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ABSTRACT

This tutorial paper looks at two modeling tools that are

popular in European simulation modeling. These are

Activity Cycle Diagrams, which represent the logical

flow of a simulation model conceptually; and the Three

Phase Method, which is a world view of program

eonstrnction. Each tool is described, and comments made

on their relative merits to the wider simulation

community.

1 INTRODUCTION

Activity Cycle Diagrams and the Three Phase Method are

two popular tools used in simulation modeling in

Europe, and in particular in the United Kingdom. Whilst

some simulatioltists use both tools in their work, it is

worth observing that the two tools can be used

independently, as will be shown. Activity Cycle

Diagrams (ACD, sometimes called Entity Cycle

Diagrams, or various combinations of Entity, Activity

and Cycle Diagrams) are a method of conceptualizing the

problem in terms of the logical flow of objects in the

system.

An ACD ean be used as a basis for a model written in

object-oriented code, or any program using any of the

event, process, or three-phase world views. However,

some simulation packages, especially simulators, require

a representation of the problem to be modellcd that does

not map directly to an ACD. Even in such cases, an

ACD can be used for problem understanding, prior to

modeling. ACDS are discussed in the second section of

this paper.

The Three Phase Method, or World View, is a
competitor to the more well known event and process

world views (Law and Kelton, 1991). The method grew

out of the activity based approach popular in the United

Kingdom in the 1960s. A description of the Three Phase

Method is given in the third section of the paper, and

some comments on its wider applieabilit y in the fourth

section.

The technical eontents of this paper are taken from

Paul and Balmer (1993). Another text that discusses this

is Pidd (1992a) with some programming and other

supporting material covered in Pidd ( 1989).

2 ACTIVITY CYCLE DIAGRAMS

2.1 Basic Concepts

Activity Cycle Diagrams (ACDS) are one way of

modeling the interactions of system objects and are

particularly useful for systems with a strong queueing

structure. They are based on Tocher’s (1963) idea of

stochastic gearwheels. ACDS have the advantage of

parsimony in that they use only two symbols which

describe the life cycle of the system’s objects or entities:

An entity is any component of the model which can be

imagined to retain its identity through time. Entities are

either idle, in notional or real queues, or active, engaged

with other entities in time consuming activities. The

symbols we use are shown in Figure 1.

--@-

Figure 1: Queue State and Activity State
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An active state usually involves the co-operation of

different classes of entity. The duration of the active state

can always be determined in advance - usually by taking

a sample from an appropriate probability y distribution if

the simulation model is stochastic. For example, the

unloading of a ship at a berth is an active state, where an

entity ship and an entity berth are engaged in the activity

unload (possibly with other entities as well, such as

cranes etc.).

A passive state or queueing state involves no co-

operation between different classes of entity and is

generally a state in which the entity waits for something

to happen. The length of time an entity will spend in a

queue cannot be determined in advance because it depends

on the duration of the immediate y preceding and

succeeding activities. For example, the time a ship

spends waiting in an idle queue for unloading at a berth

depends on its time of arrival and the time one of the

berths it can use becomes vacant.

A life cycle (activity cycle) of queues and activities is

defined for each entity type. We impose the restriction

that queues and activities must alternate in any life cycle

(if necessary we make this happen by creating dummy

queues). A complete ACD consists of a combination of

all the individual life cycles.

2.2 The Pub Example

We shall show how to draw an ACD using the Pub

example. This example is used by many authors (e.g.

Clementson, 1982) since its background is implicitly

understood by most readers. The first simple version has

three entities called ‘man’, ‘barmaid’ and ‘glass’. The

man either drinks or waits to drink. The barmaid either

pours a drink or is idle. The glass is either used to drink

from, is empty, is poured into by the barmaid or is full

waiting to be drunk from. We can summarise the states

for each entity as follows in Figure 2.

Each life cycle for each entity type can then be drawn

ENTITY

Man

Barmaid

Glass

STATES

Drink

wait

Pour

Idle

Drink from

Empty

Pour into

Full

SYMBOL

n

o
n
o
0
0
n
o

Figure 2: Pub States

as in Figure 3.

The ACD for the pubis then drawn by combining the

common activities as in Figure 4.

The ACD illustrates logically that the activity DRINK

cannot start unless a man is in the queue WAIT and a

glass is in the queue FULL. Similarly the activity

POUR cannot start unless a barmaid is in the queue

IDLE and a glass is in the queue EMPTY.

The ACD also has a stronger interpretation. This is,

that when is a man in the queue WAIT and a glass in the

queue FULL, then the activity DRINK will start.

Similarly, when there is a barmaid in the queue IDLE,

and a glass in the queue EMPTY, then the activity

POUR will start.

On completion of any activity, the movement of the

entities is fixed. After POUR, the barmaid goes to the

queue IDLE, and the glass goes to the queue IKJLL.

After DRINK, the glass goes to the queue EMHY, and

the man to the queue WAIT,

/!3
wait

MAN

DRINK

man life cycle

/3
idle

BARMAID

POUR

barmaid life cycle glass life cycle

Figure 3: Pub Entity Cycles
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GLASS
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Figure 4 Pub ACD

It is a useful, but not essential, convention that queues

and activities should rdternate. This makes for more

robust modeling in the event of inevitable change to the

model requirement (as will be illustrated later). It is also

a useful, but not essential convention, that all entity life

cycles should be closed. Whilst this necessitates the

introduction of an ‘outside world’ queue for entities that

‘visit’ the system, it has the advantage of assisting the

anal yst in thinking through the life cycles of the entities

more rigorously, and hence with an increased prospect of

success.

3 THE THREE PHASE METHOD

3.1 Manual simulation using the ACD

The first step is to make sure that the logic of the

system is properly understood and one of the best ways

of doing this is to run a manual simulation. There are a

variety of methods for doing this, but we shall use the

ACD method. This will help understand the Three Phase

Method.

In order to carry out a manual simulation with an

ACD, we draw the life cycles on a large sheet of paper or

playing board (using different CO1OWSto distinguish the

cycles of different entity types). The current state of the

model is described by the position of each entity in a

queue or activity; this is easily shown using coloured

counters at appropriate points on the playing board.

An event is a change in the state of the model which

oecnrs at an instant of time. When an activity starts, its

duration an be sampled from a specified distribution, and

the time when it will finish ean be noted on the playing
board or on the next event list. The activity is bound to

finish at exactly that time, so the completions of

activities are bound events. However we do not know in

advance when an activity can start: this depends on the

correet combination of entities being available in the

preceding queues. The starts of activities are eonditionrd

events.

One of the benefits of manual simulation is to

establish priorities where they exist. In the final pub

example in Figure 7, the entity barmaid could face a

possible choices of activity to start first. It may be

important to establish that there is a priority and what it

is. Writing computer code directly can easily result in

this problem being forgotten and handled haphazardly.

3.2 The Pub Example Modified

In the Three Phase Method, the simulation proceeds as a

repetition of the following three phases :

Phase 1

Check the finish times of all the activities currently in

progress. Find the earliest of these. Advance the clock to

this time.

Phase 2
For the activity (or activities) which have finished, move

the entities into their appropriate queues. Cross out the

note showing when the activity was to end.

Phase 3

Scan the activities in order of increasing activity number

(they should have been numbered before the start of the

run). Start any activities which can begin by moving the

appropriate entities from the queues into the activity.

Sample an activity duration time, calculate when the

activity will finish, and make a note of this time.

Note this common simulation structure

● Advance time to next event;

● Execute Bound events (activity completions);
● Execute Conditional events (activity starts).

We can record the state of the simulation using these

three phases. So if we say that the activity drink takes 4
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Mready

.,..,.-.,,,.!

“Aidle

v MAN

Drinking time is 4 minutes.
wait —.-—-—,”.-,.. GLASS

Pouring time is 3 minutes. BARMAID

Figure 5: The Modified Pub Activity Cycle Diagram

minutes; pour takes 3 minutes; glasses and customers are

synchronised as in Figure 5; and every entity in their

appropriate starting queues IDLE, EMPTY and WAIT,

then we get Table 1.

1 A I B I c I
o pour starts, ends at 3

3 pour ends drink starts ends at 7

pour starts, ands at 6

6 pour ends drink starts, ends at 10

pour starts, ends at 9

7 drink ends

9 pour ends drink starts, ends at 13

pour starts, ends at 12

10 chink ends

12 pour ends drink starts, ends at 16
pour starts, ends at 15

Table 1: Manual Simulation of pub

We could of course collect statistics from a manual

simulation, but this would be very tiresome so we use

the computer to automate the whole process.

Nevertheless, it is worth re-emphasising that a manual

simulation is an important step in the understanding of

the process being modellcd.

3.3 The Three Phase Method

The three phases to be performed are usually expressed as

A, B and C as we have seen. The executive cycles

through the phases as the simulation proceeds.

A PHASE (time scan): determine when the next event

is due and decide which B events are then due to occur.

Move simulation clock time to the time of the next

event.

B PHASE (B calls): execute only those B events

identified in the A phase as being due now.

C PHASE (C scan): attempt each of the C events in

turn and execute those conditions that are satisfied.

Repeat the C scau until no more C events can take place

(i.e. no more activities can start).

An outline flow diagram for such an executive is shown
in Figure 6.

The three phase method or approach was first described

by Tocher (1%3). Its basic building block is an activity,

which has two events that describe it, an end of activity
event and a start of activity event:

B events are bound or book-keeping events signifying

the end of an activity for an entity. They are executed

directly by the executive program whenever their

scheduled time is reached.

C events are conditional or co-operative events
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signifying the start of an activity for the relevant

entities. They are executed because of the co-operation of

different classes of entity or the satisfaction of specific

conditions within the simulation.

&
EXECUIYBEVENE3DUENOW

A’lTEMFI ALL POSSIBLE C EVENTS C Phast

CHECK FOR JNTERRUFT OR FINISH
Ml I

Yes

[
R14QRT

ostop

Fi~llre (j: A Three phase E~ecutive

Each B and C event is programmed as an independent

program routine or procedure. In effect then, they

represent an ‘ atomistic’ description of the activities of a

simulation problem, where the start of an activity, a C

event, is identified, tested for and set up if the test is

successful.

The completion of an activity for each entity involved

in it is separately identified in a B event and is executed

at the scheduled time. It is the atomistic structure

combined with an efficient executive that makes the three

phase method so powerful. In summary, the method has

the following desirable characteristics:

●

w

●

Modeling clarity - reduces risk of error and aids

verification.

Model maintainability - an ongoing process with
changing persomel.

Modularity - a special technique to cope with very

large models. Combining smaller ones can be

incorporated more readily.

● Interaction - inclusion

elements is easy.
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of optional gaming

The adoption of a good standard such as this method

can provide benefits in a number of areas. These are:

● Total lifetime software costs ean be controlled.

● Control of subcontract staff is easier.

● Staff mobility is enhanced.

4 WORLD VIEW COMPARISONS

4.1 Other world Views

Activily Based

The simplest structure is to go through all the activities,

testing each in turn and starting or ending the appropriate

ones. If any activity is executed, the whole list may need

to be searched again. It is possible that an activity higher

up the list, which was previously blocked, can now be

executed under the new state of thes ystem.

The chief advantage of this type of structure is that it

is easy to program. Each activit y ean be programmed and

tested as a separate module. The simplicity of the

structure is particularly valuable when dealing with

logically complicated models, where activities are

predominantly “multi-resource”, i.e. activities that

require several different entities to be in particular states

before they can start. An example of this is an activity

for causing a ship to leave port, where the conditions

might be that a ship is waiting to depart, a tug is

available, a pilot is available, the tide is in and the dock

entrance is free.

However, an activity-based structure produces au

inefficient computer program, in the sense that a great

many unsuccessful tests have to be made. Improvements

can be made by only recycling if certain activities are

executed, and not otherwise.

Purely activity-based languages are now more or less

defunct, having been replaced by the Three Phase

Method. The three phase structure combines a certain

amount of efficiency in performing only the relevant

bound event, with an ability to handle logically

interrelated activities in a simple manner; all being

tested on every iteration.

Event Based

A different approach is to make use of the information

available from the time scan to branch directly to the

relevant bit of program. This is an event-based structure.

The executive branches directly to the activity associated
with the earliest event identified by the Time Sean. The

efficiency of this type of structure is its main virtue, but

it can be very difficult to use in multi-resource type
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Figure 7: Complex pub ACD

models, where cross-referencing between branches arise. The model will probably be used to make comparative

A large number of possible states of the system have to

be considered when writing the program.

The Process Flow Method

A simulation structure which is increasing in popularity

is the process flow method based around the SIMULA

simulation language. SIMULA is ALGOL 68 plus. The

essence of the method is to write each entity life cycle in

an ACD as a block of code with PAUSE and ENABLE
canmands to signif y that the cycle cannot continue until

other entities are available to enable an activity to take

place. The executive of such a program requires complex

and extensive cross referencing of the blocks of code and

alteration to the model is difficult.

4.2 Simultaneous Events

One of the most difficult problems in setting up a

simulation program is to cater for simultaneous events.

runs, where it is important to ensure that unwanted

differences between runs are not generated because of

changes in the order in which activities are executed.

This is also necessary for debugging the program by

following the progress of the simulation in detail.

If we use the more complex version of the pub in

Figure 7, then the three phase world view expresses

priority as follows.

Three Phase

B events C events

End Arrive Cl - Start Arrive

End pour C2 - start Pour

End Drink c3 - start Drink

End Wash C4 - Start Wash

Priority ?: Pour before Wash.

Hence C2 is listed in the program before C4. Because
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all B events are completed after a time advance before

moving to the C phase, all entities that will be made

available at the time can be allocated by priority in the

C phase.

Event

Events Event notice posting

(i.e. events generated)

El - Arrive El, E2

E2 - pour E2, IZ3, E4

E3-Drink E2, E4

E4 - Wash E2, E4

Priority ? :

We have no mntrol over the order in which the event

notices are posted. We can of course use an attribute of

au event notice to rank events. Is it obvious what the

priorities are?

equivalent description of the life cycle or process).

Priorities are easily handled within processes, but the

same priority problems can recur in different processes,

or in different mixtures.

4.3 Amending Models

Changing models is ao everyday occurrence (Paul, 1991).

Let us assume that the beer in the pub comes from a

barrel of a fixed size. When the barrel is empty, the

barmaid needs to change it for another barrel. Let us call

this activity FILL. One way of handling this would be to

alter the ACD as in Figure 8.

The subsequent amendments to the model areas follows:

Three Phase

Add

[ B event I C event I
I End Fill I C5 - Start Fill

Process

Each process handles all activities and queues in the life Priority: Fill before Wash.

cycle description of an entity in the ACD (or some Fill generates its own priority.

,,,,.x-’--

0?going
off POUR

* ‘-— %

,,,
‘%.,

‘, .%,,,,

/3
shut

9dirty

--’ ‘..,.,.
,, ,..

,, ,.- ,! ,,,,, ,,,
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Figure 8: Complex Pub ACD Modified
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Amendments:

For C2, Start Pour, add the condition that keg is

greater than O. If End Pour is generated, subtract 1

from keg.

Here amendments are local and obvious.

Event

Add

Event Event Notice Posting

E5 - End Fill E2, E4

Amendments:

Each event needs checking. In fact E2 and E4 need to

check for E5. Of murse, one would set up the

conditions and code so that E2 and E4 are

subroutines to make programming efficient. But the

essence is that it is not obvious without checking

everything where changes should be made. But

priority ?

Process

The introduction of the new keg process impacts on

nearly all the other processes in the model (except the

door). Each process has to be carefully checked, and all

local priorities need to be carefully re-examined.

In Conclusion, all objections to the Event and Process

methods can be overcome by separate resource routines,

ingenuity, cunning, etc. All of these make for a non-

standard structure and rely on the analyst to a greater

extent. Three Phase is a safe standard

● it is easier to write

● it is easier to understand

● it is easier to validate (small blocks of independent

program code)

● it is easier to change.

5 CONCLUSIONS

ACDS and the Three Phase Method have been

successful y used in combination. For example, see El

Sheikh et al (1987), Holder and Gittins (1989), Williams

et al (1989) and Stapley and Holder (1992). These papers

describe the use of ACDS with a particular Three Phase
based simulation package which is described in Crookes

et al (1986) and by Paul and Balmer (1993).

The Three Phase Method has much in common with

production rules in expert systems, and this analogy is

drawn out in Paul (1989) or Paul and Doukidis (1992). A

particular method of handling excessive randomness in

statistical sampling has been shown to be easily

implemented in the Three Phase Method (Saliby and

Paul, 1993). The Three Phase Method is particularly

suited to automatic program generation because of its

atomistic structure, and this

(1982 and 1985), Paul and

Balmcr (1993).

is discussed by Mathewson

Chew (1987) and Paul and

ACDS area particular y powerful conceptual modeling

tool around which methods for automating model

formulation have evolved (Paul and Doukidis, 1986).

These and other applications are the basis of many

developments by the Computer Aided Simulation

Modeling group (Paul, 1992), whose origins are

described by Balmer and Paul (1986).

Some support to the claims of Three Phase

adaptability y is provided by Holder and Gittins (1989) and

Williams et al (1989). Two teams set about building

different parts of the same problem using ACDS and the

Three Phase Method. On completion of the two projects,

developed by independent software houses for the same

customer, the two models were successful y integrated

together with little difficulty.

However, it would be churlish to end on a note of

absolute triumph. ACDS are limited. They show logical

flow, but not logical depth. Whilst it is inevitable that

any representation method is either casy to follow and

not comprehensive, or vice versa, sometimes the

limitations can be severe: see El Sheikh et al (1987) for

a simple example. And the Three Phase Method has yet

to prove its adaptability in a fast changing world. Pidd

(1992b) shows that Three Phase modeling and Object-

Oriented thinking can be combined. Parallel simulation

has yet to be shown to be compatible with the Three

Phase Method, although it is too early to say that it

cannot be done.
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