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ABSTRACT

Part of the inputs to the simulation of a real-world

discrete-event stochastic system will be obtained via

a statistical analysis of the system. Also, a number

of discrete-event stochastic systems can be modeled

as a generalized semi-Markov process.

The basic building blocks of a generalized semi-

Markov process are the probability distributions of

the event lifetimes and the routing probabilities. We

assume the form of these distributions and routing

probabilities is known but depends on an unknown

vector parameter, which must be estimated from the

data. In this parametric inference setting we show

that, under certain conditions, the maximum like-

lihood estimator exists, is consistent, and obeys a

central limit theorem. A related estimator, easier

to compute, is shown to also be consistent. Use of

this other estimator results in no loss in statistical

efficiency.

In this paper,

tistical inference

we only tackle the parametric sta-

case, that is, we assume the event-

lifetime distributions and routing probabilities have

a known form but depend on a finite number of un-

known parameters. These must be estimated from

one long observation of the process. We consider

maximum likehood estimation and show that, under

certain conditions, the maximum likelihood estima-

tors (MLE’s) do exist and do obey a central limit

theorem (CLT). (Of course, the CLT gives then a rate

of convergence.) We also consider estimators closely

related to the MLE’s but easier to compute, and show

that there is no loss in statistical efficiency in consid-

ering these estimators as surrogates to thle MLE’s.

This paper is based on Damerdji (1992).

GSMP’S are defined in Section 2, while Section 3

is a review of some of the properties of maximum

likelihood estimation. The likelihood function of the

GSMP is introduced in Section 4. The main results

of the study are given in Section 5 and the conclusion

in Section 6.

1 INTRODUCTION

2 THE GSMP

Simulation is often used to study design changes and

alternatives to an already existing system. There will,

then, most likely be a statistical analysis of this sys-

tem so as to estimate some of the needed inputs to

the simulation.

The dynamics of a number of real-world systems is

well captured by a generalized semi-Markov process

(GSMP), i.e., the system under study may adequately

be modeled by a GSMP. Central to a GSMP are its

set of states and set of events. When an event triggers

a transition, the GSMP moves from its current state

to some other state with a certain routing probability.

It then stays in this new state for a certain length of

time, until another transition is triggered by some

event, and so on. The routing probabilities and event

lifetime distributions are the basic building blocks of

the GSMP.

The state space S of the GSMP is countable in the

general theory, but here, we assume it is finite. The

event set, denoted E, is finite, i.e., there is a finite

number [El of events. Denote the GSMP process by

{Q(u) : u 2 0}. We assume that we not only ob-
serve the GSMP up to some large time i?, but that

we also observe which events trigger the transitions.

(Observing the GSMP alone may not provide that

information. ) Another assumption is that, we know

what the system “looks like” when we start observ-

ing the GSMP at time O. (If the GSMP models a

job-shop, say, we would probably know how long the

current jobs have been in service, the elapsed time

since the last order, when the machines failed last,

etc.)

The routing probabilities and event-lifetime distri-

323

http://crossmark.crossref.org/dialog/?doi=10.1145%2F256563.256661&domain=pdf&date_stamp=1993-12-01


324 Damerdji

butions depend on an unknown r-dimensional pa-

rameter O c @, where @ is an open set in Z’. If

the GSMP is in some state s and event i triggers

the transition, the GSMP moves to a state s’ with

probability p(s’; s, i; 0). At the time of the transi-

tion (in fact, right after), new events j may be gen-

erated with a lifetime following the distribution func-

tion F(.; s’, j,s, i; O), and certain “old events” may get

cancelled. The other “old events” simply continue

their lifetime, until they either die out, in which case

they will then be triggering a transition themselves,

or get cancelled before then. We bar event canceling

in this study, and so all events will be observed over

their full lifetimes. It is discussed in Section 4 that

different arguments must be made when event can-

celing is allowed.

A GI/G/l queue can be modeled as a GSMP with

state space S = {O, 1,2, . . .}, where the current state

represents the current number of customers. (Note

that S would not be finite here. ) When there is no

customer in the system (i.e., when the GSMP is in

state s = O), the only possible event which may occur

next is the arrival of a customer. When there is one or

more customers in the system (i.e., when s > 1), the

possible events are an arrival or an end-of-service. If

the next event is an arrival (resp. an end-of-service),

the GSMP moves from state s to state s + 1 (resp.

s – 1) with probability one. The interarrival t;mes

and service times are distributed according to their

respective cumulative distribution functions.

Embedded in the GSMP is a general state-space

discrete-time Markov chain {Xm = (sn, Cn) : n z O},

where Sn is the state occupied right after the nth

transition. If IV(t) is the number of transitions by

time t, the GSMP will beat that time in state Q(t) =

s~(t). The component c. of the embedded Markov

chain is actually a vector of ( IE[ + 1) ‘(clocks.)’ Clock

O indicates the elapsed time between transitions n – 1

and n. Each other clock is associated with an event:

if event i is active at time T=, where Tm is the epoch

of the nth transition, its corresponding clock reading

ci,n indicates the elapsed time since it was generated

last. Following Glynn’s (1988) notation, an inactive

event is set, by convention, to have a clock reading

of —1. Newly generated events have a clock reading

of O, i.e., ci,n = O if event i is newly generated. If

event i is an old event, that is that i was active before

the transition occured and event i did not trigger the

transition, then Ci,fl = Ci,n–.l + Co,n. Here, we are

looking at clocks with time running up, as in K6nig,

Matthes, and Nawrotzki (1967) and Glynn (1988).

Another representation of the vector clocks is with

time running down, i.e., the clocks show the residual

lifetime of these events, as in Whitt (1980); this is a

natural representation in a discrete-event simulation.

In our study, the clocks represent the elapsed times,

since we are in a statistical experiment setting, and

cannot therefore anticipate the future as in the other

represent ation.

For simplicity of notation, let us assume that the

distribution of an event j depends only on the event

itself and the unknown parameter, and so is de-

not ed Fj (.; 0). (Recall that the general formulation

of GSMP’S allows the distribution of an event to

also depend on the current and previous states and

the event which triggered the last transition.) Let

~j (.; 6) = 1 – Fj (.; O) be the residual lifetime distri-

bution of event j. We assume that the support of

the distributions is (O, co). This also implies that the

supports of the event distributions do not depend on

the unknown parameter. We also assume that the

distribution function Fj (.; 9) of an event j admits a

density, denoted fj (.; 6). Following Whitt’s (1980)

notation, let E(s) be the set of active events in state s,

and N(s’, s, i) (resp. 0(s’, s, i)) the set of new events

(resp. old events) in state s’ when it is event i which

just triggered the transition from state s.

From Glynn (1988) and Damerdji (1992), the tran-

sition density function h(z, z’; 6) of the embedded

Markov chain is given by

h(a! = (S, c), z’ = (S’, C’);8) =

X {P(s’; s, i; O) fi(c’ + cb; 6)F’(c’; e)
igll(t)

<j(c$; ‘) ~[c~ = Cj +41

‘jCO~,.,i) ‘J(cj;e)

● n o;= 01J-Jm;= -11}.
jcN(. J,4,i) jgll(.)

Here, 1[.] denotes the indicator function. These in-

dicators appear for consistency. Note that the tran-

sition density function is a complicated expression of

some basic building blocks of the GSMP. Because of

the indicators, the transition density function is also

not a smooth function.

3 REVIEW OF MAXIMUM LIKELIHOOD

ESTIMATION

Maximum likelihood (ML) estimation is undoubtedly

one of the most powerful parametric statistical infer-

ence techniques. The maximum likelihood estimator

is the estimator which is explained best by the data

in the following sense. Suppose Xo, . . . . Xn is the

observed sample, with known distribution P“. This

known distribution depends, however, on an unknown
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parameter 8. We assume there exists a parameter

6° E ~, which is the true parameter of the distribu-

tion the population is drawn from. The objective is

of course to estimate the true parameter given the

observed sample. Technically, the likelihood function

(LF) Cn (0) is defined as the Radon-Nikodym deriva-

tive of the absolutely continuous part of Pe with re-

spect to Pen, both restricted to the history of the

process up to time n. See Billinglsey (1986) for the

various definitions.

The MLE &, if it exis~s, is defined as the maxi-

mizer of the LF, i.e. } J&(fln) ~ Ln(6) for all 6 E Cl.

The LF is simple to compute for i.i.d. random vari-

ables and also for certain stochastic processes (e. g.,

birth and death processes and countable Markov

chains). However, the LF may be intractable for a

number of other stochastic processes.

Maximum likelihood estimation has a number of

desirable properties, which we now discuss. For sim-

plicity, let us assume, in this section, that the pa-

rameter O is univariate. First, it is often possible

to show that a CLT of the form fi(6. – 6°) ==$

i’V(O, (2), as n ~ oo, is in force. (The symbol “==+”

stands for convergence in distribution, while N(O, (2)

denotes the centered Normal distribution with vari-
,.

ante (2. ) If such a CLT holds, the MLE On converges

then to the true parameter 6° at rate I/@. Under

certain regularity conditions, the variance (2 is equal

to the Rao-Cram6r lower bound, in which case the

MLE would be asymptotically efficient. Under cer-

tain conditions, the MLE may also be asymptotically

sufficient, and there would then be no loss of statisti-

cal information (asymptotically) when grouping the

data into the statistic. For all these reasons, ML es-

timation, when feasible, leads to estimators with a

number of desirable properties, at least asymptoti-

cally.

A difficulty in trying to apply the method is that

one must compute the LF, which may be infeasible as

previously mentioned. Also, one must impose strin-

gent conditions in order to guarantee the existence

and the consistency of the MLE. It is also known

that the MLE is often a biased estimator. From a

numerical point of view, it is not guaranteed that the

optimization routine used in order to maximize the

LF will converge to the MLE. Nonetheless, despite

these drawbacks, ML estimation is a powerful statis-

tical inference technique. See Cox and Hinkley (1974)

for a comprehensive treatment.

Basawa and Prakasa Rao (1980) discuss ML es-

timation for a number of discrete-time stochastic

processes (e.g., autoregressive processes, moving av-

erage processes, branching processes, and Markov

chains), and continuous-time processes (continuous-

time Markov chains, diffusion processes, and point

processes). The major references on ML estimation

for Markov chains are Billinsgley (1961a and 1961 b).

BiMngsley (1961a) considers discrete-time countable

state-space Markov chains, while ML estimation for

discrete-time general state-space Markov chains is un-

dertaken in Billinsgley (1961 b).

Maximum likelihood estimation for continuous-

time stochastic processes is in general harder. The

more modern approach is via martingale theory. The

other approach is via a transformation of the prob-

lem into a discrete-time problem. For example,

Billingsley (1961b) tackles continuous-time countable

state-space Markov chains by using the fact that

the continuous-time Markov chain can be embedded

into a discrete-time general state-space Markov chain.

The arguments follow then from the theory of ML es-

timation applied to the discrete-time scale. Moore

and Pyke (1968) also use an embedding technique

to study ML estimation for semi-Markov ]processes.

This will also be the approach used in our study.

4 THE LIKELIHOOD FUNCTION!5

We first discuss the differences between Billingsley

(1961b) and our work here. Recall that to be of

practical interest, the various assumptions, made in

order to guarantee the existence of the NtLE must

be on the basic building blocks of the G!5MP, i.e.,

the routing probabilities and the event distributions.

Billingsley (1961b) gives conditions on the transition

density function. However, in our setting, the den-

sity function involves the basic building blocks in a

nontrivial way, and it is therefore not evident how

one could translate these general conditions into con-

ditions on the basic building blocks. Consequently,

the approach we use will lead to conditions on the

basic building blocks. Another difference is that we

use structural properties of the GSMP, and appeal to

simple CLT’S for i.i. d. random variables in order to

obtain our various CLT’S. Billingsley (1961 b), on the

other hand, uses a CLT for martingales. C~ur condi-

tions here too will depend on the basic building blocks

only. Another (measure-theoretic) difference between

these two works is the following: the measure asso-

ciated with the transition density function h(z, z’; 6)

of the embedded Markov chain of the GSMP depends

on the point z (see Damerdji, 1992). This does not

fit into Billingsley’s (1961b) framework, and hence,

we could not apply some of Billhgsley’s arguments.

Billingsley (1961b) also assumes conditions which di-

rectly guarantee ergodicity of the embedded Markov

chain. In our study, we use strong laws of li~rgenum-

bers results from Glynn (1988).
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We now provide heuristics in order to compute the

likelihood function Lt (0) of the GSMP observed up

to time t. (See Section 10 of Damerdji (1992) for a

proof.) Some more notation is needed at this point.

Let Yj be the random variable which denotes the life-

time of event j, that is, Yj has distribution function

Fj (.; 6). Let ik be the index of the event which trig-

gers the (k + l)st transition and rnk the index of oc-

currence of ik. Let Yih,mk be the lifetime of event

ik when it triggered the transition. (For example,

if the 24th transition gets triggered by Event 5, and

this particular Event 5 corresponds to the one that

got generated for the second time, the lifetime Y5,2

of Event 5 is denoted Yia~,ma~.) Therefore, if zh and

Zk+l are the states of the embedded Markov chain at

transitions k and k +1, respectively, we have that the

value of ~i (ci + c~; 0) which appears in the expression

“e).Of h(Zk, Zk+l; 6) 1s fik (Yih,mh !

Observing the GSMP up to time t is equivalent to

observing the embedded Markov chain Xo, . . . . ‘N(t),
plus observing the GSMP from TN(~) until t. The

likelihood function Cn (6) of the embedded Markov

chain Xo, . . . . Xfl, observed up to its nth transition,

is given by

‘-1 h(zk, 25k+l; 8)
z.(e) = T)(zo; 6) ~

k=o h(zk, zk+~; 6°) “

(The term q(zo; 6) is the Radon-Nikodym density

stemming from the initial distribution. See Damerdji

(1992 ).) In observing Xo, . . . . Xn, we would know

exactly which events triggered the transitions, i.e.,

we would know io, . . . . in_l. The contribution of

( )
h zk = (Sk, ck), zk+~ = (l?k+~, ck+~); 6 tO the likeli-

hood function Zfl(0) is then

fi (X.,m.i ‘)p(.Sk+~; i?k,&;6) ~
Fih (cih,k; 6)

‘rI

~j(Cj,k+~; 6)

~’(cj,k; 6) “
j~o(gk+l,~k,ik)

Although this last term has a complicated expression,

it turns out that a number of simplifications occur in

~f~~ ~(~k, Zk+l; 6). The above term can be rewrit-
ten as

P(sk+l; Sk, ~k; ‘) fi. (yik,771k; e)

( 1

n

~’(cj,k+~; 6)

)● ‘ik(cik,k; ‘) jEo(,k+,,,k,ikl Fj(cj,k; ‘) “

When multiplying out the h(zk, zk+~; 6) ’s, note that

all the residual lifetimes in the numerator will have

a counterpart in the denominator of h(zk+l, zk+z; 6),

and hence would cancel out. We are then left with

n—1

~ ‘(zk,zk+l;6) =

k=O

The terms which were in the denominator (resp. nu-

. 6)) did notmerator) of h(zo, 21; 6) (resp. h(zn_l, zn,

cancel out since they did not have a counterpart. It

is important to note that if event canceling were

permitted, certain terms would not cancel out, and

should appear in the expression of the likelihood func-

tion. So far, we have been discussing the likelihood

function of the embedded discrete-time Markov chain

Xo,.. ., Xn. However, we are interested in the likeli-

hood function of the GSMP up to time t.We observe

X(), ..., XN(t), but there will also be extra terms in

the LF stemming from the fact that there was no

transition between TN(~) and t. Incorporating these

extra terms will cancel out the numerator-terms (due

to the end effects) appearing in the previous expres-

sion. Heuristically} we then obtain

L,(O) =

N(t)-1

n

p(sk+l; Sk, ik; O)fik(yik,mh; e)

k=o P($k+l; Sk, ik; e“)~ik(yi.,mk; 8°)

●
Fj (Cj,o; 6°)

Fj(Cj,o; 0)
j~E(#o)

“rI ~’(cj,N(t) +t–~N(t); o)

‘j(cj,N(t) + t – ~N(t); 6°)”
jcE(9rq,))

See Glynn (1988) for the likelihood function of a

GSMP up to a stopping time (see Billingsley (1986)

for the definition of a stopping time), and Glynn and

Iglehart (1989) for the expression of the likelihood

function of the GSMP with the other clock represen-

tation.

It is typically simpler to work with the log-

likelihood function instead of the likelihood function.

Let

P(sk+l; Sk, ik; ‘)fi. (yik,~k; ‘)
g(zk, ~k+~; 6) ~ bg

P(sk+l; Sk) ~ki e“)fib (Yih,mh; do) ‘

and call the approximate log-likelihood function

(ALLF)

N[t)–1

k=O
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The quantity q(zo; O) is based on a single observation

and so, has negligible effect as the sample size gets

large. We then drop this term from the expression of

the likelihood function. If Zt (6) is defined as

the log-likelihood function (LLF) it(6) z log Lt (O) of

the GSMP can then be rewritten as

l,(e) = it(e) + 4(6).

The term zt(fl) is due to the end-effects. Note that the

ALLF is simpler to maximize than the LLF, since the

latter involves the end-effects. If no loss of statistical

efficiency entails, it is then preferable to maximize

the ALLF instead. We will show that a maximizer

of the ALLF exists. We call this maximizer the ap-

proximate maximum likelihood estimator (AMLE).

We also show that the true MLE exists, and that,

importantly, there is no loss in statistical efficiency in

computing the AMLE instead. This is discussed in

the next section.

As an example, let us consider an M/M/l queue,

with arrival rate A and service rate p. So, d is here the

vector with coordinates J and p. If ih corresponds

to an arrival event, we have that h(zk, Zk+l; e) =

(Aexp{-Afi,,~,}) /(~oexp {-~o~,,~.}), and h(~k,

Zk+l; 6) = (P exp {—PYih,mk })/(Po exp {-POZm,})

if ik corresponds to a departure event. If A(t) and

D(t) are, respectively, the number of arrivals and

number of departures by time t,then, if we omit in

the expression of the likelihood function the end-effect

terms, we have that

L,(6) x
AA(t) exp {–J ~f~~) Ai}

A(t) A;}#t) exp {–~o ~i=l

~D(t) exp {–p ~~!~) Si}

b(t)
exp {–po ~~=(~) S;}’

where Ai and Si are, respectively, the ith interarrival

time and ith service time.

5 THE MAIN RESULTS

In order to carry through the arguments, a number

of assumptions must be made. We only state a few

here and refer the reader to Damerdji (1992) for the

complete conditions.

A vexing requirement is that the state space be fi-

nite. Another vexing condition is that events admit a

positive density over the whole positive line. This ex-

cludes discrete variables and also continuous variables

with finite support. Another restrictive condition is

that events have exponentially bounded distributions

(see Barlow and Proschan (1975) for a definition).

Some more notation is needed. Let so, io, XiO, and

s 1 be the random variables corresponding to, respec-

tively, the state of the GSM1’ at time 01,the event
which triggers the first transition, the lifetime of that

event, and the next state visited. Consider u(O) the

T x T-matrix with entries

~u.(e) =

‘[~lOg(P(sl;soio;e)fio( xio;o))
u

.&log (P(sl; sO, iO; ‘) fio(xio; ‘))] .
v

The expectation is with respect to the stationary dis-

tribution, which exists and is unique (Glynn, 1988).

To ensure that no two parameters of the vector O are

redundant, the matrix u(e) is assumed to be nonsin-

gular, and thus invertible.

Let A be the limit of IV(t)/t as t ~ cm. (The con-

stant A exists and is positive with probabiEty one

(see Damerdji, 1992).) The exact conditions under

which the following results hold are given in Damerdji

(1992).

RESULT 1:

(i) For t sufficiently large, the AMLE @t exists and is

consistent with probability one.

(ii) We have that

( )
W(ti, - 4“) * N 0, J-’r7(00)-’ as i -+ co.

This result says that the approximate maximum

likelihood estimator exists and converges to the true

parameter at rate l/~.

RESULT 2:

(i) For t sufficiently large, the MLE & exists and iS

consistent with probability one.

(ii) We have that

ti(Ot - 0°) ==+ N(O, ~-lm(OO)-l) as t + ~.

The MLE also exists and converges to 19° at rate

l/~. The above two results do not imply that the
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MLE and AMLE converge to one another at rate

I/&, but, under an additional condition, we do ob-

tain the following (see Damerdji, 1992).

RESULT 3:

We have that

We get, then, that the approximate maximum like-

lihood estimator and the maximum likelihood esti-

mator get close to one another at rate faster than

l/~. This implies that there is no loss in statisti-

cal efficiency in computing the AMLE instead of the

MLE.

6 CONCLUSION

Maximum likelihood estimation for generalized semi-

Markov processes was undertaken in this study. Cen-

tral to our approach is the fact that the GSMP admits

an embedded (general state-space) Markov chain. Al-

though the transition density function of this Markov

chain has a complicated expression, the likelihood

function of the GSMP has a relatively simple expres-

sion. An even simpler function was considered. It

is in general much easier to compute the AMLE, the

maximizer of this other function. We discussed that

the MLE also exists, and that both the MLE and

AMLE obey a central limit theorem. There is no loss

in statistical efficiency in computing the AMLE in-

stead of the MLE.

To allow priority rules, such as preemptive-resume

queueing disciplines, the general theory of GSMP’S

allows the incorporation of rates on the clocks (see

Whitt, 1980). We did not consider rates in this study,

but we believe our approach could generalize to in-

clude such a scheme.

Event canceling was barred in our study, as the

likelihood function would be more complicated. This

is a restriction, and work to include event canceling

in the theory is warranted since a number of real-

world systems do have such a property.
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