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Abstract. Computing the natural join of a set of relations is an important operation in relational
database systems. The ordering of joins determines to a large extent the computation time of the join.
Since the number of possible orderings could be very large, query optimizers first reduce the search
space by using various heuristics and then try to select an optimal ordering of joins. Avoiding
Cartesian products is a common heuristic for reducing the search space, but it cannot guarantee
optimal ordering in its search space, because the cheapest Cartesian-product-free (CPF, for short)
ordering could be significantly worse than an optimal non-CPF ordering by a factor of an arbitrarily
large number. In this paper, we use programs consisting of joins, semijoins, and projections for
computing the join of some relations, and we introduce a novel algorithm that derives programs from
CPF orderings of joins. We show that there exists a CPF ordering from which our algorithm derives
a program whose cost is within a constant factor of the cost of an optimal ordering. Thus, our result
demonstrates the effectiveness of avoiding Cartesian products as a heuristic for restricting the search
space of orderings of joins.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Nonnumerical Algorithms and
Problems—sequencing and scheduling; H.2.4 [Information Systems]: Systems—query processing; I.2.8
[Computing Methodologies]: Problem Solving, Control Methods, and Search—plan execution, forma-
tion generation
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1. Introduction

Computing the natural join of a set of relations plays an important role in
relational and deductive database systems. In order to solve this problem
efficiently, we need to find a way of reducing the number of intermediate tuples
to compute the final result. A naive strategy may produce a huge number of
intermediate tuples during the computation, even though the final result is very
small.
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If the scheme of these relations is acyclic, we can compute the join efficiently,
namely in time polynomial in the size of the input relations and the output [Beeri
et al. 1983; Bernstein and Goodman 1987; Ullman 1989]. Yannakakis [1981] has
extended this idea in order to compute a project–join expression with an acyclic
database scheme. For cyclic schemes, however, the problem cannot be solved in
polynomial time unless P5NP, because checking whether the join of a set of
relations is nonempty is an NP-complete problem [Chandra and Merlin 1977].
Thus, in general, we cannot expect to find an efficient algorithm for computing

the join of some relations. Query optimizers [Selinger et al. 1989; Wong and
Youseffi 1976] search the space of orderings of joins and try to select a cheap
ordering that does not generate huge intermediate relations. Since the number of
possible orderings could be very large, query optimizers reduce the search space
by using various heuristics. One heuristic commonly used in the evaluation of
joins is to use linear orderings of joins, which have the form (. . . (R1 ?3? R2) ?3?

. . .) ?3? Rn. This heuristic is of practical interest, because it allows us to keep only
one temporary relation at any time. Another heuristic is to avoid Cartesian
products because they tend to be expensive.
Query optimizers in many well-known systems, such as INGRES [Wong and

Youseffi 1976] and System R [Selinger et al. 1979], use one or both heuristics.
Smith and Genesereth [1985] considered linear orderings of joins (conjunctions,
to them), and gave an “adjacency restriction rule” that improves the cost of a join
by locally swapping two adjacent relations. Swami [1989] and Swami and Gupta
[1988] used both heuristics to reduce the search space and compared several
statistical techniques.
The aim of the above heuristics is to let query optimizers search a small

subspace of the entire orderings of joins. However, restricting the search space
by using one of the above heuristics may result in the loss of all optimal orderings
from the search space; that is, both the cheapest linear ordering and the cheapest
CPF ordering could be much worse than an optimal nonlinear and non-CPF
ordering by a factor of an arbitrarily large number. We will give such an example
in Section 2.
The following question naturally arises: Under what conditions on the actual

data, can we find an optimal linear ordering or an optimal CPF ordering? Tay
[1993] considers this problem and gives some sufficient conditions, which,
however, are rarely expected to hold in general cases.
In this paper, we employ programs consisting of joins, semijoins, and projec-

tions for computing multiple joins, and we present a novel algorithm that derives
a program from a CPF ordering of joins without looking at the actual data. Our
main result is that there exists a CPF ordering from which our algorithm derives
a program whose cost is within a factor k of the cost of an optimal ordering if the
join of the actual data is nonempty. k is polynomial in the number of relations
and independent of the amount of the actual data. In practice, the number of
relations tends to be much smaller than the size of the actual data, and therefore
k can be thought of as a constant.
Our result demonstrates the effectiveness of avoiding Cartesian products as a

heuristic to reduce the search space of orderings of joins. Query optimizers can
search the subspace of CPF orderings and try to find a CPF ordering from which
an efficient program can be derived.
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To estimate the cost of executing an ordering of joins, instead of using a
precise measure that takes into account indexes, block sizes, cache sizes, and
other hardware-dependent factors, we simply use the number of tuples that
appear in the input relations or the relations generated. Although not ideal, this
measure is reasonable because when the cost is n, the cost of the actual best
possible method is no more than O(n log n) and no less than V(n) [Ullman
1989].
Section 2 introduces some terms. Section 3 presents the algorithm for deriving

programs from CPF orderings of joins, and then proves our main claim.

2. Preliminaries

2.1. RELATIONAL DATABASES. A relation scheme is a finite set of attributes.
We use bold letters, such as V, to denote relation schemes. According to custom,
ABC denotes a relation scheme that consists of the attributes A, B, and C. A
tuple (or a record) over the relation scheme V is a mapping of the attributes in V
to constants. For instance, (1, 2, 3) is a tuple over ABC.
A relation over a relation scheme V is a set of tuples over V, and is represented

by R(V). For instance, R(AB) is a relation over AB. A database is a set of
relations. For example, {R(AB), R(BC), R(CD), R(DA)} is a database. We
use calligraphic letters, such as $, to denote databases. Let att($) denote the set
of all attributes in $. For instance,

att~$R~AB! , R~BC! , R~CD! , R~DA!%! 5 $A, B, C, D% .

A database scheme is a multiset of relation schemes, which may consist of several
relation schemes having the same set of attributes. We use bold letters, such as
D, to denote database schemes. The database scheme of a database {R(V1), . . . ,
R(Vn)} is {V1, . . . , Vn}. For instance, the database scheme of {R(AB), R(BC),
R(CD), R(DA)} is {AB , BC, CD, DA}.
In order to explain some notions regarding database schemes, it is helpful to

use a hypergraph in order to represent a database scheme, with the attributes as
nodes, and the relation schemes as hyperedges. For instance, the hypergraph in
Figure 1 represents {AB, BC, CD, DA}.
Two relation schemes, say V1 and Vk, are linked if there is a sequence of

relation schemes V1, . . . , Vk such that Vi ù Vi11 is nonempty for 1 # i , k. For
instance, in Figure 1, AB and CD are linked, because AB, BC, CD meets the
above condition. A database scheme is connected if any two relation schemes are
linked. For example, {AB, BC, CD, DA} is connected. A component C of a
database scheme D is a subset of D such that any relation scheme in C and any
relation scheme in D 2 C are not linked. For instance, {AB, BC} and {DE,
EF} are components of {AB, BC, DE, EF}.

FIG. 1. Hypergraph for {AB, BC, CD, DA}.
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A database is connected if its database scheme is connected. For instance,

$R~AB! , R~BC! , R~CD! , R~DA!%

is connected, because its database scheme {AB, BC, CD, DA} is connected. A
component # of a database $ is a subset of $ such that the database scheme of #
is a component of the database scheme of $. For example, {R(AB), R(BC)}
and {R(DE), R(EF)} are components of {R(AB), R(BC), R(DE), R(EF)}.
Let t be a tuple over a relation scheme V and let X be a subset of V. t[X]

denotes the restriction of the mapping t onto X. For instance, if (1, 2, 3) is a
tuple over ABC , (1, 2, 3) [AB] means (1, 2). The projection of a relation R(V)
onto X, denoted pX(R(V)), is {t[X] t [ R(V)}. When we write pXR(V), X must
be a subset of V.
The (natural) join of relations R(V) and R(W), denoted R(V) ?3? R(W), is

$t u t is a tuple over V ø W, t@V# [ R~V! and t@W# [ R~W!% .

m [ R(V) agrees with (or joins with) n [ R(W) if m[V ù W] 5 n[V ù W]. The
semijoin of R(V) by R(W), denoted R(V) ?3 R(W), is pV (R(V) ?3? R(W)).

2.2. JOIN EXPRESSIONS. A join expression is an expression with relations as
operands, join (?3?) as a binary operator, and parentheses. A join expression over
a database $ is one in which each relation in $ appears exactly once. For
instance,

~R~AB! ?3? R~BC!! ?3? ~R~CD! ?3? R~DA!!

is a join expression over {R(AB), R(BC), R(CD), R(DA)}. We can specify an
ordering of joins by a join expression. For instance, the above join expression
indicates that we execute R(AB) ?3? R(BC) and R(CD) ?3? R(DA) indepen-
dently, and then perform the whole join.
Although join expressions over $ 5 {R(V1), . . . , R(Vk)} take joins in

different orders, owing to the commutativity and associativity of joins, all of
them return the same result, and we will therefore denote this result ?3? $ (or
R(V1) ?3? . . . ?3? R(Vk)).
Join expressions specify the order of the joins by means of parentheses;

however, to clarify the order it is helpful to represent a join expression as a tree
structure. The join expression tree T for a join expression E over $ is a tree
inductively defined as follows:

—Each node of T is a database.
—If E is a single relation R(V), T has a single node {R(V)}.
—If E has the form of E1 ?3? E2, the root of T is $, and the root has two subtrees
that are join expression trees for E1 and E2.

For instance, Figure 2 shows the join expression tree for

~R~AB! ?3? R~BC!! ?3? ~R~CD! ?3? R~DA!!.

E1 ?3? E2 is a Cartesian product if E1 and E2 do not share any attribute. For
example, R(AB) ?3? (R(CE) ?3? R(ED)) is a Cartesian product, since no
attribute appears both in R(AB) and in R(CE) ?3? R(ED). A join expression is
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Cartesian-product-free (or CPF, for short) if none of its joins is a Cartesian
product. For instance, (R(AB) ?3? R(BC)) ?3? (R(CD) ?3? R(DA)) is CPF. On
the other hand, a join expression is non-CPF if it contains a Cartesian product.
For instance, (R(AB) ?3? R(CD)) ?3? (R(BC) ?3? R(DA)) is non-CPF. A join
expression tree is CPF if its join expression is CPF.
As a measure of the cost of executing a join expression, we use the number of

tuples that appear in the input relations or the relations generated during the
execution. Let uR(V)u denote the number of tuples in R(V). We call uR(V)u the
size of R(V). The cost of solving join expression E is defined as

O$ uF u uF is a subexpression of E% .

For instance, the cost of (R(AB) ?3? R(BC)) ?3? (R(CD) ?3? R(DA)) is

u~R~AB! ?3? R~BC!! ?3? ~R~CD! ?3? R~DA!!u

1 uR~AB! ?3? R~BC!u 1 uR~CD! ?3? R~DA!u

1 uR~AB! u 1 uR~BC! u 1 uR~CD! u 1 uR~DA! u.

The cost of solving the join expression tree T for E is defined as the cost of E.
Put another way, the cost of T is

O$ u?3? -u u- is a node in T%.

There are many methods that take advantage of indexes, block sizes, and main
memory sizes to compute joins. Although not ideal, our cost measure is
reasonable, because when the cost is n the cost of the actual best possible
method is no more than O(n log n) and no less than V(n) [Ullman 1989].

Example 2.2.1. Let $ be the database

$R~ABC! , R~CDE! , R~EFG! , R~GHA! , R~BI! , R~DI! , R~FI! , R~HI!% .

The hypergraph in Figure 3 shows the database scheme of $.

FIG. 2. Join expression tree for (R(AB) ?3? R(BC)) ?3? (R(CD) ?3? R(DA)).

FIG. 3. Hypergraph for {ABC, CDE, EFG, GHA, BI, DI, FI, HI}.
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We use the tuples in Figure 4 for {R(ABC), R(CDE), R(EFG),
R(GHA)}. Let R(m) denote {( x, y) u x 5 1, . . . , 10mk, y 5 1, . . . , 10k} ø
{(c, c)}, and define R(BI) 5 R(3), R(DI) 5 R(2), R(FI) 5 R(1), and
R(HI) 5 R(2).
We assume that k $ 1. Observe that $ is locally (pairwise) consistent; that is,

for any pair of relations R(V) and R(W), pv (R(V) ?3? R(W)) is equal to R(V). $,
however, is not globally consistent; that is, it is not true that for any relation R(V),
pv(?3? $) is equal to R(V). Actually ?3? $ has only one tuple such that the value of
each attribute is c. This fact implies that it is useless to apply a semijoin program
[Ullman 1989] to this database.
Among all join expressions, an optimal join expression is one that computes

((R(ABC) ?3? R(EFG)) ?3? (R(CDE) ?3? R(GHA))) first and then takes the join
of the running relation and each of {R(BI), R(DI), R(FI), R(HI)} one by one.
An example of such a join expression is:

~~~~~R~ABC! ?3? R~EFG!! ?3? ~R~CDE! ?3? R~GHA!!!

?3? R~BI!! ?3? R~DI!! ?3? R~FI!! ?3? R~HI!,

and its cost is less than 104k11. Note that the above join expression is nonlinear
and non-CPF. It is left to the reader to show that the cost of any CPF (or any
linear) join expression exceeds 2 z 105k.
Since we can increase k as much as we want, both the cheapest linear join

expression and the cheapest CPF join expression are much worse than the
optimal nonlinear and non-CPF join expression by orders of magnitudes as
mentioned in Section 1. e

2.3. PROGRAMS. We now define programs that consist of joins, semijoins, and
projections. A relation scheme variable X is a variable for storing a relation
scheme. For instance, if X stores AB, R(X) denotes a relation over AB. A
statement has one of the following forms:

Project statement: R~X) :5 pYR~Z! , where Y # Z.

Join statement: R~X) :5 R~Y! ?3? R~Z!

Semijoin statement: R~X) :5 R~X! ?3 R~Y!

FIG. 4. Database of {R(ABC), R(CDE), R(EFG), R(GHA)}.

62 SHINICHI MORISHITA



In each statement, the left-hand side of the assignment operator (:5) is the head,
and the right-hand side is the body. X, which appears in the head of each
statement, must be a relation scheme variable. Y and Z could be either relation
scheme variables or instances of relation schemes. Each statement destructively
assigns the relation computed in the body to the head R(X), and may also change
the value of X. The project statement sets X to the value of Y, and the join
statement sets X to the value of Y ø Z, but the semijoin statement leaves X
untouched. For instance, “R(X) :5 pABR(ABC)” is a project statement. After
the execution, R(X) 5 pABR(ABC), and X 5 AB. Next, suppose that R(Y) 5
pABR(ABC). After the execution of “R(Y) :5 R(Y) ?3? R(BD),”, R(Y) 5
(pABR(ABC)) ?3? R(BD), and Y 5 ABD .
A program over a database $ is a sequence of statements, say s1, . . . , sn, such

that every R(V) in the body of a statement (say sk) must appear either in $ or in
the head of an earlier statement sj( j , k). This condition ensures that any
relation scheme variable V is set to a relation scheme when we evaluate a
statement having V in its body. For example, consider the following program:

R~X) :5 R~AB! ?3? R~BC!, R~X) :5 R~X! ?3? R~CD!.

The first statement sets R(X) to R(AB) ?3? R(BC), and the second sets R(X) to
R(AB) ?3? R(BC) ?3? R(CD).
We define the cost of executing a program P over $ in terms of the number of

tuples in the input and intermediate relations. The cost of executing P is formally
defined as

O$ uR u u R is an element of $ or the head of a statement in P% .

The cost of “R(X) :5 R(AB) ?3? R(BC), R(X) :5 R(X) ?3? R(CD)”, for
instance, is

uR~AB! u 1 uR~BC! u 1 uR~CD! u

1 uR~AB! ?3? R~BC!u 1 uR~AB! ?3? R~BC! ?3? R~CD!u.

We will use two complex statements sometimes for readability.

R~X) :5 ~pYR~Z!! ?3 R~U!

is a combination of the following projection statement and semijoin statement:

R~W) :5 pYR~Z! , R~X) :5 R~W! ?3 R~U!,

where W is a new relation scheme variable that does not appear elsewhere.

R~X) :5 R~X! ?3? pYR~Z!

consists of the following projection statement and join statement:

R~W) :5 pYR~Z! , R~X) :5 R~X! ?3? R~W!,

where W is a new relation scheme variable. When we calculate the cost of a
program, complex statements are replaced with normal statements.
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3. Results

We will present two algorithms in this section. Let $ be a database such that ?3? $
is not empty. Without loss of generality, we can assume $ is connected, because
otherwise we would compute the join of each connected component of $
individually and combine them. Given a join expression tree T1 over $,
Algorithm 1 outputs a CPF join expression tree T2 over $. Given T2, Algorithm
2 generates a program for computing ?3? $ such that the cost of the program is
within a factor k of the cost of T1, where k is polynomial in the number of
relations in $. Consider the case in which T1 is optimal. We see that there exits
a CPF join expression tree (namely T2) from which Algorithm 2 derives a
program whose cost is within a factor k of the cost of an optimal join expression
tree. Neither Algorithm 1 nor Algorithm 2 use the actual tuples of $, but they
only consider the schemes of $.

3.1. DERIVING A CPF JOIN EXPRESSION TREE

Algorithm 1. Given a join expression tree T1 over a connected database $,
this algorithm outputs a CPF join expression tree over $.
Let us create a table that contains a CPF join expression tree over each

component of every node in T1. We visit each node of T1 in some bottom-up
order; that is, we visit each node after having visited all its children. Thus we
begin at the leaves. Since each leaf is the CPF join expression tree over itself, we
put all leaves into the table. We then visit an internal node, say 8, whose
children have been visited. Let + and 5 be the left and right children of 8
respectively. See Figure 5.
Let # be an arbitrary component of 8. If the table already includes a tree

rooted at #, we add nothing to the table. Otherwise, # is neither a component of
+ nor a component of 5, and is therefore the union of some components of +
and some components of 5. All components in 8 can be computed by the
following steps:

(1) Let us regard components in + and components in 5 as nodes. Note that any
two components in +(5) do not share any attribute. Generate a bipartite
graph between + and 5 in which we draw an edge between a component in
+ and a component in 5 whenever the two components share an attribute.
Observe that a connected component in the bipartite graph exactly corre-
sponds to a component in 8.

(2) Visit all nodes in the bipartite graph in a depth-fist manner by scanning each
edge only once, and output all connected component in the graph. Although
there could be various ways of visiting nodes in a depth-first manner, we
select one order arbitrarily, because we obtain the same set of nodes for the
same component in 8.

Suppose that component # in 8 is found by visiting nodes for representing
components #1, #2, . . . , #m in this order. Note that any # i(1 , i) has some
common attributes with some earlier # j( j , i). Since the table has a CPF join

FIG. 5. Visit node 8 in T1.
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expression tree over each # i(1 # i # m), we combine those CPF join expression
trees into a CPF join expression tree over #, as shown in Figure 6.
Finally, after we have processed the root $, since $ is connected, we add to

the table a CPF join expression tree over $. e

Example 3.1.1. Let us apply Algorithm 1 to the tree in Figure 7, which has
Cartesian products. First, we add to the table the databases at all leaves. Then we
visit all internal nodes in bottom-up order; for instance, {R(AB), R(BC)},
{R(AB), R(BC), R(EFG)}, {R(CD), R(DE)}, {R(CD), R(DE), R(GHA)},
and the root.

—{R(AB), R(BC)} has only one component, which is itself. Since the table
does not contain any tree rooted at this component, we make a tree having
{R(AB), R(BC)} as its root, {R(AB)} as its left child, and {R(BC)} as its
right child, and we add the tree to the table.

—{R(AB), R(BC), R(EFG)} has two components, {R(AB), R(BC)} and
{R(EFG)}. The table already has trees rooted at them.

—{R(CD), R(DE)} has only one component, which is itself. Since the table
does not contain any tree rooted at this component, we make a tree having
{R(CD), R(DE)} as its root, {R(CD)} as its left child, and {R(DE)} as its
right child, and we add the tree to the table. At this point, the table contains
eight join expression trees, which are shown in Figure 8.

—{R(CD), R(DE), R(GHA)} has two components, {R(CD), R(DE)} and
{R(GHA)}. The table already has trees rooted at them.

—The root has only one component, which is itself. As the table does not have a
tree rooted at this component, we need to create such a tree. The left child of

FIG. 7. Input to Algorithm 1.

FIG. 6. Combining CPF join expression trees over - i into
one over #.
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the root has two components, {R(AB), R(BC)} and {R(EFG)}, and the
right child has two components {R(CD), R(DE)} and {R(GHA)}. Since the
table has trees rooted at those four components (see Figure 8), we combine
those four trees. There are 16 alternative ways of combining those trees, and
we can select an arbitrary one. Figure 9 shows one instance. Observe that we
cannot create a linear join expression tree from those four trees.

The cost of the tree in Figure 9 could be significantly greater than the cost of the
tree in Figure 7 in some databases. For instance, consider the tuples shown in
Figure 10. e

Here we discuss some properties of Algorithm 1.
The reader might imagine that if we make right choices in Algorithm 1, we can

always generate a linear and CPF join expression tree, but Example 3.1.1 gives a
counter-example.

FIG. 8. Intermediate state of the table produced by Algorithm 1.

FIG. 9. Output from Algorithm 1.

FIG. 10. Database of Example 3.1.1.
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Example 3.1.1 also shows that the cost of a join expression tree T2 produced by
Algorithm 1 could be much greater than the cost of the original tree T1.
Algorithm 2, which will be presented in Subsection 3.2, derives from T2 a
program whose cost is within a factor k of the cost of T1, where k is polynomial
in the number of relations.
The computation time of Algorithm 1 is polynomial in the number of relations

and the number of attributes. When we visit 8, suppose that the number of
relations in 8 (+, 5, respectively) is r8(r+, r5). Step (1) tests if each pair of a
component in + and a component in 5 shares an attribute. Let a denote the
number of attributes, and then this test requires O(a ln a) time by sorting
attributes in each component. This test is performed for r+r5 pairs. Thus, Step
(1) creates at most r+r5 edges, each edge of which is scanned only once by Step
(2). Let f(r+) ( f(r5), f(r8), respectively) denote the number of all pairs of
components tested during Algorithm 1 visits all nodes in the subtree rooted at +
(5, 8). Since r8 5 r+ 1 r5, we have

f~r8! 5 f~r+ 1 r5! # r+r5 1 f~r+! 1 f~r5! .

Note that f(1) 5 0 and f(2) 5 1. We can prove f(i) , i2/ 2 by the induction on
i.
Let us consider the case in which Algorithm 1 takes a CPF tree as input. As

each database in a CPF join expression tree is connected, when we visit a node
9, the table has two trees rooted at 9’s two children. Thus, there are two
alternative ways of combining those two trees to make a tree rooted at 9.
Consequently, Algorithm 1 may output a tree that is obtained from the input
CPF tree by swapping subtrees at some nodes. But observe that the cost of the
input tree is equal to that of the output tree for any database.

3.2. DERIVING A PROGRAM FROM A CPF TREE. Before presenting Algorithm
2 we will introduce projections of a special kind, called core relations, which are
frequently used in Algorithm 2.
Relation scheme V is a core scheme of a set of relation schemes {W0, . . . , Wn}

if for any distinct pair of Wi and Wj, Wi ù Wj # V, and V # W0 ø . . . ø Wn.
The intersection of all core schemes of {W0, . . . , Wn} is also a core scheme of
{W0, . . . , Wn}, and it is called the least core scheme of {W0, . . . , Wn}. We can
easily see that the least core scheme is the set of attributes each of which appears
in at least two distinct relation schemes in {W0, . . . , Wn}.

pV(R(W0) ?3? . . . ?3? R(Wn)) is a core relation of {R(W0), . . . , R(Wn)} if V is
a core scheme of {W0, . . . , Wn}. The projection is the least core relation if V is
the least core scheme.
For instance, BCDE is a core scheme of {AB, BC, CD, CE}, and BC is the

least core scheme. pBCDE(R(AB) ?3? R(BC) ?3? R(CD) ?3? R(CE)) is a core
relation of {R(AB), R(BC), R(CD), R(CE)}, and pBC(R(AB) ?3? R(BC) ?3?

R(CD) ?3? R(CE)) is the least core relation.

Algorithm 2. Let $ be a connected database such that ?3? $ is not empty, and
let T1 be a join expression tree over $. Suppose that Algorithm 1 takes T1 as
input and outputs a CPF join expression tree T2. From T2, we will create a
program for computing ?3? $.

67Avoiding Cartesian Products for Multiple Joins



Visit all internal nodes of T2 in bottom-up order; that is, visit each node after
visiting all its children. Suppose that we visit the node 9 shown in Figure 11. We
will create a sequence of statements for computing the least core relation of {?3?

00, . . . , ?3? 0n}. Furthermore, if 9 is the right child of its parent, we will also
generate a sequence of statements for computing ?3? 9.
We will assume that for each i 5 0, . . . , n, ?3? 0 i is stored in R(Wi). If 0 i is

a leaf node, assume that 0 i 5 {R(Wi)}, which implies that ?3? 0 i 5 R(Wi). If
0 i is an internal node, 0 i is the right child of its parent, and hence 0 i has been
visited. Thus, we have created a sequence of statements for computing ?3? 0 i,
and assume that ?3? 0 i is stored in R(Wi).
We now create a sequence of statements for computing the least core relation

of {R(W0), . . . , R(Wn)} that is set to R(Vn).

(1) When n 5 1, create

R~V1! :5 ~pW0 ù W1 R~W0!! ?3 R~W1!.

From Proposition A.1 in Appendix A, R(V1) is set to the least core relation
of {R(W0), R(W1)}.

(2) When n . 1, since we have visited 9n21, assume that R(Vn21) stores the
least core relation of {R(W0), . . . , R(Wn21)}. We first test whether Vn21 is
the least core scheme of {W0, . . . , Wn21, Wn}. Since Vn21 is assumed to be
the least core scheme of {W0, . . . , Wn21}, we only need to check whether Wi
ù Wn # Vn21 for each i 5 0, . . . , n 2 1,

(a) If Vn21 is the core scheme, create

R~Vn! :5 R~Vn21! ?3 R~Wn!

Figure 12 illustrates the hypergraph for {W0, . . . , Wn21, Wn}. The gray
region shows Vn21, and the region enclosed in the bold line represents

FIG. 12. Hypergraph for Case 2(a).

FIG. 11. Visiting node 9 in T2.
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Wn. From Proposition A.1 in Appendix A, this statement sets R(Vn) to
the least core relation of {R(W0), . . . , R(Wn)}.

(b) Otherwise, let ^ be {R(Wj) u 0 # j , n, Wj ù Wn Þ f}, and generate
the following statements:

R~X) :5 pVn 2 1 ù att~^!R(Vn21!

R~X) :5 R~X! ?3? ~pWj"(Vn2 1 øWn)R~Wj!!,

for each R~W j! [ ^ such that ~W j ù Wn! 2 Vn21 Þ f

R~X) :5 R~X! ?3 R~Wn!

R~Vn! :5 R~Vn21! ?3? R~X!

From Proposition A.2 in Appendix A, the last statement sets R(Vn) to
the least core relation of {R(W0), . . . , R(Wn)}. For instance, let us
consider the case when ^ 5 {Wj1, Wj2}, which is illustrated in Figure
13. The gray region in each picture shows the value of X or Vn after the
execution of each of the above statements.

(3) Furthermore, if 9 is the right child of 9’s parent or the root of T2, for each
Wi that is not a subset of Vn create

R~Vn! :5 R~Vn! ?3? R~Wi!.

From Proposition A.3 in Appendix, the last statement sets R(Vn) to
R(W0) ?3? . . . ?3? R(Wn), which is equal to ?3? 9.

Repeat the above steps until we visit the root $ of T2; we then have a program
for computing ?3? $. e

Example 3.2.1. Let us apply Algorithm 2 to the CPF join expression tree in
Figure 9, which Algorithm 1 derives from the non-CPF join expression tree in
Figure 7.
Consider the case in which we visit the root in Figure 9 after having visited all

the other internal nodes. Since we have visited {R(CD), R(DE)}, which is the
right child of its parent, suppose that

R~CDE! 5 R~CD! ?3? R~DE!.

Since we also have visited the left child of the root, assume that R(ABC) stores
the least core relation of {R(AB), R(BC), R(CDE), R(GHA)}; that is,

R~ABC! 5 pABC~R~AB! ?3? R~BC! ?3? R~CDE! ?3? R~GHA!!.

Now we will create a sequence of statements for computing the least core
relation of {R(AB), R(BC), R(CDE), R(GHA), R(EFG)}. Since ABC is not
the least core relation of {AC, BC, CDE, GHA, EFG} (the hypergraph of
which is shown in Figure 14), we apply Case 2(b). In this case, ^ is {R(CDE),
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FIG. 13. Example of Case 2(b).

FIG. 14. Hypergraph for {AB, BC, CDE, EFG, GHA}.
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R(GHA)}, because each relation has a common attribute with EFG. Thus, we
generate

R~X) :5 pABCù(CDEøGHA)R~ABC!

~5 pAC~R~AB! ?3? R~BC! ?3? R~CDE! ?3? R~GHA!!

# pAC~R~CD! ?3? R~DE! ?3? R~GHA!!)

R~X) :5 R~X! ?3? pCDEù(ABCøEFG)R~CDE!

~5 pACE~R~AB! ?3? R~BC! ?3? R~CDE! ?3? R~GHA!!

# pACE~R~CD! ?3? R~DE! ?3? R~GHA!!)

R~X) :5 R~X) ?3? pGHAù ~ABCø EFG!R(GHA)

~5 pACEG~R~AB! ?3? R~BC! ?3? R~CDE! ?3? R~GHA!!

# pACEG~R~CD! ?3? R~DE! ?3? R~GHA!!)

R~X) :5 R~X! ?3 R~EFG!

~5 pACEG~R~AB! ?3? R~BC! ?3? R~CDE! ?3? R~GHA! ?3? R~EFG!!

# pACEG~R~CD! ?3? R~DE! ?3? R~GHA!!)

R~V4) :5 R~ABC! ?3? R~X)

~ 5 pABCEG~R~AB! ?3? R~BC! ?3? R~CDE! ?3? R~GHA! ?3? R~EFG!!

# pABCEG~R~AB! ?3? R~BC! ?3? R~EFG!!)

In the above, we show the relation of R(X) or R(V4) after the execution of
each statement. We will explain the details of how to compute those relations in
the proof of Proposition A.2 in Appendix A. We also present a superset of each
relation. Since {R(CD), R(DE), R(GHA)} and {R(AB), R(BC), R(EFG)}
are nodes in Figure 7, throughout the execution of the above statements, uR(X)u
and uR(V4)u are always bounded by the size of the join of a node in Figure 7.
Finally, since neither CDE , EFG, nor GHA is a subset of V4(5 ABCEG), we

apply Case (3) of Algorithm 2. Let X denote

R~AB! ?3? R~BC! ?3? R~CD! ?3? R~DE! ?3? R~EFG! ?3? R~GHA!.

R(V4) now stores pABCEGX, and we create the following statements:

R~V4) :5 R~V4! ?3? R~CDE!~ 5 pABCDEGX!

R~V4) :5 R~V4! ?3? R~EFG!~ 5 pABCDEFGX!

R~V4) :5 R~V4! ?3? R~GHA!~ 5 X!.

Throughout the execution of the above statements, uR(V4)u is bounded by uX u,
where X is the join of the root in Figure 7. e
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In the above example, the size of the head of each statement can be
successfully bounded by the size of the join of a node in Figure 7. We will
generalize this property.

LEMMA 3.2.2. Let $ be a connected database such that ?3? $ Þ f, and let T1 be
a join expression tree over $. Let T2 be a CPF join expression tree that is produced
by Algorithm 1 from T1. Suppose that Algorithm 2 takes T2 as input and outputs a
program for computing ?3? $. For each statement in the program, T1 has a node -
such that the size of the head of the statement is bounded by ?3? -.

PROOF. The proof is an induction on the number of internal nodes visited.
Suppose that we visit 9 in Figure 11. Assume that R(Wi) stores ?3? 0 i for each
i 5 0, . . . , n.
When n 5 1, Algorithm 2 generates the following statement:

R~V1) :5 ~pW0 ù W1R~W0!! ?3 R~W1!.

Since this is a semijoin statement, uR(V1) u # upW0ùW1
R(W0) u # uR(W0)u. We

have assumed that R(W0) 5?3? 00, and hence uR(V1)u # u ?3? 00u. Since 00 is also
a leaf node in T1, our claim is proved for this case.
Consider the case in which n . 1. If Vn21 is the least core scheme of

{W0, . . . , Wn}, Algorithm 2 generates

R~Vn! :5 R~Vn21! ?3 R~Wn!.

Since this is a semijoin statement, uR(Vn) u # uR(Vn21) u. From the inductive
hypothesis, T1 has a node - such that uR(Vn21) u # u?3? - u, and hence uR(Vn) u #
u?3? - u.
Next suppose that Vn21 is not the least core scheme of {W0, . . . , Wn}. Let ^

be {R(Wj) u 0 # j , n, Wj ù Wn Þ f}. Algorithm 2 generates

R~X) :5 pVn 2 1 ù att~^!R~Vn21!

R~X) :5 R~X) ?3? (pWj ù ~Vn2 1 øWn!R(Wj!!,

for each R~W j! [ ^ such that ~W j ù Wn! 2 Vn21 Þ f

R~X) :5 R~X! ?3 R~Wn!

R~Vn! :5 R~Vn21! ?3? R~X!

From Proposition A.2 in Appendix A, throughout the execution of the above
statements

uR~X! u # up (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!!u,

and R(Vn) is set to the least core relation of {R(W0), . . . , R(Wn21), R(Wn)}.
Since Vn21 is the least core scheme of {W0, . . . , Wn21, Wn)}, Vn21ø(Wn ù
att(^)) is the least core scheme of {W0, . . . , Wn21, Wn}, and therefore

R~Vn! 5 pVn 2 1 ø ~Wn ù att~^!!~R~W0! ?3? . . . ?3? R~Wn21! ?3? R~Wn!!.
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Suppose that 9 is generated by Algorithm 1 when a node 8 in T1 is visited.
Let + and 5 be the left and right children of 8, respectively. There exists a
sequence of some components of + or 5, say #1, #2, . . . , #k, such that

#1 5 9n2k11~or 00! , #2 5 0n2k12, . . . , #k 5 0n.

See Figure 15.
We prove that uR(X)u is bounded by u?3? +u or u?3? 5u. Observe that for any

R(Wj) in ^, there exists #x(1 # x # k 2 1) such that Wj # att(#x). As Wj ù
Wn Þ f , #x and #k share common attributes. If #k is a component of +(5), #x
is a component of 5(+), because no distinct components of a database share any
common attributes. Thus, att(^) is a subset of att(+) ù att(#1 ø . . . ø #k21)
or is a subset of att(5) ù att (#1 ø . . . ø #k21). In the former case, we can
prove that uR(X)u # u?3? +u as follows:

uR~X! u

# up (Vn 2 1 ø Wn) ù att~^!~R~W0) ?3? · · · ?3? R(Wn21!!u

From Proposition A.2 in Appendix A.

5 up (Vn 2 1 ø Wn) ù att~^! ?3? ~#1 ø . . . ø #k21!u

Since R(Wi) 5?3? 0 i and 00 ø . . . ø 0n21 5 #1 ø . . . ø #k21.

# up (Vn 2 1 ø Wn) ù att~^! ?3? ~ ø $#iu1# i# k2 1, #i is a component of +})u

Since (Vn21 ø Wn) ù att(^) # att(^) # att(+) ù att(#1 ø . . . ø
#k21).

# u?3? ~ ø $#iu1# i# k2 1, #i is a component of +%!u

# u?3? +u

The last statement holds, because u?3? +u 5 )# is a component of +u?3? #u, and u?3? #u $
1 from the assumption that ?3? $ is not empty. When att(^) is a subset of att(5)
ù att(#1 ø . . . ø #k21), similarly we can prove that uR(X)u # u?3? 5u.
Next we prove that uR(Vn)u # u?3? +u or uR(Vn) u # u?3? 5 u. Since Vn21 ø (Wn ù

att(^)) is the least core scheme of {W0, . . . , Wn}, any attribute X in Vn21 ø
(Wn ù att(^)) appears in at least two distinct relation schemes of {W0, . . . ,
Wn}. As R(Wi) 5?3? 0 i, Wi is equal to att(0 i), and hence we may observe that

—X appears in #1(5 00 ø . . . ø 0n2k11), or

FIG. 15. How 9 is created by Algorithm 1.
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—X does not appear in #1, but appears in #x and in #y, where 1 , x , y # k.

In the latter case, either #x or #y is a component of +, and the other is a
component of 5, because no two distinct components of a database share any
common attributes, and hence X appears in both + and 5. Thus, if #1 is a
component of +, X must appear in +, and therefore

Vn21 ø ~Wn ù att~^!! # att~+! ù att~#1 ø · · · ø #k! .

If #1 is a component of 5, we have

Vn21 ø ~Wn ù att~^!! # att~5! ù att~#1 ø · · · ø #k! .

In the former case, we can prove that uR(Vn) u # u?3? + u as follows:

uR~Vn! u

5 upVn 2 1 ø ~Wn ù att~^!!~R~W0! ?3? · · · ?3? R~Wn!!u

From Proposition A.2 in Appendix A.

5 upVn 2 1 ø ~Wn ù att~^!! ?3? ~#1 ø · · · ø #k!u

Since R(Wi) 5?3? 0 i and 00 ø . . . ø 0n 5 #1 ø . . . ø #k

# upVn 2 1 ø ~Wn ù att~^!! ?3? ~ ø $#iu1# i# k, #i is a component of +})u

Since Vn21 ø (Wn ù att(^)) # att(+) ù att(#1 ø . . . ø #k)

# u?3? ~ ø $#iu1# i# k, #i is a component of +})u

# u?3? +u

The last statement holds, because u?3? +u 5 )# is a component of +u?3? #u, and u?3? #u $
1 from the assumption that ?3? $ is not empty. Similarly, we can prove that
uR(Vn) u # u?3? 5 u, when Vn21 ø (Wn ù att(^)) # att(5) ù att(#1 ø . . . ø
#k).
Finally consider the case in which 9 is the right child of 9’s parent. For each

Wi that is not a subset of Vn, Algorithm 2 creates

R~Vn! :5 R~Vn! ?3? R~Wi!.

From Proposition A.3 in Appendix A, throughout the execution of the above
statements,

uR~Vn! u # uR~W0! ?3? · · · ?3? R~Wn!u.

Since R(Wi) 5?3? 0 i and 9 5 9n 5 00 ø . . . ø 0n,

R~W0! ?3? · · · ?3? R~Wn! 5?3? 9.

Since 9 is the right child of 9’s parent, T1 has a node, say 8, such that 9 is a
component of 8, and therefore u?3? 9u # u?3? 8u from the assumption that ?3? $ is
not empty. Consequently, we have uR(Vn) u # u?3? 8 u. e
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THEOREM 3.2.3. Let $ be a connected database such that ?3? $ Þ f, and let T1
be a join expression tree over $. Let T2 be a CPF join expression tree that is
produced by Algorithm 1 from T1. Suppose that Algorithm 2 takes T2 as input and
outputs a program P for computing ?3? $. Let r be the number of relations in $. The
cost of P is within a factor r2 1 3r 2 6 of the cost of T1.

PROOF. From Lemma 3.2.2, the size of the head of each statement in P is
bounded by the size of the join of a node in T1, and is also bounded by the cost
of T1, because the cost of T1 is the sum of the size of the join of every node in
T1.
It remains for us to prove that the number of statements in P is less than or

equal to r2 1 3r 2 6. Let 9 be a node in T2 that is either the root or the right
child of its parent. Let n be the number of internal nodes on the leftmost branch
from 9 to the leaf node. Let 91, . . . , 9n be the sequence of the internal nodes
on the leftmost branch. See Figure 11.
When we visit 91, we generate two statements, because

R~V1) :5 ~pW0 ù W1R~W0!! ?3 R~W1!

consists of a projection statement and a semijoin statement. When we visit
9 i(1 , i), we create at most 2i 1 3 statements, because

R~X) :5 R~X! ?3? ~pWj ù ~Vn2 1 øWn!R~Wj!!

also include a projection statement and a join statement. When we visit 9n(5
9), additionally we create at most n 1 1 statements. Thus, in total, we create at
most n2 1 5n 2 2 statements, because

2 1 O
i52

n

~2i 1 3! 1 ~n 1 1! 5 n2 1 5n 2 2.

Let f be a function defined as f(n) 5 n2 1 5n 2 2.
Suppose that T2 has k internal nodes each of which is either the root or the

right child of its parent. Number those nodes from 1 to k, and let nj be the
number of internal nodes on the leftmost branch from the jth node. Then the
number of statements in P is at most f(n1) 1 . . . 1 f(nk). Observe that r 2 1 5
n1 1 . . . 1 nk, and f( x) 1 f( y) , f( x 1 y) for any positive integers x and y.
Thus, we have

f~n1! 1 · · · 1 f~nk! # f~n1 1 · · · 1 nk! 5 f~r 2 1! 5 r2 1 3r 2 6. e

The following corollary is a direct consequence of Theorem 3.2.3.

COROLLARY 3.2.4. Let $ be a connected database such that ?3? $ is not empty.
There exists a CPF join expression from which Algorithm 2 derives a program whose
cost is within a factor r2 1 3r 2 6 of the cost of an optimal join expression over $,
where r is the number of relations in $.

Example 3.2.5. From the join expression tree in Figure 16, Algorithm 2
generates a program consisting of 22 (5 42 1 3 z 4 2 6) statements. e

The computation time of Algorithm 2 is polynomial in the number of relations
and the number of attributes. Case 2 in Algorithm 2 first tests if Wi ù Wn #
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Vn21 for each i 5 0, . . . , n 2 1. Let a denote the number of attributes. Then
each test needs O(a ln a) time. The number of those tests is maximum if the
right child of any internal node in the input tree is a leaf. Thus, the number of
tests is less than r2/ 2, where r is the number of relations. In Theorem 3.2.3, we
also have proved that the number of statements generated by Algorithm 2 is
bounded by r2 1 3r 2 6. Consequently, the computation time of Algorithm 2 is
polynomial in the number of relations and the number of attributes.

4. Discussion

To compute the join of some set of relations we have employed programs that
use joins, semijoins, and projections. We have shown that there exists a CPF join
expression tree from which we can derive a program whose cost is within a
constant factor of the cost of an optimal join expression tree.
As the cost measure, we have used the sum of tuples appearing the input

relations or the relations generated, because we assume that the actual best
possible method, given in Ullman [1989], is used. Chandra and Merlin [1977]
used matrix multiplication as an implementation to compute the join of relations
and proved that there exists an implementation that is within a constant factor of
the optimal solution. This result depends on choosing matrix multiplication,
which could be significantly more expensive than the best possible method. If R1
is the join of R2 and R3, Ri has ai attributes and d is the number of all constants,
the cost of executing “R1 :5 R2 ?3? R3” by matrix multiplication is d

a1 1 da2 1
da3, which could be far greater than uR1u 1 uR2u 1 uR3u.
Avoiding Cartesian products is one heuristic commonly used to reduce the

search space for join expressions. We can further restrict the search space by
using linear join expressions. The following question then naturally arises:

Does there exist a linear and CPF join expression tree from which we can
derive a program whose cost is within a constant factor of the cost of an
optimal join expression tree ?

Our method cannot be generalized directly in order to solve the above question,
because, as indicated in Example 3.1.1, Algorithm 1 does not necessarily produce
a linear and CPF join expression tree.
If the scheme of these relations is acyclic (tree), we can compute the join in

time polynomial in the size of the input relations and the output [Beeri et al.
1983; Bernstein and Goodman 1981; Ullman 1989]. The method first applies to
the relations a full reducer [Bernstein and Goodman 1981] (a sequence of
semijoins) which makes the relations globally consistent by eliminating dangling
tuples. It then takes the join by using a monotone join expression (ordering of

FIG. 16. Join expression tree over {R(A1B1C1D1), R(A1B2C2D2), R(B1B2C3D3),
R(C1C2C3D4)}.
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joins) [Beeri et al. 1983], which guarantees that no intermediate join has more
tuples than the final join. For cyclic schemes, however, the problem cannot be
solved in polynomial time unless P 5 NP, because checking whether the join of a
set of relations is nonempty is an NP-complete problem [Chandra and Merlin
1977].
Many attempts have been made to reduce cyclic problems to acyclic problems.

Goodman and Shmueli [1984] showed that if we have a program for computing
the join of some relations, the program implicitly creates an embedded acyclic
database consisting of the input relations and some other relations produced
during the execution. Sagiv and Shmueli [1993] generalized the result to the class
of programs that may have semijoin loops. Those results motivated us to
generate programs that use core relations, because if R(X) is a core relation of
{R(W0), . . . , R(Wn)}, {R(X), R(W0), . . . , R(Wn)} is an acyclic database. In
other words, Algorithm 2 explicitly uses acyclic databases to generate programs.
In Theorem 3.2.3, we assume that the join of the input database $ is

nonempty. This property guarantees that the join of any subset of $ is nonempty,
which is essential to establish Lemma 3.2.2 and Theorem 3.2.3. We therefore
cannot drop the condition.
In this paper, we compare the cost of the program computed by Algorithm 2 to

the cost of the optimal join expression. The reader might think that this
comparison a bit unfair and might want to know what happens if the comparison
is with the optimal program that may use Cartesian products. Put another way,
the question is:

Does there exist a CPF join expression tree from which Algorithm 2
produces a program whose cost is within a constant factor of the cost of an
optimal program?

The answer is “No.” In what follows, we give a counterexample. Consider the
database {R(ABC), R(CDE), R(EFA)} whose tuples are shown below.

R~ABC!

~1, a, 1!
···

~102k, a, 1!

~21, b, 21!
···

~21, b, 2102k!
~c, c, c!

R~CDE!

~1, a , 1!
···

~1, a , 102k!
~21, b , 21!
···

~2102k, b , 21!

~c, c, c!

R~EFA!

~1, a , 21!
···

~102k, a , 21!

~21, b , 1!
···

~21, b , 102k!
~c, c, c!

We assume that k $ 1. Select a join expression tree for {R(ABC), R(CDE),
R(EFA)} arbitrarily, and apply Algorithm 2 to the tree to obtain a program. We
can see that the program computes the join of two relations in {R(ABC),
R(CDE), R(EFA)} or the projection of the join onto ACE as a temporary
relation during the computation. For instance, if the program is produced from
(R(ABC) ?3? R(CDE)) ?3? R(EFA), it computes pACE(R(ABC) ?3? R(CDE))
during the computation. If the program is derived from R(ABC) ?3? (R(CDE) ?3?

R(EFA)), it computes R(CDE) ?3? R(EFA) during the execution. The size of
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those temporary relations is greater than 104k, and therefore the cost of the
optimal program produced by Algorithm 2 is greater than 104k. On the other
hand, consider the following program P:

R~BF! :5 pBF~~pABR~ABC!! ?3?~pAFR~EFA!!!

~5 $~a, b! , ~b , a! , ~c, c!%!

R~BD! :5 pBD~~pBCR~ABC!! ?3? ~pCDR~CDE!!!

~5 $~a, a! , ~b , b! , ~c, c!%!

R~DF! :5 pDF~~pDER~CDE!! ?3? ~pEFR~EFA!!!

~5 $~a, a! , ~b , b! , ~c, c!%!

R~BDF! :5 R~BF! ?3? R~BD! ?3? R~DF!

~5 $~c, c, c!%!

R~ABCDEF! :5 ~~R~BDF! ?3? R~ABC!! ?3? R~CDE!! ?3? R~EFA!

~5 $~c, c, c, c, c, c!%!

For readability, each statement consists of some simple statements. The above
program computes the join of {R(ABC), R(CDE), R(EFA)} for any instance
of the database, because R(BDF) $ pBDF(R(ABC) ?3? R(CDE) ?3? R(EFA)),
and the last statement takes the join of R(ABC), R(CDE), R(EFA), and
R(BDF). The cost of the above program is less than 102k11. Consequently, the
cost of the optimal program generated by Algorithm 2 could be greater than the
cost of the above program P by a factor of an arbitrarily large number.
The way in which P is constructed is completely different from the idea of

Algorithm 2. Algorithm 2 produces programs that compute least core relations,
while P does not produce any least core relation, but P generates R(BF),
R(BD), R(DF), and R(BDF). Each of B, D, and F appears in only one of
{R(ABC), R(CDE), R(EFA)}. This difference however does not imply that
the way in which Algorithm 2 produces programs is wrong. Actually, for other
instance of the database, P could be much more expensive than a program that
Algorithm 2 produces. The following database gives such an example:

R~ABC!

~a, 1, a!
···

~a, 102k, a!

~b, 21, b!
···

~b, 2102k, b!

~c, c, c!

R~CDE!

~a , 1, a!
···

~a , 102k, a!

~b , 21, b!
···

~b , 2102k, b!

~c, c, c!

R~EFA!

~a , 1, b!
···

~a , 102k, b!

~b , 21, a!
···

~b , 2102k, a!

~c, c, c!

The cost of P is greater than 104k, while the cost of the program generated from
(R(ABC) ?3? R(CDE)) ?3? R(EFA) by Algorithm 2 is less than 102k11.
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Lastly, we present an interesting research problem related to the above
discussion.

Can we make an algorithm that generates from a CPF join expression tree,
a program whose cost is within a constant factor of the cost of the optimal
program?

Appendix A

We provide two ways of creating a sequence of statements for computing the
least core relation of {R(W0), . . . , R(Wn21), R(Wn)} from the least core
relation of {R(W0), . . . , R(Wn21)}. Let V be the least core scheme of
{W0, . . . , Wn21}. If V is also the least core scheme of {W0, . . . , Wn21, Wn},
we use Proposition A.1. Otherwise, we employ Proposition A.2.

PROPOSITION A.1. If V is a core scheme of {W0, . . . , Wn21, Wn},

pV~R~W0! ?3? · · · ?3? R~Wn21!! ?3 R~Wn!

5 pV~R~W0! ?3? · · · ?3? R~Wn21! ?3? R~Wn!!.

PROOF. It is enough to prove

pV~R~W0! ?3? · · · ?3? R~Wn21!! ?3? R~Wn!

5 pV ø Wn~R~W0! ?3? · · · ?3? R~Wn21! ?3? R~Wn!!. (1)

Let m be an arbitrary element in the left-hand side of Eq. (1). Since m[V] is a
tuple in pV(R(W0) ?3? . . . ?3? R(Wn21)), there exists a tuple n [ R(W0) ?3? . . . ?3?

R(Wn21) such that m[V] and n agree with each other. n and m[Wn] [ R(Wn)
agree with each other, because the set of their common attributes, (W0 ø . . . ø
Wn21) ù Wn, is a subset of V, and m[V] and n agree with each other. Thus, m is
a subset of the right-hand side of Eq. (1).
On the other hand, let r be an arbitrary element in the right-hand side of Eq.

(1). r[V] is in pV(R(W0) ?3? . . . ?3? R(Wn21)), and r[Wn] is in R(Wn). Since r[V]
agrees with r[Wn], r belongs to the left-hand side of Eq. (1). e

For example, since BC is a core scheme of {AB, BC, CD, CE}, from
Proposition A.1, we have

pBC~R~AB! ?3? R~BC! ?3? R~CD!! ?3 R~CE!

5 pBC~R~AB! ?3? R~BC! ?3? R~CD! ?3? R~CE!!.

PROPOSITION A.2. Let R(Vn21) be the least core relation of a connected
database {R(W0), . . . , R(Wn21)}. Suppose that Vn21 is not the least core scheme of
{W0, . . . , Wn21, Wn}. Then there exists Wj(0 # j , n) such that (Wj ù Wn) 2 Vn21
Þ f. Figure A.1 shows the hypergraph for {Vn21, Wj, Wn}.
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Let ^ be

$R~W j! u 0 # j , n , W j ù Wn Þ f% .

The following sequence of statements sets R(Vn) to the least core relation of
{R(W0), . . . , R(Wn21), R(Wn)}.

R~X) :5 pVn 2 1 ù att~^!R~Vn21!

R~X) :5 R~X! ?3? ~pWj ù ~Vn2 1 øWn!R~Wj!!,

for each R~W j! [ ^ such that ~W j ù Wn! 2 Vn21 Þ f

R~X) :5 R~X! ?3 R~Wn!

R~Vn! :5 R~Vn21! ?3? R~X!.

Furthermore, throughout the execution,

uR~X! u # up (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!!u.

PROOF. We give the proof later in this section. e

The reader might wonder why we have to make such a complex program for
computing the least core relation of {R(W0), . . . , R(Wn21), R(Wn)}. The
reason is that we want to bound the size of the intermediate relation R(X).

PROPOSITION A.3. Let V be a core scheme of a connected database scheme
{W0, . . . , Wn}. Suppose that R(X) stores pV(R(W0) ?3? . . . ?3? R(Wn)). For each Wi
that is not a subset of V, generate

R~X) :5 R~X! ?3? R~Wi!.

Then, throughout the execution of the above statements,

uR~X! u # uR~W0! ?3? · · · ?3? R~Wn!u.

After the execution of the last statement,

R~X! 5 R~W0! ?3? · · · ?3? R~Wn!.

PROOF. We give the proof later in this section. e

In order to prove Proposition A.2 and Proposition A.3, we need the following
three lemmas.

FIG. A.1. Hypergraph for {Vn21, Wj, Wn} such
that (Wj ù Wn) 2 Vn21 Þ f.
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LEMMA A.4. If V is a core scheme of {W0, . . . , Wn},

pV~R~W0! ?3? · · · ?3? R~Wn!! ?3? R~Wi!

5 pV ø W i~R~W0! ?3? · · · ?3? R~Wn!!. (2)

When R(X) stores pV(R(W0) ?3? . . . ?3? R(Wn)), consider:

R~X) :5 R~X! ?3? R~W0!

R~X) :5 R~X! ?3? R~W1!

···
R~X) :5 R~X! ?3? R~Wm!.

After the execution of the (k 1 1)-th statement,

R~X! 5 pV ø W0 ø . . . ø Wk~R~W0! ?3? · · · ?3? R~Wn!!. (3)

PROOF. We prove Eq. (2) first. Let m be an arbitrary tuple of the left-hand
side of Eq. (2). m[V] belongs to pV(RW0) ?3? . . . ?3? R(Wn)). Since V is a core
scheme of {W0, . . . , Wn}, for any j Þ i, Wi 2 V and Wj 2 V are disjoint. Thus,
R(W0) ?3? . . . ?3? R(Wn) has a tuple j such that j[Wi] 5 m[Wi] and j[V] 5 m[V].
Observe that m is a projection of j onto V ø Wi, and hence m belongs to the
right-hand side of Eq. (2).
On the other hand, let r be an arbitrary tuple of the right-hand side of Eq. (2).

Note that r[V] is in pV(R(W0) ?3? . . . ?3? R(Wn)), and r[Wi] is in R(Wi). Since
r[V] joins with r[Wi], r is an element of the left-hand side of Eq. (2).
Equation (3) is obtained by repeatedly applying Eq. (2). e

LEMMA A.5. If V is a core scheme of {W0, . . . , Wn}, and Ui is a subset of Wi,
then

pV~R~W0! ?3? · · · ?3? R~Wn!! ?3? pUiR~Wi!

5 pV ø U i~R~W0! ?3? · · · ?3? R~Wn!!. (4)

When R(X) stores pV(R(W0) ?3? . . . ?3? R(Wn)), consider:

R~X) :5 R~X! ?3? pU0R~W0!

R~X) :5 R~X! ?3? pU1R~W1!

···
R~X) :5 R~X! ?3? pUmR~Wm!.

After the execution of the (k 1 1)-th statement,

R~X! 5 pV ø U0 ø · · · ø Uk~R~W0! ?3? · · · ?3? R~Wn!! (5)

PROOF. Observe that
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R~W0! ?3? · · · ?3? R~Wn!

5 R~W0! ?3? · · · ?3? R~Wn! ?3? pUiR~Wi! (6)

Also note that V is a core scheme of {W0, . . . , Wn, Ui}. From Lemma A.4, we
have

pV~R~W0! ?3? · · · ?3? R~Wn! ?3? pUiR~Wi!! ?3? pUiR~Wi!

5 pV ø U i~R~W0! ?3? · · · ?3? R~Wn! ?3? pUiR~Wi!!. (7)

Equation (6) and Eq. (7) imply Eq. (4).
Equation (5) is obtained by repeatedly applying Eq. (4). e

LEMMA A.6. Let V be a core scheme of {W1, W2}. Suppose that W1 ù W3 5 f.
Figure A.2 shows the hypergraph of {V, W1, W2, W3}. Then we have

pV~R~W1! ?3? R~W2!! ?3? p(VøW3)ùW2~R~W1! ?3? R~W2! ?3? R~W3!!

5 pV ø ~W2 ù W3!~R~W1! ?3? R~W2! ?3? R~W3!!. (8)

PROOF. Let n be an arbitrary element in the left-hand side of Eq. (8). Note
that n is a tuple over V ø (W2 ù W3). As n[(V ø W3) ù W2] belongs to
p(VøW3)ùW2

(R(W1) ?3? R(W2) ?3? R(W3), there exist tuples v2 [ R(W2) and v3
[ R(W3) such that

n@~V ø W3! ù W2# , v2 and v3 agree with each other.

Furthermore, since n[V] is in pV(R(W1) ?3? R(W2)), there exists a tuple v1 [
R(W1) such that

n@V] and v1 agree with each other.

We will prove each pair of {n, v1, v2, v3} agree with each other, which means
that n belongs to the right-hand side of Eq. (8).

—The set of common attributes of n and v1 is (V ø (W2 ù W3)) ù W1, which
is equal to V ù W1. As n[V] and v1 [ R(W1) agree with each other, n and v1
also agree with each other.

—The set of common attributes of n and v2 is (V ø (W2 ù W3)) ù W2, which
is equal to (V ø W3) ù W2. As n[(V ø W3) ù W2] and v2 [ R(W2) agree
with each other, n and v2 also agree with each other.

—The set of common attributes of n and v3 is (V ø (W2 ù W3)) ù W3, which
is equal to W2 ù W3. n[(V ø W3) ù W2] and v3 [ R(W3) agree with each

FIG. A.2. V is a core of {W1, W2}, and W1 ù
W3 5 f.
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other on their common attributes, W2 ù W3. Thus, n and v3 also agree with
each other.

—The set of common attributes of v1 and v2 is W1 ù W2. v1[W1 ù W2] 5
n[W1 ù W2], because n[V] and v1 [ R(W1) agree with each other, and W1 ù
W2 is a subset of V ù W1. Furthermore, n[W1 ù W2] 5 v2[W1 ù W2],
because n[(V ø W3) ù W2] and v2 [ R(W2) agree with each other, and W1
ù W2 is a subset of (V ø W3) ù W2. Thus, v1[W1 ù W2] 5 v2[W1 ù W2],
and hence v1 and v2 agree with each other.

—It is trivial to show that v1 and v3 agree with each other, because the set of
their common attributes is empty.

—v2 and v3 have been chosen so that they agree with each other.

On the other hand, let m be an arbitrary element in the right-hand side of Eq.
(8). m[V] belongs to pV(R(W1) ?3? R(W2) ?3? R(W3)), and hence it is also in
pV(R(W1) ?3? R(W2)). m[(V ø W3) ù W2] belongs to p(VøW3)ùW2

(R(W1) ?3?

R(W2) ?3? R(W3)), because (V ø W3) ù W2 is a subset of V ø (W2 ù W3).
Thus, m belongs to the left-hand side of Eq. (8). e

PROOF OF PROPOSITION A.2. Since R(Vn21) stores the least core relation of
{R(W0), . . . , R(Wn21)},

R~Vn21! 5 pVn 2 1
~R~W0! ?3? · · · ?3? R~Wn21!!.

After the execution of “R(X) :5 pVn21ùatt(^)R(Vn21),”

R~X! 5 pVn 2 1 ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!!,

and thereby

uR~X! u # up (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!!u.

Next we show that

~Vn21 ù att~^!! ø

~ø$W j ù ~Vn21 ø Wn! uR~W j! [ ^, ~W j ù Wn! 2 Vn21 Þ f%!

5 ~Vn21 ø Wn! ù att~^! .

Let X be an arbitrary attribute in the left-hand side. If X is in (Vn21 ù att(^)),
X is trivially an element of the right-hand side. Otherwise, there exists R(Wj) [
^ such that X is in Wj ù (Vn21 ø Wn), and hence X is in the right-hand side.
On the other hand, let Y be an arbitrary attribute in the right-hand side. If Y is in
Vn21 ù att(^), Y is trivially in the left-hand side. Otherwise, Y is in Wn ù
att(^), and therefore there exists some Wj such that Y is in Wj ù Wn. As Y is
not in Vn21 ù att(^), Y must be in (Wj ù Wn) 2 Vn21, and hence Y is in the
left-hand side.
Then, from Lemma A.5, throughout the execution of

“R~X) :5 R~X! ?3? ~pWj ù ~Vn2 1 øWn!R~Wj!!,”

for each R(Wj) [ ^ such that (Wj ù Wn) 2 Vn21 Þ f, R(X) is a projection of
p(Vn21 ø Wn) ù att(^)(R(W0) ?3? . . . ?3? R(Wn21)). Thus, we have
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uR~X! u # up (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!!u.

Also from Lemma A.5, after the execution,

R~X! 5 p (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!!.

(Vn21 ø Wn) ù att(^) is a core scheme of {W0 ø . . . ø Wn21, Wn},
because for each Wj(0 # j , n), if R(Wj) [ ^, we have Wj ù Wn # Wn ù
att(^), and otherwise Wj ù Wn 5 f. Note that R(W0) ?3? . . . ?3? R(Wn21) is a
relation over W0 ø . . . ø Wn21. From Proposition A.1, after the execution of
“R(X) :5 R(X) ?3 R(Wn),” we have

R~X! 5 p (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!! ?3 R~Wn!

5 p (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21! ?3? R~Wn!!

and hence

uR~X! u # up (Vn 2 1 ø Wn) ù att~^!~R~W0! ?3? · · · ?3? R~Wn21!!u.

Finally, consider executing “R(Vn) :5 R(Vn21) ?3? R(X).” Let ^̄ be {R(Wj) u
0 # j , n, Wj ù Wn 5 f}. Note that

^ ø ^̄ 5 $R~W0! , . . . , R~Wn21!% ,

and therefore

R~Vn21! 5 pVn 2 1
~~?3? ^̄! ?3? ~?3? ^!!

R~X! 5 p (Vn 2 1 ø Wn) ù att~^!~~?3? ^̄!?3? ~?3? ^! ?3? R~Wn!!.

?3?^̄ is a relation over att(^̄), and ?3? ^ is a relation over att(^). Since Vn21 is
the least core scheme of {W0, . . . , Wn21}, Vn21 is a core scheme of
{att(^̄), att(^)}. From the definition of ^̄ , att(^̄) ù Wn 5 f. From Lemma
A.6, we have

R~Vn21! ?3? R~X! 5 pVn2 1 ø ~Wn ù att~^!!~~?3? ^̄! ?3? ~?3? ^! ?3? R~Wn!!.

Consequently

R~Vn! 5 pVn 2 1 ø ~Wn ù att~^!!~R~W0! ?3? · · · ?3? R~Wn21! ?3? R~Wn!!.

Vn21 ø (Wn ù att(^)) is the least core scheme of {W0, . . . , Wn21, Wn},
because Vn21 is the least core scheme of {W0, . . . , Wn21}, and Wn ù att(^) is
the set of all attributes that appear in Wn and Wj (0 # j # n 2 1). e

PROOF OF PROPOSITION A.3. From Lemma A.4, R(X) is always a projection
of R(W0) ?3? . . . ?3? R(Wn), we have

uR~X! u # uR~W0! ?3? · · · ?3? R~Wn!u.

Also from Lemma A.4, R(X) is set to R(W0) ?3? . . . ?3? R(Wn) after the last
statement. e
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