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ABSTRACT

This paper considers simulation of truck dispatching

system designs using maximum expected production of

the truck-shovel system as the measure of perfommnce.

Two methods are utilized, multiple comparisons with the

best (MCB) and the combination of MCB and the

variance reduction technique known as common random

numbers (CRN). These two techniques are compared via

simulation experiments. The results show that the

combined procedure of MCB with CRN is the superior

tool to reduce the total number of replications needed to

ensure the specified probability of correct selection over

the finite number of designing systems. In this case

study, MCB with CRN reduces the variance by 29°/0 and

the number of required replications by 48Y0. Also, the

MCB with CRN procedure narrowed the confidence

interval by 18°/0.

1 INTRODUCTION

Truck haulage is the most common means used for

moving orelwaste in open-pit mining operations, but it is

usually the most expensive unit operation in a truck-
shovel mining system. The state-of-the-art in computing

technology has advanced to a point where there are

several truck dispatching systems ‘which offer the

potential of improving truck-shovel productivity and
subsequent savings. Introducing a dispatching system in

a mine can achieve operational gains by reducing waiting

times and obtain other benefits through better monitoring,

optimal routing and grade control.

Efficiency of the employed truck-shovel fleet

depends on the dispatching strategy in use, the

complexity of the truck-shovel system and a variety of
other variables. It is a common situation in mining that

considerable analysis of the available strategies is
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undertaken before dispatching is adopted. In most

cases, computer simulation is the most applicable and

effective method of comparing the alternative

dispatching strategies.

When designing dispatching systems, it is

natural to attempt to design the best possible system

relative to some performance criteria, but !subject to

mining and resources constraints. If the number of

alternative system designs is not too large, the

standard approaches for solving optimization problems

are used: ranking and selection, and multiple

comparisons with the best. Ranking and selection

procedures yield one decision, i.e., which system

design has maximum expected performance, while

multiple comparisons with the best provides estimates,

i.e., the difference between the expected performance

of each system design and the best of the other system

designs. However, this theory is not extensively used

in practice. Some cite the lack of computer sotlware

for ranking and selection as the reason for its

nonusage. Another reason is that traditional

indifference zone selection calls for a multi-stage

experimentation in the usual case of unknown
variability. Since most practitioners carry out their

experiments in a single stage rather than follow
specific multistage designs, there has been little

incentive to write computer programs for indifference

zone selection (Hsu, 1984).

This paper describes an approach based on

multiple comparison with the best (Hsu and Nelson,

1988) which is particularly useful when the goal is to
find the system design having maximum expected
performance. A refinement to the MCB procedure

was presented by Yang and Nelson (1989) using a

variance reduction technique (VRT) known as

common random numbers (CRN). The objective of

this study is to utilize the MCB and the MCB plus
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CRN techniques via simulation to design an optimal truck

dispatching system and compare the affect of these two

procedures on obtaining statistically correct conclusions

about simulation output analysis. The other contribution

of this paper is to extend the use of the appropriate

techniques for simulation output analysis in the proper

scientific fashion since, in mining simulation studies,

conclusions about designing systems are usually drawn on

the basis of some raw simulation results.

where: en, ... , e~~ are independent and identically

distributed normal variables with mean O and with

unknown variance crz. Model (1) implies that m

replications are generated from each dispatching

system, and the systems are simulated independently

of each other.

Estimated measures of performance Q,, Q,,

... . Qn are calculated by the sample means:

2 MULTIPLE COMPARISONS WITH THE
m

Yi=L~ yij (2)

BEST ‘j-l

We are comparing n dispatching strategies and denote the

n systems by S,; i=l, 2, ... . n. The expected performance

is designated as Q,; i=l, 2, ... , n. If funding the system

with the best (largest) expected performance is the goal,

then Q, - max QP (for p#i) is inferior to the best system.

For each system S,, we consider the quantity Q, - max QP

(for p#i) which can be called “system i performance
minus the best of the other system performances.”

Since in this study the objective is finding the

dispatching system with the best mean performance, then

if Q, - max QP (for p#i) >0 for all p, then S, is the best

system. Otherwise, it is not the best system. Also, if Q,

- max QP (for p#i) <0 and if (-d) < Q, - max QP (for p#i)

where d is a small positive number, then system S, is

within d of the best. Thus, for multiple comparisons with

the best, the relevant parameters are Q, - max QP (p#i) for

i=l,2, ....n.

Hsu’s (1984) method of MCB, which will be

described next, provides simultaneous confidence

intervals for Q, - max QP (for p#i) for all i. By the nature

of multiple comparisons, the fewer the number of

statements that must be simultaneously correct, the

sharper the inference. Since the systems are stochastic

and estimates are based on a finite number of samples,

the quantities Q, - max QP (for p#i) are not known

precisely. Let Y,j be the jth simulation output from the
ith system design and suppose Q,=E[Y ,j] for all j. MCB

is applicable if the balanced one-way model (1) pertains:

Yij =Qi+eij, for i = 1, 2, 3, (1)
. . . . n; J’=1,2,3. ... m

fori=l,2 ..., n, and cr2 is estimated by the pooled

sample variance:

~2=
rn(~-1) ~~ “ij - 7i)2 (3)1-1 j-l

Here it should be noted that the constants n

and m, and the random variables ~1, ?Z, ... , ~, and

S2are the inputs to the MCB procedure.

Now let dm.,,~(n.l) be the upper u quantile of

a random variable that is the maximum of n- 1 equally

correlated multivariate-t random variables with

correlation 1/2 and m(n- 1) degrees of freedom, and let
X+ = mu {(),x} and X- = min {(),x}. For model (1),

Hsu (1984) showed that the closed interval is:

for i = 1, 2, ... , n are (1-cc) 1000/0 simultaneous
confidence intervals for Q, - max QP (p#i) for all i. A

detailed proof for the presented procedure is given in

Hsu and Nelson (1988).

3 MCB WITH COMMON RANDOM NUMBERS

When comparing alternative systems using the MCB
technique via simulation, we may achieve a significant

improvement in efficiency by introducing positive

correlation across the observations from different

alternative systems using the easily implemented
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variance reduction technique (VRT) of common random

numbers (CRN). The objective is to use the same

random numbers for each alternative to obtain a large

positive correlation among their performance measures on

each replication. In the previous section, CRNS were not

employed and we assumed that the observations across

alternative systems are independent. This procedure,

MCB with CRN, employs the CRNS when sampling

across all n systems.

Before discussing the VRT and implementation

of CRN, we emphasize some basic properties of VRTS

based on the Nelson (1987) yaper. Suppose we estimate

Q, with the point estimator Y,; then if {Y[,Y2, ... . Y~} is

covariance stationary:

k-1

Var[Y]=~ + +x (1 - +)yh (5)

h-1

where y~ = Cov [Yi,YJ] when Ii - jl = h.

If the Y, are independent, as they are for

independent replications, then (5) reduces to cr2/k.

Now, let {X1, Xz, ... , X~} be a sequence of

identically distributed scalar random variables. Let ZJ =

Y, + BX}, where b is a constant. Then:

(6)
Var [Zj] = u2+b2u~*2b Cov[Yj, Xjl

where cr~ = Var[XJ]. Result (5) indicates that there are

three components that determine the variance of a sample
mean: 02, y~, an~ k. Decreasing 62 and y~, or increasing

k, reduces Var[Y ]. Result (6) shows that the combination

of YJ with another random variable XJ may yield a

random variable with smaller variance, provided the

covariance between them is large enough and has the

correct sign. Variance reduction is achieved by designing

a simulation experiment to take advantage of these

results.

As we can see, the goal of the CRN technique is

to reduce the total number of replications needed to

ensure the specified probability of correct system

selection using the MCB procedure. In experimental

design, it means that we use the same random numbers

within pairs of replications as a means of inducing the

needed positive covariance between the responses within

a paired set of replications. However, using the same
random number seeds for each replication within the pair

is usually not sufficient to induce covariance.

Therefore, we must also ensure that random numbers

are synchronized, i.e., the random numbers are used at

the same junction and for exactly the same purpose

across all systems. One can obtain dramatic

differences in the effectiveness of CRNS depending on

how one performs synchronization. For some
suggestions on how to obtain synchronization see

Bartley, Fox and Scharge (1987).

In this simulation, experiment synchronization

is handled in such a way that processing times for all

sampling variables are assigned to an entity (for

example, a truck) at arrival. As a result, the order in

which the jobs (trucks) are processed will not change

the way that the random numbers are used within the

model.

4 TRUCK HAULAGE DISPATCHING

CRITERIA

The nature of the mining system in many open-pit

mines involves a fairly complicated queuing problem.

The primary servers (shovels or front-end loaders)

each can serve only one truck at a time. Hence,

queues form at each server. There may be multiple

dump points for mineral matter; for examlple, ore (the

most valuable mineral product), leach (of marginal,

but positive value), and waste (of no value) may all

be dumped in different places and multiple dumps

may be available for each product. To complicate the

matter, queues may form at some of the dump points.

Additionally, the shovels and trucks may have

different production capability.

Historically, open-pit mining operations were

run with each truck assigned to a given shovel. With

modern computer monitoring and control, the usual

strategy is to dispatch the trucks to whichever shovel

will contribute the most to the short-term production

objectives. Marty dispatching methods can be used,

both heuristic and pseudo-optimal. Four methods are
listed below as examples of the heuristic dispatching

criteria

(1) Minimizing shovel wait time (MSWT):

the empty truck in this criterion is assigned to the

shovel which has been waiting for a truck the longest

time, or is expected to be idle next.

(2) Minimizing truck cycle timle (MTCT):

the goal of this strategy is to assign an available

empty truck to the shovel which will provide the

minimum value for completion of the expected truck
cycle time to maximize either total tons or ton-miles
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per unit of time.

(3) Minimizing truck waiting time (MTWT):

the objective of this criterion is to assign an empty truck

to the shovel where the truck loading operation will be

initiated first.

(4) Minimizing shovel saturation (MSS): the

goal of this rule is to assign the trucks to the shovel at

equal time intervals to keep a shovel operating without

waiting for trucks. The truck is assigned to the shovel

which has the lowest ratio of the current coverage against

desired coverage.

5 EVALUATION OF DISPATCHING STRATEGIES

USING MCB

A truck dispatching simulation model has been developed

for the purpose of the simulation experiments. The

simulation language SIMAN IV (Pegden, Shannon, and

Sadowski, 1990) was used to develop the truck-shovel

simulation model which can run either on mainframe

workstations or PCs. SIMAN is a general-purpose

Simulation ANalysis program for modeling discrete

andfor continuous systems. It is an advanced

C-based language that allows discrete models to be built

using either a process- or event-scheduling mode. The

truck-shovel simulation system is composed of 4 loading

shovels, 14 identical trucks and the haulage configuration

shown in Figure 1. The mine simulated is an actual

operation located in the southwest United States.

For MCB model (1) to be tenable, the experiment

must be performed so that, for fixed criteria, Y,,(j=l,

2, .,. , m) are identically and independently

distributed, and Y,J are independent for all i and j. In

practice, this means that different random number

(RN) streams are used to generate stochastic values

for the simulation of each criteria. The stochastic

elements and RN streams are summarized in Table 1.

The simulation time period selected was 480 minutes

based on actual operating time in one shift. This

value was kept constant for all the simulations runs.

The systems are evaluated on the basis of total

production by all trucks, Q, (total production), as the

measure of performance. Each system employs a

different truck dispatching criterion. The simulation

experiment using MCB proceeds as follows:

(1) Make m,> 10 independent replications Y,,,

Yi2, ... . Y. for each system i (i = 1, 2, ... . n).

(2) U.&O the MCB procedure to construct

simultaneous confidence intervals for system i (i= 1, 2,

... , n) and check if the best system can be chosen. If

yes, go to step 4.

(3) Make additional replications for the remaining

systems and go to step 2.

(4) Select the best system with the MCB C1 lower

bound equal to O.

The simulation data with statistics for our

experiment are given in Table 2 and plotted in Figure

2. With a confidence level of 950A, MCB subset

I awry. Wkle w!
louEGOul 11 1530 3)1 SPfiTCH System
Iw~ Ydow
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Figure 1: Layout of the Truck Haulage System
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Table 1: Stoehasdc Elements,RN S&eauIS,mid CRN Seeds

Time Varisble SIMAN RN Parsttsetcrs Units

LoadingTrees
1. Shovel Type I
2. Shovel TWW11

Spottingtime:
Dumpingtime:
Time betweenshovelbreakdowns:
Time to repair SbOVd:
Time betweentruck Lmakdowns:
Time to repair truck:
Time tsetwe.enausher tidOWOS:
Time to repair musher
EXPERIMENT FILE:
SEEDS: 1, 12355, C:

2, 13189, C>

3, 15222, C:
4, 11000, c:
5, 13888, C:

6, 14180, C:
i’, 16272, C:

8, 17100, C:

9, 20189, c:
10, 25222, C:

120+GAMNlA (14.7, 5.9, 1) see
lIO+GAMMA (15,3, 3.1, 2) SW
IO+LOGN (7.8, 4.6, 3) See
25+LOGN (16.2, 10.8, 4) See

0.5+W-HB (17.7, 0.97, 5) Hr.
0.5+WHB (1.6, 0.43, 6) W.
0.5+wm (36.3,0.74,9) Hr.
0.5+WEIB (32, 0.51, 8) Hr.
0.4+W-HB (6.8, 0.74, 9) Hr.
0.3+WEIB (0.97, 0.63, 10) Hr.

Table 2: Simulation Results for Ten Repli@ions

Replication CRITERION

MSWT MTCT MTWT MSS

1

2

3

4

5

6

7

8

9

10

138 139 138 132

136 137 145 138

142 138 139 141

138 131 140 139

140 141 136 134

137 131 139 137

142 134 145 140

135 137 146 136

143 130 145 132

144 128 138 141

AVER4GE: 139.5 134.6 141.1 137.1

OUTPUT DATA FOR MCE)
SOREPLICATIONS

?ROOUOTION, trips

:~
x x Mss

142 -
MTCT

x
:
x

x
x

1s8 -
x

x
x

x
x

x x
x

x
x

x
184 - x

x
x

x
1s0 . x

x
12s -

Figure 2: Simulation Responses for Four Dispatching

Systems

MCB CONFIDENCE INTERVALS
10REPLICATIONS

MCS - CI

-s I
-s

}

1 2 4
SYSTEM*

Figure 3: MCB Confidence Intervals for Four

Dispatching Systems

Table 3: MCB Results for Ten Replications

System Y, Y, - ~,Yp Confidence

Design Intend at a = 0.05

MSw-r 139.5 -1.6 (-3.4, o 2)

MTCT 134.6 -6.5 (-8.3, 0.0)

MTWT 141.1 1,6 (<).2, 34)

MSS 137.1 -4.0 (-5.8, 0.0)

wh’rPLE VARL4NCE: S*-*S ~ (1’q-y)’-ll.35

DEGREES OF FREEDOM m(n-1) = 36
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Simulation Responses for the MSWT and

MTWT Systems

x

2 -

1 -

USWT

o
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-1

-2
x

-s I J

1 2
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Figure 5: MCB & CRN Confidence Intervals for the
MSWT and MTWT Systems

Table 4: Simulation and MCB Results for MSWT and MTWT

with 83 Re@ication5

system y, y, “ -%,YP Confidence

Design intend at a = 0.05

MSWT 140.8 -1.3 (-2.5, 0.0)

I 142.1 I 1.3 I (0,0, 2.5)

DEGREES OF FREEDOM m(n-1) = 328

selection showed that criteria MSS and MTCT are not

the best (see Figure 3 and Table 3) since the upper

endpoint of their intervals is zero. This means that

the difference between zero criteria MSS and MTCT

and the other criteria with the best expected

performance is less than or equal to O. Although

criterion MTWT appears to be the best according to

the measure of performance, we cannot conclude that

it is best since the intervals for criteria MSWT and

MTWT contain O, or stated differently, the random

variation across the systems is too large relative to the

differences Q, - max,., Q, to determine the best

system.

To choose the best dispatching system, we need to

perform more replications to reduce the confidence

interval widths in order to select the system with the

best performance. We continued with simulation

replications to experimentally determine how many

additional replications were needed to reach a

conclusion on which system is the best. After each

additional replication, the MCB confidence intervals

were tested to determine if the conclusion could be

achieved. The experiment was performed under the

same simulation conditions for both the MSWT and

the MTWT systems.

To reach a conclusion that system MTWT is

superior to system MSWT, 83 replications were

needed. See Figure 4 for simulation data runs and

Figure 5 for MCB confidence intervals. The

additional numerical and MCB data are given in Table

4.

6 EVALUATION OF DISPATCHING

STRATEGIES USING MCB WITH CRN

As was mentioned earlier, the goal of CRNS is to

reduce the total number of replications needed to

ensure the specified probability of correct selection

using the MCB procedure. To ensure that the jth

replication within each of the two runs uses the same

starting seed, the SEEDS element of SIMAN was

employed to specify the same starting seed for the
tirst replication within each run and for the

reinitialization option “c,” which denotes common

random numbers. For a summary of the RN streams

and RN seeds employed for the experiment using

MCB with CRN, see Table 1.

With the specifications in Table 1, SIMAN uses a

starting seed for the next replication that is exactly

100,000 observations away from the starting seed used

on the previous replication. Thus, we are
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assured that the jth replication in each of the two runs

starts with the same random number, even if the number

of samples generated from replication to replication

differs between the two systems. It is important that the

CRN technique be synchronized between replications and

competing systems by the use of assigned attributes as

described in section 3. The simulation experiment

proceeds as follows:

(1) Make mO>10 replications Y,l, Y,,, ... , ‘imo for

system i (i=l, 2, ... , n) using CRN.

(2) Use the MCB procedure to construct simultaneous

confidence intervals for system i (i = 1, 2, ... , n) and

check if the best system can be chosen. If yes, go to step

4.

(3) Make additional replications for the remaining

systems and go to step 2.

(4) Select the best system with the MCB CI lower

bound equal to O.

The numerical simulation responses and the MCB

confidence intervals are summarized in Table 5. Figure

6 and Figure 7 show simulation output data and the MCB

confidence intervals respectively. As can be seen, 43

replications were needed to achieve a conclusion as to

which system is the best using the MCB with CRN

procedure.

Table 5, Simulation and MCB Results for 43 Runs

System Y, y, - %Iyp Confidence

Design Interval al CFO.05

MSWT 141.3 -1.2 (-2.05, 0.0)

MTCT 136.2 -6.1 (-7,43, 0,0)

142.5 1.2 (0.0, 2.05)

MTCT 138.8 -3.7 (-4.85, 0.0)

SAMPLEVARIANCES2-&g ~ fl~-yJ2-4.73
. .

DEGREES OF FREEDOM: m(n-1) = 168

..
Mawr

146 - x
x x

x

142 -
x Mm
x x U8S

x : x
E

x
188 - x

x : x
x x

x MTWT
x

c
1s4 - x

x x
x

1s0 xx

120
1 2 4

SY ST EMa

Figure 6: Simulation Responses for Fclur Dispatching

Systems

MCB CONFIDENCE4/N:41~~4L: FOR MCB & CRN

MCB - cl

:~m

-2

-4

-o -

-s -

4 W WT

I

Figure 7: MCB Plus CRN Confidence Intervals for Four
Dispatching Systems

Table 6: Comparison of Rcsul!s

MCB MCB with CRN Reductions

Number of

Replications 83 43 48%

MCB Cl: (0.0, 2.5) (0.0, 2,05) 18?40

Variance: 6.63 4.73 29%
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7 CONCLUSIONS

The primary motivation for the analyst to use a proper

output analysis procedure when using stochastic

simulation is to reduce the risk in making incorrect

conclusions about the alternative systems. In this study,

the results clearly show the utility of the MCB with CRN

procedure for analyzing a finite number of alternative

systems. For comparison of results obtained by both

procedures, see Table 6.

Note that the use of common random numbers with

the MCB procedure reduced the number of replications

from 83 to 43 replications, as well as reduced variance of

the response differences fi-om 6.63 to 4.73 or 29’%0,which

yields the 18% smaller MCB confidence interval. In

most situations the use of the CRN is effective.

However, common random numbers can generate a

negative covariance, which leads to less accurate results

than those produced by independent runs. Although the

likehood of a negative covariance is small, examples have

been cited in the literature. The main advantage of the

MCB with CRN procedure over the standard MCB

procedure can be summarized as follows:

(1) It is an effective tool to reduce the number of

replications needed to ensure the specified probability of

correct selection over a finite number of alternative

systems.

(2) It produces smaller confidence intervals an~ givgs

a better reduction of variances of the differences Y, - Y~

(k#i), rather than the individual point estimators, over all
systems.

(3) It can easily be implemented. If a simulation

language is used (e.g., SIMAN) the same seed elements

should be used across each system design, while use of

a general purpose language (e.g., C) requires saving the

random number seeds at the end of m replications of each

system so that the simulation can be restarted with the

same seeds for the following iterative step.

The use of these techniques on open-pit mine

dispatching strategies shows the value of the combined

MCB with CRN method. The dispatching strategies or

systems are quite complex and generally can be analyzed

only by simulation. However, it is common in some

mines that the best dispatching system is only a few

percent better in production than the least effective

strategy. While a few percent increase in production is
economically significant, it is difficult to achieve a

statistically significant conclusion concerning the best

alternative system. In this case, the MCB plus CRN

method allowed a conclusion to be achieved in about one-

half the number of replications as the MCB method

alone. Clearly, the combined method is of significant

value in such a simulation experiment.
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