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1. Introduction

Resolution is a key deductive technique in automated deduction. It is used in
numerous systems and studied extensively from various theoretical points of
view. However, one of the fundamental questions about resolution has rarely
been addressed. Namely, what is gained with respect to the search for a proof by
executing a single resolution step?

In order to understand this question and its relevance, recall first that any
resolution prover basically consists of a single loop, which in a successful proof is
executed a number of times until the empty clause is produced. At each iteration
of this loop, a pair of (parent) clauses is selected and their resolvent is added to
the clause set. In other words, how can the progress that is achieved by
performing a single iteration be described and measured?

For comparison, assume we want to compute the string representation of a
given integer n in the alphabet {1}. Again a single loop will do with adding a 1 at
each iteration to the string obtained so far. Here the progress achieved at any
iteration is captured by the number of missing 1’s, which each time decreases by
1. Note that this number is independent of the remaining computation; it only
depends on the status achieved so far and on the desired result of the completed
computation. Also note that this number is the key for proving the correctness
and termination of the program basically consisting of this loop. So again, what is
the analogue to this number in the case of resolution?

Of course, there are already answers to the question just stated in three
variants, since any completeness proof of resolution such as those in Robinson
[1965], Anderson and Bledsoe [1970], and Bibel [1983] must naturally provide
one. The answers known so far in the literature are, however, not satisfactory, as
will become clear shortly.

Connection-graph resolution [Kowalski 1975], or cg-resolution for short, is a
refinement of resolution that records part of the history of previous resolution
steps in the course of a proof attempt in order to prevent a particular resolution
step to be performed more than once in the same or in similar ways. Since a
multiple production of the same resolvent is obviously a redundant activity not
useful for any resolution prover, cg-resolution might even be regarded as the
proper form of resolution.

In case of a satisfactory answer to the above question, one could have expected
that a completeness proof for resolution based on it could easily be carried over
to cg-resolution which, as just pointed out, differs from resolution only in this
single and trivial feature of avoiding redundant repetitions of resolution steps.
Attempts to carry over known completeness proofs for resolution to cg-resolu-
tion failed, however. The answers, on which these proofs are based, are either
too global (e.g., saturation of the set of possible resolvents) or too particular
(e.g., those based on the number of excess literals). They seem not to reveal the
true nature of a resolution step to a point where basic issues could be settled for
both resolution and cg-resolution at the same time.

For instance, despite numerous proof attempts including Brown [1976], Bibel
[1981b], Smolka [1982], and Eisinger [1989] and unpublished ones by C. A.
Johnson, N. Murray, E. Rosenthal, and G. Wrightson, it remained an open
problem for two decades whether cg-resolution is bounded on the ground level
(i.e., a proof is found after finitely many steps), a property needed to establish
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the commutativity property (see Nilsson [1980] for this sort of Church–Rosser
notion) for cg-resolution that guarantees a proof if one exists, no matter which
sequence of steps is taken to find it.

The main result of this paper is an answer to this fundamental question about
resolution proof steps. Since the essence of this answer is of a propositional
nature, we restrict a great deal of the paper to the ground level. Our answer, for
simplicity outlined in this introduction only for the ground level, says that any
unsatisfiable formula may be decomposed into regular formulas each provable in
linear time (by resolution) and that a relevant resolution step reduces at least
one of the formulas in the decomposition (and does not affect the remaining
ones). There may be resolution steps that do not contribute at all to finding a
proof and are in this sense considered irrelevant.

Instead of regular formulas, one may as well think of all possible semantic
trees for the given formula that differ in the sequence of the variables used in
their generation; in this view one may rephrase the answer as saying that at least
one of these trees is reduced by a relevant resolution step (and none is
increased). In fact, it has been well-known in the resolution literature that any
relevant resolution step properly reduces some semantic tree.1 But to our best
knowledge a fixed sequence of the variables is considered rather than all possible
sequences as in our approach.

With this insight, the solution to the open problem about commutativity of
cg-resolution comes along easily. That is, we prove that any sequence of
cg-resolution steps applied to an unsatisfiable formula will eventually yield the
empty clause, provided that the sequence satisfies a simple fairness criterion that
gives any connection a finite chance to be selected as the kernel of a cg-
resolution step. Were the proof search of cg-resolution not commutative in this
sense, then backtracking to each choice point would be required even on the
ground level. This would make cg-resolution incompetitive in comparison with
resolution and thus worthless for practice. The result is therefore important also
for practical purposes.

Since it appears only the discovery of the decomposition of formulas finally led
to the solution of this longstanding open problem, it would not be a surprise if
other problems of a practical or theoretical nature could as well be solved with it.
In any case, it contributes a technique for establishing completeness of resolution
refinements (in addition to those mentioned above). Roughly speaking, the
decompositional feature may be described as follows:

On the ground level, we consider matrices, that is, sets of clauses, in the
(propositional) variables X1, . . . , Xn. Of special interest in our context are the
complete matrices containing all possible Boolean combinations of these vari-
ables as clauses. These complete matrices can be proved fast, by resolution
through eliminating the variables one after the other (similarly as in the
Davis–Putnam procedure). Each step properly reduces the matrix if subsumed
clauses are eliminated. Suppose M1 is the result of carrying out this process to
some extent. Now there are n! different sequences of the variables so that we
may obtain matrices M2, . . . , Mn! similarly as M1, each with a different se-
quence of the variables (and an arbitrary extent of the corresponding process) in

1 See, for example, Robinson [1968], Kowalski and Hayes [1969], Anderson and Bledsoe [1970], and
Chang and Lee [1973].
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mind. The union of any tuple of matrices obtained this way is obviously
unsatisfiable. More interesting is that the converse in some way holds as well (see
Theorem 3.1 in Section 3). More precisely, any minimal, unsatisfiable matrix may
be decomposed in n! matrices which are obtained from the complete matrix the
way just described.

As we said, this decomposition is the key for our completeness proof of
cg-resolution, or of resolution for that matter. It focuses on a minimal subset of
the given unsatisfiable set of clauses. With the fairness criterion mentioned
above, any connection in this subset will eventually be selected. The resolution
step performed upon it at the same time properly reduces at least one of the
matrices in the decomposition (without changing the nonreduced ones) and the
result of this reduction is part of the decomposition of the resulting matrix. Since
there are only finitely many decomposition matrices, the empty clause must be
obtained in a finite number of steps independent of the sequence of steps taken.

In the next section, we first summarize well-known concepts related with
cg-resolution in order to make the paper rather self-contained (Subsection 2.1)
and then introduce the concepts needed especially for our proofs (2.2). We also
clarify the exact relationship with the more familiar semantic trees with which the
proof could have been developed as well (2.3). In Section 3, the proof of the
decomposition theorem is given. Section 4 contains the proof of the strong
completeness theorem for the ground level. Section 5 presents the straightfor-
ward generalization of the strong completeness result to the first-order level. In
the concluding section, possible applications to theorem proving and to complex-
ity theory are briefly discussed.

2. Basic Concepts

In this section, we introduce all the concepts needed for our main results on the
ground level (while the details for the first-order level are deferred until Section
5). For completeness, standard terminology from the connection-graph resolu-
tion literature is briefly summarized in the first subsection. For more details, the
reader is referred to the literature (e.g., Bibel [1993]).

2.1. REVIEW OF STANDARD TERMINOLOGY. All concepts in this paper are
based on a denumerable alphabet of variables (or propositional variables), which
are denoted by X, Y, Z. As usual, any such denotations can be used with indices
or other decorations. In this case of variables, this means that, for instance, X1,
Y9 denote variables as well.

Definition 2.1.1. For any variable X, X and its complement X̄ are called
literals that are denoted by K, L. If K 5 Y for some Y, then K̄ 5 Ȳ; if K 5 Ȳ for
some Y, then K̄ 5 Y. {X, X̄} is called a complementary pair of literals.

Clauses are finite, possibly empty sets of literals, denoted by c, d, e. For a
clause c, the set of variables occurring in c is denoted by V(c). A clause is said to
be tautological if it contains two complementary literals. A clause c subsumes a
clause d if c # d.

A matrix is a finite family (cj)j[G of clauses with some index set G. Matrices
are denoted by M, N. If M 5 (cj)j[G is a matrix then each g [ G is said to be
an occurrence of the clause cg in the matrix M. If, moreover, L [ cg then the
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pair (L, g), also denoted by Lg, is said to be an occurrence of the literal L in the
matrix M.

If S is a finite set of clauses, then (c)c[S is called the matrix corresponding to S.
A matrix M 5 (cj)j[G is subsumption-minimal if cj does not subsume ch for

any j, h [ G with j Þ h.

By defining matrices as families rather than sets of clauses, multiple occur-
rences of clauses can be taken into account (which seems necessary for handling
connection graphs properly). In the case of a subsumption-minimal matrix,
multiple occurrences of clauses are of course not possible, so the matrix is the set
of its clauses.

Matrices as thus defined could more precisely be called matrices in normal
form. In general, nonnormal-form matrices, the elements of their clauses, may be
(general) matrices rather than literals. Since we are mostly concerned with
matrices in normal form, we refer to them as matrices for short and refer to
nonnormal-form matrices in the more general case.

Matrices represent propositional formulas. For affirmative proof methods, one
uses a positive representation of formulas by matrices, and for refutational
methods, a negative representation of formulas by matrices. The structure of a
matrix is, however, invariant with respect to the sign of the representation. So it
is left to the reader to think of a clause as of a disjunction (as in the negative
representation) or of a conjunction of literals (as in the positive representation).
For proof purposes, the difference is absolutely negligible.

Many concepts involving matrices are intuitively best understood if one thinks
of matrices as of two-dimensional structures similar to the matrices in linear
algebra. Used to the positive representation, we present clauses vertically as
columns in the matrix. Hence, the matrix corresponding to the clause set
{{X, Y}, {X̄ , Y}, {X}, {X̄, Ȳ}} two-dimensionally is displayed as

X

Y

X̄

Y

X X̄

Ȳ

or more elaborately as

F FX

YG F X̄

YG @X# F X̄

ȲG G .

Definition 2.1.2. A path p through a matrix (cj)j[G is a family (Lj)j[G of
literals where Lj [ cj for each j [ G.

A connection in a matrix M 5 (cj)j[G is a two-element set {Kg, K̄d} of
occurrences of two complementary literals, K, K̄ , in M where g Þ d. Connections
are denoted by k, ,.

A set of connections in a matrix is called a mating.
A connection {Kg, K̄d} in M is tautological if there is a connection {Lg, L̄d} in

M with K Þ L.
A path (Lj)j[G is complementary if there is a connection {Lg

g, L̄d
d}. A matrix

M is called complementary if all its paths are complementary. Any mating
rendering M complementary is called spanning for M.
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If M 5 (cj)j[G is a matrix and D # G, then the matrix M 5 (cj)j[D is said to
be a submatrix of M.

A complementary matrix M is called a minimal matrix if there is no proper
submatrix in M which is complementary.

Obviously, any complementary matrix has a submatrix that is minimal. It is
known that none of the clauses in a minimal matrix is tautological, which is why
we shall concentrate on matrices without tautological clauses.

Complementarity of a matrix M is a necessary and sufficient condition for the
formula represented by M to be a tautology (or, in the negative representation,
to be unsatisfiable). Consequently, all proof procedures test for complementarity
of matrices in one way or another. For instance, resolution can be seen this way
[Bibel 1993; Bibel and Eder 1993].

Complementarity is characterized by a spanning mating. It has therefore been
a natural idea to design a form of resolution that handles connections in an
explicit way; it is called connection-graph resolution [Kowalski 1975] (cg-resolu-
tion) as follows:

Definition 2.1.3. A connection graph G is a pair (M, C) where M is a matrix
and C is a mating.

If M 5 (cj)j[G, then we say that the cj with j [ G are the clauses of G, or
equivalently, that G has (or contains) the clauses cj with j [ G. A connection
graph is said to be tautology-free if it does not have a tautological clause.

G is called full if, for any connection k in M, we have k [ C; C is called the
full mating for M in this case. For any matrix M 5 (cj)j[G, the complete mating
CM is defined as

CM 5 $$Lg, L̄ d% u g, d [ G, g Þ d and there is no $Kg, K̄ d% with K Þ L% .

Let G 5 (M, C) and H 5 (N, D) be two connection graphs. Then G # H if
M is a submatrix of N and C # D.

A comp-graph is a graph consisting of a complementary matrix and its
complete mating. A minimal comp-graph is a comp-graph G such that for each
comp-graph H with H # G it holds H 5 G.

Let G 5 (M, C) be a connection graph, M 5 (cj)j[G, and cj Þ À for j [ G.
Let , 5 {Lg, L̄d} [ C. Let

(1) u be some token with u [y G;
(2) Q :5 G ø {u};
(3) cu :5 (cg\{L}) ø (cd\{L̄});
(4) M, :5 (cj)j[Q;
(5) C, :5 (C\{,}) ø D, where D :5 {{Kj, K̄u} u j [ G, and {Kj, K̄g} [ C

or {Kj, K̄d} [ C}.
(6) G, :5 (M,, C,).

Then the pair (G, G,), written G £ G,, is called a cg-resolution step and , is
called its kernel.

A connection graph G is called refutable by cg-resolution if G £* G9 holds for
some connection graph G9 which contains the empty clause.

A cg-resolution step is illustrated in Figure 1.
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cg-resolution was shown to be a sound and complete deductive rule in Bibel
[1981a].2 For practical purposes a stronger completeness property would be
desirable that is introduced further below. Also for practical reasons, provers
based on cg-resolution must incorporate the following two well-known reduction
operations:

Definition 2.1.4. Let (M, C), M 5 (cj)j[G, denote a connection graph with
some clause cg and some literal L [ cg. If for no connection k [ C, we have Lg

[ k then Lg is called pure. In this case we say that ((cj)j[G\{g}, C\D) is
obtained from (M, C) by purity reduction upon Lg whereby D 5 {{Kg, K̄j} [ C
u j [ G}. The graph obtained from a graph G by applying purity reduction until
it can be applied no more is called the purity-reduced graph p(G).

For two clause occurrences g, d [ G, we say g cg-subsumes d if

(1) cg # cd and
(2) if {Ld, L̄j} [ C for any L [ cg and j [ G then {Lg, L̄j} [ C.

In this case, we say that ((cj)j[G\{d}, C\D) is obtained from (M, C) by
cg-subsumption whereby D 5 {{Kd, K̄j} [ C u j [ G}. The graph obtained
from a graph G by applying cg-subsumption until it can be applied no more is
called the subsumption-reduced graph s(G).

Purity reduction allows the deletion of clauses with unconnected literals as well
as their connections. Subsumption allows the deletion of a subsumed clause (as
well as its connections) that contains all the literals of the subsuming clause
along with some of their connections and no further ones. It was shown in Bibel
[1981a] that these two reduction operations retain the spanning property so that
they can be applied without any harm with respect to provability at any point in
the deductive process. For the purposes of this paper, we stipulate that they are
applied after each cg-resolution step. In other words, if we write (M, C) £ (M,,
C,), we actually mean (M, C) £ p(s((M,, C,))).

For a nonnegative integer n, the set of permutations of {1, . . . , n} is denoted
by Sn.

2 In Bibel [1981a], a more restricted form of cg-resolution was used; for our purposes, the simpler
form defined here will do as well.

FIG. 1. A cg-resolution step.
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2.2. ADDITIONAL TERMINOLOGY. In the present subsection, we introduce the
special terminology needed for the subsequent proofs of our main results. We
begin by defining what we consider to be a fair derivation.

Definition 2.2.1. The set of natural numbers (i.e., nonnegative integers) is
denoted by N.

An initial segment of N is a (finite or infinite) set I # N such that j , i implies
j [ I for all i [ I and j [ N.

A derivation is a sequence (Gi) i[I of connection graphs where I is an initial
segment of N and Gi21 £ Gi for all i [ I\{0}. We say (Gi) i[I starts with G0,
and it ends with Gn if I is bounded and n 5 max(I).

A derivation (Gi) i[I is a refutation if I is bounded and Gmax(I) contains the
empty clause. In this case, (Gi) i[I is a refutation of G0.

For two derivations (Gi) i[I and (Hi) i[J, we say (Gi) i[I # (Hi) i[J if I # J
and Gi 5 Hi for all i [ I. A derivation is maximal if there is no strictly greater
(with respect to #) derivation.

A derivation ((Mi, Ci)) i[I is fair if it is finite or

ù
i[I
i$n

Ci 5 À

for any n [ I.

In words, the fairness condition means that the derivation has to be finite or
each connection occurring in one connection graph of the derivation is resolved
upon at some later stage of the derivation and therefore not present any more in
the connection graphs thereafter.

Definition 2.2.2. cg-resolution is called strongly complete if, for any comple-
mentary matrix M and its full mating C, every fair maximal derivation starting
with the connection graph (M, C) is a refutation.

Whether or not cg-resolution indeed enjoys this property of being strongly
complete was an open problem for two decades, which is now settled positively in
the present paper. Given this property, a cg-resolution prover may proceed in its
search for a proof without any backtracking.

The solution to this problem will involve a very special sort of connection
graph, which we are studying in some detail in the rest of the section. In the
following, we assume that n is a fixed integer and that X1, . . . , Xn are fixed
pairwise distinct variables. Further, we assume that no other variables occur in
the matrices we consider. Recall the notion CM of the complete mating for a
matrix M from Definition 2.1.3 used in the following definition:

Definition 2.2.3. The complete matrix Mn(X1, . . . , Xn) in the variables
X1, . . . , Xn, abbreviated Mn, is the matrix Mn 5 (c)c[N

n corresponding to the
clause set Nn, which is defined inductively as follows:

(1) N1 5 {{X1}, {X1}}.
(2) If Nn21 5 {c1, . . . , c2n21}, then

Nn 5 $c1 ø $Xn% , . . . , c2n21 ø $Xn% , c1 ø $Xn% , . . . , c2n21 ø $Xn%% .
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The extension of a clause c with V(c) # {X1, . . . , Xn} in Mn is Ext(c) 5 {d [
Mn u c # d}.

G(X1, . . . , Xn) 5 (Mn, CM
n), or abbreviated Gn, is called the complete

connection graph (in the variables X1, . . . , Xn).

For illustration of these concepts, we present in Figure 2 the complete
connection graph G3, which has eight clauses, c1, . . . , c8. The following lemma
is easy to prove:

LEMMA 2.2.4. For any clause c in a minimal complementary matrix M in the
variables X1, . . . , Xn, there is a clause e [ Mn such that e [ Ext(c), but e [y Ext(d)
for any clause d [ M with d Þ c.

Note that the complete mating CM3 is not spanning for M3 since there are a
number of paths through M3 that do not contain any connection from CM3 (as
the reader may easily check). The same applies to the general case CMn. The
connections in CMn are still sufficient to prove Mn. For this reason, we introduce
a weaker spanning concept such that CM3 is weakly spanning for M3 (or CMn for
Mn for that matter).

Definition 2.2.5. Let M be a matrix. Then we denote by CM
taut the set of

tautological connections of M. A mating C in a matrix M is said to be weakly
spanning for M if C ø CM

taut is spanning for M. A connection graph (M, C) is
said to be complementary if C is spanning for M. It is said to be weakly
complementary if C is weakly spanning for M.

As the reader may note, there are different orders in which the connections in
Mn can be resolved. As we shall see, particularly simple matrices result if the
order chosen corresponds to an ordering of variables, represented by a permuta-
tion in Sn.

Definition 2.2.6. Let c be a (nontautological) clause and let p [ Sn. Then
the p-front literal of c is the literal Xp(i) or Xp(i) of c with the smallest possible
value of i.

Let G 5 (M, C) be a tautology-free connection graph, M 5 (cj)j[G, and p [
Sn. A p-front connection in G is a connection {Kg, K̄d} in C where K is the
p-front literal of cg and K̄ is the p-front literal of cd.

Let G be a connection graph, p [ Sn, , be a p-front connection of G, G £ G,

a cg-resolution step upon ,, and G,
red be the result of applying purity reduction to

G,. Then we say that G,
red is obtained by p-regular reduction from G.

Let p [ Sn. Then p-regular graphs are connection graphs defined inductively
as follows:

FIG. 2. The complete connection graph G3 (or G(X1, X2, X3)).
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(1) G(X1, . . . , Xn), or Gn, is a p-regular graph.
(2) If G is a p-regular graph and G,

red is obtained from G by p-regular
reduction, then G,

red is a p-regular graph.

A graph is called regular if it is p-regular for some p [ Sn.
Let p [ Sn. By a p-clause, we mean a nontautological clause c such that there

is a nonnegative integer j # n such that V(c) 5 {Xp( j11), . . . , Xp(n)}.

For the graph G3 presented above, let us consider the identity permutation p1,
p1(i) 5 i for i 5 1, 2, 3. We introduce a systematic indexing for regular graphs
by coding the permutation in the left lower index and the pattern of the p-front
connections in the right lower index of the denotation for the graph. This way G3

becomes 123G1111
3 reflecting the permutation p1 and the presence of all four

p-front connections. Selecting as , the leftmost p-front connection, that is, the
connection between X1 in the first clause and X1 in the second clause, cg-
resolution upon , yields the graph shown in Figure 3.

Since X1 and X1 are pure in the leftmost two clauses, these are deleted in the
subsequent purity operation, resulting in the p1-regular graph 123G0111

3 shown in
Figure 4, which altogether is the result of p1-regular reduction in this case. Note
the change from 1 to 0 in the first position of the right lower index reflecting the
removal of the first p-front connection. Since, in this case, only the first value of
the permutation matters, we may denote the graph also by 1 . .G0111

3 , whereby the
dots are placeholders for arbitrary values.

At this point, again only the three connections in the first row are p1-front
connections, which can be resolved in order to obtain a p-regular graph. It is
easy to see that, in this way, G(X1, . . . , Xn) can be proved in i50

n21 2 i 5 2n 2
1 steps (without counting the reductions separately), that is, in seven steps in the
case of our example with n 5 3, which has eight clauses; in other words, these
proofs are linear in the number of clauses. These proofs are regular resolution
proofs in the sense of this term as used in complexity theory [Tseitin 1968].

The following three lemmas are easy to prove:

LEMMA 2.2.7. Every clause in a p-regular graph is a p-clause.

LEMMA 2.2.8. Every nontautological clause is a p-clause for some p [ Sn.

FIG. 3. Graph obtained from G3 by cg-resolution.
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LEMMA 2.2.9. Let p [ Sn and let M be the matrix corresponding to a
complementary subsumption-minimal set of p-clauses. Then (M, CM) is a p-regular
graph.

The regular graphs are but a small fraction of the complementary graphs.
However, any complementary graph is in some way composed of regular graphs.
The composition operation basically consists of set union followed by subsump-
tion and purity reduction.

Definition 2.2.10. Let (Gi) i[I, Gi 5 ((cij)j[G i
, Ci), be a finite family of

connection graphs. Then the sum i[I Gi of this family is the connection graph
(M, C) defined as follows:

(1) G :5 {(i, j) u i [ I and j [ G i};
(2) M :5 (cij)(i,j)[G;
(3) C :5 {, u , 5 {K(i,j), K̄( j,h)} and either i 5 j and {Kj, K̄h} [ Ci or i Þ

j and , nontautological}.

The union ø i[I Gi of a finite family (Gi) i[I of connection graphs is defined
by

ø
i[I

Gi :5 pS sS O
i[I

GiD D .

In the graphical representation of connection graphs, the sum i[I Gi is
obtained by writing the graphs Gi unconnected next to each other and adding all
nontautological connections between the different components. From this, the
union is obtained by applying the operations introduced in Definition 2.1.4. For
practical purposes, the construction can be optimized by suppressing the addition
of any connections between different components and adapting the subsumption
operation accordingly.

Definition 2.2.11. A regular family is a family (Gp)p[Sn
such that Gp is a

p-regular graph for each p [ Sn.
A (full) decomposition of a minimal comp-graph G is a regular family

(Gp)p[Sn
such that G 5 øp[Sn

Gp holds.

FIG. 4. The regular graph 1 . .G0111
3 .
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Let G 5 (M, CM), M 5 (cj)j[G, Gp 5 (Mp, CMp
), Mp 5 (cj)j[Gp

for any
p [ Sn, and G 5 øp[Sn

Gp. Then the decomposition (Gp)p[Sn
is said to have

property P if the following two properties hold.

(1) For any g [ G and for any p [ Sn such that cg is a p-clause, there exists a
d [ Gp such that cg 5 cd.

(2) For any g [ G, any {Kg, K̄d} [ CM for some d [ G, and for any p [ Sn

such that cg ø (cd\{K̄}) is a p-clause with p-front literal K, there exist l, r
[ Gp such that cl 5 cg ø (cd\{K̄}), cr 5 (cg\{K}) ø cd, and {Kl, K̄r} [
CMp

.

In other words, this means that G is the union of the regular graphs Gp, that is,
that these form a decomposition in a certain sense of the word. Property P says
first that any clause cg from the given matrix is contained in the component
graph Gp, whenever p is such that cg is a p-clause. It says secondly that for any
connected clauses cg and cd in G their union with the resolvent is contained in
Gp, whenever p is such that this union is a p-clause and the connected literal is
a p-front literal.

According to this definition, any full decomposition consists of n!, that is,
exponentially many components. As we will see in the examples of the subse-
quent sections, G is often determined by a small subset of characterizing
components, which in turn corresponds to some subset of Sn. For the remaining
permutations not in this subset, the corresponding regular graphs are irrelevant
since all their clauses are subsumed by those in the characterizing components.
These observations give rise to further concepts worth being noted here,
although they will not be used in the present paper in any substantial way.

Let (Gp)p[Sn
be a decomposition of a minimal comp-graph G. A component

Gp0
in the decomposition is called minimal if (G9p0

ø øp[Sn,pÞp0
Gp) Þ G

holds for any graph G9p0
obtained from Gp0

by p0-regular reduction. For a subset
S # Sn, the regular family (Gp)p[S is also called a decomposition (not
necessarily full), provided G 5 øp[S Gp holds. Any such decomposition is
called standard if each of its components is minimal. It is called minimal if øp[S9

Gp Þ G holds for any proper subset S9 , S.
As mentioned before, we will consider only full decompositions in this paper.

In fact we may further assume that any such decomposition is standard without
restriction of generality.

2.3. THE RELATIONSHIP WITH SEMANTIC TREES. Regular graphs are closely
related with semantic trees. This relationship will now be clarified.

One notices that, with a trivial inductive argument, the mating of any regular
graph is complete. As we have seen in the case of G3 (see Definition 2.2.5),
complete matings are not necessarily spanning. On the other hand, they are
sufficient for yielding resolution proofs. The reason is that resolution incorpo-
rates factorization. For instance, the resolvent {X2, X3} of the resolution step
upon the leftmost p-front connection, p1(i) 5 i for i 5 1, 2, 3, in G3 shown in
Figure 2 is the result of factorizing {X2

c1, X2
c2} and {X3

c1, X3
c2}, where the upper

indices indicate the (occurrences of the) parent clauses of the operation.
If we perform all the factorizations of such a regular proof of Gn prior to the

actual proof, then we get a graph Fn whose matrix is in nonnormal form. For
instance, F3 obtained this way from G3 looks as shown in Figure 5.
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This observation leads to the following definition:

Definition 2.3.1. The fully factorized form of a p-regular graph G is induc-
tively defined as follows.

(1) The graph

Xp(1) Xp(1)

_

is in fully factorized form.
(2) If F1 is the fully factorized form of the subgraph G1 obtained from G by

deleting all clauses with an occurrence of Xp(n) and by deleting the
occurrences of Xp(n) from all remaining clauses and if F2 is obtained
similarly except that the roles of Xp(n) and Xp(n) are exchanged, then

F1 F2

Xp(n) Xp(n)

_

is the fully factorized form of G.

It is easy to see that the mating in such a fully factorized form of a p-regular
graph is spanning while the mating in the graph itself is only weakly spanning,
which illustrates the relationship of these two notions.

The close relationship of regular graphs and semantic trees is particularly
obvious if the graph is in fully factorized form. This is illustrated by the semantic
tree shown in Figure 6 for the matrix of G3. Except for the root of the tree, each
node corresponds to a literal occurrence in F3 shown in Figure 5, and vice versa.
If one of the figures is turned upside down, it becomes obvious that they
represent just different ways of depicting the same construct. This observation,
which was made for this particular graph, is true in general. Hence, one could
have developed the entire paper on the basis of semantic trees. Readers more
familiar with semantic trees might therefore prefer to think in terms of semantic
trees whenever the paper refers to regular graphs.

3. Decomposing Minimal Comp-Graphs into Regular Graphs

In this section, we show that every minimal comp-graph can be decomposed into
regular graphs (Theorem 3.1). We illustrate this decomposition of a complemen-
tary matrix by the following graphs in X1, X2, and X3, starting with G3 from
Figure 2 in the previous section.

FIG. 5. The fully factorized form F3 of the p1-regular graph 123G1111
3 .
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Consider the three permutations p1, p2, and p3, defined by p1(i) 5 i for i 5
1, 2, 3, p2(1) 5 3, p2(2) 5 2, p2(3) 5 1, p3(1) 5 2, p3(2) 5 1, p3(3) 5
3. As discussed earlier, one p1-regular reduction of 1 . .G1111

3 yields the graph
1 . .G0111

3 already shown in Figure 4. Similarly, we obtain the graph 2 . .G0111
3

shown in Figure 7 by p2-regular reduction from 2 . .G1111
3 . Finally, the graph

3 . .G0111
3 shown in Figure 8 is obtained by p3-regular reduction from 3 . .G1111

3 .
The union of these three graphs i . .G0111

3 , i 5 1, 2, 3 yields the graph G
shown in Figure 9, which already looks pretty irregular. Similarly, G9 shown in
Figure 10 is ø i51

3
i . .G0110

3 , whereby i . .G0110
3 is obtained from i . .G0111

3 by
p i-regular reduction upon the rightmost connection in row p i(1) of i . .G0111

3 .
As we see, the composition (or union) of regular graphs yields (fairly irregular)

graphs. We now show that, conversely, every minimal comp-graph can be
decomposed into such regular graphs.

THEOREM 3.1 (DECOMPOSITION). Every minimal comp-graph has a decompo-
sition satisfying property P.

PROOF. The proof proceeds by constructing the decomposition of the given
minimal comp-graph G 5 (M, CM) with M 5 (cj)j[G in an inductive way from
Gn. The induction is on the difference wG of the number of literals in the
complete matrix Mn(X1, . . . , Xn) and in M, that is, wG 5 n 3 2n 2 j[G ucju,
whereby X1, . . . , Xn are the variables occurring in M.

The base case in this inductive definition is G 5 Gn, or wG 5 0. In this case,
we consider the regular family (G(Xp(1), . . . , Xp(n)))p[Sn

. Both parts of
property P trivially hold in this case.

Assume G Þ Gn and hence wG . 0. Then there is at least one clause cg, g [
G, with ucgu , n. Let g0, g1 [y G, G0 5 (G\{g}) ø {g0, g1}, Xi [y V(cg), cg0

5 cg ø {Xi}, cg1
5 cg ø {Xi}, M9 5 s((cj)j[G0) 5 (cj)j[G9 for some G9 #

G0, and G9 5 (M9, CM9).
More informally, we perform sort of an extension step that is the inverse of a

resolution step, or more specifically, the inverse of a p-regular reduction step.
The structure of the remaining proof is illustrated in the left part of the diagram
shown in Figure 11 (while the right part will be used for illustration of the proof
of the strong completeness theorem in the next section). By the induction
hypothesis, we may assume that there is a decomposition of the comp-graph G9.
This decomposition will be transformed by reductions upon p-front connections

FIG. 6. The semantic tree corresponding to F3 from Figure 5.
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that correspond to the connection used for the extension step. We finally
establish that the resulting family is a decomposition of the given graph.

Resuming the formal proof we first note that G9 obviously is a comp-graph by
construction, given that G is one. We then claim that wG9 , wG. The main
question in this regard is what the effect of subsumption might be under the
given circumstances. Since G is minimal, only cg0

or cg1
could be subsumed in M0

5 (cj)j[G0 by some other clause. For the same reason, both cg0
and cg1

cannot
be subsumed in M0 by some other clauses. Namely, were there clauses cr0

, cg0

and cr1
, cg1

in M0, then the union of the extensions of cr0
and cr1

would
contain the extension of cg, thus violating the property of minimal matrices
stated in Lemma 2.2.4. Therefore, either one clause out of cg0

, cg1
is subsumed,

resulting in wG9 5 wG 2 1, or none, resulting in wG9 5 wG0 5 wG 2 ucgu 2 2.

FIG. 7. The regular graph 2 . .G0111
3 .

FIG. 8. The regular graph 3 . .G0111
3 .

FIG. 9. The (irregular) graph G composed of i . .G0111
3 , i 5 1, 2, 3.

FIG. 10. The (irregular) graph G com-
posed of i . .G0110

3 , i 5 1, 2, 3.
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In any case, the claim is established. For simplicity, we may assume in the
following, without restricting generality, that g0 [ G9.

We can therefore assume by the induction hypothesis that the theorem holds
for G9, which obviously is a minimal comp-graph. In other words, there is a
decomposition (G9p)p[Sn

of G9 satisfying property P. For any p [ Sn such that
the matrix M9p of G9p contains a clause cl $ cg0

and Xi
l is the p-front literal in

cl, let Gp be the regular graph obtained from G9p by p-regular reduction upon
the p-front connection {Xi

l, X̄i
r} for some r [ Gp. For any other p [ Sn, let Gp

5 G9p.
We claim that (Gp)p[Sn

is the desired decomposition of G satisfying property
P and are done with the entire proof once this claim is established. We first show
that M 5 M̃, where M̃ is the matrix of øp[Sn

(Gp). Because of the first part of
property P, there are permutations p such that M9p contains a clause cd0

5 cg0

and Xi
d0 is its p-front literal. Because of the regularity of the M9p, cd1

5 (cd0
\

{Xi
d0}) ø {X̄i1

d } is also a clause of M9p. By definition, Mp thus contains cg. Else,
Mp contains only clauses also contained in M9p, a fact which is true also for any
other p. With this observation, the equality is obvious, since also M differs from
M9 only in cg.

We also see immediately that the first part of property P carries over for the
same reasons. Similarly, by those p-regular reductions just described only the
p-front connections disappear from øp[Sn

(G9p) in the transition to øp[Sn

(Gp) while all other connections remain the same, which again reflects exactly
the transition from G9 to G with respect to their connections. Thus, G 5 øp[Sn

(Gp). Since any connection in G is also contained in G9 where the second part
of property P holds by the induction hypothesis, it is clear that this part of
property P is also true for G. Q.E.D.

For any minimal comp-graph G and any p [ Sn the minimal component Gp

of a decomposition may be algorithmically determined by starting with the
complete p-regular graph and performing as many p-regular reductions as
possible (which, in a way, simulates the proof just presented). By carrying this
out for all possible permutations, the standard decomposition of G may be
obtained this way. Since this will usually amount to computationally very
expensive efforts, we are not suggesting such an approach for theorem proving
purposes unless it is taken in some restricted way.

FIG. 11. The structure of the proofs of the two main theorems.
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4. Strong Completeness of Ground cg-Resolution

As announced in the introduction, we apply the decomposition theorem 3.1 to
prove strong completeness of cg-resolution in the present section for the ground
level and in the subsequent section for the general level. The significance of this
result, apart from solving a longstanding problem, lies in a clarification of the
fundamental question about resolution discussed in the introduction. There we
mentioned the representation of natural numbers as an analogue example and
pointed out the role of the number of missing 1’s as a measure for the progress in
the computation. We are now in a position to define an analogue measure for
resolution.

Definition 4.1. The connectivity measure m(^) of a regular family ^ 5 (Mp,
Cp)p[Sn

is the sum p[Sn
uCpu.

In other words, we count the number of connections in each component and
take the sum of the results. Having this measure, we are now in a position to
prove the strong completeness theorem. Its proof uses a result from Bibel
[1981a], which is stated first, using the notation from Definition 2.1.3.

THEOREM 4.2. A connection graph G is complementary iff G, is complemen-
tary.

THEOREM 4.3. cg-resolution (on the ground level ) is strongly complete.

PROOF. We are given an arbitrary complementary connection graph H with a
full mating. The theorem then claims that any fair maximal derivation D 5 ((Ni,
Di)) i[I (see Definition 2.2.1) starting with H is a (finite) refutation.

Since H is complementary, its matrix has a minimal complementary submatrix
M. Since the mating D0 of H is full, G 5 (M, CM) # (N0, D0) 5 H0 5 H
holds (for the notation see Definition 2.1.3. If the kernel , of the first step of the
derivation D is not in CM, then G # (N1, D1) 5 H1 holds as well according to
an obvious lemma, which is stated below for completeness. By induction on the
number of initial steps with a kernel not in CM and because of the fairness of the
derivation, we may therefore assume that G # Hj for some minimal j [ I and
that the kernel , of the j 1 1-st step of D is in fact a member of CM. In
accordance with Theorem 3.1, we may further assume that there is a decomposi-
tion (Gp)p[Sn

of G satisfying property P. Under these assumptions, the theorem
is proved by induction on m(G).

If Hj contains the empty clause (either in the subgraph G or in some other part
of Hj), then the theorem trivially holds. This provides the base case of the
induction. So we assume that Hj does not contain the empty clause and that
m(G) . 0.

The structure of the remaining proof is now similar to the one for Theorem
3.1. It is illustrated by the right part of Figure 11. On the one hand (illustrated by
the upper part of the figure), we consider the cg-resolution step upon ,
transforming Hj into Hj11. On the other hand, some of the Gp’s are reduced by
p-regular reduction thus reducing the measure. Thereby, the four properties,
namely “being a decomposition of”, “being a comp-graph” (not necessarily a
minimal one), property P, and G # øp[Sn

(Gp) # (Nj, Dj), satisfied before
this pair of transformations, are shown to be preserved for the respective graphs
and also the measure is shown to be strictly reduced by the transformations so
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that the induction hypothesis can be applied to establish the theorem. The details
of this outline follow in the remaining proof:

Let M 5 (cj)j[G, M, 5 (cj)j[(Gø{u}), and , 5 {Kg, K̄d} for g, d [ G. That
is, Nj11 5 (Nj), is obtained by substituting M by M, in Nj and G, 5 (M,,
(CM),) # (Hj), 5 ((Nj),, (Dj),) 5 Hj11.

For any p [ Sn such that the matrix Mp of Gp contains a clause cr $ cg ø
(cd\{K̄}), and Kr is the p-front literal in cr, let G9p be the regular graph
obtained from Gp by p-regular reduction upon the p-front connection {Kr, K̄l}
for some l [ Gp. For any other p [ Sn, let G9p 5 Gp. Further, we let G9 5
(M9, C9) 5 øp[Sn

G9p.
We first show that M9 5 M,. M is the matrix of øp[Sn

Gp. M, differs from
M by its added resolvent Cu and by the possibly deleted one or two parent
clauses (according to the convention noted at the end of Section 2.1). Exactly as
in the proof of Theorem 3.1, we also see that M9 also differs from M by one
additional clause c resulting from p-regular reduction of pairs of clauses that
subsume the parent clauses of the resolution step. Because of the second part of
property P there are such p-front connections that lead to the resolvent cu, so
that c 5 cu. Since subsumption and purity reductions are included in the union
of a decomposition in exactly the same way, also here one or two parent clauses
are deleted exactly as for M,.

As with any decomposition, we have C9 5 CM9. Since no tautological
connection can be generated from resolving upon a connection from a complete
mating, we have (CM), # C9. There are cases where equality between these two
sets does not hold as one might first expect, which explains why we prove #
rather than 5. One such example is obtained by resolution upon the leftmost
{X1, X1}-connection in the matrix

$$X1, X2% , $X1, X3% , $X1, X2% , $X1, X3%% ,

which is the matrix of the minimal comp-graph 2 . .G1010
3 ø 3 . .G0101

3 . Alto-
gether, we have established G, # G9 with M, 5 M9. G9 # Hj11 holds by
construction; thus, out of the four properties to be established, the inequality
holds.

Also, we do have the desired decomposition of the graph G9 which “ma-
jorizes” G, (in the sense of G, # G9). Note that we allow G9 to be nonminimal
(as it happens in the example just mentioned). But G9 is complete and, because
of Theorem 4.2, also complementary (i.e., G9 is a comp-graph, thus establishing
also the second of the four properties). Since there is at least one p-regular
reduction leading to G9, we also have m(G9) , m(G).

Thus, in order to be able to apply the induction hypothesis, we only need to
establish property P for G9. Since G9 is obtained by p-regular reduction of the
decomposition of G in exactly the same way as in the proof of Theorem 3.1, the
arguments used there apply in exactly the same way here to establish this last
point in the proof. QED.

As mentioned in the previous proof, the following obvious lemma has been
used in it.

LEMMA 4.4. If G # H and , is not a member of the mating of G, then G # H,.
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Since the reduction operations of purity and subsumption are implicitly
performed in the process of constructing the union of a regular family, our proof
has established the following even stronger theorem.

THEOREM 4.5. cg-resolution with purity reduction and subsumption is strongly
complete.

This means that, no matter whether and to what extent we apply purity
reduction and subsumption, an attempted cg-resolution refutation, starting from
a complementary matrix, will successfully terminate after a finite number of
steps, provided that the connections are resolved away in a fair manner.

As the main result of this section, we have seen that any cg-resolution step (or
resolution step for that matter) either does not contribute to a refutation—and is
thus redundant— or it reduces the number of connections of at least one
component in the decomposition of a minimal comp-subgraph of the given
graph. This is our answer to the fundamental question posed in the introduction.

Note that our proof of the theorem focused on one particular minimal
comp-graph G in the initial graph, which may contain further minimal comp-
graphs other than G. In fact, the actual proof of the given matrix (i.e., the empty
clause) may result from some of these other graphs while resolutions upon
connections in G may even delay the proof’s completion. The point of our
argument is that any graph like G is a guarantor for eventually producing a proof
unless some other part completes this job earlier.

The fairness condition involved in the theorem cannot be dispensed with, as
was demonstrated in Eisinger [1989], with an example that admits an infinite
derivation if fairness is not required.

5. Strong Completeness of General cg-Resolution

As with all connection-based proof calculi, the distinctive features of cg-
resolution are propositional by nature. Any such calculus becomes a first-order
one by adding unification and the generation of clause variants. In consequence
of this neat separation, it is also straightforward to lift a completeness proof from
the ground level to the general level which justifies this standard two-step proof
technique. For the case of our strong completeness result, this lifting will be
carried out in the present section.

There is an even more elegant way, due to Herbrand [1930], which allows to
separate unification completely from the lifting proof.3 Instead of performing
unification at each proof step, the set of atoms involved is partitioned such that
two atoms end up in the same part if and only if they become unified in the
course of the proof. This way the first-order atoms can be treated as proposi-
tional variables and the additional proof efforts needed for lifting Theorem 4.3
become marginal. We begin by stating the corresponding version of Herbrand’s
theorem, essentially Herbrand’s Property A theorem [Herbrand 1930], in a
clausal version, and a definition required for it, both borrowed from Robinson
[1995] (see also Robinson [1968]).

Definition 5.1. A pair (R, 3) is an abstract refutation of a set S of clauses if
the following conditions hold.

3 The first author owes this important aspect of the proof below to Alan Robinson.
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(1) R is a set of variants of clauses in S;
(2) 3 is a unifiable partition of the set of atoms that occur in clauses in R;
(3) every assignment of truth values to the atoms that occur in clauses in R

either assigns different values to two atoms which lie in the same part of 3,
or falsifies some clause in R, or both.

THEOREM 5.2. A set of clauses is unsatisfiable iff it has an abstract refutation.

Next, we recall cg-resolution for the general level [Kowalski 1975]. It is defined
exactly like resolution (see, for example, Bibel [1993]) except that potential
kernels of resolution steps, that is, pairs of literals with unifiable atoms and
different signs, are handled explicitly the way specified in Definition 2.1.3.
Complementarity is generalized to the first-order level in the usual way (see, for
example, Section 3.3 in Bibel [1993]). It syntactically characterizes unsatisfiability
as on the ground level.

We point out two important aspects that are not present at the ground level. A
clause may contain different but unifiable literals which upon a resolution step
merge into a single one in the resolvent by using an appropriate substitution for
the unification of the kernel atoms. Whether or not such a merge is done is a
strategical decision in the search for a proof. If the chosen strategy takes a wrong
decision, the proof process needs to backtrack and revise it. An alternative
solution to this explicit backtracking technique is an expansion of the given
matrix by substituting each (given or generated) clause by all its possible factors
(as they are called in Kowalski [1975]). Formally these notions are defined as
follows.

Definition 5.3. Let c be a clause, that is, a set of (first-order) literals, and c9
# c a unifiable subset of its literals, that is, there exists a substitution s and a
literal L such that c9s 5 {L}. Then cs is called a factor of c. The result of
replacing each clause in a matrix by all its different factors (modulo renaming) is
called the expanded matrix.

Any clause is also one of its factors. A simple example for illustrating both
notions is the matrix {{P( x), P( y)}, {¬ P(a)}, {¬ P(b)}}. In general, each
clause has a trivial factor which is the clause itself. In the present example only
the first clause has a nontrivial factor which is {P( x)} (and no others since
{P( y)} is identical with its modulo renaming). Hence, the connection graph
consisting of the expanded matrix along with its full mating is the one shown in
Figure 12.

The concept of an abstract refutation deals with this issue by partitioning the
set of atoms. For our current example, one possible abstract refutation partitions
the set of atoms into the two parts {P( x), P( y), P(a)} and {P(b)}. Once the
partition is determined the remaining proof may be carried out in a purely
propositional way. In fact, we might even replace every atom in a part by one and

FIG. 12. The connection graph for the expanded
matrix.
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the same propositional variable. In the case of our example, this replacement
would lead to the formula {{X}, {¬ X}, {¬ Y}}. In view of this possible
replacement, connections in the matrix of an abstract refutation are pairs of sets
of literals rather than pairs of literals. For instance, with the partition in the
present example, {{P( x), P( y)}, {¬ P(a)}} is a generalized connection in this
sense. Under this view, a matrix along with a partition may be seen as a purely
propositional graph.

In order to maintain that different clauses used in a resolution proof are
variable disjoint, all variables are renamed in the parent clauses in the course of
determining the resolvent. This stipulation also serves to enable the use of a
clause in different variants (which is equivalent with providing more than one
variants of a given clause at the outset as done in an abstract refutation).
Because of this possibility, connections may link two different literals within the
same clause, which is not possible on the ground level. Resolving upon such a
link means determining the resolvent by resolving upon a connection between
two different variants of the clause in the usual way. Thus, a connection graph on
the first-order level encodes an arbitrary number of variants of its clauses along
with the corresponding copies of the connections. In consequence we generalize
the notion G # H for two connection graphs G 5 (M, C) and H 5 (N, D)
from Definition 2.1.3 to mean M is a submatrix of N9 and C # D9 whereby N9
may contain for each clause in N an arbitrary number of variants and D9 contains
the corresponding copies of connections from D. With these preparations, we are
now ready to prove the theorem of this section.

THEOREM 5.4. cg-resolution is strongly complete.

PROOF. The proof proceeds in strict analogy with the one for Theorem 4.3 to
which the reader is referred for what follows: We are given an arbitrary
unsatisfiable matrix represented as a complementary connection graph H with a
full mating. The theorem then claims that any fair maximal derivation D 5 ((Ni,
Di)) i[I (see Definition 2.2.1, which also applies to the general case) starting with
H is a (finite) refutation.

Since the matrix of H is unsatisfiable, Herbrand’s Theorem 5.2 provides us
with an abstract refutation (M, 3). We may thereby assume that M is a minimal
complementary matrix. Since the mating D0 of H is full, G 5 (M, CM) # (N0,
D0) 5 H0 5 H holds whereby the generalized version of # defined above
applies. So we have exactly the same situation as at the beginning of the proof for
Theorem 4.3.

The main idea of the proof is to view G as a ground graph and project this
“ground view” into the given derivation of H. By “grounding” the entire proof, in
this way, the proof of Theorem 4.3 does in fact cover the general case. The
essence of this projection has the two main aspects of generalized connections on
the one hand, and of unwrapping the clause variants out of the given matrix in
accordance with the assumed abstract refutation on the other, both discussed
before stating the theorem. Given that this way we are actually dealing with the
ground case, we may proceed literally as in the proof of Theorem 4.3, which will
not be repeated here. Rather, we restrict ourselves to a few comments on
important proof aspects.

Under the view of G as a propositional graph with generalized connections
corresponding to propositional connections, Theorem 3.1 can be applied as is,
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that is, without any generalization. Hence, m(G) is also well defined. In
consequence, the two different sequences of (propositional) graphs (one starting
with G, the other with its decomposition), as illustrated in Figure 11, play exactly
the same role as before.

Further, in order to maintain the correspondence between H and G, and the
graphs derived from them, we stipulate that the resolution steps in the given
derivation use the same variable names in clause variants as the corresponding
ones in G (in cases where corresponding ones exist). This is without loss of
generality, since the variable names used for the variants in Herbrand’s theorem
as well as for generating resolvents is arbitrary anyway. With this provision, not
only the correspondence between the clauses in H and G, and the graphs derived
from them, but also between their connections is the same as on the ground level
with one exception. Namely, the variant clauses from H become unwrapped as
the derivation proceeds while those from G are already present as they are on
the ground level. QED.

6. Discussion and Summary

In this paper, we first presented a result in which any minimal unsatisfiable
matrix may be decomposed into (exponentially many) regular matrices, each of
which is easy to prove. This result has provided a new technique for proving
completeness of resolution refinements.

We have applied this technique to establish strong completeness of cg-
resolution on the ground level. Using a characterization of unsatisfiability due to
Herbrand, exactly the same proof could be used to generalize this completeness
result to the first-order level. It is now guaranteed that any sequence of
cg-resolution steps will eventually yield the empty clause, provided the initial
formula is unsatisfiable and each (initial or inherited) connection has a finite
chance to be selected as the kernel of a cg-resolution step.

If the initial formula is satisfiable, then the process may never terminate even
on the ground level as demonstrated in Eisinger [1989] with a simple example
mentioned at the end of Section 4. This property does not affect theorem-
proving applications on the first-order level, since those proof procedures fail to
be decision procedures anyway. But one might still think of some modification of
cg-resolution such that it becomes a decision procedure on the ground level, an
issue not further pursued here.

We feel that our result concerning the decomposition of unsatisfiable formulas
might have applications other than the one presented in this paper. It might also
shed new light on the unsatisfiability problem both in view of proof strategies and
of complexity considerations. The proof task may now be formulated as follows:
Given a matrix, find a transformation to the “closest” regular graph. As we have
seen in Section 2, regular graphs may be proved in linear time. So the kernel of
the theorem problem lies in the task to bridge the “gap” between general
matrices and regular graphs which is a new way of viewing this problem. Let us
illustrate this with the picture shown in Figure 13.

The figure shows a (full and a carved-up) globe (which is actually a graph net)
each point of which represents a (minimal) unsatisfiable formula in n variables.
The north pole represents the complete matrix and the south pole the matrix
consisting of the empty clause. The nodes on the longitudes of the globe
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correspond to the regular unsatisfiable graphs, each longitude representing a
particular ordering of the variables.4 The distance of any point on a longitude to
the south pole is linear in the size of the formula, that is, these longitudes
provide fast tracks indeed. These longitudes form the n! axes of the coordinate
system. Any point in the globe5 has then n! “coordinates” representing their
regular components as illustrated in the second picture. Points which are related
by the resolution operation are connected by an edge.

Refinements such as linear resolution or model elimination follow quite
different strategies and, therefore, fail to prove regular graphs in linear time like
p-regular reductions, which we consider a major weakness of these refinements.
In fact, for some regular graphs, these refinements fare exponentially badly. They
are not adequate in the sense of this term introduced in Bibel [1991]. With our
result, there is ample room for improvement of such refinements so that they
overcome this particular weakness. This cannot be achieved however in a naı̈ve
way as mentioned at the end of Section 3. A first (independent) step into such a
direction was recently done with the paper [Klingenbeck and Hähnle, 1994]
introducing the concept of refutation graphs that are related with the p-regular
graphs in this paper. With Gabbay [1991], we share the motivation to aim at
reductions (cf. our p-regular reductions which lead to “diminishing resources” in
the sense of that paper).

A particularly interesting question in the context of complexity considerations
is whether the addition of the inverse resolution rule, that is, sort of an extension
rule, might lead to shorter proofs. Recall, from the proof of Theorem 3.1, that we
used this sort of an extension rule. Speaking in terms of the picture, this amounts
to the question of whether the path from some point in the globe to the south
pole might be shortened by taking “upward detours”. This kind of an extension
rule is different from the one introduced in Tseitin [1968/1970], which indeed has
such an effect, but is a stronger rule allowing for abbreviations. Our conjecture is
that the answer to the question is a negative one in the case of inverse resolution.

This answer would amount to a special (and negative) answer for the P 5 NP
question. Since we know that there are many points in the globe from which the
resolution path to the south pole requires exponentially many steps [Haken 1984;
Urquhart 1987; Chvátal and Szemerédi 1988], we could conclude that there are
no shorter paths whatsoever for these. This answer is special since the edges in

4 To be precise these longitudes are actually graphs not just lines.
5 One might as well consider the space outside (rather than inside) of the globe for this illustration.
The advantage would be that the distance of two graphs could be modeled more closely in terms of
the metric distance in the space.

FIG. 13. An illustration of the space of unsatisfiable formulas.
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the graph are restricted to resolution (or inverse resolution) steps while other
inferential steps might be possible.

It also seems now possible to explain in a coherent and plausible way why there
are many examples (including the pigeonhole formulas) for which resolution
fares exponentially badly as just mentioned. For them, the “gap” is bound to be
exponentially large. Similarly, by studying the Horn approximation [Selman and
Kautz 1993], one might consider “regular approximation.” Finally, it seems
possible to characterize a wider class of formulas that can be solved in polyno-
mial time, namely exactly that class for which only polynomially many permuta-
tions are sufficient for the decomposition of the formulas.
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