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ABSTRACT

Stochastic simulation models are used to predict the

behavior of real systems whose components have

random variation. The simulation model generates

artificial random quantities based on the nature of the

random variation in the real system. Very often, the

probability distributions oecurnng in the real system are

unknown, and must be estimated using finite samples.

This paper presents two ways to estimate simulation

model output errors due to the errors in the empirical

distributions used to drive the simulation. These

approaches are applied to simulations of the M/M/l

queue with an empirically sampled interarrival time.

They capture components of variance in the estimate of

mean time in the system that are ignored when the

empirical distribution is treated as the true distribution.

1 INTRODUCTION

Stochastic simulation models are used to predict the

behavior of real systems whose components have

random variation. The simulation model generates

artificial random quantities based on probability

distributions that represent the nature of the random

variation in the real system. In most practical situations,

the probability distributions occurring in the real system

are unknown, and must be estimated using finite

samples. The distribution that is fitted to the observed

samples may be either a parametric distribution or an

empirical distribution.

Any finite sample leads to a distribution estimate

with some error. For some simple models, Shanker and

Kelton (1991) find that empirical distributions generally
did as well as the best fitted parametric distributions.

The nature of the error in the empirical distribution’s

approximation to the true distribution function is well

understood, yet this error is typically ignored in the

analysis of simulation output (e.g., in determining
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confidence intervals for W for an M/M/l queue) when

the output is based on empirical distribution
approximations.

This paper presents two ways to estimate simulation

model output errors due to errors in the empirical

distribution’s approximation to the true distribution.

First, we argue that traditional empirical cdf estimates

are in error, but that the distribution of the error is

known. Then we show how the cdf approximation may

be varied over multiple simulation runs to capture

uncertainties due to the ecdf approximation. Two

methods are presented, uniform resampling of the

distribution value and bootsirap samples of ho empirical

cdf (Efron and Tibshirani 1986). These approaches are

illustrated using simulations of the M/M/l queue with an

empirically sampled interarrival time.

2 CALCULATING THE EMPIRICAL CDF

The empirical distribution function for a set of data may

specified in a number of ways. We describe the

observed data, ordered from smallest to Itigest, as X(1),

‘(3’ ‘“-’ ‘(n)”
For convenience, we consider the

approximation as a two step process: i) estimate the cdf

at the observed values, say 8( x(l)] B( X(2))>

.... P( x(n)), and ii) approximate the cdf between the

observed values. Several common approximations for

the first step are:

a) B( X(i))= i/n,

b) P( X(i))= i/n+l, and

c) H( X(i))= (i-.5)/n.

(1)

Choosing among these approximations (or others)

amounts to choosing the probability integrals assigned to
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theintervals 1:-co exSx(1),2 x(1) <x Sx(2), ,n+l:

‘(n) < x < ‘-
For the approximations above, (la)

assigns I/n to intervals 1, 2, .... n and O to interval n+l,

(lb) assigns l/(n+l) to every interval, and (lc) assigns

.5/n to intervals 1 and n+l and l/n to the other intervals.

We will use lb in the examples below. The choice is not

critical to the results that are presented, however.

Given estimates for the CDF at the observed values

‘(1) < ‘(2) < ‘-”< ‘(n) * there are many choices for

extending the pointwise approximation to a complete

approximation, including linear interpolation and kernel

smoothing. The results of our discussions below will

hold for many of these, but we will use the linear

interpolation method discussed in Banks and Carson

(1984). Given estimates for the calf, f? x(1)), f? x(L9>

. . . . f( x(n)), the estimated value of F for other x values is

determined by:

#(x )= u B( x(~)) + (1-) R( X(l+lj (2)

where x(1) = max(x(i) I x (i) ~ x) and ~ = (x @+l) ‘x)/

(X@+l)-X(L)). The linear interpolation method requires

two artificial points, x(o) and X(n+ 1, as upper and lower

bounds on the distribution, with fi( x(0)) =0, R( x(n+l))

= 1. This approach is used in the M/M/l example below,

with X(o) = O and x(n+l) = ‘(n)+ (x(n) - ‘(n-l))” ‘is
approximation strategy is illustrated in Figure 1.

3 ERRORS IN THE CDF APPROXIMATION

The pointwise approximations in (1) are consistent

estimators of F, but for any finite sample size n, they

approximate the true cdf with some error. Simulations

that use approximations based on (1) and (2) in place of

the true but unknown F will produce results that are in

error for two reason~

el) F may have been (incorrectly) discretized to values

‘(l)> ‘(2)> .... ‘(n).

q) The values for F(x) only approximate the values

of the true F at points X(l), x(2), . . . . x(n).

This paper discusses ways to estimate the error in

simulation model outputs that are caused by input
distribution errors of type ~, but not el. Presumably,

using the linear approximation in (2) helps to reduce

errors of type e 1.

1-

B(x)

-

‘(o)x(l) x (2) ‘(3) ‘(4)

added bound points

Figure 1: Interpolation-Based Empirical Distribution.

4 RESAMPLING FOR fi(x(k) ), k=l, . .. . n

The joint distribution of (X, F(X)) is a multivariate

distribution with all of the probability mass is

concentrated on the line (x, F(x)). To generate random

quantities from the distribution described by F, we

generate a U(O, 1) value and find the conditional

distribution of X I F, which is a degenerate distribution

that identifies a single value. When the true F is

unknown, we cannot do this. Suppose we have a sample

of values x(1), x(2), . . . . X(n) from a distribution F.

Given the corresponding distribution values F(x(l)), ....

F(x(n)), one could develop a cdf approximation without

any error of type e2. The typical approach in simulation

studies is to approximate F at these points by one of the

formulas in (l). The resulting approximations are fixed

for the duration of the simulation, and extended via one

of the two techniques in (2) or some other technique.

The resulting simulation results do not include

variability due to uncertainty in the F estimate arising

from the finite sample.
A correct statistical analysis of simulation output

should include an assessment of the errors that result

from using finite sample estimates for probability

distributions used in the simulation. This could be done

by collecting several samples of data, and performing the

simulation study separately for each data set. The results

could then be combined in an Analysis of Variance that

included the sample (on which the probability models

were based) as a random effect. A standard mixed-

effects model could be used to identify whether the

sample-to-sample differences in the distribution

estimates produce significant variations in the simulation

output.

While correct, this approach is a costly one. One
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might argue that instead of making say, five replications

with five different empirical samples, one could produce

a more accurate simulation by combining all five sets of

empirical data to fit the required simulation distributions.

In the remainder of this section, two methods are

presented which allow the use of the combined sample

to estimate distributions, yet still provide data that allows

a mixed effects ANOVA.

4.1 Bootstrap Resampling

We propose two alternate methods to generate

random quantities that includes the uncertainty in P( ● )

due to errors of type e2. They are based on sampling

*( xc)) values from an appropriate distribution, rather

than using the same values for $( xc) ) for each

simulation run.

The bootstrap technique (Efron and Tibshirani, 1986)

has been used to characterize the sampling distribution

of complex statistics. For simulating random quantities,

one might think of estimating the cdf by sampling, with
rephcemen~ k values from the observed set {x(l), x(2),

. . . . x(n).} and assigning distribution values based on

(la), say. Typically, k = n for bootstrap samples. If k ->

CO,then the corresponding probabilities will converge as.

to i/n for each *( x(i) ) by the Strong Law of Large

Numbers.

In a Monte Carlo experiment, then, the uniform

resampling strategy is implemented as follows:

i) Sample n values from the set {x(l), x(2), .... x (n).)

with replacement. Call these values V(1), V(2), ....

‘(n).

ii) Use (1) and (2) to compute an empirical cdf based on

the v sample.

iii) Repeat this process t times and run the simulation

with each of the resulting distribution(s) to collect t

bootstrap (re)samples of the simulation process.
Perform a mixed effects Analysis of Variance as

described above.
(3)

The bootstrap technique can be applied in situations

where very little is known about the underlying

distributions. The technique below takes advantage of

the known form of the sampled calf.

4.2 Uniform Resampling

While the hue F(x@)) values are unknown in the typical

simulation model, their joint distribution is known. If X i

are i.i.d. with cdf FQ) then F(Xi) - U(O,l). The joint

distribution of F(X(l)), .... F(X(n)) corresponds to that

of n order statistics of from a uniform distribution, and
the marginal distribution for F(X@)) is beta(k, n-k+l)

(Lehmann, 1975, p.344). Thus, F(x(l)), .... F(x(n)) can

be thought of as a sample from a multivariate uniform

distribution. The standard approach to choosing the

R( X@) ) values based on an empirical sample is to

choose a consistent estimator for the expected value of

F(x&)) for the estimate 9( X@) ), for example k/(n+l).

Instead for the uniform resampling approach, the value

chosen to estimate F(x(k)) will be a sample from the

distribution Of F(X(k )). In contrast, bootstrap

resampling can be thought of as a sample from the

empirical distribution of F(X@..

In a Monte Carlo experiment then, the uniform

resampling strategy is implemented as follows:

i) Sample n values from a U(O,l) distribution, with

‘rderd‘alues‘(l)’ ““”’ ‘(n)
These can be sampled and

sorted, or the order statistics themselves can be

sampled directly from the appropriate beta

distribution.

ii) Set P( X(l) ) = U(l), and *( X(2) ) = U(2), and so forth.

This assigns new probabilities to the break points in

the empirical distribution function.

iii) Repeat this process t times and run the simulation

with each of the resulting distribution(s) to collect t

uniform (re)samples of the simulation process.

Perform a mixed effects Analysis of Variance as

described above.
(4)

5 UNIFORM RESAMPLING VS. BOOTSTRAP

RESAMPLING

How do these resampling estimates differ? The

bootstrap estimate has

prob@b(X(i)) ~ m/n) = Fbin(n, tin)(m),

while the uniform resampling estimate has
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‘WUG (i))< ‘/n)= ‘~i, .+I-i) (m/n),

where Fbin and FP refer to binomial and beta cdfs,

nxpectively. For large n, i, m such that m, i, n-m all >

25, normal approximations give:

F bintII, i/n)(m) ‘FN@J)((m-i)/~(i (l-(i/n))) and

‘bin(n, l-(mh)) (n-i) = ‘N(13J)((m-i)/4(m(l ‘(m/n))).

Since ((m-i)/4(i (l-(i/n))) # ((m-i)/4(m(l-(m/n))), unless

l!m=i, the bootstrap and uniform samples for ( X(i) )

will have different distributions.

6 AN EMPIRICAL INVESTIGATION

Consider the variability of a performance estimate for

the simulation of a queueing system, say W: the average

time in the system per customer. We wish to estimate

the variability in the estimate for W that is caused by

using a finite sample empirical distribution in place of

the true probability distribution function. One can

consider making t sets of r simulation runs, each set with

a different *( ● ) based a new sample from the true

distribution. The resulting n = t“r runs produce estimates

for W with r replications for each of the t resampled

ecdfs. As described in Section 4, the Analysis of

Variance could be used to estimate the components of

variance, modeling the ecdf resample as a random effect.

The hypothesis test for no significant ecdf effect could

also be employed. Similar analyses could be performed

with one long run for each of the t empirical distribution

samples and r batches within each run, computing the

estimates for W from batch means (Seila 1990).

Alternatively, the empirical distribution could be

artificially resampled using (3) or (4). Again, r
replications could be run for each resampled empirical

distribution, or r batches could be constructed from a

single run for each empirical sample.

The simple example considered here shows that the
variation in simulation output due to empirical sampling

can be significant. This is true even for relatively large
(100 samples) empirical distributions. In this example,

the M/M/l queue is modeled with traffic intensity .8.

The service time is sampled directly from an exponential

distribution with rate p = 1.0. We consider several cases

for sampling the interarrival time. In each case, the

interarrival distribution is based on an empirical sample

of size 10 or 100 from an exponential distribution with

rate k = 0.8. The experiment consists of 10 replications

(runs) with 10 batches of size 1000 in each replication.

The distribution that is used from run to run for the

first case is just the original sampled ecdf. For the other

three cases, the second through tenth runs use modified

ecdf’s, in an attempt to capture the variability in the

estimate of W that is introduced by the use of a finite-

sample ecdf.

Case A. The ecdf is not changed from run to run .

Case B. The ecdf is resampled from the exponential

(0.8) distribution.

Case C. The ecdf F values are sampled from the U(O,l)

distribution as in (4).

Case D. The ecdf F values are determined by bootstrap

resampling as in (3).

Case A represents the typical fashion in which

empirical distributions are used in simulation, i.e. there

is no attempt to estimate the variability introduced by the

finite sample ecdf. Case B estimates this variation

correctly by directly resampling the ecdf from the true

distribution for each run. In actual applications, it may
not be practical to collect these additional samples.

Cases C and D are attempts to capture the variability

without requiring additional samples from the true

population. The experiment frame is described as

follows.

Traffic Intensity: .8

Batch Size 1000

Number of Batches: 10

Number of Resamples: 10

Strategy for Incorporating ECDF Erro~ none, true
resample,

uniform,

bootstrap

Number of Data Sampled for the ECDF 10, 100

Figure 2 shows the batch means estimates for W for

each resample. Figure 2A shows the assumed

relationship when the empirical distribution is used as

the true distribution. The actual uncertainty in W is
much larger for an ecdf based on ten samples, however,

as shown in Figure 2B. Figures 2C and 2D show that the

uniform resampling and bootstrap methods produce

variations similar to the results for true resampling.

Figure 3 shows the batch means for each run when

the empirical distribution is based on 100 samples.

Figure 3B shows that the variation in the batch mean

estimates for W due to the finite sample ecdf is reduced,

but still nontrivial. The empirical distribution that is
used for resampling strategies (3) and (4) is the first one

in Figure 3B, which produces unusually low batch

means. So it is not unexpected that the resampled values

in Figures 3C and 3D do not reproduce the full variation
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Figure 2: Batch Means vs Resamples, Using 10

Sample ecdf.
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seen inthelater samples in Figure2b. In spite of this

unusual base sample, the uniform resampling strategy

produces a substantial run to run variation.

7 SUMMARY

The run to run variations from the simple example above

show that, even for large (100 sample) empirical

distributions, the distribution sampling error can have an

effect on parameter estimates that is more significant

than the errors due to the finiteness of the simulation

runs. Ideally, seveml empirical samples should be taken

and a mixed effects analysis of variance conducted to

estimate the size and significance of the empirical cdf

random effect. The uniform and bootstrap resampling

methods provide an inexpensive resampling methods

that give indications of the true estimation error. This
provides an improvement over the standard approach,

which assumes the ecdf to be a true representation of the

probability law.
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