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ABSTRACT

The statistical analysis of simulation experiments is
frequently honored more in the breach than in prac-
tice, yet the benefits of planning and proper de-
sign can often increase the precision of estimates and
strengthen confidence in conclusions drawn. While
simulation experiments are broadly similar to any
statistical experiment, there are a number of differ-
ences. Manufacturing models are used to illustrate
the methodology described.

1 INTRODUCTION

Stochastic simulations produce random outputs, or
samples, which can be used to estimate parameters
for the system under study. The statistical design of
experiments applies to the planning of simulation ex-
periments, just as in the case of physical experiments.
In both cases, statistical design of experiments is em-
ployed to provide reliable and efficient estimates and
to insure that the objectives of a study can be met.

The design, or planning, of statistical experiments
comprises a number of details, including choice of
sample size, randomization scheme, and treatment
plan. In physical experiments, this randomization
specifies how experimental units are assigned to treat-
ments, and the order in which they are run. In sim-
ulation experiments, the method of choosing random
numbers, through the choice of independent or de-
pendent random sequences, plays a similar, critical
role.

In experiments with multiple factors, the design
also includes a treatment plan, consisting of the com-
binations of the different levels of each factor that
are to be run (e.g., as a factorial experiment), includ-
ing the specification of blocking factors. The proper
treatment plan can yield efficient estimates of impor-
tant factors, and avoid threats such as the confound-
ing of several effects which would make it impossible

to reach an unambiguous conclusion. Because the
properties of statistical estimators are largely deter-
mined by how the experiment is performed, a poorly
planned experiment cannot be salvaged by analysis,
no matter how sophisticated. Hence the importance
of planning.

While simulation experiments share similarities
with physical experiments, there are some important
differences. Because observations within a simulation
are generally dependent, the statistical unit will often
be baaed upon replication or batch statistics, rather
than on observations from within a simulation run.
Given increased user control over a simulation model,
additional opportunities are available for design of
experiments that are not possible in physical experi-
ments. Because the random numbers (or the random
number streams) that drive the simulation are among
the specifications of the experiment, they can be ma-
nipulated as part of the experimental design in ways
that are impossible in physical experimentation (see
Nelson, 1992a).

We will use three examples to illustrate some of the
techniques that we will discussing during this tutorial.

1.1 A Failure Time Model

The first example is not a simulation at alll, but will
be used to illustrate the analysis of simulation mod-
els. An electronic device has a lifetime that we will
assume can be represented by a Weibull distribu-
tion, with shape parameter 0.5 and scale parame-
ter of 10,000 hours. Our objectives are to estimate
the mean lifetime of such devices, and the reliabil-
ity, R(t) = R(T > t), at t = 1000 hours. (In this
simplified case, these are known to be p = 20,000
hours and R( 1000) = .729.) As posed, this example
is a static problem, and could be approached most
effectively as an exercise in sampling. However, the
outputs can also be considered representative of more
complicated, dynamic simulations whose outputs ex-
hibit similar variability and skewness.
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1.2 A Tool Crib

A manufacturing operation maintains a tool crib,
where tooling is available for machinery on the shop
floor. Two clerks are currently employed, and each
can handle 25 requests per hour, exponentially dis-
tributed. Demand for tooling varies over the day.
There is a peak demand of 70 tools per hour at 8
am, which decreases to a constant rate of 40 per hour
between 10am and noon. There is a second peak at
noon, of 60 parts per hour, which again decreases to
40 parts per hour from 1 pm to 2 pm. Between 2 pm
and 4pm, the demand again climbs to a peak of 60
parts per hour. The two clerks handle all requests,
and remain on duty until the last request is received
at 4 pm.

The manager would like to consider two alternative
staffing policies: employing either another clerk, or
using a “helper”, who can handle only 15 requests
per hour. The two alternatives will be compared to
the current operation in terms of the daily average
delay, the peak delay, and proportion of delays over
10 minutes.

This example serves to illustrate the case of a ter-
minating, or non-steady state simulation problem. In
this case, the bank closes each day, with no carry over
of customers from one day to the next, and the arrival
process varies with time.

1.3 An Inspection Station with Rework

As part of an electronics manufacturing operation,
several inspection stations are included to visually
inspect solder joints and part placement prior to
burn-in testing of the completed component boards.
Boards will either pass the test or be held for minor
reworking when no inspection is taking place. It is
desired to know how large buffers for incoming and
rework parts are required for these stations, if boards
arrive at a rate of 30 per hour, inspection has a ca-
pacity of 45 per hour, both according to a Poisson
process. Rework takes 5 minutes per board and 5 per
cent of the boards require rework.

If we take the view that this production system
will operate relatively unchanged for a long period of
time, then this system can be treated as a nontermi-
nating system for which steady state parameters are
to be determined. Conceptually, we seek parameters
(such as the mean) which are independent of starting
conditions and represent the behavior of the system
over the long run.

2 NOTATION

This section will identify some fundamental concepts
and establish our notation. It is presumed that the
reader has some familiarity with the construction of
simulation models and basic issues involved in output
analysis. Many textbooks on simulation cover these
topics, among which Fishman (1972), Law and Kel-
ton (1991), and Banks and Carson (1984) are very
well known. Charnes (1993) provides a useful intro-
duction to output analysis. The chapter by Nelson
(1992a) offers a practical overview of output anal-
ysis, with a valuable emphasis on the central role of
random number streams in the design of experiments.

For simplicity, we will denote observations within
simulation runs (or replications) Wj, j = 1, . . . . ?72
for random variables such as delays in queue, and
Zj for (O,1) indicator variables. Because the Wj are
autocorrelated within a run, the usual variance esti-
mator, S& (rn)/rn is likely to be severely biased as an
estimator for the variance of the sample, within-run
averages ~(rn). This bias is particularly severe when
autocorrelations are large and positive, a situation of-
ten observed in queueing and manufacturing cases, in

which case variances will be underestimated.

Two approaches are used to obtain independent ob-

servations, from which a reliable variance estimate

can be constructed. One method is to make indepen-

dent replications, or runs, of the simulation program,

through the use of independent (nonoverlapping) ran-

dom numbers. The other method is to group obser-

vations; the batch means so obtained will be indepen-

dent if the batch size is large enough, and they will be

normally distributed by the Central Limit Theorem.

Independent replications can be used for terminating

or nonterminating simulations, whereas the method

of batch means only finds application in steady state

simulation such as example 3.

In the method of independent replications, the sim-

ulation seeds are chosen so that each replication,

i=l , . . . . r is independent. For run i, let Yi be the

sample average, ~ or 2, for that run. Let the average

over r runs be given by Y(r). Then

S:(r) = ‘jjY~ – y(r))’

i=l

is an unbiased estimator of Var[~(r)]. In the case

of indicator variables, Var(y(r)) is estimated by

Y(r)(l – Y(r)) /r.

3 SAMPLE PLANNING

In many experimental designs, the choice of the
proper experimental unit is an important consider-
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ation. In simulation studies, the autocorrelation of

observations within replications means that the basic

experimental unit is either a run average or a batch

mean, and in both cases the ideal is a basis for inde-

pendent, identically distributed observations for each

treatment condition.

Once experimental units are decided, a remaining

problem is to determine how many are required. One

of the basic problems in the design of experiments is

to determine the number of experimental runs needed

to obtain a specified level of precision or to achieve a

specified level of power in a test of hypothesis. We will

consider sample size determination for the computa-

tion of confidence intervals for specified absolute and

relative precision, using a two-stage sampling proce-

dure.

It has often been observed, that design of experi-

ments requires knowledge of the system being stud-

ied, and the greater that knowledge, the better the

design. In many simulation studies, production runs

are preceded by debugging and calibration runs from

which much can often be learned about a simulation.

This information can be valuable in properly design-

ing the study, and making most effective use of the

production runs.

3.1 Random Numbers

We return to the question of random number seeds

and their importance in simulation design. Most sim-

ulations obtain random inputs from pseudo-random

numbers, which are transformed into the random

variates specified by the model (e.g., normal, expo-

nential). Pseudo-random numbers are deterministic

sequences of numbers, whose behavior approximates

independent (uniform) variates. The sequence used

during the simulation depends on the specification of

an initial seed, or equivalently, by the specification of

the point within the overall sequence that the seed is

to be taken. This latter method, when the seeds are

arranged to be (say) 100,000 variates apart, makes

the seeding of different generators easier.

The specification of a random number seed is some-

what akin to the problem of sample randomization

and blocking encountered in physical experimenta-

tion. For inst ante, although many generators have

acceptable higher order (multidimensional) behavior,

it is common to allocate different generators to the

random processes being simulated as an additional

method of insuring independence between runs, much

as complete randomization is used in physical experi-

ments. This allocation also improves synchronization

between runs, which is important whenever common

random numbers or antithetic variates are used.

However, there are times when complete random-

ization is not the most efficient sampling plan. For

instance, when two treatments are being contrasted,

observing paired observations is often done to reduce

the variance of the difference. Pairing, by providing

a common basis for making the pairwise comparison,

causes the paired observations to be correlated, and

this correlation can be used to advantage. Suppose

‘1) Y(2)) represent the paired obser-observations (Yi ~ ~

vations; then Var(Y(l) – ~t2J) has the following form:

Var(Y(l)) + Var(Y(2)) – 2Cov(~(1), ?(2))

which is less than the case of independence whenever

the Cov(~(l), F(2)) term is positive.

In simulation experiments, this pairing is accom-

plished by using of common random numbers; the

paired runs use the same random numbers seeds to

drive the respective simulations. When the random

numbers are synchronized and this strategy is suc-

cessful (i.e., a positive covariance results), a more pre-

cise contrast is obtained.

For instance, in the third example, interarrival

times, service times, branching probabilities, and the

rework processing times might each be assigned a dif-

ferent random number generator, each seeded sepa-

rately. Choosing independent seeds (i.e., seeds that

provide nonoverlapping sequences of random num-

bers) within each run insures that each process be-

have independently. Specifying independent seeds

between runs means that each replication operates

independently of the others.

When statistics are based on sums, antithetic vari-

ates can be used to reduce the variance. As with

‘1) YJ2)) representcommon random numbers, let (Yi ,

paired observations. Then Var(Y(lJ -F ‘~ta) ) has the

following form:

Var(Y(l)) + Var(Y(2)) + 2COV(Y(1), F(2))

which is less than the case of independence whenever

the COV(Y(l), Y(2)) term is negative.

In multifactor and regression experiments, an ex-

perimental plan using combinations of independent,

common, and antithetic random number streams can

be used (Schruben and Margolin, 1978) to improve

the precision of estimators.

3.2 Terminating Simulations

As noted, the experimental unit in a terminating sim-

ulation is a replication (i.e., a single run of the model),

where the length of the simulation run is generally de-

termined by the context of the problem. Fc)r instance,

if information is desired on system performance per
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day, or portion of a day (e.g., rush hour), then the

model run length should match the time frame for

which information is desired.

Where the replication outputs are approximately

normally distributed, confidence intervals can be con-

structed for the parameters of interest using the Stu-

dent’s t-distribution, as mentioned previously. Sam-

ple size is typically determined by the desired preci-

sion of the confidence interval (e.g., in terms of the

hslf-width of the interval). Since the variance of the

simulation output is rarely known, recourse is made

to two stage procedures, in which an initial estimate

of the variance is made, from which the overall sample

requirements can be computed.

When an initial estimate of the variance is not

available, no replications are made to estimate the

variance of the run statistic. The initial sample (no)

needs to be large enough to insure that a reliable es-

timate of the variance can be made; 20 and 40 are

values typically cited for this purpose. If an absolute

error of size h is desired, where

h ~1 Y(?’) –p 1,

then the required sample can be determined using

n(h) = min {i ~ no [ t~_~j1_a12SY(nO)/<i}

A large sample approximation is given by

n(h) = (z~_a/~sy(no)/h)2.

To obtain a relative error of ~,

~~lY(r)–pl/lpl,

then use

where # = y/(1 – -y) is used in place of -y because u

is estimated is by ~(r).

In cases where simulation output is not normally

distributed, nonparametric statistics may be substi-

tuted for the usual normal-bzwed statistics, or the

sample size may be increased. Non-normal statis-

tics occur particularly when failure times and other

extreme value statistics are being observed, as in ex-

ample one. These outputs exhibit considerable skew,

with the result that the actual confidence level of a

normal-based confidence interval can be significantly

degraded, unless large sample sizes are used.

3.3 Non-Terminating Simulations

The analysis of non-terminating systems presents the

modeler with two challenges: eliminating initial con-

ditions bias and obtaining a valid estimate of the

variance parameter. The latter is usually managed

by production of independent observations through

batching or replications. Initial conditions bias is re-

duced by increasing the run length, in effect, swamp-

ing out the initial observations which produce the

bias, or by selective deletion of initial observations;

the two strategies can also be used in combination.

Two strategies are commonly employed for non-

terminating models — either independent replica-

tions with initial deletions, or a single run (with or

without initial deletions) with approximate indepen-

dence obtained via batching of the observations. A

different set of sampling units is employed in each.

An ideal strategy is the use of very long, indepen-

dent replications. Where resources are limited, the

two strategies represent compromises over two con-

flicting methods: long runs for initial condition bias

versus independent replications for variance estima-

tion. Whitt (1991) provides a thorough discussion of

this problem, slightly favoring long runs over shorter,

independent replications, while cautioning against ei-

ther strategy always being best.

The proper choice of a truncation point for the

replication deletion strategy, or the proper batch

size in batch means procedures, are difficult ques-

tions. Charnes (1993) provides a brief list of promi-

nent methods for initialization detection, to which the

graphical approach of Welch (1983) can be added. In

the Welch procedure observations from several runs

are averaged and smoothed, and the resultant plot

visually inspected to determine the transient portion

of the simulation.

Choice of the proper batch size is also more art

than science. As a general rule, independence is more

critical than the sample size, particularly beyond 20

bat ches, so that 20 long batches are preferred over

100 shorter ones. Even when using that rule, the

run Iengt h of the simulation still must be determined.

Several sequential procedures have been suggested

and are reviewed in Law and Kelton (1982), and these

have the advantage that if the initial choice of a run

length does not appear to be sufficient, more samples

are collected.

4 SINGLE SYSTEM CONSIDERATIONS

When experimentation involves a single system,

whether terminating or nonterminating, attention

turns to parameter est imat ion, sensitivity y analysis,

or perhaps response surface or metamodel estimation

for summarization of the output as a function of input

parameters of the model.

Parameter estimation is usually done by a confi-

dence interval which summarizes the best estimate
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of the parameter (e.g., mean waiting time in system)

and an interval representing values consistent with

the natural variability of the model.

When k parameters are being estimated simulta-

neously using confidence intervals, each of confidence

level 100(1 – a)’%o, the overall rate of errors will ap-

proach ka. A common method to control the ex-

perimentwise error rate ~Jj is based on the Bonfer-

roni inequality, and leads to the choice & = aE/k
for each individual confidence interval. An alterna-

tive approach is to construct a simultaneous interval

based upon a joint multivariate interval, Charnes and

Kelton (1988).

In cases involving the sample mean, which is based

on the sum of sample observations, pairing of repli-

cates that are antithetic can be used, in much the

same way that common random numbers are em-

ployed to produce positive correlations between dif-

ferences in random variables. Antithetic sampling in-

volves negative correlations between pairs of observa-

tions. A look at example two illustrates the princi-

ple: consider pairing runs in which low arrival rates

in one run are balanced by a corresponding high ar-

rival rates in the antithetic run. That is, if the first

run has a lower than average arrival rate, the sec-

ond will have above average arrivals (and vice versa).

The average of the paired observation will then have

less variance than two independent observations, re-

ducing the overall variance. All correlation is within

pairs, so the paired means can be used as a basis for

variance computation.

Where sampling is done by monotonic variate gen-

eration methods such as the inverse CDF method,

antithetic outputs can be constructed by replacing

the input random numbers {Ui } with the set {~i },

where U = 1 — U. Antithetic outputs are harder

to arrange where random variate generation is not

by the inverse CDF method, however, Fishman and

Huang (1983) provide some guidance for other cases

with their rotation and reflection sampling methods.

Another interesting approach is based on conditional

sampling: the antithetic sample is made with respect

to a statistic, such as the mean. For a given mean, its

antithetic value is computed (based on the sampling

distribution), and the antithetic sample is selected to

be random, but conditional on the value of that an-

tithetic mean. Cheng (1983) summarizes the proce-

dure and identifies distributions for which conditional

sampling can be performed.

Other strategies are available for improving the

precision of parameters estimated from simulation.

We mention one other: control variate sampling.

Here the sample output is observed together with a

control variate C which is correlated with the output

variable, and whose mean E[C] is known. We may

correct the sample statistic Y by an amount propor-

tional to the error between the control variate sample

mean (? and its actual value, C’ – E[C’],

Y(/3) = Y(r) – /8(C(r) – E[C]).

This is equivalent to regression of Yi on the con-

trol Ci and is similar to the analysis of covariance

procedure sometimes used to correct a sample statis-

tic for the value of a factor which cannot be con-

trolled. Where there is any correlation between the

control Ci and the output Yi the control variate es-

timator has less variance, Var(~(@) < Var(Y) if

p = COV(F, C)/Var(~). An estimate of ,6 can be

obtained from the regression of Yi on the control Ci.

Regression models are also useful for examining the

sensitivity of the simulation output to parameters of

the simulation, or in the construction of metamod-

els used to summarize model behavior over a range

of values of the parameters. Such a summary model

can be used for prediction, or be incorporated into an

optimization procedure. In the sensitivity case, the

independent variables X are the settings of the pa-

rameters for particular runs around a nominal value.

In the metamodeling csse, the independent variables

are the settings of parameters or external factors at

which simulations are to be performed. Similar mod-

els are constructed in both cases, but the range of the

independent variables is often larger for met amodels.

In both cases, response surface methods provide

useful experimental designs for the efficient estima-

tion of the regression coefficients. There are well

known designs for first and second order models, and

even more complicated models.

The regression model is of the form

Y= x/3+6

where the matrix X represents the settings of the

independent variables (the design matrix), /3 the co-

efficients of the regression model, and the ~ error as-

sociated with the model, usually assumed random,

but consisting of effects from terms not included in

the model. A least squares estimator of the regres-

sion coefficients is provided by @ = (XT X)- 1XTY.

When the replication variance varies between treat-

ment combinations, a generalized least squares regres-

sion model can be used.

For first order models, the values of the regression

coefficients,& can be interpreted as the partial deriva-

tive of the output with respect to a unit change in

the parameter under consideration, dY/8Xi. Kleij-

nen (1990) discusses the use of regression models in

sensitivity analysis of simulation models, while Biles

and Swain (1979) illustrate its use in optimization.
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The assignment rule of Schruben and Margolin

(1978) for common random numbers across all design

points, or a combination of common random numbers

and antithetic variates, can be readily applied to re-

sponse surface designs. The utility of these designs

and the efficiency of these seeding strategies, has led

to a number of developments. Two recent examples

include Donohue, Houck, and Myers (1992) for first

and second order models, and Tew (1992) for the use

of central composite designs.

5 COMPARING MULTIPLE SYSTEMS

A common design problem is the comparison of sev-

eral systems to determine the best, or at least to

screen out the worst contenders so that attention can

be focused on a smaller subset of system configura-

tions. For ease of exposition we consider the case of

two systems, then the case of more than two systems.

For two systems, common random numbers are em-

ployed to increase the precision in the estimation

of the cent rast between the systems. The analy-

sis is the paired t-test, That is, the observations

Di = 1#) – 1((2) , are used to construct a confidence

interval on the mean difference, PD. If Y(lI and Y(2)

are correlated, Var(~), is less than what would be ob-

tained by independent sampling, but the Di are inde-

pendent whatever the correlation between the paired
(1) yjz))outputs, (Yi ,

In the second example, common random numbers

are implement ed in part by blocking on arrival seeds,

so that each comparison is exposed to the same pat-

tern of arrivals. Synchronization is obtained whether

an inverse CDF method is used to generate the ran-

dom variates, or not. The output data can be ana-

lyzed as a randomized complete block design. As in

physical experiments, an improvement results from

the elimination of the inter-block variation from the

overall error. Individual comparisons can be made

with a multiple-range test, such as the studentized

multiple range test.

As the number of design alternatives increases,

ranking and selection procedures are used in place of

the usual procedures for estimation and hypothesis

testing. Instead, these methods either select the best

system, or identify a subset that contains the best

or consists of the best of k systems. Based on proce-

dures developed by Dudewicz and Dalal (1975), these

are sequential procedures for determining the neces-

sary sample size to pick subsets so that the probabil-

ity of making a correct selection is bounded below.

Goldsman, Nelson, and Schmeiser (1991) provide an

illustration of several methods for selecting the best

of several systems.
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Parent and child hierarchical relations, from “Hierarchical Relations in Simulation Models,” by Joel J. Luna.


