
Using Style to Understand Descriptions

of Software Architecture

Gregory Abowd Robert Allen David Garlan

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The software architecture of most systems is describ ed infor-
mally and diagrammatically. In order for these descriptions
to be meaningful at all, figures are understood by interpret-
ing the boxes and lines in specific, conventionalized ways[b].
The imprecision of these interpretations has a number of
limitations. In this paper we consider these conventionalized
interpretations aa architectural styles and provide a formal
framework for their uniform definition, In addition to pro-
viding a template for precisely defining new architectural
styles, thk framework allows for the proof that the nota-

tionrd constraints on a style are sufficient to guarantee the

meanings of all described systems and provides a unified se-

mantic base through which different stylistic interpretations
can be compared.

1 Introduction

Software architecture ia an important level of description for
software systems. At the software architectural level of ab-
straction, a system is typically described as a collection of
interacting components. Components perform the primary
computations of the system. Interactions between compo-
nents include high level communication abstractions such
ss pipes, procedure calls, message passing, and event broad-
cast [8].

The software architecture of most systems is usually de-
scribed informally and diagrammatically using boxes to rep-

resent components and lines to represent connections be-
tween components. In order for these descriptions to be

meaningful at all, figures are typically understood by in-
terpreting the boxes and lines in specific, conventionalized

ways. For example, for one system boxes might represent
filters and lines might represent pipes connecting ports of
those filters. In another, boxes might represent abstract
data types or objects, and lines might represent procedure
calls.

While useful in documenting system designs, such di-’

agrams — even with their conventional interpretations —
have a number of obvious limitations. Their imprecision
makes it difficult to attach unambiguous meanings to the

Permission to copy without fee all or part of this material IS

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

SIGSOFT ‘93/1 2/93/CA, USA

0 1993 ACM 0-89791-625-5/93/001 2...$1.50

description, It may be difficult to know when an imple-

mentation agrees with the more abstract description. It ia
virtually impossible to reason formally about the descrip

tions. It is difficult to compare two different descriptions,
even for the same interpretation.

The most common solution to this problem is to con-
strain the architectural notation so that it mapa directly

into a well-defined execution model. For example, interfaces
to components can be described solely in terms of their pro-

cedure signatures, and connectors can be restricted to pro-
cedure call, Other execution models include tasks with IPC

and event-based ayatema [9]. When so constrained, descrip
tions can be mapped directly to module facilities of a pro-

gramming language or other executable implementations,

and can thereby be given precise meaninge.

This approach, however, haa a number of problems. Most
significant tly, it limits the expressiveness of architectural de-

scription to just those structures and building blocks sup
ported by the target implementation language or system. If,
for instance, architectural connections have to be phrased in
terms of procedure calls, then higher-level interactions (such
aa protocols of communication) cannot be expressed directly.
In addition, the relatively low level of description may make

it difficult to reason about the architect urrd design.
We argue that what is needed instead ia a way to give

conventionalized interpretations of architectural descriptions
a more formal basis. Designers can use the abstractions that

are appropriate to the architectural description at hand, but
still have the precision of a formaf model. Our approach
will be to view the collection of conventions that are used

to interpret a description as defining an architectuml style.

We then show that architectural styles can be described for-

mally in terms of a small set of semantic mappings, and il-
lustrate how these mappings can be used to define formally

two common architectural styles. The approach thus pro-
vides a framework in which new styles can be defined by a

similar set of definitions. Finally, we demonstrate that hav-

ing carried out this exercise, it ia possible to use the formal
descriptions to gain insight into the properties of a style and

its relationships to other styles.

The main thrust of our argument and examplea will be
to demonstrate how to give meanings to architecturrd de-

scriptions. In one respect this is nothing new; programming

language researchers have been providing denotational se-
m antics of programming languagea for years. What is novel,
however, is the specialization of the general semantic ap
preach to the problem of underatanding software architec-
ture. As we will show, this can be done by providing a syn-
tactic and semantic framework in which architectural stylee

9

http://crossmark.crossref.org/dialog/?doi=10.1145%2F167049.167055&domain=pdf&date_stamp=1993-12-01

can be given meanings.
The specifllzation of general theory to this particular

domain has a number of significant engineering benefits.
First, it provides a template for formalizing new architec-
turrd styles in a uniform way, thereby simplifying and reg-
ularizing the way styles are given meanings. Second, it

provides uniform criteria (in the form of proof obligations)

for demonstrating that the notational constraints on a style

are sufficient to provide meanings for all described sys terns.
Third, it makes possible a unified semantic base through

which different stylistic interpret ations can be compared.

These benefits address a real problem for the growing

number of industrial research and development efforts that
are creating domain-specific architect ural styles — or “refer-
ence architectures” — for specific product families [3, 4, 10].
To the extent that they formalize their architectural frame-
works at all, the semantic descriptions produced by these
efforts are typically developed from scratch, and each uses

different, idiosyncratic conventions and semantic bases. 1 Se-
mantic descriptions are therefore difficult to develop and,

having developed them, few comparisons can be made be-
tween different development efforts.

To present our approach we begin in Section 2 by outlin-
ing the method we will use to define an architectural style as

a mapping from syntactic descriptions to a (style-specific)
semantic model. In Section 3, we formalke the syntactic

domain as an abstraction of the box and line diagrams that
are prevalent in current informal architectural descriptions.
We then demonstrate for two particular architectural styles
the definition of a semantic model to describe the overall
behavior of a system and show how the architectural syntax

can be mapped into that model by a formal style definition:
we define a pipe-filter style in Section 4 and an implicit in-

vocation, or event system, style in Section 5. Finally, in

Section 6 we show how these semantic underpinnings sup-

port the analysis and comparison of styles.

We use the Z specification language to express the formal

model in this paper [12]. Appendix A summaries the Z
notation that we use in this paper.

2 What’s in a Style?

In order to provide a precise meaning for architectural de-

scriptions it is important to distinguish the abstract syntac-
tic domain of architectural descriptions from the semantic

domain of architectural meanings. Having done this we can
then provide a map, or meaning function, from one to the

other.

We take as our starting point the view that the syntac-

tic domain of architectural description (among other things)

supports the description of systems in terms of three basic
svntactic classes: components. which are the locus of com-

putation; connectors, which are the locus of communication;
and configurations, which are collections of interacting com-
ponents and connectors. Additionally, various style-specific
concrete notations may be used to represent these visually,

facilitate the description of legal computations and interac-
tions, and constrain the set of describable systems.

A purely syntactic description may have some benefits
as an informal design notation. For example, the connec-
tors may be interpreted as defining data fiows through the
system. But as we argued in the introduction, such informal

1The ~lternative, attempted by some, is to kglslate that differ-

ent groups use a g:ven, prescribed procrustean style of architectural
description. As noted above, this has serious Iimltations,

approaches have strong limitations. In particuku, questions
such as how components compute, what data is communi-
cated, or how the flow of information is controlled, cannot
be answered with any precision.

The purpose of this paper is to provide an improved ba-

sis for understanding the meaning of architectural descrip
tions. To do this we adopt the notion of architectural style

as an interpretation from syntax to semantics, and outline

a framework for precise style definition.
In this framework style definition starts with a formal

definition of the syntactic domain in which architectures are
described. In Section 3, we do this generically by providing

formal definitions of components, connectors, and configura-
tions. Next. for each stvle we must define a semantic model.
that captures both the static and dynamic meanings of the
class of systems built in that style. Finally, as with a de-
notational approach to programming languages, we provide
a mapping from the synt attic descriptions to the semantic

model for the style. Given the nature of architectural de-

scriptions, this amounts to the definition of three meaning

functions that link the syntactic descriptions to their seman-
tic counterparts. For style X, we would declare the meaning

functions as partial functions from the abstract syntax to the

semantic models.

M~omP : Component++ Comp$m

;~;;
; Connector+ Connfim

: Configumtion * ConfJm

Here Component is the abstract syntactic class of compo-

nents (to be defined in Section 3) and Comp&m denotes the

semantic model of a component in style X. Thus, M}omo
is a meaning function from the general abstract syntax for

components to the style-specific semantic model. Similar

conventions are used for connectors and configurations.

The final step in the formal definition of an architecturrd

style is to make explicit the constraints that this style im-
poses on the syntactic descriptions. Because the meaning
functions are declared as partial functions on the syntactic
domains, not every syntactic construct may have a meaning
in a given style. Expressing these constraints explicitly car-

ries a proof obligation to show that the meaning function is
well-defined for all syntactic elements which meet the con-

st raints. By making the constraints explicit we are precise
about the descriptions that are reasonable in the style.

After we have formally defined an architectural style us-

ing the method outlined above, we have a foundation for

further analysis of the style. We discuss two different forms

of analysis in this paper. The first form of analysis is within

a particular style, identifying important substyles that can
be understood as further syntactic restrictions on a more
general style. The second form of analysis is between styles,
which we exemplify by comparing different semantic models
to see if they share similar properties (in thk case we check

whether configurations can be collapsed and represented as

components).

To summarize, the steps we will follow are:

● formalize abstract syntax for architectures

● for a given style:

- define the semantic model

– discuss concrete syntax for the style

– define the mapping from abstract syntax into se-
mantic model

10

make explicit the constraints on the syntax

● demonstrate analysis within and between formally de-

fined architectural styles.

3 The Abstract Syntax of Software Architectures

From an abstract, generic point of view the bmic syntac-

tic elements of an architectural description are components,

connectors, and conjlgumtions of components and connec-

tors.

3.1 Components

Components are the active, computational entities of an ar-
chitecture. They accomplish tasks through internal com-

putation and external communication with the rest of the
system. The relationship between a component and its en-
vironment is defined explicitly as a collection of interaction
points, or ports. We can also differentiate between compo-
nents with the same port interface based on a description
of the computation they perform. At the abstract level of

a component, we model this reference to computational be-
havior with a placeholder for some concrete syntactic de-

scription.
For the moment, we are not concerned with details of

the construction of ports or the computational description
for components, so we model these as given sets. An archi-

tectural component, as a syntactic entity, is modeled as a
collection of ports together with a description of its compu-
tation. We use the Z schema construct to define the new
type Component to represent the syntax of components in
our architectural specification.

[PORT, COMPDESC]

_ Component
ports : P PORT

description : COMPDESC

3.2 Connectors

Connectors define the communication between components.

Eachconnector provides a way for a collection of ports to
come into contact. A connector, rather than being bound

unchangeably to specific ports on specific components, pro-
vides placeholders for these ports, as roles in the communi-

cation, The description of the precise com municat ions pro-

tocol provided within a connector is separated in the same

way that we separate the computation description in a com-
ponent from its port interface. The exact language used to
describe this communication behavior is an issue for the con-
nector’s concrete syntax, and we represent it here as only a
placeholder.

Again, we are not yet concerned with the details of roles
or communication description, so we introduce them as given
sets in this specification. An architectural connector is mod-
eled as a collection of roles together with a description of its
communication protocol, as defined in the schema Connector,

[ROLE, COiViVDESC]

rConnector
roles : P ROLE

description : CONNDESC

3.3 Configurations

Named instances of components and connectors are com-

bined to form configurations. Names for instances of com-
ponents and connectors are taken from two more given sets.

The names used to identify component and connector in-

st antes are also used to identify inst antes of ports and roles.
We introduce type synonyms for named ports and roles.

[COMPNAME, CONNNAME]
PortInst == COMPNAME x PORT

RoleInst == CONNNAME X ROLE

We use a partial function, wmponents, to represent nam-

ing the set of components in a particular configuration in

the schema Configuration below. Similarly, we use the par-
tial function connectors for naming connectors in a config-
uration. The interfaces of components and connectors are

attached to reflect their composition. Roles are filled by
particular ports, and communication occurs along the con-
nections. This is modeled as a partial function, attachment,

from role instances to port instances, reflecting our intuition
that roles represent placeholders for particular ports. While

a port may fill many roles, meeting the needs of several dif-

ferent communications, a role may have at most one port

that fills it.
In addition to declaring the attributes for the named

components and connectors and the attachment between

roles and ports, the schema Configumtion includes two ad-
ditional constraints (below the separating line) that must be
satisfied by all configurations. The first constraint is a pred-

icate that ensures that any role instance in the attachment is
a role for some named connector in the configuration. The

second constraint ensures a similar fact for port instances
and the named components. Together, these two constraints

enforce a lexical scoping on attachments within a configura-
tion.

rConjigumtion

components : COMPNAME + Component
connectors : CONNNAME + Connector

attachment: RoleInst + PortInst

V cn : CONNNAME; r : ROLE
I (en, r) c dom attachment
● cn E dom connectors A r e (connectors(cn)).rde.$

V cn : COMPNAME; p : PORT

[(en, p) G ran attachment
● cn c dom components A p ~ (components(cn)).ports

4 The Pipe-Filter Style

In this section, we show how the framework can be used to
define the pipe-filter Style (PF). Thii style is representative
of coarse-grained dataflow systems, such as those supported
by Unix pipes.

4.1 Semantic Model

The first part of defining a style is to provide a semantic
model for the components, connectors, and configurations of
the style. In general, this is perhaps the hardest part of the
process, since to do th~ properly we must come to grips with

the intuition behind the use of the style. In the case of PF,
an appropriate formal description of the semantic domain

11

already exists [1, 2]. Here we will use only those aspects of
the model that are necessary to illustrate the basic ideas.

The PF style interprets components as filters, which are
typed stream transducers. These can be modeled as state

machines that receive their input and place their output as

sequences on data ports. We do not wish to uncover the de-
tails of how the internal state and data are described, so we
declare them as given sets in our specification. Data ports
define the interfaces for filters and we also introduce them as
a given set in our model. These are to be distinguished from

the ports that form the interface for unnamed components
in the syntactic descriptions.

~STATE, DATA, DATA PORT]

In order to define the behavior of a filter, we must know

its input and output ports and the type of data that may
be passed along each port. This latter information can be

represented by a (partial) function from data ports to their
alphabet. At any point in time, the ports of the filter will

hold all data (as a sequence) that has been received (for
input ports) or produced (for output ports) but not yet re-
moved. The state machine behavior of the filter is modeled
as a transition function that takes au internal state and data

configuration and results in a new internal state and data
configuration. In addition we can identify a starting internal
state. This information about a filter is summarized in the
schema Filter. Some constraints on filters that we enforce

are:

● input and output data ports are distinct (first predi-

cate below);

● a filter transition is determined by looking at data on
the input ports only and results in information pro-
vided to the output ports only (the final predicate be-

low).

Filter

inputs, outputs : P DA TAPORT
alphabet : DA TAPORT -++ P DATA

states : F’ STATE

start : STATE

tmnsitions: (STATE x (DATAPORT ++ seq DATA))
++(STATE x (DATA PORT ++ seq DATA))

inputs n outputs = 0
dom alphabt = inputs U outputs
start C states

V SI, sz : STATE; PSI, PSZ : DATA PORT -++ seq DATA

● ((sl, Psi), (s2, p$2)) G transitions +.
SI C states A sz C states

A dom PSI = inputs A dom PSZ = outputs
A (Vi : inputs o ran(psl (i)) ~ atphakt(t))

A (Vo : outputs ● ran(psz(o)) Q alphabet(o))

We can define an operational semantics for the compu-

tational behavior of a filter. At any point time, a filter is
defined by its current internal state, constrained to be in the
set of possible states for the filter, and the data at each of
its input and output ports (which must be in the alphabet
of that port).

_ FilterState
f : Filter

curstate : STATE
instate, outstate : DATAPORT ++ seq DATA

curstate E f.states

dom instate = f. inputs

dom outstate = f.outputs

Vp : f.inputs ● ran(instate(p)) ~ f.alphabet(p)

Vp : j.outputs ● ran(outstate(p)) G j.alphatet(p)

A single computation for a filter transforms some input

data into output data. The order of data is preserved, so
input data is consumed in the order it arrived and output

data is provided in the order it is produced. The result of a

computation step for a filter is the removal of some data off
the input ports, a transformation of that data, which will

depend on the filter’s current state, a change in the current
state and the addition some data to the output ports. The
schema FilterCompute encapsulates just such a computa-
tional step. We make use of the A convention to describe

this transition from one state of the filter to another (see

Appendix A).

_ FilterStep
A FilterState

f’=f

3 in, out : DATAPORT ++ seq DATA

● ((curstate, in), (curstate’, out)) C /.tmnsitions

AVp : f.inputs
● instate(p) = indata(p) - instate’(p)

Ab’p : f.outputs
● outstare’ = outstare - outdata(p)

The data ports of transducers are connected by pipes,
which we model as typed streams of data. Each pipe has a

distinct source and sink for receiving and sending data.

Pipe

L

source, sink : DA TAPORT

alphabet : P DATA

source # sink

The protocol or behavior of a pipe is defined by giving

its transmission policy. At any point in time, the pipe has
some data residing at its source ports and some data at its
sink ports.

PipeState

}

p : Pipe

sourcedata : seq DATA
sinkdata : seq DATA

ran sourcedata G p.alphabet

ran sinkdata ~ p. alphaht

A single step in the behavior of a pipe results in some
nonempt y subsequence of data being removed from the source
data ports, in the order in which it arrived there, and being

delivered, unchanged in content and order, to the sink data
ports.

12

. PipeStep

APipeState

p=p’

3 deliver: seq DATA

I #deJi~vejv;t)
● - sourcedata’ = sourcedata

A sinkdata’ = sinkdata-deliuer

A configuration is then modeled as a set of filters con-

nected by pipes. Wedisallow name clashes between the data
ports ofdistinct filters and pipes. Theinteraction is modeled

by identifying each pipe source with a unique filter output
and each pipe sink with a unique filter input.

_ZntemctingFi2terSet
jilters : P Filter
pipes : P Pipe

V ~1,~Z : filters

lfl#f2
● (jl. inputs U jI outputs) n [jz. znputs U jz. outputs) = 0

Vpl, ~ : pipes

lPl#P2
● {pl.source, pl.sink} n {p2. soume,p2.sink} = 0

Vp : pipes
● 3fl, j2 : ji2ters

● p.source E jl outputs

A p.sink c fz. inpats

A jl. alphabet(p.source) = p.alphatet

A jz. alphabet(p. sink) = p.alphabet

The behavior of an interacting set of filters is defined in

terms of the behaviors of the constituent filters and pipes.
One step in this behavior is either a computation step for

one filter or a transmission step for one pipe, all else remain-
ing unchanged. Details of this behavioral specification have
been omitted here but can be found in [2],

4.2 Concrete Syntax

The second part of a style definition is the creation of a style-
specific concrete syntax. While the details of such syntax
are important, in this paper we are more concerned with

understanding the relationship between these descriptions

and their associated meanings. In that regard, it is enough

to know that there exist filter and pipe description languages

that determine the interesting subset of the possible compo-

nent and connector descriptions in the PF style. Formally,
we represent these languages as subsets of the respective
description languages introduced in Section 3.

I FilterDescriptions : P COMPDESC
PipeDescriptions : P CONNDESC

For concreteness, Figure 1 illustrates the definition of a filter
that capitalizes its character input stream using one nota-
tion developed for this style [2].

4.3 Meaning Functions

The third part of a style description is to define the meaning

of the syntactic constructs in terms of the semantic mociel.
As indicated in Section 2 to give meaning to components,

we need to specify a partial function of the form:

inputs: char in;
outputs: char out;
execution:

char c;
while (TRUE) {

c = ‘read(in’);-
if(c >= ‘a’ && c <= ‘z’) {write(out,c+’A’-’); };}
else {write(out,c);}

)

Figure 1: Concrete Description of a Capitalizing Filter

/ M%omP ‘ Component ++ Compfim

From the definition of Filter, we can see that it is possible
for two filters to be identical up to naming of data ports and
states. Therefore, we can define an equivrdence relation on

elements in Filter. We treat two filters as equivalent if and

only if there is an isomorphism between their states, and
their input and output data ports that preserves the behav-

ior defined by their transition functions. This equivalence
relation is denoted by -~f. The detailed definition of =~f is

not given below, though it is straightforward.

[-sj, _: Filter * Filter

T$Fmeaning function for PF components, written below

“dentifies the syntactic element Component with~MCornp~l
x

an equivalence class of filters. So m this example, Comp~em
is replaced by sets of filters, or P Filter. In order to complete
the mapping from syntax to semantics, we need to have an
injective function, called DataPort below, from named in-

stances of the syntactic ports to the semantic data ports.
Among other things, DataPort wiil help to distinguish be

tween computationaily equivalent filters.

r

DataPort : PortInst H DATA PORT

‘Zfmp : Component w P Filter

V c : Componen~ jl, jz : Filter

Ih G@;rnP(c)

● j2 C M::mp(c) @ fl =$/ k

V c : Componen~ n : COMPNAME

I c c dom M~~mp

()o~j : M$;mp C

c DataPort[{ n} x c.portsj = (j. inputs U f.outputs)

In Section 4.4 we wiii discuss what constraints on compo-
nents must hold in order to give them meaning in the PF
style. That is, we wiii explicitly define the domain of the

function M$fmP.

Connectors are given meaning in PF by interpreting them

as pipes. The concrete syntax for pipes specifies the type
of data transmitted. Two pipes are considered equivalent if
they have the same alphabets. Of course, in the context of
a set of interacting filters, the pipes are distinguished by the
dataports they connect.

I ‘5C.. -. Connector + P Pipe

V c : Connector; pl, p2 : Pipe

I w G Mpg .(c)

o w E M~~nn(c) + p~.alphabet = p2.a/phabet

12

Wecannow define the meaning of configurations in the
PF style. Named components are interpreted as filters and

connectors are refllzed as pipes. The attachments are real-
ized by equating pipe sources with unique filter data ports

and pipe sinks with unique filter input data ports. To do
th~ we select appropriate elements from thecla.sses defined

bythemeaning functions A4~$mP ancl M~~nn. Inthesyn-

tactic domain, we declare that source and sink are distinct

roles for connectors.

k.,source, sink : ROLE

I w%’.,: Configuration++ IntemctingFilterSet

V cjg : dom Mgfnf ●

(“%nf(cf9))<filters =
{n : COMPNAME; c : Component; f : Filter

I (n, c) G cfg.components

Af ~ N2%zP(c)
A~. outputs U f.inputs = DataPort[{n} x c.ports)

● f}

?“&’nf(cf9)).pipes =
{n : CONNNAME; c ; Connector; p : Pipe

I (n, c) G cfg.connectors

Ap 6 M~fnn (c)
Ap.source = Dataport(cfg. attachrnent(n, source))
Ap.sink = DataPort(cfg. attachment(n, sink))

● p}

4.4 Syntactic Constraints

The final part of defining a style is to make explicit the

syntactic preconditions that must be satisfied in order to

translate to the semantic domain. Since the meaning func-

tions are partial, only a subset of all components, connectors

and configurations are given a meaning in the PF style. This
corresponds to the intuition that only some architectural de-

scriptions represent valid pip e-filter systems. In particular,
for components we demand that the computation associated
with the component can be defined using the concrete lan-
guage of FilterDescription and that the named component

ports can be realized as data ports of some filter. We can
express these syntactic constraints in Z by use of schema in-

clusion in which the original specification of type Component

is included in the specification of syntactically legal PF com-
ponents and then further constrained. (See Appendix A for

further details on schema inclusion.)

—LegalPFComponent

Component

description c FilterDescriptions

By specifying this explicit syntactic constraint, we are
actually asserting two things. First, only component de-
scriptions that satisfy this constraint can be legally inter-
preted as a filter. This is equivalent to asserting that the

domain of M~~mP is LegalPFConiponent.

words, we must prove that given any legal PF component,
we can apply M ~~mp to obtain a filter. We must show that

V c : LegalPFComponent ● M~~mP(c) # 0

This amounts to demonstrating that

V c : LegalPFComponenk n : COMPNAME
e 3f : Filter

o DataPort[{n} x c.ports~ = f inputs LJf outputs

or that the function DataPort is reasonably constructed.

Therefore, the domain restriction to M ~fmp is valid.

Similarly, we constrain the definition of connectors to be

those having a concrete description interpretable as a stream

alphabet and having only two roles, source and sink.

— LegalPFConnedor

Connector

description E PipeDescriptions
roles = {source, sink}

Once again, we formally restrict the meaning function to
cover legal values.

‘F = LegalPFConnectordom M Corm

This also results in a proof obligation. Since M~~nn as
defined could be total, however, the proof is trivial.

As one might expect, the constraints we enforce on con-

figurations are more complex. For the pipe and filter style
defined above these are:

1. Each named component is a legal filter.

2. Each named connector is a legal pipe.

3. Every pipe source is attached to a unique filter output

with the same alphabet.

4. Every pipe sink is attached to a unique filter input
with the same alphabet.

In the following schema, the first two predicates below the

line express the first two constraints above. The third predi-
cate below states that all pipe sources and sinks are attached

to some named ports. The fourth predicate says that the
attachment function is injective, that is, no two sources or

sinks can be attached to the same port instances, The last

two predicates express the alphabet constraint.

dom M$~mP = LegalPFComponent

Second, this assertion results in a proof obligation that we

have not invalidated our definition of M~~mP. In other

14

. LegalPFConfigurvttion
Conjigumtion

V c : ran components ● c c LegalPFComponent

V c : ran connectors ● c c LegalPFConrwctor

dom attachment= clom connectors x {source, sink}

attachment c RoleInst * Portlnst

V n : G’ONNNAME; n’ : COMPNAME; port : PORT
● attachment(n, source) = (n’, port) *

@ji/ : M~~y(component.s(n’));

pip : Mconn(connectors(n))
● DataPort(n’, port) G jlcoutputs

Ajil.alphahet(DataPort(n’, port)) = pipe. alphabet)

V n : CONNNAME; n’ : COMPNAME; port : PORT

L
● attachment n, sink) = (n’, port) +

(qfi~ : @$y(components(n’));

pipe : MCOnn(connectors(n))
● DataPort(n’, port) ~ jil. inputs

/@.alphal.wt(DataPort(n’, port)) = pipe.alphabet)

A straightforward argument shows that any syntactically-.
legal configuration can be sssigned a meaning by M ~~nf,

so we restrict its domain to LegalPFConfig.

dom M~~nf = LegalPFConjig

Thw concludes our formal definition of the PF style. In
Section 6 we investigate other syntactic constraints that can
be used to define PF e.ubstyles and discuss some analysis
that can be performed on the semantic domain of PF.

5 Event System Style

In this section, we show (more briefly) how the same method
of definition for the PF style can be used to describe another

common architectural style, the event system (ES). Event
systems are increasingly important as a flexible tool inte-

gration technique, since they allow the implicit invocation

of tools when some other tool announces an event [6, 11].
For the purposes of this paper we will treat each compo-

nent in an event system as a collection of methods sharing
a state. A component responck to an incoming method by

transforming its internal state and announcing some events.
Connection in the system consists of an association between
events and the methods that should be invoked when those
events are announced.

5.1 Semantic Domain

The ES style interprets components ss objects with a vo-
cabulary of methods and events. Here we will model an

object as a state machine with a transition function relating
method invocations to state transitions and event announce-

ment.

[iMETHOD, EVENT]

. Object
methods : P METHOD

events : P EVENT

states : P STATE
start : STATE

transitions : (METHOD x STATE)

-++ STATE X P EVENT)

9tart C states

dom transitions = methods x states

ran transitions ~ { s : states; es : P EVENT ● (s, es)}

The ES stvle interprets connectors ~ distributors, which
take announc;d event; and transform them into method in-
vocations. Our model of a distributor below is understood

as saying that whenever any event in euents is announced,
then every method in methods must be invoked.

rDistributor
events : P EVENT

methods : P METHOD

A collection of objects and distributors are joined to form
a set of interacting objects. Unlike the PF example, the se-

mantic model does not constrain the topology of the connec-
tors. Indeed, the only constraint we express in the semantic
clomain is that there be no name clash between the events
and methods of the objects. (That is, in this model events

and methods are uniquely associated with specific objects.)

IntemctingObjdSet

l--

objects : P Object
distributors : P Distributor

V01,02: objects ●

(ol.eventsn 02,.events # 0 V
ol. methods n 02. methods # 0) * 01 = 02

We have defined the static view of the semantic model

for event systems. We will only outline the model for the

dynamic behavior of ES. At any point in time, each object

in the system will be in some legal state and will have some

methods that have been invoked but not executed. The
system will also hold a set of announced events that have not

yet been interpreted and distributed as method invocations
to the relevant objects.

I~temctingObjectSet

state : Object++ STATE
invoked : Object++ bag METHOD

announced : bag EVENT

dom state = objects

dom invoked = objects

A change in the system results when either a single object

Derforms ;ne of its ‘~ending invoked methods or ‘when an
;nnounced event is d;stribu;ed as method invocations to the
relevant objects.

5.2 Concrete Syntax

A concrete syntax for events systems
an extension of regular programming

can be developed as
languages [13]. The

15

for Package-1
declare Event-1 X : Integer,
declare Event_2
when Event-S => Method-1 B

end for Package-1
for Package_2

declare EventJ3 A,B : Integer;
when Event_l => Method_2 X
when Event-2 => Method_4

end for PackageJ2

Figure 2: Event System Description Example

details of these extensions are not particularly important for
this discussion. These concrete descriptions define a subset
of allowable computation and communication descriptions.

I ObjectDescriptions : P CO MPDESC
DistributorDescrip tions : P CONNDESC

For example, Figure 2 illustrates a concrete syntax for

the communication description extension that allows an Ada

package interface to specify events announced by that pack-
age and the method to be invoked when an event is an-

nounced by some other package [7].

5.3 Meaning Functions

The definition of meaning functions for ES proceeds exactly

as for PF. The meaning function for ES components, written

M%rnp ~. associates the syntactic elements of Component

with eqmvalence classes of objects. Equivalence between
objects is denoted by GObj.

As with PF, in order to complete the mapping from syn-
tax to semantics we need to identify ports and roles (the

syntactic elements) with events and methods (the semantic
elements). Named port instances are identified as either a

method or event, but not both. Roles are identified as either
event roles or method roles.

EventasPort : PortInst ++ EVENT

MethodasPort : PortInst ++ METHOD

EventRoles : P ROLE

MethodRoles : P ROLE

/ (domEventasPort, dom MethodasPort) partition PortInst

V n, n’ : COMPNAME; p : PORT

● (n, p) c dom EventasPort

* (n’, p) E dom EventasPort
A(n, p) G dom MethodasPort

+ (n’, p) E dom Methods.sPort

(EventRoles, MethodRoles) partition ROLE

The ES style interprets components as objects, matching
the methods and events of the object to corresponding ports.

I M’%, : Component w P Object

V n : COMPNAME; c : dom M&mp

.30: M~~mp(c)

● Even tasPort- [o. events! U MethadasPortm [o. methods~

= { n } x c.parts

The ES style interprets connectors as distributors. The

distributor represented must have the same number of events

and methods as the connector. Note that we are essentially
defining the criteria for equivalence of distributors.

I M~:nn : Connector w P Distributor

V c : Connector; d : Distributor

I d c M%..(c)
o #(d. events) = #(c. roles n EventRoles)

A #(d. methods) = #(c. roJes n MethodRoles)

The meaning of a configuration is derived from the mean-

ing of its components, its connectors, and the attachment

function. The attachment links events announced by an ob-
ject to the same event received by one or more distributors.
Also the attachment links methods received by an object to
the same method invoked by one or more distributors.

~ Configumtion + IntemctingObjectSetM~;nf .

V cfg : dom M~~nf c

(M%n~(cfg))-objects =
{n : dom cfg. components; c : Component; 0: Object

I cfg.components(n) = c

Ao E M& (c)

AEventusPort- [o. events~ U MethodasPort- ~o. methods)

= {n} x c.ports
* o}

A

(M%nj(cfg)). distributors =
{n : dom cfg.connectors; c : Connector; d : Distributor

I cjg. connectors(n) = c

Ad C .@:nn(c)
A(V r : c.roles; (n’, p) c dom EventasPort

● cfg, attachment(n, r) = (n’, p) +

EventasPort(n’, p) 6 d.events)

A(V r : c.roles; (n’, p) c dom MethodasPort

Q cfg. attachment(n, r) = (n’, p) +

MethodasPort(n’, p) G d.methods)
o d}

5.4 Syntactic Constraints

The syntactic constraints in the ES style can be expressed

by making explicit the domain for the meaning functions.
For components, we simply restrict interpretation to those
whose computation can be described using the concrete lan-

guage of ObjectDescriptions.

— LegalObject
Component

description E ObjectDescriptions

16

Similarly for distributors, we restrict the abstract syn-
tax to include only those connectors whose protocol can be

described by the language of DistributorDe.scriptiorz.~.

_LegalDistributor

Connector

description G DistributorDescriptions

A legal configuration is one in which the components
are legal objects, the connectors are legal distributors, and
attachments only occur between event roles and event ports

or between method roles and method ports.

- LegalESConjig

Conjigumtion

V c : ran components ● c 6 LegalOb~ect

V c : ran connectors ● c G LegalDistributor

V n : CONNNAML?; m : COMPNA ME;

role : ROLE; port : PORT

! ((;;:;~)i~;:~;~~~ ;attaclznzent

(m, port) G dom EuentasPort
Are/e G MethodRoles +

(m, port) G dom MethodasPort

The domains of the meaning functions are accordingly

6 Analysis Using Architectural Style

One of the main reasons to formalize architectural style is
to gain analytic leverage. III this section we present two

examples of the kind of analysis of an architectural style
that is possible within our formal framework.

6.1 Defining Architectural Substyles

It is common for one style to be understood in terms of
another. Many of these .wbstyles can be understood as ad-

ditional constraints on the syntax of the more general style.
For example, in the PF style we can identify the following

common substyles:

● disallowing feedback 10ops, or cycles;

● restriction to a pipeline; and

● allowing only a fan-on t of components.

The nature of pipes permits us to consider the topology
of a PF configuration as a directed graph. We can derive

the connection between two components by determining if
any of their ports are attached to a common pipe.

rPFGraph —
LegalPFConjig
connect : COlfPNA ME ++ COMPNA h4E

connect =
{cl, Q : dom components; pipe : dom connectors
[attachment(pipe, source) = (c,, p,)

Aattachment(pipe, sink) = (cz, W)
● (cl, C2)}

A PF system with no feedback loops is one in which the

connection graph is acyclic.

AcyclicPF

k

PFGraph

id COMPNAME (1 connect+ = 0

To express acyclic pipe-filter architectures as an inde-

pendent style, we restrict the meaning function Mgfnf to

configurations satisfying Ac~clic. The other meaning func-

tions are the same as for the generaf PF style.

M A&c
: Component++ P Filter

7

‘???’ ‘ connector.+ p ‘ip
M ~O~f ‘c : Conjlgumt:on ++ IntemctingFilterSet

M~;;c = M~fmP

~Acyclac
Corm = M~fnn

M&O$’c = {Acyclic ● d Conjigumtion} a M~~nf

Restriction to a pipeline means that we can view the
connection graph as ‘a-sequence of components, with each

comp orient in ~he pipeline- sequence connected to the com-
ponent after it in the pipeline.

rPFGraph

3 jilters: seq COMPNAME

I ran ji2ters = dom wmponents
● connect = {i :1. . (#filters – 1)

● (falters(i), jilters(i + l))}

A PF substyle allowing only fan-out has a connection

graph whose inverse is a function, that is, components are
connected to a unique parent component that provides its

input.

I connect- E COMPNAME + COMPNAME

Garlan and Notkin have used the event system model to

investigate the differences between various implementations

of an implicit invocation mechanism [6]. Their examples
concentrate on restrictions to the kinds of events that ob-
jects can announce and the form of the event to method

binding that a distributor allows. Since we have left the

interpret ation of events and methods open and allow dw
tributors to bind events to methods arbitrarily, idl of those
styles are substyles of ES as it appears in this paper.

Another substyle of ES is one with a global event name
space. In this substyle, different objects can announce the
same event. In that sense, it is the component port that

uniquely identifies events and not the named port instance.
This substyle can be expressed as a constraint that events
must be distributed to the same method invocations regard-
less of which component announces the event. One way to
express this constrain t syntactically is shown below.

17

. GlobalEvents
LegalESConjig

Vnl, n2 : COMPNAME; p : PORT

I (nl, p) c dom EventasPort
Ap ~ (components(nl)).ports

Ap C (component$(rz2)).ports
v (’d d : CONNNA ME

● (3 rl : ROLE o attachment(d, r,) = (n,, P))

+ (3 m : ROLE ● attachment(ci, f>) = (nz, p)))

6.2 Relating Semantic Domains

One desirable property of an architectural description is hi-
erarchy. In a hierarchical description components or connec-
tors may themselves be represented as a configuration. For

example, in the pipe and filter style, we might want to allow
one filter to be expandable into a configuration of pipes and

filters. By defining a style formally, we can understand what

properties of the semantic domain might make this kind of
description meaningful.

For example, Allen and Garlan showed formally that in
the pipe and filter style it is semantically meaningful to de-

compose a component (filter) into a configuration of pipes

and filters [2]. In their treatment, the decomposition is
meaningful when the behavior of the unbound ports of the
associated configuration matches the behavior of ports of an
equivalent filter. In brief, the proof consists of the construc-
tion of a relation between a set of interacting filters and a
single filter.

I - wllapsep~ -: IntemctingFilterSet H Filter

Thw result means that we can now expand the concrete de-
scription language of filters to include hierarchical clecompo-

sition without altering our useful and intuitive understand-
ing of the PF style.

This result leads us to ask whether a similar result holds
for any other style. For example, in the event system style,
does there exist a similar relation between collections of in-
teracting objects and single objects? In other words, does

there exist a relation

I -cdlapse~~ -: IntemctingObjectSet ++ Object

such that the external method/event behavior of the set of

objects matches that of the collapsed object?
Without going into too much detail, we can see that in

general this result does not hold for event systems. When a
set of interacting objects is collapsed into a single object any

event-method connections internal to the set of objects will
result in a computation that cannot be made to correspond
to any visible method invocation.

This is a useful result, because it tells us that if we want
to provide hierarchical event systems we must do one of two
things. Either we have to change the semantic model, or
we have to find ways to restrict the class of descriptions
to a subset that allows hierarchical decomposition. In the

former case we would need to view method invocation as
non-atomic. In the latter case we might restrict decompo-
sitions to be configurations that do not have any internal
event-method bindings.

7 Conclusion

We have argued that a formal approach to architectural style
permits the precise interpretation and analysis of architec-

tural descriptions. This has two important benefits. First,
precision facilitates effective communication about systems

at the architectural level. Misunderstandings inherent in
ambiguous specifications can be avoided without abandon-

ing the architectural paradigm. Second, a formal under-
standing of classes of systems permits the development of

specialized analysis techniques as well as comparison be-
tween styles.

In addition to these immediate benefits, a precise un-
derst anding of style represents a necessary first step toward
automated support for soft ware architectural design and de-

velopment. Through an understanding of both the struc-
tural constraints and the semantic underpinnings of archi-

tectures, tools and environments can be developed that ef-
fectively support the design process. As a first step in this
direction, we have developed a software environment frame-
work based on this model for style definition. The common

elements of comp orient, connector, configuration, and hier-
arch y are directly supported by the environment, whiie its

open structure supports the development and integration of

tools that take advantage of st yle-speeific structural and se-
mantic properties, Because of the generality of structured
style definition, tools developed for one style may be reused

for any style that has certain properties in common with the

original.

Acknowledgments

The authors would like to thank various colleagues whose
comments on this work have helped us to clarify our thoughts,
especially Dave Wile, Marc Graham, Mary Shaw, Jean-

nette Wing, Daniel Jackson, John Ockerbloom and Amy
Moormann Zaremski. This research was sponsored by the
National Science Foundation under Grant Number CCR-
9112880 and by Siemens Corporate Research. The views

and conclusions contained in this document are those of the

authors and should not be interpreted as representing the

official policies, either expressed or implied, of the U.S. Gov-
ernment or of Siemens Corporation.

References

[1]

[2]

[3]

[4]

[5]

ALLEN, R., AND GARLAN, D. A formal approach

to software architectures. In Rvceedings of lFIP’92
(September 1992), J. van Leeuwen, Ed., Elsevier Sci-
ence Publishers B.V.

ALLEN, R., AND GARLAN, D. Towards formalized
software architectures. Tech. Rep. CMU-CS-92-163,
Carnegie Mellon University, School of Computer Sci-
ence, July 1992.

Proceedings of the Workshop on Domain-Specijic Soft-
ware Architeztums (Hidden Valley, PA, July 1990),
Software Engineering Institute.

EARL, A. A reference model for computer assisted
software engineering environment frameworks. Tech.
Rep. HPL-SEG-TN-90-11, Hewlett Packard Laborat~
ries, Bristol, England, August 1990.

FREEMAN, P., AND A. I. WASSERMAN. Tutorial on
Software Design Techniques. IEEE Computer Society

Press, 1976.

18

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

A

GAR.LAN, D., AND NOTKIN, D. Formalizing design
spaces: Implicit invocation mechanisms. In VDM ’91:

Formal Software Derrelopment Methods (Noordwijk-
erhout, The Netherlands, October 1991), Springer-

Verlag, LNCS 55I, pp. 31-44.

GARLAN, D., ANJI SCOTT, C. Ad cling implicit invo-

cation to traditional programming languages. In Pro-
ceedings of the Fifteenth International Confenmce on

Sojtruare Engineering (Baltimore, MD, May 1993).

GARLAN, D., AND SHAW, M. An introduction to soft-

ware architecture. In Advances in Software i?ngineer-
ing and Knowledge Engineering, Volume 1 (New Jersey,

1993), V. Ambriola and G. Tortora, Eels., World Scien-
tific Publishing Company.

LUCKHAiM, D. C., AND VERA, J. Event-based concepts

and language for system architecture. Working draft,

October 1992.

METTALA, E., AND GRAHAM, M. H. The domain-
specific software architecture program. Tech. Rep.

CMU/SEI-92-SR-9, Carnegie MeUon Software Engi-
neering Institute, June 1992.

RJ31SS, S. Connecting tools using message passing in
the Field Environment. IEEE Software ‘7, 4 (July 199o),

57-66.

SPIVEY, J. The Z Notatton: A Reference Manual, Pren-

tice Hall, 1989.

SULLIVAN, K. J., ANL> NOTKIN, D, Reconciling en-
vironment integration and software evolution. ACM
Transactiorw on Software Engineering und Methodology
1, 3 (July 1992), 229-268.

Z Notation Used in this Paper

The Z notation is a mathematical language developed mainly

at the Programming Research Group at the University of
Oxford over the last 15 years. The mathematical roots
of Z are in first order logic and set theory. The notation

uses standard logical connective (A, V, +, etc.) and set-

theoretic operations (6, U, (3, etc.) with their standard
semantics. Using the language of Z, we can provide a model

of a mathematical object. That these objects bear a resem-
blance to computational objects reflects the intention that Z

be used as a specification language for software engineering.
In this appendix, we describe the basics of the Z notation

used in this paper. The standard reference for practitioners

of Z, and the basis for our use of Z, is Spivey ’s reference

manual [12].
A Z specification consists of sections of mathematical

text interspersed with prose. The mathematical text is a
collection of types together with some predicates that must
hold on the vafues of each type, Types in Z are sets of values.
Z provides some fundamental types in its basic toolkit that
are primitive, such as N for natural numbers and Z for inte-
gers. In addition, we can introduce further primitive types,

called given types, by writing them in square brackets. By

convention, given types are written in all capital letters. The
construction of elements in a given type is not provided in
a specification, usually because that level of detail is not
necessary for the purposes of the specification. Prose sur-
rounding the declaration of a given type should indicate the

reason the specifier has introduced the type rather than use

an existing type. For example, we could introduce two given

sets to represent all possible authors and papers that those
authors might write. For use in this appendix, no further

information about authors or papers need me made explicit,
so we write:

(AUTHOR, PAPER]

An element of a type is declared using a colon (:). So
we would write author : AUTHOR and read this as ‘author

is of type AUTHOR”, meaning author is an element in the

set of values defined by AUTHOR. Since AUTHOR is a set,
we could also write author c A UTHOR, using the set mem-

bership function C. Z uses the : notation when a variable is

declared and e to express predicates over bound variables.
New types can also be defined by constructing them from

primitive types using the following type constructors:

● P X is the set of alf subsets with elements from type

X, also called the powerset of X.

● X x Y is the type consisting of all ordered pairs (z, y)

whose first element is of type X and whose second

element is of type Y, also caJled the cross-product of

X and Y.

+ seq X is the set of all sequences, or lists, of elements

from X, including empty and infinite sequences.

c bag X is the set of all bags of elements from X.

o Relations and functions between types identify special

subsets of the cross product type. The ones used in
this paper are:

– X + Y is the set of all relations between domain
type X and range type Y. A relation is simply a
subset of X x Y.

– X++ Y is the set of all partial functions between

X and Y. A partial function does not have to be

defined on all elements of its domain type.

– X -+ Y is the set of all total functions. Total
functions are defined on all elements of the do-

main type.

– X w Y is the set of all partial functions from X
to Y whose inverse is a partial function from Y
to X (also called 1-1 or infective).

– X = Y denotes the total injective functions from
x to Y.

– X+ Y denotes the bijective functions from X to

Y, i.e., the functions from X to Y that are a 1-1

correspondence (total, injective and subjective).

Z has a special type constructor, called the schema, an
abstract version of the Pascal record or the C struct type
constructors. A schema defines a binding of identifiers (or
variables) to their values in some type. For example, we

could specify the type Proceedings as a schema for a typical
con ference proceedings. The information we might want to
specify about a proceedings would be the set of all authors

and an index from authors to the papers they wrote. We

represent this binding in the boxed schema notation below.

Proceedings

rauthors : P AUTHOR

index : AUTHOR * PAPER

19

A ‘dot” notation is used to select elements of a schema
type. So we could refer to the authors in the proceedings

sig90ft93 : Proceedings by writing sigsoft93. authors.
In addition to declaring the binclings between identifiers

and values, a schema can specify invariants that must 1101c1
between the values of identifiers. h the boxed notation,
these invariants are written under a dividing line. All com-
mon identifiers below the line are scoped by the declarations
above the line. If we wanted to model the invariant that the
set of authors in type Proceedin~s can and must include

only those authors appearing in the index, we could state
that authors is the domain of the tndex relation. We would
writ e this as follows.

EssentialPrvceedings

L

authors : P AUTHOR

index : AUTHOR * PAPER

authors = dom tndex

Z allows for schema inclusion to facilitate a more modular

approach to a specification. In the above example, we could
have introduced the invariant on the set of authors as

_ EssentialPmceerlings

Proceedings

authors = dom indez

including the declarations and invarian ts of Proceedings in
the new schema EssentialPmceedings. Z defines a calculus

of schema operations of which inclusion is just one example.
We do not use many schema operations in this pape~, so we
direct the interested reader to Spivey ’s reference manual.

In addition to the schema calculus for defining schema
expressions, Z usage relies on some notational conventions

for describing the behavior of state machines. The schema

represents a binding from identifiers to values. We can view
this binding as the static description of some state machine,
that is, the view of the state machine at some point in time,
Operations on the state machine are transitions from one

legal state to another and can be described as a relationship
between the values of identifiers before and after the opera-

tion. One of the most common conventions is the IS conven-
tion for describing operations. If Schema is a schema type,

then A Schema is notationally equiwden t to two “copies” of
Schema, one of which has all of its identifiers decorated with
dashes (’) to indicate the state after the operation. So, we
could write

Proceedings Op
~AProceedings

which is equivalent to

— Proceedings Op

Proceedings
Proceedings’

or

Some other operations and notational conventions used
in Z are:

o Point == N x N introduces the type Point as a type
synonym for the cross product. Type synonyms are a

notational convenience.

● If f is a relation, function or sequence, then dom ~ is

the domain off and ran ~ is the range of ~.

● If S is a set (or sequence), then # S is the size (or

length) of S.

e a - b is the concatenation of sequences a and b.

● If R is a relation, then R- is its relational inverse and

R+ is its transitive closure. If S is a set of elements in
the domain type of R, then R[S] is the image over R

of the set of elements in S, that is, the set of elements

in the range type of R that are related to elements in
S under R.

● V decl I predl ● prwd2 is read ‘for all variables in decl

satisfying predl, we have that pred2 holds.”

o 3 decl I predl ● prerfz is read “there exist(s) variable(s)

in decl satisfying predl such that predz holds.”

● { decl I p red ● expression} is a set comprehension for
the set of values expression ranging over variables in
decl satisfying the predicate pred.

rProceedings Op
authors : P AUTHOR
index : AUTHOR ++ PAPER
authors’ : P AUTHOR

index’ : AUTHOR++ PAPER

20

