuation where
all the clocks in X are set to 0 (we use 0 when X is clear
from the context). Given δ ∈ R+, v + δ denotes the valuation
defined by (v + δ)(x) = v(x) + δ. We let C(X) be the set of
convex constraints on X which is the set of conjunctions of
constraints of the form x⋈c with c ∈ N and ⋈ ∈ {≤,<,=,>,≥}.
Given a constraint g ∈ C(X) and a valuation v, we write
v ⊧ g if g is satisfied by v. Given Y ⊆ X and a valuation v,[Y ← 0]v is the valuation defined by ([Y ← 0]v)(x) = v(x)
if x /∈ Y and ([Y ← 0]v)(x) = 0 otherwise.



Definition 3. A weighted timed game [32] (WTG for short)
is a tuple T = ⟨L, ℓι,X, T∃, T∀,Inv,w⟩, where:

● L is the (finite) set of locations and ℓι is the initial
location;

● X is a finite set of clocks;

● T∃, T∀ ⊆ L × C(X) × 2X × L are the set of transitions
belonging to Eve and Adam respectively, and we let T =
T∃∪T∀; An element of T∃ (resp. T∀) is an Eve-transition
(resp. Adam-transition).

● Inv∶L→ C(X) defines the invariants of each location;

● w∶L ∪ T → Z is a weight function assigning integer
weights to locations and discrete transitions.

If, from each location, all the outgoing transitions belong to
the same player, T is said turn-based.

Informally, a WTG is played as follows: a state of the game
is a pair (ℓ, v) where ℓ is a location and v is a clock valua-
tion such that v ⊧ Inv(ℓ). The game starts from the initial
state (ℓι,0). From a state (ℓ, v), each player p ∈ {Eve,Adam}
chooses (independently) a timed action ap = (dp, ep) where
dp ∈ R+ and ep = (ℓ, g, Y, ℓ′) is a p-transition. The intended
meaning is that p wants to delay for dp time units and then
fire transition ep. There are some restrictions on the possible
choices of timed actions (dp, ep):

1. dp must be compatible with the current state (ℓ, v) and
location invariant, i.e. for all 0 ≤ d′ ≤ dp, v+d′ ⊧ Inv(ℓ);

2. ep must be enabled after dp time units, i.e. v + dp ⊧ g;
3. the target location’s invariant must be satisfied when

entering this location, i.e. [Y ← 0](v + dp) ⊧ Inv(ℓ′).

A timed action satisfying these restrictions is said legal. If
from a given state, one player has no legal timed action to
play (i.e. no discrete action is enabled in the future for this
player), it plays a special action �. At each round of the
game, players propose some actions, a∃ for Eve, and a∀ for
Adam. Either

1. a∃ is a legal action for Eve;

2. or there are no legal actions for Eve and a∃ = �.

Similarly for a∀. We assume that from any reachable state
of the game, at least one player has a legal action, hence the
pair (�,�) is never proposed.
To determine the effect of a joint action, we select the player p
that chooses the shortest delay dp. In case both players
choose the same delay, the convention is that Adam is se-
lected (this is without loss of generality and other policies
can be accommodated for). These informal game rules are
formalized in the next section.

2.4 Semantics of Timed Games
Given a timed action (d, e) ∈ R+ × T with e = (ℓ, g, Y, ℓ′), a
state (ℓ, v), the successor state in the WTG is (ℓ′, v′) if:

1. ∀0 ≤ δ ≤ d, v + δ ⊧ Inv(ℓ);
2. and v + δ ⊧ g;
3. and [Y ← 0](v + d) ⊧ Inv(ℓ′).

We denote this transition (ℓ, v) (d,e)ÐÐÐÐ→ (ℓ′, v′) which ac-
counts for a combined delay transition of d time units fol-
lowed by the discrete step firing edge e. The duration of

this transition is d((ℓ, v) (d,e)ÐÐÐÐ→ (ℓ′, v′)) = d. Its reward (or

weight) is w((ℓ, v) (d,e)ÐÐÐÐ→ (ℓ′, v′)) = d ⋅ w(ℓ) + w(e).
Given an objective Ω ⊆ ((L ×R

X
+ ) ⋅ ((R+ × T∃) × (R+ × T∀)))ω,

the semantics of the WTG T is the (infinite) concurrent
game C(T ,Ω) = (St, ι,Act,Mov,Tab,Ω) defined by:

● the set of states is St = L ×R
X
+ and the initial state is

ι = (ℓι,0);
● the set of actions is Act = Act∃ ∪ Act∀, where Act∃ =
R+ ×T∃ are the actions for Eve and Act∀ = R+ ×T∀ are
the actions for Adam;

● Mov(s,Eve) ∈ (2Act∃ ∖ {∅}) ∪ {�} is the set of legal ac-
tions for Eve in s if there is at least one, or {�} other-
wise; and Mov(s,Adam) is defined similarly.
Given (a∃, a∀) ∈ Mov(s,Eve) × Mov(s,Adam), we define
Mov(a∃, a∀) as follows:

– if a∃ = � (resp. a∀ = �) then Adam (resp. Eve) is
selected and Mov(a∃, a∀) = a∀ (resp. Mov(a∃, a∀) =
a∃);

– otherwise a∃ = (d∃, e∃) and a∀ = (d∀, e∀) and:
1. if d∃ < d∀, Mov(a∃, a∀) = a∃;
2. if d∀ ≤ d∃ then Mov(a∃, a∀) = a∀;

● Given two actions a∃ and a∀, Tab((ℓ, v), a∃, a∀) = (ℓ′, v′)
if (ℓ, v) Mov(a∃,a∀)ÐÐÐÐÐÐÐ→ (ℓ′, v′).

Let h = s0
a∃
1
,a∀

1ÐÐÐ→ s1 ⋯ sn−1
a∃n−1,a

∀
n−1ÐÐÐÐÐÐ→ sn⋯ be a finite or

infinite path in C(T ,Ω). The duration and reward of h are
respectively:

d(h) = ∣h∣−1∑
k=0

d(sk Mov(a∃k,a
∀
k)ÐÐÐÐÐÐ→ sk+1)

w(h) = ∣h∣−1∑
k=0

w(sk Mov(a∃k,a
∀
k)ÐÐÐÐÐÐ→ sk+1)

A play ρ is said non-Zeno if (d(ρ≤n))n∈N is unbounded. A
strategy σ is immune from Zenoness if all its outcomes are
non-Zeno. A game is said to have bounded transitions if
there is a bound D, such that for all states (ℓ, v), actions
a∃, a∀: d((ℓ, v) Mov(a∃,a∀)ÐÐÐÐÐÐ→ Tab((ℓ, v), a∃, a∀)) ≤D.
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2.5 Mean-payoff and Energy Objectives
The mean payoff (per time unit) of a play is defined as the
long-run average of reward per time unit. Formally, the
mean payoff of a play ρ is:

MP(ρ) = lim inf
n→∞

w(ρ≤n)
d(ρ≤n) .

Definition 4. We consider the following types of games:

● The mean payoff game TMP associated with a WTG T ,
is the game played on T where the objective (for Eve)
is to obtain a non-negative mean payoff: i.e. TMP =
C(T ,ΩMP) where ΩMP = {ρ ∈ Play(C) ∣ MP(ρ) ≥ 0}.

● Given an initial credit c ≥ 0, the c-energy game TE(c)

associated to a WTG T , is the game played on T where
the objective Ω(c) is to maintain the reward of every
prefix of every play above −c: i.e. TE(c) = C(T ,Ω(c))
where Ω(c) = {ρ ∈ Play(C) ∣ ∀n ∈ N. c + w(ρ≤n) ≥ 0}.

● The energy game associated with a WTG T , is the
game C(T ,ΩE) where the objective is ΩE = ∪c≥0Ω(c).

Decision problems. For each type of games, we define the
associated decision problem:

● Mean-payoff : Given a mean payoff game TMP, is there
a winning strategy for Eve in TMP?

● c-energy : Given a c-energy game TE(c), is there a win-
ning strategy for Eve in TE(c)?

● Energy : Given an energy game TE , is there a winning
strategy for Eve in TE?

We also consider the following related problem:

● Unknown initial credit : Given a WTG T , is there a
credit c such that Eve has a winning strategy in TE(c)?

We also consider these problems from Adam’s point of view.

To conclude this section we study the relations between
mean payoff and energy games and state that all decision
problems we have defined are undecidable for WTG.

2.6 Relations Between Mean-payoff and En-

ergy Objectives
Obviously, if for some c the c-energy game is won by Eve,
then the energy game is also won. In the other direction, if

Adam has a winning strategy for the energy game then it is
also winning for any c-energy game. In the finite state case
the problem of energy and unknown initial credit are equiv-
alent [19]: if Eve has a winning strategy for the energy game
she has a memoryless one, and there is a bound on the max-
imum energy consumed by the outcomes of that strategy.
This is not the case in general for WTG as demonstrated by
the WTG B of Fig. 5, for which Eve wins the mean-payoff
game and the energy game, but no c-energy game.

While energy and mean-payoff objectives are inter-reducible
in the finite state case [19], the relationships between the two
classes of objectives, formalized in the next two theorems, is
more subtle for weighted timed games.

Theorem 1. Let T be a WTG. If Eve has a winning
strategy σ∃ in the energy game TE and σ∃ is immune from
Zenoness, then σ∃ is a winning strategy in the mean payoff
game TMP.

Proof. Let σ∃ be a strategy for Eve in TE . Let σ∀ be a
strategy for Adam, and ρ = Out(ℓ0,0)(σ∃, σ∀). We know that∃c. ∀n. c + w(ρ≤n) ≥ 0. As ρ is non-Zeno,

1. for n sufficiently large, d(ρ≤n) > 0 and

2. limn→∞ d(ρ≤n) =∞.

Hence for n sufficiently large, w(ρ≤n)

d(ρ≤n)
≥ −c

d(ρ≤n)
and the limits

are in the same order, this means that MP(ρ) ≥ 0. Therefore
σ∃ is also winning in the mean-payoff game.

Example 2. The following example shows that if we do
not have immunity from Zenoness, the property no longer
holds. In the game of Fig. 6, any play is winning for Eve

in the c-energy game if c > 1. However, the total delay of a
play is always smaller or equal to 1, hence the mean-payoff
is smaller than −1, which means that Eve is losing.

We let T +δ be the game T in which we increase the weights
of all locations by δ ∈ R. Formally T +δ is the WTG ⟨L, ℓι,X,
T∃, T∀,Inv,w+δ⟩, where:

1. w+δ(ℓ) = w(ℓ) + δ if ℓ ∈ L;

2. w+δ(t) = w(t) if t ∈ T .

Theorem 2. Let T be a WTG. If there exists δ > 0, such
that Adam has a winning strategy σ∀ in the energy game T +δE

which is immune from Zenoness, then σ∀ is a winning strat-
egy in the mean payoff game TMP.

Proof. Let σ∀ be a strategy which is winning the energy
game T +δE and immune from Zenoness. Let σ∃ be a strategy
for Eve and ρ be the outcome Out(ℓι,0)(σ∃, σ∀). We know
that ∀c. ∃n. c+w+δ(ρ≤n) < 0, so ∀c. ∃n. c+w(ρ≤n)+d(ρ≤n)⋅δ <
0. We define the sequence (nk)k∈N by n0 = 0 and given nk we



choose nk+1 such that writing ck = max{−w(ρ≤n) − d(ρ≤n) ⋅
δ ∣ n ≤ nk} we have that ck + w(ρ≤nk+1) + d(ρ≤nk+1) ⋅ δ < 0.
Notice that the sequence nk is strictly increasing. Since σ∀ is
immune from Zenoness, after for k big enough, d(ρ≤nk

) > 0.

We have that
w(ρ≤nk

)

d(ρ≤nk
)
< −ck

d(ρ≤nk
)
−δ. Hence lim infn→∞

w(ρ≤n)

d(ρ≤n)
≤

−δ. This means that MP(ρ) < 0, therefore τ∀ is also winning
in the mean-payoff game T .

Example 3. The following example shows that if we do
not add this δ to the weight of locations, the property no
longer holds. In the game of Fig. 7, for any initial credit c,
Adam wins the c-energy game TE(c). However Eve has a win-
ning strategy in the mean-payoff game TMP. She has to choose
a delay which increases fast enough so that the weight of the
play is small compared to its duration. For instance, if at
the n-th step of the game, she chooses to delay for n2 time
units, the average weight of the play will be greater than
−

1

n
. Hence it converges towards 0 and the mean-payoff is 0.

Notice that if we add a small positive δ to the weight of each
location, then following the same strategy, Eve also wins the
c-energy game TE(c) for c greater than 1

δ
.

0 0
x = 0

−1

0

x← 0

Figure 7: A WTG T .
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2
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2x = 0

−1

0

x← 0

Figure 8: WTG T + 1
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As already announced in the introduction, all the decisions
problems that we have defined on weighted timed games
are undecidable. The following theorem can be established
using variants of techniques used in [18, 16]:

Theorem 3. The mean-payoff, c-energy, energy and un-
known initial credit problems are undecidable for WTG.

Proof. The c-energy problem was already proven unde-
cidable in [16] for one player (i.e. Adam does not control any
transition). However in the one player case, [16] also proves
that the unknown initial credit is in PSPACE. We will adapt
the proof of undecidability of the c-energy problem for the
other problems, making use of the extra player Adam.

We encode linear constraints for two clocks x and y which
stay between 0 and 1 as illustrated by the example of Fig. 12.

A play entering the module y ≤ 2x, in Fig. 11 has a reward
of 2x − y each times it comes back to the first module +x.
Hence it is winning for Eve for the energy objective only if
y ≤ 2x. It is easy to adapt this module to encode constraints
of the type a ⋅ y ≤ b ⋅ x with a, b ∈ N.

We will then use these linear constraints to encode a two-
counter machine. We use two clocks x1 and y1 for counter c1
and two clocks x2 and y2 for counter c2. The value of counter
c1 is encoded by 1

2
x1

and c2 by 1

2
x2

. Clocks y1 and y2 are
used to remember the value of clocks x1 and x2 before they
are updated by increments and decrements so that we (i.e.
Adam) can check that the operation was performed correctly.

0 1
z = 0

x = 1;x ← 0

z = 1; z ← 0

y = 1; y ← 0 y = 1; y ← 0

Figure 9: Module +x

1 0
z = 0

x = 1;x ← 0

z = 1; z ← 0

y = 1; y ← 0 y = 1; y ← 0

Figure 10: Module +(1 − x)

+x +x +(1 − y)z = 0

−1

Figure 11: Module y ≤ 2x

0

y ≤ 2x

y ≥ 2x

z = 0

Figure 12: Game for

checking y = 2x

0 t = 1; t← 0

Figure 13: Accepting

state qf

Zero tests are easy to encode and we show how to increment
a counter in Fig. 14. To decrement a counter, simply replace
the module checking 2 ⋅ x1 = y1 in Fig. 14 by one checking
x1 = 2 ⋅y1. Assume that we start in this module with x1 = y1.
Eve has to choose when to reset x1 to 0. In the second state
Adam can choose to check if x1 =

y1
2
. Therefore Eve loses if

she does not divide the valuation of x1 by two, which means
adding 1 to c1. In the last state, we reset x1 and y1 at the
same time so that the property x1 = y1 is satisfied when
entering the next module.

Once the accepting state is reached, the weight of the play no
longer decreases. Therefore if the machine terminates, there
is a strategy for Eve that reaches this final state, and wins
for the c-energy game where c is the number of execution
steps of the machine times 2. This strategy is also winning
for the mean payoff and the energy game.

Conversely if the machine does not terminate, either:

● the game stays in the states that encode the different
instruction of the machine, like the one in Fig. 14, in
that case there is a reward of −1 at each time step;
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2 ⋅ x1 = y1

-1
t = 0

q1

x1 ← 0

y1 = 1; y1 ← 0

y2 = 1; y2 ← 0

x2 = 1;x2 ← 0

t = 1; t← 0

t = 0

t = 0

x1 = 1;x1 ← 0; y1 ← 0

y2 = 1; y2 ← 0x2 = 1;x2 ← 0

t = 1; t← 0
q2

Figure 14: Module to encode an increment instruc-

tion q1
c1++ÐÐ→ q2

● or Eve has to “cheat” at some point which is the occa-
sion for Adam to punish this by taking the edge going
to a module that check the values of the clocks, like
the one in Fig. 12.

Therefore Eve has no winning strategy in the energy game.
Moreover the strategy of Adam we described is also winning
in the mean-payoff game.

3. A SEMI-PROCEDURE USING REGIONS
In this section, starting from the classical notion of regions [1],
we define a finite concurrent game that exploits the relation-
ship between timed paths and their projections in the region
graph. We identify simple cycles in the region graph that are
good for Eve (they roughly correspond to fragments of timed
paths with positive reward), and others that are good for
Adam (they roughly correspond to fragments of timed paths
with negative reward). Thm. 4 tells us that if Eve can force
to visit only her good cycles in the region graph then she has
a winning strategy in the original energy timed game, and
Thm. 5 is a symmetric result for Adam. To formalize those
results, we need the notion of quasi-path: when we decom-
pose a timed path according to simple cycles of the region
graph, we introduce jumps inside regions because we remove
a fragment of a timed path that starts inside a region and
ends up in a possibly different state of the same region. Fi-
nally, we show how to solve the cycle forming game. This
reduction is not complete: there are games which have win-
ning strategies for Eve (or Adam) that our procedure will not
find. However, we identify in Section 4 a class of games for
which this reduction is complete.

3.1 Regions
We first recall the classical notion of regions [1]. If k ∈ N,
we write Ck(X) for the set of constraints in C(X) in which
constants are integers within the interval ⟦0;k⟧. Let T be
a WTG, and let M = max{c ∣ x ∼ c is a constraint in T }.
For δ ∈ R+, we write ⌊δ⌋ the integral part of δ and fr(δ) its
fractional part. The equivalence relation ≡X,M over RX

+ ×R
X
+

by v ≡X,M v′ if, and only if:

1. for all clocks x ∈ X, either ⌊v(x)⌋ and ⌊v′(x)⌋ are the
same, or both v(x) and v(x) exceed M ;

2. for all clocks x, y ∈ X with v(x) ≤ M and v(y) ≤ M ,
fr(v(x)) ≤ fr(v(y)) if, and only if, fr(v′(x)) ≤ fr(v′(y));

3. for all clocks x ∈X with v(x) ≤M , fr(v(x)) = 0 if, and
only if, fr(v′(x)) = 0;

This equivalence relation naturally induces a partitionRX,M

of RX
+ . We write [v]X,M ([v] when X and M are fixed) for

the equivalence class of v ∈ R
X
+ . An equivalence class is

called a region. It is well known that this partition has the
following properties:

1. it is compatible with the constraints in CM(X), i.e.
for every r ∈ RX,M , and constraint g ∈ CM(X) either
all valuations in r satisfy the clock constraint g, or no
valuation in r satisfies it;

2. it is compatible with time elapsing, i.e. if there is v ∈ r
and t ∈ R+ such that v + t ∈ r′, then for all v′ ∈ r there
is t′ such that v′ + t′ ∈ r′;

3. it is compatible with resets, i.e. if Y ⊆X then if [Y ←
0]r ∩ r′ ≠ ∅ then [Y ← 0]r ⊆ r′.

A region r is said to be time-elapsing, if for any v ∈ r there
is t > 0 such that v + t ∈ r. We write Succ(r) the successors
of r by time elapsing, it is defined by r′ ∈ Succ(r) if there is
v ∈ r and t ≥ 0 such that v + t ∈ r′.
The number of region is bounded by ∣X ∣! ⋅ (4M + 4)∣X∣, note
that this is exponential both in the number of clocks in X
and in the size of the binary encoding of the maximal con-
stant.

3.2 Region Game
Given an objective Ω ⊆ ((L ×RX,M) ⋅ Act)ω, the region game
associated with a WTG T = ⟨L, ℓ0, X,T∃, T∀,Inv,w⟩ is the
concurrent game R(T ,Ω) = ⟨St, ι,Act,Mov,Tab,Ω⟩ where:

● St = L ×RX,M and ι = (ℓι,0) is the initial state;

● Act is the set of actions. They are either � or of the
form (r, e, a) where r ∈ RX,M , e ∈ T∃ ∪ T∀ is a transi-
tion, and a ∈ {head;tail}; intuitively, an action is a
target region (abstract delay) and a discrete transition.
The extra component in {head;tail} is needed to de-
termine who plays first when the two players choose
the same abstract delay (target region).

● Let s = (ℓ, r). Action (r′, e, a) belongs to Mov(s,Eve)
(resp. Mov(s,Adam)), if:
1. ∃(ℓ, g, Y, ℓ′) ∈ T∃ (resp. T∀);

2. r′ ∈ Succ(r);
3. r′ ⊆ Inv(ℓ);
4. r′ ∩ g ≠ ∅;

5. and [Y ← 0]r′ ⊆ Inv(ℓ′).
If there are no such action then only � is allowed and
this is the only situation in which � is allowed.



● Let s = (ℓ, r) and (r∃, e∃, a∃) ∈ Mov(s,Eve), (r∀, e∀, a∀) ∈
Mov(s,Adam). s′ = Tab(s, (r∃, e∃, a∃), (r∀, e∀, a∀)) is de-
fined as follows:

– if r∃ ≠ r∀, one region is a strict (time abstract)
predecessor of the other (as they are both succes-
sors of r). If r∃ is a strict predecessor of r∀, Eve’s
action (r∃, e∃, a∃) is selected and otherwise Adam’s
action (r∀, e∀, a∀) is selected.

– otherwise r∃ = r∀ and two cases arise:

1. either r∃ is not a time-elapsing region: in this
case Adam’s move is selected;

2. or r∃ is a time-elapsing region; which move
is selected then depends on the extra compo-
nents a∃, a∀ ∈ {head;tail}: if a∃ = a∀ then
Eve’s move is selected and otherwise Adam’s
move is selected.

Once an action (r′, e, a) with e = (ℓ, g, Y, ℓ′) is selected,
the resulting state is s′ = (ℓ′, r′′) with r′′ = [Y ← 0]r′.

Remark 1. In case T is turn-based, then in each state ofR(T ,Ω) only one player has a choice. The region game can
then be seen as a (classical) turn-based finite game.

Example 4. We want to reduce the problem of finding
winning strategies in a WTG to an equivalent problem in
the region game. To illustrate the need for the extra com-
ponent in the actions (i.e. a ∈ {head;tail}) consider the
example of Fig. 15. In the WTG (left), Eve has no winning
strategy to win the mean payoff game: Adam can always
choose a delay shorter than her from ℓ0 to enforce location
ℓ2. For the same reason Adam has also no winning strategy.
In the region game (right), we abstract away from the actual
delays Eve and Adam can propose: they have only one possi-
ble choice which is to propose to delay up-to region 0 < x < 1.
To reproduce the possibility that either Eve or Adam are able
to propose the smallest delay, we use the choices of both
players in {head,tail}.

ℓ0,w = 0

[x < 1]

ℓ1,w = 1

ℓ2,w = −1

0 <
x <

1

0 < x < 1

ℓ0, r0

ℓ1, r1

ℓ2, r1

head,head

tail,tail

head,tail

tail,head

Figure 15: A WTG T and its associated region

game.

3.3 Game Simulation
In this part, we show that the region game is a game simu-
lation of the WTG.

Definition 5. Let C and C′ be two games. A relation R

is a game simulation between C and C′ if for all states s ∈
St, s′ ∈ St′ if s R s′ then:

∀a∃ ∈ Mov(s,Eve). ∃b∃ ∈ Mov′(s′,Eve).
∀b∀ ∈ Mov′(s′,Adam). ∃a∀ ∈ Mov(s,Adam).

Tab(s, a∃, a∀) R Tab
′(s′, b∃, b∀)

We say that C′ simulates C if there exists such a relation R

with ι R ι′, where ι (resp. ι′) is the initial state of C (resp.C′). When a∃ and b∃ are witness of the above property we
say that action b∃ simulates action a∃ in s. When the inverse
relation is a game simulation between C′ and C, it is called
a game bisimulation.

The following proposition shows that R(T ,Ω) simulates T .

Proposition 1. The relation ⊏ defined by (ℓ, v) ⊏ (ℓ′, r) ⇔
ℓ = ℓ′ ∧ v ∈ r is a game bisimulation.

We decompose the proposition in two lemmas.

Lemma 1. The relation ⊏ is a simulation.

Proof. Let (ℓ, v) ⊏ (ℓ, r), we have that r = [v]. Let
a∃ ∈ Mov((ℓ, v),Eve). If a∃ = �, then take b∃ = �. Otherwise
let (d, e) = a∃. We define b∃ to be (r′, e,head) such that
v + d ∈ r′. This action is allowed in T , since r′ is a successor
of [v] satisfying the invariant of ℓ, the guard of e and the
invariant of the target of e after reset.

We now show that:

∀b∀ ∈ Mov′((ℓ, r),Adam). ∃a∀ ∈ Mov((ℓ, v),Adam).
Tab

′((ℓ, r), b∃, b∀) ⊏ Tab((ℓ, v), a∃, a∀).
● If b∀ = � then we set a∀ = �, as it is the only action
allowed for Adam in (ℓ, v). Tab

′(b∃,�) = (r′[z ← 0], ℓ′′)
where b∃ = (r′, e,head) and e = (ℓ, g, z, ℓ′′). By defini-
tion, v + d ∈ r′. Hence v + d∃[z ← 0] ∈ r′[z ← 0] and
Tab((ℓ, v), a∃,�) ∈ Tab′((ℓ, r), b∃,�).

● If b∃ = � then a∃ = �. Take a∀ = (d, e∀) such that
v + d ∈ r′. By the same reasoning Tab((ℓ, v),�, a∀) ⊏
Tab

′((ℓ, r),�, b∀).
Otherwise let (r∃, e∃, a∃) = b∃ and (r∀, e∀, a∀) = b∀. We set
a∀ = (d∀, e∀) such that v + d∀ ∈ r∀ and if e∃ is selected then
d∃ < d∀ and otherwise d∃ ≥ d∀. This is possible because
if e∃ is selected then either r∀ is a (strict) successor of r∃
or r∀ = r∃ and it is a time elapsing region; and if e∀ is
selected either r∀ is a successor of r∃ or r∀ = r∃. Then the
same transition is applied, and therefore Tab((ℓ, v), a∃, a∀) ⊏
Tab

′((ℓ, r), b∃, b∀).

We define the inverse relation ⊐, by a ⊐ b⇔ b ⊏ a.
Lemma 2. The relation ⊐ is a simulation.



Proof. Let (ℓ, v) ⊏ (ℓ, r), we have that r = [v]. Let
a∃ ∈ Mov′((ℓ, r),Eve). If a∃ = �, then take b∃ = �. Otherwise
let (r′, e, a) = a∃. We define b∃ to be (d, e) such that v+d ∈ r′.
Such a d exists since r′ has to be a successor of [v]. Moreover
this action is allowed in T .

We now show that:

∀b∀ ∈ Mov((ℓ, v),Adam). ∃a∀ ∈ Mov′((ℓ, r),Adam).
Tab((ℓ, v), b∃, b∀) ⊏ Tab′((ℓ, r), a∃, a∀).

● If b∀ = � then we set a∀ = �, as it is the only action
allowed for Adam in s. Tab(b∃,�) = (v + d∃[Y ← 0], ℓ′′)
where b∃ = (d∃, e) and e = (ℓ, g, Y, ℓ′′). By definition,
v + d∃ ∈ r′ where a∃ = (r′, e, a). Hence v + d∃[Y ← 0] ∈
r′[Y ← 0] and Tab((ℓ, v), b∃,�) ⊏ Tab′((ℓ, r), a∃,�).

● If b∃ = � then a∃ = �. Take a∀ = (r′, e∀, a) such that
v + d∀ ∈ r′. By the same reasoning than the first point
Tab((ℓ, v),�, b∀) ⊏ Tab′((ℓ, r),�, a∀).

Otherwise let (d∃, e∃) = b∃ and (d∀, e∀) = b∀. We set a∀ =(r∀, e∀, a∀) such that v + d∀ ∈ r∀ and if e∃ is selected then
a∃ = a∀ and otherwise a∃ = a∀.

● If [v + d∃] is not a successor of [v + d∀], then r∃ < r∀.
Hence in both cases e∃ is selected.

● If [v + d∀] is not a successor of [v + d∃], then r∀ < r∃.
Hence in both cases e∀ is selected.

Otherwise [v+d∃] = [v+d∀], then the player selected depends
on whether a∃ = a∀. Since a∀ have been chosen to make the
player selected coincide, the same transition is applied.

We say that a path ρ′ = s′0
m′

0ÐÐ→ s′1
m′

1ÐÐ→ ⋯ simulates a play

ρ = s0
m0ÐÐ→ s1

m1ÐÐ→ ⋯, if for all i, s′i simulates si.

Lemma 3. Let C and C′ be two games, s0 a state of C and
s′0 a state of C′. If C′ simulates C and s′0 simulates s0 then
for all strategies σ∃ in C there is a strategy σ′∃ in C′ such
that for all outcome ρ′ of σ′∃ from s′0 there is an outcome ρ
of σ∃ from s0 such that ρ′ simulates ρ.

Proof. We define σ′∃ inductively. Assume we have de-
fined it for all histories of length k, and that for all prefixes
of length k of outcomes of σ′∃, there is a prefix of an outcome
of σ∃ that is simulated by it. Given a history h′ of length
k, we choose h that is simulated by h′, and choose σ′∃(h′)
to simulate σ∃(h). Now σ′∃(h′) simulates σ∃(h), hence there
exists an action of Adam such that Tab(h,σ∃(h), a∀) is simu-
lated by Tab

′(h,σ′∃(h), σ′∀(h′)). This way the property will
be verified for length k + 1.

This way, given ρ′ = Outs(σ′∃, σ′∀) for some strategy σ′∀, we
can construct ρ outcome of σ∃ which is simulated by ρ′ This
shows that an outcome of σ∃ is simulated by ρ′.

3.4 Quasi Paths
A quasi path in aWTG is a sequence of states and transitions
ρ = (ℓ0, v0)τ0(ℓ1, v1)τ1⋯τn−1(ℓn, vn) such that for all 0 ≤ i ≤
n − 1 either:

1. τi is a move (a∃, a∀) and (ℓi, vi) Mov(a∃,a∀)ÐÐÐÐÐÐ→ (ℓi+1, vi+1);
2. or ℓi = ℓi+1 and [vi] = [vi+1]. In that case τi is called a

jump. We will denote jumps by ↷.

A quasi cycle is a quasi path such that (ℓn, [vn]) = (ℓ0, [v0]).

In order to extend the reward to quasi paths, we need a
weight function δ ∶ L ×RX,M ↦ R which attributes a weight
to jumps according to the region in which they happen. We
define wδ the reward for each transition τi, depending on its
type:

1. if τi is a move (a∃, a∀) and (ℓi, vi) Mov(a∃,a∀)ÐÐÐÐÐÐ→ (ℓi+1, vi+1),
then wδ((ℓi, vi)τi(ℓi+1, vi+1)) = d ⋅ w(ℓi) + w(e) where(d, e) = Mov(a∃, a∀);

2. otherwise τi =↷, then wδ((ℓi, vi)↷ (ℓi+1, vi+1)) = δ([ℓi, vi]).
The reward for the quasi path ρ is then wδ(ρ) = ∑i<∣ρ∣ wδ((ℓi, vi)τi(ℓi+1, v
We define a projection from quasi paths to paths in the
region game by forgetting jumps and projecting each state
to its associated region. Formally, the projection π is defined
inductively:

1. π((ℓ, v)) = (ℓ, [v]);
2. π(h↷ (ℓ, v)) = π(h);
3. π (h ⋅ (ℓ, v) a∃,a∀ÐÐÐ→ (ℓ, v′)) = π(h ⋅ (ℓ, v)) b∃,b∀ÐÐÐ→ (ℓ′, [v′])

where ap = (dp, ep) for p ∈ {Eve,Adam}, b∃ = ([v +
d∃], e∃,head), and b∀ = ([v + d∀], e∀,head) if d∃ < d∀
and b∀ = ([v + d∀], e∀,tail) otherwise.

It is naturally extended from histories to plays: ρ′ is the
projection of ρ if for all finite prefixes h of ρ, π(h) is a prefix
of ρ′. If h is a path in the region game, the path ρ is said
compatible with h if π(ρ) = h, and we write γ(h) for the set
of path compatible with h.

We now associate to histories of WTG quasi paths by for-
getting simple cycle like we did in the simple cycle decom-
position. It is compatible with the stack of the projection
on regions but contains more information.

Definition 6. (Timed Stack) The timed stack tst of a his-
tory is defined inductively as a quasi path. We set tst(ε) =
ε. Given a history h′ = h

a∃,a∀ÐÐÐ→ (ℓ, v), and assuming tst has
been defined for h:

1. if there is i ≤ ∣h∣ such that tst(h)i = (ℓ, v′) with
v′ ∈ [v], then we consider the greatest such i and set
tst(h′) = tst(h)≤i ↷ (ℓ, v);



2. otherwise tst(h′) = tst(h) a∃,a∀ÐÐÐ→ (ℓ, v).

Notice that the timed stack can contain several states of the
same region, hence i is not always unique. However, the
states of the same region are all linked by jumps.

Lemma 4. For any history h, tst(h) is compatible with
st(π(h)).

Proof. We prove this by induction on the size of h. This
is obvious when h only contains one state. We now assume
the property is true for h and all its prefixes. We write

st(π(h)) = r0 m0ÐÐ→ ⋯ mk−1ÐÐÐ→ rk. Consider now some history

h
a∃,a∀ÐÐÐ→ s.

● if for all i ∈ ⟦0, k⟧, s /∈ ri, then by induction hypoth-
esis on h, there is no index i such that hi belongs

to the same region than s. Then tst(h a∃,a∀ÐÐÐ→ s) =
tst(h) a∃,a∀ÐÐÐ→ s is a quasi path that is compatible with

st(π(h a∃,a∀ÐÐÐ→ s)).
● otherwise there is i, n′ such that st(π(h≤n′)) = r0 m0ÐÐ→
⋯ri and s ∈ ri. tst(h a∃,a∀ÐÐÐ→ s) = tst(h)≤i ↷ s =

tst(h≤n′) ↷ s. Since π(s) = ri, st(π(h a∃,a∀ÐÐÐ→ s) =
r0

m0ÐÐ→ ⋯ri. By induction hypothesis, tst(h≤n′) is
compatible with st(π(h≤n′)), hence π(tst(h≤n′) ↷
s) = r0 m0ÐÐ→ ⋯ri. Which shows that tst(h a∃,a∀ÐÐÐ→ s)
is compatible with st(π(h a∃,a∀ÐÐÐ→ s)).

3.5 Reduction to the Region Game
Given a weight function δ ∶ L × RX,M ↦ R, we will write
C
+
δ for the set of simple cycles in the region game that only

correspond to quasi cycles rewarding more than δ if δ is
positive and more than 0 otherwise. Formally1:

C
+
δ = {c ∈ C ∣ ∀ρ ∈ γ(c). wδ(ρ) ≥max{δ(first(c)),0}}.

Given a real number ε > 0, we write C
−ε
δ for the simple

cycles of the region game that correspond to quasi cycles
with weight lower than δ and lower than −ε. Formally2:

C
−ε
δ = {c ∈ C ∣ ∀ρ ∈ γ(c). wδ(ρ) ≤min{δ(first(c)),−ε}}.

The winning condition of the region game will be given by
cycle objectives. The intuition behind the definition of these
objectives, is that if Eve can force the play to see only cycles
with positive reward (i.e. in C

+
δ ), the accumulated weight

will be positive, except for a finite part. Which means she

1Note, that this definition is inductive: as a jump in the
region (ℓ, r) gives a reward of δ(ℓ, r), we make sure that a
(quasi)-cycle on that region always provides a reward larger
than or equal to this value.
2Note, that the definition for the good cycles of Adam is sym-
metric but slightly stronger as we require that the weight of
(quasi)-cycles to be ε-bounded away from zero.

is winning the c-energy game, if c is big enough to cover the
loss of energy in this finite part.

In the region game, we will consider the cases where the
objective of Eve is given by Ω+δ = {ρ ∣ dec(ρ) ⊆ C

+
δ}. That

is, she wins for plays whose decomposition in simple cycles
only contains positive cycles.

We will prove in the next lemma that the remaining finite
part in the cycle decomposition cannot have arbitrary big
weight.

Given δ, we write δ+ (resp. δ−) the weight function δ where
we replaced all the negative (resp. positive) value by 0, i.e.
δ+(r) =max{0, δ(r)} (resp. δ−(r) =min{0, δ(r)}).

Lemma 5. Let ρ ∈ Play(T ), if dec(π(ρ)) ⊆ C+δ then there
is a bound W ∈ Z such that for all n, wδ+(tst(ρ≤n)) ≥W .

Similarly if dec(π(ρ)) ⊆ C
−ε
δ then there is a bound W ∈ Z

such that for all n, wδ−(tst(ρ≤n)) ≤W .

Note that this is trivial when the game has only bounded
transitions, but non-obvious in the general case.

Proof. The prove the result for C
+
δ ; the result for C

−ε
δ

can be proved the same way.

First notice that in the quasi paths of the form tst(ρ≤n),
the number of transitions that are not jumps is bounded,
because the same region cannot appear twice unless it fol-
lows a jump. Moreover all the jumps have positive rewards
(w.r.t. wδ+) since all the values of δ+ are greater or equal
to 0. The only solution left to have weights arbitrarily
far below 0, is that there is a sequence of transitions in
ρ whose weights grow arbitrarily big negatively. We write

ρ = (ℓ0, v0) m0ÐÐ→ (ℓ1, v1) m1ÐÐ→ . . . .

Toward a contradiction, assume

∀i. ∃ni. w((ℓni , vni) mniÐÐ→ (ℓni+1, vni+1)) ≤ −i. (1)

Then since the number of region is finite, there is a transition

in the region game (ℓ, r) mÐ→ (ℓ′, r′), such that π (ρni

mniÐÐ→ ρni+1) =
(ℓ, r) mÐ→ (ℓ′, r′) for an infinite number of i’s. Since (ℓ, r) mÐ→(ℓ′, r′) is appears more than once in the projection of ρ, there

is a simple cycle c ∈ dec(π(ρ)) such that (ℓ, r) mÐ→ (ℓ′, r′) ap-
pears in c, i.e. c = c1 ⋅ (ℓ, r) mÐ→ (ℓ′, r′) ⋅ c2 for some path
c1 ⋅ (ℓ, r) and (ℓ′, r′) ⋅ c2 in the region game. Let ρ′ ∈ γ(c),
ρ′ = ρ1 ⋅ (ℓ, v) m′Ð→ (ℓ′, v′) ⋅ ρ2 with π ((ℓ, v) m′Ð→ (ℓ′, v′)) =
(ℓ, r) mÐ→ (ℓ′, r′). Then ρ′′ = ρ1 ⋅ (ℓ, v) ↷ (ℓmp , vmp) mpÐÐ→
(ℓmp+1, vmp+1)↷ (ℓ′, v′) ⋅ ρ2 ∈ γ(c), where we take mp to be

such that (ℓmp , vmp) mpÐÐ→ (ℓmp+1, vmp+1) has weight strictly
smaller than −w(ρ1 ⋅(ℓ, v))−δ(ℓ, r)−δ(ℓ′, r′)−w((ℓ′, v′) ⋅ρ2)+
δ(first(c)), this is possible because of hypothesis (1). We
then have that w(ρ′′) < δ(first(c)). Since ρ′′ ∈ γ(c), this
contradicts the fact that all the quasi cycle compatible with
c are greater than δ(first(c)).



Given a WTG T , let WT = mint∈T {w(t)} ∪ {0} and WL =
minℓ∈L{w(ℓ)} ∪ {0}.

Theorem 4. Let T be a WTG, if Eve has a winning
strategy in R(T ,Ω+δ ) then:

1. she has a winning strategy τ∃ in the energy game TE;
2. if T has bounded transitions, τ∃ is a winning strategy

in the energy game TE(c) for the initial credit c = ∣L ×RX,M ∣ ⋅ (WL ⋅D +WT );
3. if τ∃ is immune from Zenoness, then it is winning in

the mean payoff game TMP.
Proof. Let σ∃ be a winning strategy of Eve for the con-

dition given by C
+
δ from (ℓι, [v0]). Thanks to Lem. 2 and 3

there is a strategy τ∃ such that for all outcome ρ of τ∃, π(ρ)
is an outcome of σ∃.

We show that for all outcomes ρ of τ∃, there is a value c0
such that all the prefixes of ρ have a weight greater than

−c0. Let ρ = (ℓ0, v0) m0ÐÐ→ (ℓ1, v1) m1ÐÐ→ ⋯ be an outcome of τ∃.
We write (dn, en) = Mov(mn). We show by induction over n
that wδ+(tst(ρ≤n)) ≤ w(ρ≤n). This is obviously true if n = 0.
Assuming this is true for some n ≥ 0, we show this is true
for n + 1.

● if π(ρn+1) does not appear in the stack st(π(ρ≤n)),
then:

wδ+(tst(ρ≤n+1))
= wδ+(tst(ρn)) + dn ⋅ w(ℓn) + w(en)
≤ w(ρ≤n) + dn ⋅ w(ℓn) + w(en) (by induction hyp.)
≤ w(ρ≤n+1)

● otherwise there is i such that [ρi] = [ρn+1] and tst(ρ≤n) =
tst(ρ≤i) m′

0ÐÐ→ s1
m′

1ÐÐ→ ⋯sj and sj = ρn. dec(π(ρ≤n+1)) =
dec(π(ρ≤i)) ∪ {π(ρi m′

0ÐÐ→ s1
m′

1ÐÐ→ ⋯sj
mnÐÐ→ ρn+1)} so

π(ρi m′
0ÐÐ→ ⋯sj

mnÐÐ→ ρn+1) is in dec(π(ρ)). Since σ∃ is
a winning strategy, π(ρ) is a winning play in the re-

gion game, therefore π(ρi m′
0ÐÐ→ ⋯sj

mnÐÐ→ ρn+1) ∈ C
+
δ .

ρi
m′

0ÐÐ→ ⋯sj
mnÐÐ→ ρn+1 ∈ γ(π(ρi m′

0ÐÐ→ ⋯sj
mnÐÐ→ ρn+1)) so:

wδ(ρi m′
0ÐÐ→ ⋯sj

mnÐÐ→ ρn+1) ≥ δ+([ρi]) (2)

Now we can write:

wδ+(tst(ρ≤n+1))
= wδ+(tst(ρ≤i)↷ ρn+1)
= wδ+(tst(ρ≤i)) + δ+([ρn+1])
≤ wδ+(tst(ρ≤i)) + wδ(ρi m′

0ÐÐ→ ⋯sj
mnÐÐ→ ρn+1) by equation (2)

≤ wδ+(tst(ρ≤i) m′
0ÐÐ→ ⋯

m′j−1ÐÐÐ→ ρn) + w(ρn mnÐÐ→ ρn+1)
≤ w(ρ≤n) + w(ρn mnÐÐ→ ρn+1) by induction hypothesis

≤ w(ρ≤n+1)

Now notice that in the quasi paths of the form tst(ρ≤n),
the number of transitions that are not jumps is bounded,
because the same region cannot appear twice unless it fol-
lows a jump. Moreover all the jumps have positive rewards
since all the value of δ+ are greater or equal to 0.

In the case where T has bounded transition, the total weight
of the play is greater or equal to ∣L×RX,M ∣ ⋅ (WL ⋅D +WT ).
Therefore the strategy τ∃ is winning the energy game TE(c)
for the initial credit c = ∣L ×RX,M ∣ ⋅ (WL ⋅D +WT ).
In the other case, Lem. 5 shows that there is a bound W

such that for all n, wδ+ (tst(ρ≤n)) ≥ W . Hence for all n,
w(ρ≤n) ≥ W , and therefore ρ is in Ω(−W ). This being true
for all outcomes of τ∃, τ∃ is a winning strategy in the energy
game.

Point 3 in Thm. 4 is a direct consequence of point 1 Thm. 4
and Thm. 1.

Remark 2. We made the hypothesis that there exists a
bound on the duration of transitions in order to get the re-
sult for the unknown initial credit. Consider the example
of Fig. 5. In this game, Eve is winning in the region game
for Ω+δ , and therefore by Thm. 4 she also wins in the en-
ergy game TE, by Thm. 1 she also wins the mean-payoff
game TMP if we consider a strategy that is immune from
Zenoness. However, the transition going out of ℓ0 can be
taken by Adam at any moment, its duration is not bounded.
Indeed, whatever the initial credit is, Adam can force a play
which costs more than this credit, by delaying the transition
for long enough. Therefore Eve has no winning strategy for
any fixed initial credit and the answer to the unknown initial
credit problem is negative.

We now consider the objective for Eve: Ω−εδ = {ρ ∣ dec(ρ) /⊆
C
−ε
δ }. That is, she wins if the decomposition in simple cycle

contains at least on simple cycle that is not below −ε.

Theorem 5. Let T be a WTG, if Adam has a winning
strategy in R(T ,Ω−εδ ) then

1. he has a winning strategy in the energy game TE;
2. if T has bounded transitions, then Adam has a winning

strategy in the mean payoff game TMP.
Proof. The proof is very similar to the proof of Thm. 4.

The main difference is that instead of proving that for all
outcomes ρ of τ∃, and all n, wδ+(tst(ρ≤n)) ≤ w(ρ≤n), we
prove that for all outcomes ρ of τ∀, and all n:

w(ρ≤n) ≤ w0(tst(ρ≤n)) − (n − ∣∣tst(ρ≤n)∣∣
m + 1

− 1) ⋅ ε.
where w0 assign weight 0 to all regions, m = ∣L∣ ⋅ ∣RX,M ∣, and∣∣q∣∣ is the number of distinct elements in the timed stack.

This is proven by induction, it holds for n = 0 and assuming

it holds for n ≥ 0, we write ρ = (ℓ0, v0) m0ÐÐ→ (ℓ1, v1) m1ÐÐ→ . . .

and (dn, en) = Mov(mn):



● if π(ρn+1) does not appear in the stack st(π(ρ≤n)),
then:

w(ρ≤n+1)
= w(ρn) + dn ⋅ w(ℓn) + w(en)
≤ w0(tst(ρn)) − (n−∣∣tst(ρ≤n)∣∣

m+1
− 1) ⋅ ε

+ dn ⋅ w(ℓn) + w(en)
≤ w0(tst(ρn+1)) − (n−∣∣tst(ρ≤n)∣∣

m+1
− 1) ⋅ ε

≤ w0(tst(ρn+1)) − (n+1−∣∣tst(ρ≤n+1)∣∣

m+1
− 1) ⋅ ε

● otherwise there is i such that [ρi] = [ρn+1] and tst(ρ≤n) =
tst(ρ≤i) m1ÐÐ→ s1⋯sj and sj = ρn.

w(ρ≤n+1)
= w(ρn) + dn ⋅ w(ℓn) + w(en)
≤ w0(tst(ρn)) − (n−∣∣tst(ρ≤n)∣∣m+1

− 1) ⋅ ε
+ dn ⋅ w(ℓn) + w(en)

≤ w0(tst(ρi t1Ð→ . . .
tj−1ÐÐ→ ρn)) + dn ⋅ w(ℓn)

+ w(en) − (n−∣∣tst(ρ≤n)∣∣m+1
− 1) ⋅ ε

≤ w0(tst(ρi)) − ε − (n−∣∣tst(ρ≤n)∣∣m+1
− 1) ⋅ ε

≤ w0(tst(ρi)) − ε − (n+1−∣∣tst(ρ≤n+1)∣∣m+1
) ⋅ ε

≤ w0(tst(ρn+1)) − (n+1−∣∣tst(ρ≤n+1)∣∣m+1
− 1) ⋅ ε

We then use Lem. 5 to conclude that τ∀ is a winning strategy.

Point 2 in Thm. 5 is a direct consequence of point 1 of Thm. 5
and Thm. 2.

3.6 Solving the Region Game
We now show how to solve a finite game with objective of
the form Ω = {ρ ∣ ∀c ∈ dec(ρ).c ∈ C

W } or Ω = {ρ ∣ ∃c ∈
dec(ρ).c ∈ CW }. We can then apply this technique to solve
the region game. To do so we unravel the game, and stop
as soon as a cycle is formed. The play is then winning if
the cycle formed belong to C

W . This technique is adapted
from [8].

Definition 7. Let G = ⟨St, ι,Act,Mov,Tab,Ω⟩ be a concur-
rent game with Ω = {ρ ∣ ∀c ∈ dec(ρ).c ∈ CW } or Ω = {ρ ∣ ∃c ∈
dec(ρ).c ∈ CW }. The unraveling of G, written U(G), is the
tuple ⟨St′, ι,Act,Mov′,Tab′,Ω′⟩:

● the set of states is St
′ = {h ∈ (St ⋅ (Act × Act))∗ ⋅ St ∣

∀i, j ≠ i. hi ≠ hj} ∪ {↑, ↓}, the set of histories of the
original game where all states appear at most once;
with the addition of a winning state ↑ and a loosing
state ↓ for Eve;

● Mov
′(h, p) = Mov(last(h), p);

● for an history h and a move (a∃, a∀), let s = Tab(last(h),
a∃, a∀):
1. if s does not appear in h then Tab

′(h, a∃, a∀) =
h

a∃,a∀ÐÐÐ→ s;

2. otherwise, let i be such that hi = s, and c =
h≥i

a∃,a∀ÐÐÐ→ s (notice that such a i is unique): if
c belongs to C

W then Tab
′(h, a∃, a∀) =↑ and oth-

erwise Tab
′(h, a∃, a∀) =↓.

∃ cycle ∀ cycle

Unraveling

Lem. 7 Lem. 8

Figure 16: Winning strategies of Eve.

Then, from ↑ and ↓, there are only self loops, thus
Tab

′(x, a∃, a∀) = x for x ∈ {↑, ↓}.
● the objective is to reach ↑, i.e. Ω′ = (St′ ⋅ (Act × Act))∗ ⋅(↑ ⋅(Act × Act))ω.
Theorem 6. Let G be a concurrent game and U(G) its

unraveling. Then Eve has a winning strategy in the unraveled
game U(G) if, and only if, she has a winning strategy in G.
In the following we will call objectives of the form {ρ ∣ ∀c ∈
dec(ρ). c ∈ CW } universal cycle objective and objectives of
the {ρ ∣ ∃c ∈ dec(ρ). c ∈ CW } existential cycle objective.

We show the following lemma wich implies Thm. 6.

Lemma 6. Let G be a concurrent game and U(G) its un-
raveling. The three following properties are equivalent:

1. Eve has a winning strategy in the unraveled game U(G);
2. Eve has a winning strategy in G for the existential cycle

objective;

3. Eve has a winning strategy in G for the universal cycle
objective;

The implication from universal cycle objective to the exis-
tential one is obvious. We decompose the remaining of the
proof in two lemmas as represented in Fig. 16.

Lemma 7. If Eve has a winning strategy in G for the ex-
istential cycle condition C

W , she has a winning strategy in
the unraveled game U(G).

Proof. We will show that if Eve has no winning strategy
in U(G), then she has none in G, by considering the attractor
of ↑. The idea is that if the stack of the play in G is not
in this attractor, then Eve cannot enforce the next simple
cycle in the decomposition to be positive. The attractor
of ↑, written Attr∃(↑) is defined as Attr∃(↑) = {h ∈ St∗ ∣
∃σ∃. ∀σ∀. ∃n. Outs(σ∃, σ∀)n =↑}. This attractor set can be
constructed iteratively, consider Attr0∃(↑) =↑ and Attr

k+1
∃ (↑) = {h ∈ St∗ ∣ ∃a∃. ∀a∀. h ⋅ Tab(last(h), a∃, a∀) ∈ Attrk∃(↑)},

a fixed point is reached after n ≤ ∣St∣ number of steps, and
Attr

n
∃(↑) = Attr∃(↑). Assuming that Eve has no winning

strategy in U(G), the initial state is not in the attractor.

Fix a strategy σ∃ in G, let h be a history in G and l =
last(h). Notice that if st(h) /∈ Attr∃(↑) then there is an



action a∀ such that writing s = Tab(ℓ, σ∃(h), a∀), we have

that st(h σ∃(h),a∀ÐÐÐÐÐ→ s) /∈ Attr∃(↑) and if there is i such that

st(h)i = s, then st(h)≥i σ∃(h),a∀ÐÐÐÐÐ→ s ∈ CW . We construct a
strategy σ∀, that for all history h such that st(h) /∈ Attr∃(↑),
chose an action a∀ witness of the previous property.

It is easy to show by induction that the outcome of (σ∃, σ∀)
stays outside the attractor: this is because the initial state
is outside of it and when a cycle is formed, the stack comes
back to a prefix of the current one, and since (by induction
hypothesis) along the history no state of the attractor has
been seen, we are still outside the attractor. Therefore in
the decomposition of the outcome, all the simple cycles are
in C ∖ C

W . This contradicts the fact that the strategy of
Eve is winning in G for the existential cycle condition.

Lemma 8. If Eve has a winning strategy in the unraveling
of G from s, she has a winning strategy in G for the universal
cycle condition C

W .

Proof. Let ν∃ be a winning strategy in the unraveling.
We define a strategy σ∃ in the original game by simply
forgetting cycles. It therefore plays according to the ele-
ment that are in the stack of the decomposition process:
σ∃(h) = ν∃(st(h)). Let ρ be an outcome of σ∃, we show
that it is winning. Let c be a cycle appearing in the decom-
position in simple cycles of ρ. Let k be the first index such
that last(dec(ρ≤k)) = c.
We write st(ρ≤k−1) = s0 m0ÐÐ→ ⋯sk, and we will prove by
induction over n ∈ ⟦0, k⟧ that the sequence of states in the
stack forms a history compatible with ν∃. For the case s0
this is simply because the initial state will never disappear
from the stack. We now assume that the property holds until
some index n ∈ ⟦0, k − 1⟧. We write i the last occurrence of
sn in ρ before position k, that is i =max{j ≤ k−1 ∣ ρj = sn}.
We show that ρi+1 = sn+1. Since i+1 ≤ k, state ρi+1 is added
to the stack and will only disappear before index k if a cycle
is formed with some state sj with j ≤ n + 1:

● if j < n then sn is also removed from the stack and
since it does not appear after i this contradicts the
fact that sn is still present on the stack of ρ≤k;

● j = n contradicts the fact that i was the last appear-
ance of sn before position k;

● otherwise j = n + 1, and in that case, the same state
ρi+1 is still on top of the stack once the cycle has been
removed.

Therefore sn+1 = ρi+1.

Now, since ρ is an outcome of σ∃, there is some a∀ such
that Tab(ρi, σ∃(ρ≤i), a∀) = ρi+1. By definition, σ∃(ρ≤i) =
ν∃(st(ρ≤i)) and then:

Tab
′(s0 m0ÐÐ→ ⋯sn, ν∃(s0 m0ÐÐ→ ⋯sn), a∀) = Tab(sn, σ∃(ρ≤i), a∀)

= ρi+1
= sn+1

Hence s0
m0ÐÐ→ ⋯sn+1 is an outcome of ν∃.

This proves that st(ρ≤k−1) is an outcome of ν∃. We now
have to complete the cycle. There is a∀ such that:

Tab(ρk−1, σ∃(ρ≤k−1), a∀) = ρk.
And ρk appears in st(ρ≤k−1) to form the cycle c. Since
ν∃(st(ρ≤k−1)) = σ∃(ρ≤k−1), we have that:

Tab
′(st(ρ≤k−1), ν∃(st(ρ≤k−1)), a∀) = { ↑ if c ∈ CW

↓ otherwise
.

Since ν∃ is a winning strategy the final state is necessarily↑, meaning that c belongs to C
W . This shows that σ∃ is a

winning strategy in G.

We are now ready to give an algorithm that solves game
with cycle objectives. Its complexity depends on the way we
represent the cycle objective, as an explicit representation
can be exponentially larger than the size of the game. To be
as general as possible, we assume that we have an algorithm
to tell us if a cycle is in C

W , which works using space at
most p(∣St + Act∣) where p is a function from N to N.

Theorem 7. Given a concurrent game G with (existen-
tial or universal) cycle objective C

W , we can decide in spaceO(∣St∣⋅∣Act∣2)+p(∣St+Act∣) whether Eve has a winning strat-
egy.

Proof. The algorithm proceeds by an exploration of the
unraveling. We give an inductive procedure win. Given a
state of the unraveling h:

● if h contains a cycle c, we ask if c ∈ CW and answer
true if it does and false otherwise; this is done in
space p(∣St + Act∣);

● otherwise we successively compute win for each his-
tory h ⋅ s with s = Tab(last(h), a∃, a∀) where a∃ ∈
Mov(last(h),Eve) and a∀ ∈ Mov(last(h),Adam), and
keep only the result each time; now we check that:

∃a∃. ∀a∀. win (h ⋅ Tab(last(h), a∃, a∀)) ;
This can be done in space O(∣Act∣2).

The depth of the computation is at most ∣St∣ + 1 and each
step is done using space bounded by O(∣Act∣2), except at the
leafs where we use space p(∣St+ Act∣). Hence our algorithm
works in space O(∣St∣ ⋅ ∣Act∣2) + p(∣St + Act∣).

Theorem 8. Given a finite concurrent game G with ob-
jective Ω = {ρ ∣ ∀c ∈ dec(ρ).c ∈ C

W } or Ω = {ρ ∣ ∃c ∈
dec(ρ).c ∈ CW } where C

W is given by an automaton, de-
ciding if Eve has a winning strategy is PSPACE-complete.

We assume that the set of cycles is given by an (non-deterministic)
automaton A whose language is CW .



Proof. We use the algorithm of Thm. 7. Determining if
a cycle is accepted by A can be done in polynomial space
by doing a subset construction on the fly. The problem is
therefore in PSPACE.

The hardness proof is an encoding of QBF. Assume we are
given a formula φ = ∃x1. ∀x2. . . .∀xn. C1∧⋯Cm with for all
j, Cj = (lj,1 ∨ lj,2 ∨ lj,3) and li,j is of the form xk or ¬xk for
some k. We describe a game G. In state s0, Eve chooses to
go to either state x1 or state ¬x1, then we go to s1 and Adam

chooses to go to either x2 or ¬x2, and we repeat this until sn,
then Adam chooses a clause Cj and we come back to s0. This
forms a cycle s0 ⋅ l1 ⋅s1 ⋅ l2⋯ln ⋅sn ⋅Cj ⋅s0 where li = xi or ¬xi.
Notice that in this proof we only write states of the path and
not moves, this is in order to simplify the notations. The
objective C

W for Eve is given as the language:

⋃
j∈⟦1,m⟧

⋃
i∈⟦1,3⟧

St
∗
⋅ li,j ⋅ St

∗
⋅Cj .

This can be described by a non-deterministic automaton of
polynomial size. Then Eve has a winning strategy in G if,
and only if, the formula φ is valid.

4. ROBUST GAMES
The reduction to the cycle forming game in the region graph
is complete when there exists a weight function δ, that par-
titions the set of simple cycles of the region into good ones
for Eve and good ones for Adam.

Definition 8. (Robust game) A WTG is said δ-robust if
C = C

+
δ ∪ C

−ε
δ for some ε. We simply call a WTG robust

when there exists δ ∶RX,M ↦ R such that it is δ-robust.

Remark 3. Note that a WTG G where all the costs are
discrete (i.e. ∀ℓ ∈ L. w(ℓ) = 0) is robust for δ = 0 and ε < 1.
The results of this section implies decidability of the energy
problem and mean payoff problem for this class.

Remark 4. If T is robust, then the leafs of U(R(T )) are
partitioned between winning for Eve and winning for Adam.
If, in addition, this game is turn-based, then it is determined.
By Thm. 4 and Thm. 10, we can conclude that if T is robust
and turn-based then the energy game TE is determined.

Now, we establish that in a robust WTG, we can decide if
Eve can win the energy game. This is a consequence of the
following theorem which complements Thm. 4. A symmetric
result also holds for Adam.

Theorem 9. Let T be a δ-robust WTG:

1. if Eve has a winning strategy in the energy game TE
then she has a winning strategy in U(R(T ,Ω+δ ));

2. if T has bounded transitions and Eve has a winning
strategy in the mean payoff game TMP then she has a
winning strategy in U(R(T ,Ω+δ )).

Proof. Let τ∃ be a strategy in T . Thanks to Lem. 1
and 3, there is a strategy σ∃ such that for any outcome ρ of
σ∃ there is an outcome ρ′ of τ∃ such that π(ρ′) = ρ.
We will prove that Eve has no winning strategy in U(R(T ,Ω+δ )),
then she has none in the energy game TE ; and in the case
where T has bounded transitions she has no winning strat-
egy in the mean payoff game TMP either.

Assume that Eve has no winning strategy in U(R(T ,Ω+δ )),
according to Lem.7, she has no winning strategy for the
existential cycle objective C+δ . Therefore there is an outcome
ρ of τ∃, such that dec(π(ρ)) only contains cycles of C ∖C

+
δ .

As T is robust, C ∖ C
+
δ = C

−ε
δ , and each cycle decreases the

weight of at least ε. Therefore for all index n:

w(ρ′≤n) ≤ wδ+(tst(ρ′≤n)) − ε ⋅ ( n

∣L∣ ⋅ ∣RX,M ∣ − 1) .
Thanks to Lem. 5, wδ+(tst(ρ≤n)) is bounded, so the weight
of ρ decreases infinitely low. This contradicts the fact that
τ∃ is a winning strategy in TE .
Assuming now that T has bounded transitions, the bound
D is such that:

w(ρ≤n)
dρ≤n

≤
wδ+(tst(ρ≤n))

dρ≤n
− ε ⋅ ( 1

D ⋅ ∣L∣ ⋅ ∣RX,M ∣ −
1

n
) .

Thanks to Lem. 5,
wδ+ (tst(ρ≤n))

d(ρ≤n)
+

ε
n
converges to 0. The mean

payoff is therefore strictly below 0, this contradicts that τ∃
is a winning strategy for the mean payoff game TMP.

Theorem 10. Let T be a δ-robust WTG:

1. if Adam has a winning strategy in the energy game TE,
then he has a winning strategy in U(R(T ,Ω−εδ ));

2. if T has bounded transitions and Adam has a winning
strategy in the mean payoff game TMP, then he has a
winning strategy in U(R(T ,Ω−εδ )).

Proof. Similarly to Thm. 9, we assume that Adam has no
winning strategy in U(R(T ,Ω−εδ )), and prove that he has
none in the energy game TE ; and in the case where T has
bounded transitions he has no winning strategy in the mean
payoff game TMP either. Let τ∀ be a strategy of Adam. Using
the same arguments than for Thm. 9, there is an outcome
ρ of τ∀ such that dec(π(ρ)) only contains cycles of C+δ . We
therefore have that for all n, w(ρ≤n) ≥ wδ−(tst(ρ≤n)). We
showed in Lem. 5 that wδ−(tst(ρ≤n)) cannot go arbitrarily
far below 0. Hence τ∀ is not winning the energy game TE .
Now, if T has bounded transitions, w(ρ≤n)

d(ρ≤n)
≥ wδ+(tst(ρ≤n)) ⋅

D
n
. The mean payoff is therefore greater or equal to 0. This

means that τ∀ is not winning the mean payoff game TM .

Given a weighted timed game, it is decidable whether this
game is robust or not.

Theorem 11. The membership problem for the class of
robust game is decidable.



To solve the membership problem, we encode the condition
on simple cycles as a formula of the theory of real closed
fields, for which there is a decision procedure in EXPSPACE [7].
The size of the formula we obtain can be doubly exponential,
and therefore our algorithm is 3EXPSPACE.

Theorem 12. Deciding if a WTG T is robust can be done
in 3EXPSPACE.

For a weight function δ, we will denote the weight δ(ℓ, r) by
the variable δℓ,r.

Given a simple cycle c = (ℓ0, r0) (r0∃,e0∃,a0

∃),(r
0

∀,e
0

∀,a
0

∀)ÐÐÐÐÐÐÐÐÐÐÐÐ→ (ℓ1, r1) p1Ð→⋯(ℓn, rn) of the region game, a quasi path h ∈ γ(c) is of the

form (ℓ0, v00) ↷ ⋯ ↷ (ℓ0, vj00 ) (d0∃,e0∃),(d0∀,e0∀)ÐÐÐÐÐÐÐÐ→ (ℓ1, v01)⋯(ℓn, vjnn ).
Where for all i ∈ ⟦1, n⟧, ji is the number of jumps in the re-
gion ri, and for all j ∈ ⟦0, ji⟧, vji is in the region ri. We write(di, ei) = Mov((d0∃, e0∃), (d0∀, e0∀)).
We have the constraint on the number of jumps:

ψi = ji ≥ 0 ∧ (v0i (x) ≠ vjii (x) Ô⇒ ji ≥ 1) .
The fact that the correct transition is selected at each step
is expressed by:

ςi = { di∃ < d
i
∀ ∧ di = di∃ if Eve is selected in (ri∃, ei∃, ai∃), (ri∀, ei∀, ai∀)

di∃ < d
i
∀ ∧ di = di∃ otherwise

The transition is correctly applied if [z ← 0]vjii + di = v1i+1.
This is expressed by:

ξi = ⋀
x∈X

{ v
ji
i (x) + di = v1i+1(x) if x /∈ z
v1i+1(x) = 0 otherwise

Let g ∈ C(X), it is of the form x1 ⋈ c1 ∧ ⋅ ⋅ ⋅ ∧xk ⋈ ck. The fact
that a valuation v + d (v ∈ RX and d ∈ R) satisfies the guard
g is expressed by the formula φ(v, d, g) = vx1

+ d ⋈ c1 ∧ ⋅ ⋅ ⋅ ∧

vxk
+ d ⋈ ck. Each transition is allowed if vjii + di ⊧ Inv(ℓi),

v
ji
i + di ⊧ g and v0i+1 + di ⊧ Inv(ℓi+1). This is expressed by
the conjunction:

φi = φ (vjii , di,Inv(ℓi)) ∧ φ (vjii , di, g) ∧ φ (v0i+1,0,Inv(ℓi+1)) .
The weight of this path is expressed by the polynomial pc =
j1 ⋅ δℓ1,r1 + d1 ⋅ w(ℓ1) + w(e1) + ⋅ ⋅ ⋅ + jn ⋅ δℓn,rn .

To each region is associated set of constraints on clocks that
are satisfied exactly by the valuation belonging to that re-
gion. We can translate them to a formula χ(r, v). The fact
that the history is compatible with c is expressed by for all i
and j ∈ ⟦1, ji⟧: χ(ri, vji ). Note that for j ≠ 1, ji the variables

v
j
i have not appeared yet and it is therefore unnecessary to
put constraint on these. We therefore write

χi = χ(ri, v0i )∧χ(ri, vjii )∧χ(ri, vjii )∧χ(ri∃, vji+di∃)∧χ(ri∀, vji+di∀).
The following formula characterizes the quasi paths that are
compatible with c: κc = (⋀i∈⟦1,n−1⟧ ψi ∧ φi ∧ ςi ∧ ξi ∧ χi)

The algorithm proceeds as follows: we look at all the pos-
sible partition of C into two sets G+ and G− there are a
triply exponential number of possible partitions; G+ and G−

potentially correspond to C
+
δ and C

−ε
δ for some δ and ε; we

consider the formula:

∃
ℓ∈L,r∈RX,M

δℓ,r. ∃ε.

⋀
c∈G+
( ∀
i∈⟦1,∣c∣⟧

di, ji. ∀
x∈X

v
0

i (x), vjii (x). (κc Ô⇒ pc ≥ 0))
⋀

c∈G−
( ∀
i∈⟦1,∣c∣⟧

di, ji. ∀
x∈X

v
0

i (x), vjii (x). (κc Ô⇒ pc < −ε))

we then check that the formula has a solution. The size of
the formula is at most doubly exponential, the algorithm we
described is therefore 3EXPSPACE.

Theorem 13. If δ and ε are given then deciding if T is
δ, ε-robust can be done in 2EXPSPACE.

Proof. This is because in that case, the formula we con-
sidered can be translated to an existential formula, which
has size doubly exponential in the input. We know that the
existential theory of the reals is decidable in PSPACE [4].
Therefore the global algorithm is 2EXPSPACE.

Proposition 2. Deciding if a game is δ, ε-robust is co-
NEXP-hard.

Proof. We show hardness of the problem by a reduction
from the Succinct Hamilton Cycle problem: Given a Boolean
circuit C with 2N inputs, does the graph on 2N nodes with
edge relation encoded by C have a Hamiltonian cycle? This
problem is known to be NEXP-complete [35].

We will construct a WTG of polynomial size, which is robust
if, and only, if there is no Hamiltonian cycle in the succinctly
represented graph. Thus showing that the problem is co-
NEXP-hard

Variables representing nodes of the graph are encoded by
clocks x1 . . . xN and y1 . . . yN . Variables xi being for the
current node and yi for the successor node, i.e. xi are the
first N inputs of the circuit and yi the N last.

We encode the circuit by having two clocks gi and ḡi for each
gate gi. They represent whether the gate output should be
true: in that case gi = 1 and ḡi = 0; in the other case gi = 0
and ḡi = 1.

We assume the gates are ordered g1, g2, . . . , gG such that if
i < j implies that gi does not take gj as input, it is always
possible to find such an order as Boolean circuits are acyclic.

Gates are encoded as represented in Fig. 21 for a ∧-gate.
For the ∧-gate, if both inputs, from g1 and g2 are true, then
the valuation of the clocks is such that g1 = g2 = 1. The first
transition can be taken, and g3 is set to 1. This encodes the
fact that the output of gate g3 is positive.



. . .t = 1
c1 = 2; c1 ← 0c2 = 2; c2 ← 0 ck = 2; ck ← 0

c1 = 1 c2 = 1 ck = 1

t = 1; t← 0

Figure 17: Module X ← 1−X. Where X = {c1, . . . , ck}.
X ← 1 −X X ← 1 −Xx← 0

Figure 18: Module x← 1.

x← 1

x← 0 t = 0

Figure 19: Module Choose(x).

x← 1

y =
1

y = 0;x← 0

t = 0

Figure 20: Module x← y.

t = 0

g3 ← 1

t = 0

g1 = 1
∧ g2 = 1
g1 = 0; g3 ← 0

g2 = 0; g3 ← 0

Figure 21: Encoding of a ∧-gate g3, which takes input

from gates g1 and g2

−1 +10 < t < 1

Figure 22: Module MIX introducing weight around 0

g1 g2 . . . gG
gG = 1

Figure 23: Module Edge encoding the edge relation.

choose y1⋯yn

Edge

(xi)i∈⟦1,n⟧ ← (yi)i∈⟦1,n⟧MIX

(xi)i∈⟦1,n⟧ ← 0; (yi)i∈⟦1,n⟧ ← 0;

2 − 2N+1

+2

Figure 24: Global WTG encoding the succinct

graph.

Module Edge, represented in Fig. 23, encode the edge rela-
tion. A path can traverse this module only if there is an edge
between the nodes encoded by the valuation of x1,⋯, xn and
y1,⋯, yn.
Notice that in the definition of WTG, we assumed that there
always is a player that can play an action, which is not the
case here, but we can add an edge in each state to go to a sink
state. This does not change the fact that the game is robust,
but we do not include this edges to make the presentation
clearer.

The global game, represented in Fig. 24, is played as follows:

1. we start with a weight of 2−2N+1 and the initial state i
is encoded by a valuation of 0 for all variables x1,⋯, xn;

2. Eve can choose a successor j by choosing the valuations
of y1,⋯, yn;

3. the play can traverse the module Edge only if there is
a edge between nodes i and j;

4. we replace the valuation of x1,⋯, xn by that of y1,⋯, yn,
i.e. we now consider that j is the current state;

5. either we go back to step 2 with a reward of 2 or to
the module MIX.

If there is a Hamiltonian path in the graph succinctly repre-
sented, then following it, until j is the initial state, will give
a weight of 0. Then entering MIX, can give simple cycle that
are either positive or negative, while all traverse the same
regions. Hence the game is not robust for any δ and ε.

If there is a simple cycle in the region game, that can cor-
respond to both positive and negative cycle, then: it goes
through the module MIX since it is the only place where
the weight can depend on the valuations; it must have been
2N − 1 times through the Edge module, so that we can have
a weight around 0; the valuations each time must have en-
coded different states, since otherwise this cycle is not a
simple one. Thus it describes an Hamiltonian path.



Finally, we can characterize the complexity of deciding the
energy problem for robust weighted timed games:

Theorem 14. The energy problem for robust games is in
EXPSPACE and is EXP-hard.

Proof Sketch. The algorithm proceeds by constructing
the region game and then solving it using the algorithm of
Thm. 8. This is correct because of Thm. 4, 6 and 9.

Proof. We consider the region game, which has at most
exponential size. Deciding if a simple cycle is winning for
Eve is easy since we only need to check one arbitrary path
in the WTG whose projection on the regions corresponds
to the simple cycle we consider. If its weight is greater or
equal to 0, the cycle is in C

+
δ . This can be done using poly-

nomial space (w.r.t. the size of the simple cycle). Using the
algorithm of Thm. 7 we obtain a global procedure which is
in EXPSPACE. EXP-hardness already holds for reachability
objectives in timed games.

5. FIXPOINT ALGORITHM
While the reduction to the cycle forming game in the region
graph is elegant and allows us to identify a large and natu-
ral class of weighted timed games with decidable properties,
this reduction does not lead directly to a practical semi-
algorithm. In this section, we design a valuation iteration
algorithm that can be implemented symbolically using poly-
hedra, which can be executed on any weighted timed game,
and find winning strategies for Eve when it terminates suc-
cessfully. We also show that termination is guaranteed on
robust weighted timed games.

5.1 Value Iteration Algorithm
Our value iteration algorithm is an adaptation of the solu-
tion for the finite state case described in [19] to the setting
of WTG. It computes successive approximations of the min-
imal energy level that Eve needs to win the energy game.

Essentially, the semi-algorithm is based on the iteration of
an operator that computes successive approximations of the
energy level/credit that is necessary for Eve to maintain the
energy level positive for k rounds in the energy timed game,
where k increases along with the iterations. Most impor-
tantly, our algorithm is parameterized by a value c ∈ N, that
represents a maximal energy level that we want to track: if
the energy level necessary to stay alive from a given state(l, v) for k rounds is larger than c then (ℓ, v) is considered
as loosing. This is a sound approximation when looking for
winning strategies. This parameter is important to enforce
termination of the analysis. If a fixed point is reached, then
it contains enough information to identify winning states
(those that are not mapped to +∞ by the operator) and
construct winning strategies. If the analysis is negative (no
winning strategy found) then this value can be increased.
Furthermore, we show that for robust weighted timed games,
there is a finite value c which is computable and sufficient
to detect winning strategies for Eve.

In this section, we assume the WTG is fixed and transitions,
weight functions, etc . . . refer to this game. Given c ∈ N, we

write a⊖c b for max(0, a − b) if a − b ≤ c and +∞ otherwise.
Notice that for all a, b ∈ R ∪ {+∞}:

a − b ≤ a⊖c b (3)

In the sequel we consider mappings in S = [St↦ R+∪{+∞}]
that associate with each state an element in R+ ∪ {+∞}.
Given f, g ∈ S, we write f ⪯ g if ∀s ∈ St, f(s) ≤ g(s).
Given c ∈ N, the operator liftc ∶ S ↦ S is defined by:

∀s ∈ St,liftc(f)(s) = inf
a∃

sup
a∀

{f(s′)⊖c w(s a∃,a∀ÐÐÐ→ s
′)}

Remark 5. The operator liftc is monotonic, i.e. f ⪯
g Ô⇒ liftc(f) ⪯ liftc(g).
We let fc

0 ∶ St ↦ R+ ∪ {+∞} be the mapping defined by
∀s ∈ St, fc

0(s) = 0. We then inductively define fc
k+1, for k ≥ 0

to be liftc(fc
k). Notice that the sequence (fc

n)n∈N forms
an increasing sequence. Thus, fc

n(s) represents the initial
energy level that is needed by Eve to keep the energy level
positive for n steps from s. If more than c is needed then
fc
n(s) is set to be +∞ (c being the maximal energy level that
we want to track). This is formalized in Lem. 9.

Lemma 9. For all state s, index n, credit c, ε > 0:

fn(s) ≥ − sup
σ∃

inf
σ∀
{w/c(Outs(σ∃, σ∀)≤n)} .

where for a history h = h0

m0ÐÐ→ h1⋯ mnÐÐ→ hn, w/c(h) = −∞ if

∃i. w(hi

miÐ→ hi+1) < −c − ε and w(h) otherwise.
Proof. We prove the property by induction over n, it is

obvious for n = 0. Now assuming this holds for n we show it
for n+1. Let ε > 0, we define a strategy σ∃. We select σ∃(s)
that is ε

2
close to the optimal of

inf
a∃

sup
a∀

{fc
n(s′)⊖c w(s a∃,a∀ÐÐÐ→ s

′)}
if this value is different from +∞ (otherwise the result is
obvious). Hence for all action a∀:

f
c
n(s′)⊖c w(s σ∃(s),a∀ÐÐÐÐÐ→ s

′) ≤ fc
n+1(s) + ε

2

f
c
n(s′) − w(s σ∃(s),a∀ÐÐÐÐÐ→ s

′) ≤ fc
n+1(s) + ε

2
(by remark (3))

w(s σ∃(s),a∀ÐÐÐÐÐ→ s
′) ≥ fc

n(s′) − fc
n+1(s) − ε

2

where Tab(s, σ∃(s), a∀) = s′.
For the remaining of the proof, we introduce the notation

σ∃ ○ (s mÐ→ s′) for the strategy that associate to a history h,

the action σ∃(s mÐ→ h). We select σ∃ ○ (s→ s′) to be at most
ε
2
below the optimal of

sup
σ∃

inf
σ∀
{w/c(Outs′(σ∃, σ∀)≤n)}

Consider now a strategy σ∀ and ρ the outcome of σ∃ and

σ∀. If there is i such that w(ρi σ∃(ρ≤i),σ∀(ρ≤i)ÐÐÐÐÐÐÐÐÐ→ ρi+1), then:



● if i = 0, then

inf
a∃

sup
a∀

{fc
n(s′) ⊖c w(s a∃,a∀ÐÐÐ→ s

′)} > −c
because we chose σ∃(s) to be ε

2
close to the optimal.

This means that fc
n+1(s) = +∞ and the property is

verified;

● otherwise i > 0, because we chose σ∃ ○ (s Ð→ s′) to be
close to the optimal, and using the induction hypoth-
esis, fc

n(s′) = +∞. This shows

sup
a∀

{fc
n(s′)⊖c w(s σ∃(s),a∀ÐÐÐÐÐ→ s

′)} = +∞
Since σ∃(s) was also selected to be close to the optimal,
this means that fc

n+1(s) = +∞.

In the other case:

w∣c(ρ≤n+1) = w(ρ≤n+1)
= w(s σ∃(s),σ∀(s)ÐÐÐÐÐÐ→ s

′)
+ Outs′(σ∃ ○ (s σ∃(s),σ∀(s)ÐÐÐÐÐÐ→ s

′)≤n, σ∀ ○ (s σ∃(s),σ∀(s)ÐÐÐÐÐÐ→ s
′))

≥ fc
n(s′) − fc

n+1(s) − ε
2

+ sup
σ∃

inf
σ∀

{w/c (Outs′(σ∃, σ∀)≤n)} − ε
2

≥ fc
n(s′) − fc

n+1(s) − ε
2
− f

c
n(s′) − ε

2
(induction hypothesis)

≥ −fc
n+1(s) − ε

This means that

inf
σ∀
(w/c(Outs(σ∃, σ∀)≤n)) ≥ −fc

n+1(s) − ε
and since we have such a strategy σ∃ for any ε > 0:

sup
σ∀

inf
σ∀
(w/c(Outs(σ∃, σ∀)≤n)) ≥ −fc

n+1(s)
Which proves the property for fn+1.

Lemma 10. For all state s, index n, credit c, ε > 0:

− sup
σ∃

inf
σ∀

{w+/c(Outs(σ∃, σ∀)≤n)} ≥ fn(s).
where for a history h = h0

m0ÐÐ→ h1⋯
mn−1ÐÐÐ→ hn, w

+
/c(h) = −∞ if

∃i, j. w(hi

miÐ→ hi+1
mi+1ÐÐÐ→ ⋯hj) < −c + ε and w(h) otherwise.

Proof. The proof is quite similar to that Lem. 9, we do
it by induction over n and the property is obvious for n = 0.
Let σ∃ be a strategy of Eve and ε > 0. In order to prove the
property for rank n+1, we construct a strategy σ∀ such that
w
+
/c(Outs (σ∃, σ∀)≤n+1) ≤ −fc

n+1 + ε.

Let a∀ be ε
2
close to the optimal of

sup
a∀

{fc
n(s′)⊖c w(s σ∃(s),a∀ÐÐÐÐÐ→ s

′)}

if it is different from +∞ and such that fc
n(s′)⊖cw(s σ∃(s),a∀ÐÐÐÐÐ→

s′) = +∞ otherwise. Let s′ = Tab(s, σ∃(s), a∀) and σ′∀ be

such that:

w
+
/c (Outs′(σ∃ ○ (s σ∃(s),a∀ÐÐÐÐÐ→ s

′), σ′∀)≤n) ≥ −fc
n(s′) − ε

2
;

if fc
n(s′) ≠ +∞ and such that

w
+
/c (Outs′(σ∃ ○ (s σ∃(s),a∀ÐÐÐÐÐ→ s

′), σ′∀)≤n) = −∞
otherwise. This is possible thanks to the induction hypoth-
esis.

We define strategy σ∀ by:

σ∀ =
⎧⎪⎪⎨⎪⎪⎩

s ↦ a∀

s
σ∃(s),a∀ÐÐÐÐÐ→ h ↦ σ′∀(h)

Let h = h0

m0ÐÐ→ h1⋯
mnÐÐ→ hn+1 = Outs(σ∃, σ∀)≤n+1. If there is

i, j such that w(hi

miÐ→ hi+1
mi+1ÐÐÐ→ ⋯hj) < −c then w

+
/c (h) =

−∞ and the property is obviously verified. Otherwise, lets
look at the weight of the outcome:

w (h) = w(h0

m0ÐÐ→ h1) + w(h≥1)
= w(s σ∃(s),a∀ÐÐÐÐÐ→ s

′) + w
+
/c(h≥1)

If fc
n(s′) = +∞ then w

+
/c(h≥1) = +∞, which contradicts the

fact that there is no i, j such that w(hi

miÐ→ hi+1
mi+1ÐÐÐ→ ⋯hj) <

−c. Therefore fc
n(s′) ≠ +∞ and:

w (h) ≥ w(s σ∃(s),a∀ÐÐÐÐÐ→ s
′) − fc

n(s′) − ε
2

● If fc
n(s′) − w(s σ∃(s),a∀ÐÐÐÐÐ→ s′) ≥ c then w(s σ∃(s),a∀ÐÐÐÐÐ→ s′) +

w(h≥1) ≥ c − ε
2
. Hence w

+
/c(h) = +∞.

● Otherwise

w (h) ≥ −(fc
n(s′)⊖c w(s σ∃(s),a∀ÐÐÐÐÐ→ s

′)) − ε
2

≥ −fc
n+1(s) − ε

Theorem 15 (Correctness). If there exists n ≥ 0 such
that fn+1 = fn, and fc

n(ι) ≠ +∞, then for any ε > 0, Eve has
a winning strategy for the c′-energy game TE(c′) with initial
credit c′ = fc

n(ι) + ε.
Proof. We define a strategy σ∃ for Eve, that for a his-

tory h and a state s, select an action a∃ that is ε

2∣h∣+1
close

to the optimal. That is σ∃(h ⋅ s) = a∃ such that:

sup
a∀

{fc
n(s′)⊖c w(s a∃,a∀ÐÐÐ→ s

′)} ≤ fc
n(s) + ε

2∣h∣+1
.

This is possible since fc
n(s) = fc

n+1(s) = infa∃ supa∀
{fc

n(s′)
⊖cw(s a∃,a∀ÐÐÐ→ s′)}.
Consider now an outcome ρ = ρ0

m0ÐÐ→ ρ1
m1ÐÐ→ ⋯ of σ∃ such

that ρ0 = s. We show by induction that for all k, fc
n(ρ0) +

ε ⋅ (1 − 1

2k
) ≥ fc

n(ρk) − w(ρ≤k). This is true for k = 0 since



w(ρ≤0) = 0. Assume now that the property holds for some
integer k. By the definition of σ∃, we have:

f
c
n(ρk) + ε

2k+1
≥ fc

n(ρk+1) ⊖c w(ρk mkÐÐ→ ρk+1)
f
c
n(ρk) + ε

2k+1
≥ fc

n(ρk+1) − w(ρk mkÐÐ→ ρk+1) (by rem. (3))

f
c
n(ρk) + ε

2k+1
≥ fc

n(ρk+1) − (w(ρ≤k+1) − w(ρ≤k))
f
c
n(ρk) − w(ρ≤k) + ε

2k+1
≥ fc

n(ρk+1) − w(ρ≤k+1)

Using the induction hypothesis, we obtain:

f
c
n(ρ0) + ε ⋅ (1 − 1

2k
) + ε

2k+1
≥ fc

n(ρk+1) − w(ρ≤k+1)
f
c
n(ρ0) + ε ⋅ (1 − 1

2k+1
) ≥ fc

n(ρk+1) − w(ρ≤k+1)
Which proves the property for k+1. Hence for all k, fc

n(ρ0)+
ε + w(ρ≤k) ≥ 0. This shows that from s, σ∃ is a winning
strategy for the initial credit fc

n(s).

Remark 6. Note that winning strategies do not necessar-
ily exist for the initial credit fc

n(s) we compute for each state
as this is an infimum. However, given any ε > 0, ε-optimal
strategies i.e. winning strategies with initial credit fc

n(s) + ε
are guaranteed to exist. This is illustrated in Fig. 25 where
for all ε > 0, Eve can win for the initial credit ε, but she
cannot win for (limit) initial credit 0.

−1
0 < xx← 0

Figure 25: WTG with no optimal strategy.

In the case of robust game, we show that we can stop the
algorithm after a finite number of iterations.

Theorem 16 (Termination). Let T be a WTG and c
a fixed credit. If T is δ, ε-robust and fc

n0
(ℓι,0) ≠ +∞ for

n0 ≥ ( c⋅(∣L∣⋅∣RX,M ∣+1)

ε
+ 1) ⋅ ∣L∣ ⋅ ∣RX,M ∣ then Eve has a winning

strategy in the energy game.

Proof. We show in fact, the equivalent property that if
Eve has no winning strategy for the energy game T , then
fc
n0
(ℓι,0) = +∞.

We use the correspondence with the region game. Assum-
ing Eve has no winning strategy for the energy game T , by
Thm. 4, she has no winning strategy in R(T ,Ω+δ ), and by
Lem. 8, she has no winning strategy in U(R(T ,Ω+δ )). Ac-
cording to Lem.7 she has no winning strategy in R(T ) for
the existential cycle objective C

+
δ . Once a strategy σ∃ for

Eve is fixed, Adam has a strategy σ∀ such that the simple cy-
cles in the decomposition of the projection of the outcome
are never in C

+
δ . Since the game is robust, all these simple

cycles have a weight smaller than −ε.

We have that:

sup
σ∃

{w/c(Outs(σ∃, σ′∀)≤n)} ≤ −ε⋅( n

∣L∣ ⋅ ∣RX,M ∣ − 1)+c⋅∣L∣⋅∣RX,M ∣.
Let n0 ≥ ( c⋅(∣L∣⋅∣RX,M ∣+1)

ε
+ 1) ⋅ ∣L∣ ⋅ ∣RX,M ∣. Using Lem. 9 we

have that fn0
(s) > c, hence fc

n0
(s) = +∞.

If moreover the game has bounded transition, the algorithm
is complete.

Theorem 17 (Completeness for robust games).
Let T be a robust WTG, which has bounded transitions, and
c = ∣L×RX,M ∣ ⋅(WL×D+WT )+1. Eve has a winning strategy
in the energy game TE(c) if, and only if, fc

n0
≠ +∞.

Proof. Thanks to Thm. 9, we know that in such a game,
if Eve has a winning strategy, then a credit of c−1 is enough
to win. Lem. 10, ensures that fn

c will never go higher than
c in the initial state. Reciprocally Thm. 16, ensures that if
Eve has no winning strategy, then +∞ is reached within n0

steps.

5.2 Symbolic Algorithm
We have implemented the previous value iteration algorithm
in HyTech [28]. The implementation is based on the sym-
bolic controllable timed predecessors operator defined in [13]
and first implemented in HyTech for cost optimal reach-
ability games [14]. The choice of HyTech compared to
state-of-the-art hybrid systems’ analyzers like PHAVer [25]
or SpaceEx [26] is motivated by the fact that HyTech has a
built-in script language in which we can define the symbolic
controllable predecessors operator easily. The symbolic al-
gorithm/program in HyTech for the example of Fig. 1 is
given in Appendix E. The result of the computation for the
value iteration algorithm with c = 4 is depicted on Fig. 2 and
show the winning zones for Eve in locations Eve and Adam.

The value iteration algorithm is implemented as the iterative
computation of the fixpoint of a safety hybrid game. The
hybrid game has a special variable E, the energy variable
which is the only variable that is not a clock. Each location
ℓ of the original WTG has a counterpart location ℓH in the
hybrid game. If w(ℓ) = k ∈ Z then the derivative of E in ℓH
is given by dE

dt
= k; each discrete transition (ℓ, g, z, ℓ′) of the

WTG also has a counterpart transition (ℓ, g, z∧E ∶= E+k, ℓ′)
if w(ℓ, g, z, ℓ′) = k.
A state of the hybrid game is thus defined by ((ℓ, v),E)
where (ℓ, v) is a state of the original WTG. The existence
of a winning strategy for the c-energy game T is reduced to
the existence of a winning strategy in the associated hybrid
game for the safety objective E ≥ 0 (in each location.) Let
Safe = {((ℓ, v),E) ∣ 0 ≤ E ≤ c}, where the upper bound c is
the one used in the lift function from subsection 5.1. We
define the winning states of the safety hybrid game as the
greatest fixpoint of:

X = Safe ∩ Predt(Up(cPred(X)),uPred(X))
where cPred (controllable predecessor), uPred (uncontrol-
lable predecessor), Predt (temporal predecessor) are defined



as in [13, 14] and

Up(Y ) = {((ℓ, v), e′) ∣ ∃((ℓ, v), e) ∈ Y ∧ e′ ≥ e}.
The Up operator captures in our symbolic implementation
the role of the bound c in the liftc operator: indeed, while
the set Xi contains only triples ((ℓ, v), e) where e ≤ c, it is
clear that we must include in Xi+1 triples ((ℓ′, v′), e′) from
which Eve can force in one round the upward closure (for
the energy level) of safe states in i steps. This is because if
Eve can win from (ℓ, v) with a given energy level then she
can win from that state with any greater energy level.

Example 5. In Fig. 26, plain (resp. dashed) arrows are
controllable (resp. uncontrollable) edges. In location ℓ0, no
task is scheduled and the (battery) energy is recharging at
rate +3. There is a background task B to be run at least
every 2 t.u. if the other task has not arrived (and actually
running in location ℓ1) and a sporadic task S (interrupt)
that can happen any time. The task B can be scheduled
from location ℓ0 (this is controllable) and we can stop to
run it after at least 1 t.u. (measured by clock x.) The back-
ground task B has less priority than S and if S happens it is
scheduled and B preempted. If we schedule the background
task B, we are rewarded by +2 energy units. In locations
ℓ0, ℓ1, the sporadic task S can occur (uncontrollable) and in
this case it must be scheduled (going to ℓ2) which consumes
energy at rate −α. The execution time of S is at most 1 t.u.
(measured by clock x) and successive occurrences of S must
be separated by at least 2 t.u. (measured by clock y.)

ℓ0, +3
[x ≤ 2]

ℓ1, −1 [x ≤ 3]

ℓ2, −α
[x ≤ 1]

x ∶= 0,+2

y ≥ 2, y ∶= 0, x ∶= 0

x ≥ 1, x ∶= 0
y ≥ 2, y ∶= 0, x ∶= 0

x ≤ 1, x ∶= 0

Figure 26: Scheduling Example

On this example, our symbolic algorithm terminates. If
α = 3, the HyTech program (Appendix E) gives a minimal
initial energy level of 3 to be able to win the game (notice
that we start with y = 2 and thus the sporadic task can arrive
at the initial instant.) The optimal strategy from the point
of view of Adam is to trigger the sporadic task S as often as
possible. While a winning strategy for Eve (scheduler) is to
wait in location ℓ0 as long as possible. If the sporadic task
arrives again, it is not before 1 t.u. and thus we are rewarded
by at least 3 energy credits. If the sporadic does not occur
before x = 2, we get 6 energy credits, and we can switch to
ℓ1 which increases energy by 2. This ensures winning the
energy game, see Fig. 27 for a graphical representation of
the winning region. The set of winning state computed by
the HyTech program can be used to determine the mini-
mal initial credit for each possible initial state: for example
energy ≥ 3 is necessary for the initial condition x = 0, y = 2.)

Now assume α = 4. The previous strategy is not winning
any more. However, the result of the HyTech program is

now: energy > 4 (for x = 0, y = 2 as initial state.) In this case,
while the minimal (infimum) initial credit is 4, there is no
strategy realizing this value; the game cannot be won with
an initial credit of 4 but rather with any value strictly above
4. Note that this information is collected by our symbolic
algorithm but not by the operator liftc as this operator is
defined using inf, sup operators.

ℓ2 ℓ0 ℓ1

δ

1 2 3 4 5

1

2

3

4

5

x

energy

4 + ε 4 + ε
′

Figure 27: Winning Strategy for Eve, α = 4.
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APPENDIX

A. HYTECH PROGRAMS
1∶ −− constant definition for c in liftc

define(MAX,4)

var x: clock; −− regular clock

energy: analog; −− the energy variable

c,u: discrete; −− used to indicate type of move

6∶ −− if c is changed -> control action

−− if u is changed -> uncontrollable action

t,t1: analog; −− these variabes are not part of the model

−− we just need them to do some existential

−− quantification to compute other sets

11∶ automaton H

synclabs: ;

initially l0 & x=0;

−− note that Hytech does not use the constraint x ≥ 0 when x

−− is a clock. This is why we add it in the invariant

16∶ loc l0: while x>=0 & x<=2 wait {denergy=3,dt=-1,dt1=-1}

−− one controllable transition -c changed-

when x>=1 do {u’=u,c’=1-c,x’=0} goto l1;

loc l1: while x>=0 & x<=2 wait {denergy=-2,dt=-1,dt1=-1}

21∶ −− one uncontrollable transition -u changed-

when x>=1 do {u’=1-u,c’=c,x’=0} goto l0;

end

var init_reg,safe, −− set of states

26∶ STOP, −− set of states from which time is stopped

uPreX,uPrebarX,cPreX, −− variables in the CPre operator

X,Y,Z: region ; −− variables used in computation

−− first define the initial and winning regions

31∶ init_reg := loc[H]=l0 & x=0 & energy>=1 ;

−− safe states truncated upto MAX

safe := energy>=0 & energy<=MAX ;

−− states from which time cannot elapse

STOP := ~(hide t,c,u in t>0 & c=0 & u=0 &

36∶ pre(True & t=0 & c=0 & u=0) endhide);

−− compute the fixpoint by of liftc
X := iterate X from safe using

{

41∶ −− uncontrollable predecessors of the complement of X

uPrebarX := hide t,u in t=0 & u=0 & pre(~X & u=1 & t=0) endhide;

−− controllable predecessors of X

cPreX := hide t,c in t=0 & c=0 & pre(X & t=0 & c=1) endhide ;

−− uncontrollable predecessors leading to winning states

46∶ uPreX := hide t,u in t=0 & u=0 & pre(X & u=1 & t=0) endhide;

−−

Z := (cPreX | (uPreX & ~uPrebarX & STOP)) ;

−− compute Up(Z) in Y

Y := hide t1 in

51∶ ((hide energy in Z & t1 >= energy endhide) & energy = t1)

endhide;

−− set from which we can reach Y while

−− avoiding uPreBarX all along (works only if time deterministic !!)

X := safe & hide t in

56∶ (hide c,u in t>=0 & c=0 & u=0 & pre(Y & t=0 & c=0 & u=0)

endhide) &

~(hide t1 in

(hide c,u in

t1>=0 & t1<=t & c=0 & u=0 &

61∶ pre(uPrebarX & t1=0 & c=0 & u=0)

endhide)

endhide)

endhide;

};

66∶

−− we win if init reg is included in Up(X)

Y := hide t1 in (

(hide energy in X & t1 >= energy endhide) & energy = t1 )

endhide;

71∶ if init_reg<=Y then

prints "[INFO] Eve can win energy game!";

prints "[INFO] Set of winning states is:" ;

print Y;

prints "[INFO] winning states at init region:" ;

76∶ print Y & init_reg;

prints "[INFO] Minimum initial credit needed";

print omit all locations hide x in Y &

(hide energy in init_reg endhide)

endhide;

81∶ else

prints "[INFO] Could not prove that Eve can win energy game";

prints "[INFO] Try to increase max constant";

endif;

Figure 28: HyTech Program to Solve Energy Game

of Fig. 1.



1∶ −− Example for energy games

−− Two tasks: one background task B that can be run or not

−− One sporadic S, that can occur not too often, and with a bounded

−− execution time

6∶ −− constant definition

define(MAX,10)

define(interT2,2)

var

11∶ x,y: clock;

energy: analog; −− the energy variable

c,u: discrete; −− used to indicate that

−− if c is changed -> control action

−− if u is changed -> uncontrollable action

16∶ t,t1: analog; −− these variables are not part of the model

−− we just need them to some existential quantification

−− to compute controllable time predecessors

automaton H

synclabs: ;

21∶ initially l0 & x=0;

−− note that Hytech does not use the constraint x>=0 when x

−− is a clock. This is why we add it in the invariant.

−− recharging mode (not more than 2 t.u.)

26∶ loc l0: while x>=0 & x<=2 wait {denergy=3,dt=-1,dt1=-1}

−− one controllable transition -c changed- start running T1

when True do {energy’=energy+2,u’=u,c’=1-c,x’=0} goto l1;

−− one uncontrollable transition -u changed- arrival of T2

when y>=interT2 do {energy’=energy,u’=1-u,c’=c,y’=0,x’=0} goto l2;

31∶

−− T1 running for at most 3 t.u.

loc l1: while x>=0 & x<=3 wait {denergy=-1,dt=-1,dt1=-1}

−− one controllable transition -c changed- stop running T1

when x>=1 do {energy’=energy,u’=u,c’=1-c,x’=0} goto l0;

36∶ −− one uncontrollable transition -u changed- arrival of T2

when y>=interT2 do {energy’=energy,u’=1-u,c’=c,y’=0,x’=0} goto l2;

−− T2 running for at most 1 t.u.

loc l2: while x>=0 & x<=1 wait {denergy=-4,dt=-1,dt1=-1}

41∶ when x<=1 do {energy’=energy,u’=1-u,c’=c,x’=0} goto l0;

end

var init_reg,safe, −− set of states

STOP, −− set of states from which time is stopped

46∶ uPreX,uPrebarX,cPreX, −− variables in the CPre operator

X,Y,Z: region ; −− variables used in computation

−− rest is similar to previous program

Figure 29: HyTech Program to Solve Energy Game

of Fig. 26.
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