
Proceedings of the 1993 Winter Simulation Conference

G. W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

DATABASES: DESIGNING AND DEVELOPING INTEGRATED SIMULATION MODELING
ENVIRONMENTS

Martha A. Centeno, Ph.D.

Charles R. Standridge, Ph.D.

Department of Industrial Engineering

FAMU/FSU College of Engineering

Florida A&M University / Florida State University

P.O. Box 2175

Tallahassee, Florida 32316

ABSTRACT

Database management systems (DBMS) provide
robust information storag,e, retrieval, and indexing
functions needed by a simulation modeling

environment (SME). Such capabilities standardize

information handling requirements stipulated by the

principles of software engineering. Furthermore,

database management technology helps to realize the

concept of language neul fality in SMES. Neutrality

with respect to the simula’ Ion language has been long

sought by simulation researchers because the ideal

SME tool should allow inputting the description of
systems from which models can be defined.

Furthermore, the simulation modeling tool should

possess an interface thai lmites the various analysis

and definition tools netded for the simulation

modeling process.

1 INTRODUCTli~N

Simulation modeling :equires large amounts of

information (about the s.:stem being modeled) and

broad technical knowledge to transform it into

meaningful parameters of the system. It also

generates large amounts of information (about the
performance of the system under study) once the

outputs have been analyzed and interpreted.

Consequently, it has aIwaJs been desirable to provide

adequate data and knowledge management support in

a SME. A database management system (DBMS)

provides for the storage :md retrieval of information

in an orderly and cohe ‘ent fashion, regardless of

volume and kind of djlta, with user instructions
expressed in a queq language such as SQL

(Structured Query Language). Thus, a DBMS

embodies concepts and capabilities which enable

SME designers to design flexible and cohesive

components including the following:

a) A17 inter@ce which facilitates the interaction

between users an the information entry component

of the SME. It should be sensitive to the role of

the user in the simulation modeling process

(SMP), and it should enable integration of the

various tools needed in the SNIP.

b) AII information entry and editing component that

combines interactive graphical and textual

approaches to populating the SME database with

the description of systems, models scripts, and so

forth. Combining icons and text seems to be

appropriate for a SME based on the findings of

Kacmar (1989), Egido and Patterson (1988), and

Benbasat and Todd (1993).

c) An Information processing component that

converts iltiormation previously stored in the

database into appropriate inputs for models, stores

simulation results for future processing, and

converts simulation results into meaningful

information.

d) A nlodel extructlon component which enables the

retrieval of systems’ descriptions and converts it

into specific models, or it retrieves models and

experimental controls, and transforms them into

the format needed by the slmuiatlon engine.

e) A simulation engine which executes the simulation

model. The simulation engine is either

specifically developed for the SME or is an

existing simulation language incorporated into the

sm.

For SME development, emphasis must be given 1)

to the fact that components of a SME, except for the

model and experimental control editors and model

extraction, do not need any knowledge of the

operating characteristics of the simulation engine, 2)
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each of the components ( (a) to (e)) of the SME may

be composed of one or more sub-components to make

the environment modular. flexible and extensible and

3) to the fact that the DBMS may have not been

designed for simulation: thus. close attention should

be paid to its intemcti~’e response time, its

programmatic capabilities, and Its capability to be

submissive.

In this paper, we ctiscuss the ways in which

database technology has aided in designing and

implementing commercial and research prototype

SME. especially with regards to the components listed

above. Section 2 describes the major characteristics

of an integrated SME. Section 3 describes the roles

databases may play in a SME.

2 INTEGRATED SRIE

Simulation modeling cmironments M a concept that

has matured over the last decade, During this time.

users and researchers of sinmlation offered detinitlons

and guidelines about lvhat a cmttprehens{ve

simulation tool should be All these bnlidelines and

definitions have comerged to ~vhat II e no~vadays refer

to as a SME. It is ~vorth noting that this consensus

has been greatly influence by adfances in artificial

intelligence and database technologies.

An integrated ~imulation Modeling Environment

(SME) is a software tool that provides computer

support for the ~arious actnwies in the simulation

modeling process (SMP ), ,\ ,lich has been described by

many as a process that includes problem formulation.

model abstraction. data c:Jllection. model building.

model verification and v:(’ idation, analysis of outputs.

documentation. and implementation (Banks and

Carson (1990), Law and Kelton (1991). Pegden.

Shannon and Sadowski (1990) ). The SME.

therefore, needs to Integro(e a set of tools designed to

sLIpport a spccitic acti~i[} in the SNIP. Among these

tools are statistical tools ((c prepare inputs. to design

experiments. and to anal} ze outputs), model building

tools (expert systems and smndation languages).

documentation and rel,ort wmting tools (~vord

processors). and kno~vicdge based s~stenls (to assist in

the less structured ac[]vlties such as problem

dclinitlon and model abstr:];tion), Integration of these

tools must be both vertical as \vcll as horizontal.

Vertical integration makes these tools accessible to

the user through a comntc’1 interface ~vhde horizontal

integration enables colll]ll,llllcatio]] bettveen the tools.
so as to be consistent N i [ i the iterati~e nature of the

SMP.
Real \vorld simulation pt”ojects involve t~vo or more

persons ~vorking as a team. Each member of the team

may have different skills to contribute to the entire

project; therefore, a SME must adequately support

each member’s technical needs as well as his/her tool

interaction needs. The techmcal needs are supported

by the various tools integrated in the SME, whereas

the tool interaction needs are suppotied by effective

user interfaces that shelter team members from

detailed operational characteristics of the tools. An

effective user interface encourages its users to focus

their energies on the substance of their work rather

that on extraneous requirements of the tool being

used. Furthermore, to the extent a user interface

successfully models the system’s and user’s domain,

the process of interacting with the computer begins to

assume the character of manipulating domain objects

directly. This leads the user to think about the

problcm being sol~cd rather than the Jvay it is being

sohcd.

From the conceptual point of ~ie~v, a SME must

detach the s/m///aonon l~tode/lllg activity from the

actual simulation language or simulation executor,

Lqq[ioge independe)lce or lm7glloge 17ellts(711(\”

requires that the simulation language utdlzed in the

SME be j~(.$t o}?e of many components needed to

conduct sound and valid simulation projects,

Rca] izing /a17gi/age }?ei~tra/1~~’ ~vould enhance the

modeling aspect of [he SMP: thus. making simulation

more accessible to Iarious t~’pes of users, Ho\~ever. as

poln(cd out b! Balci ( 1986). it tvas not until ven

rcccn[l} that simulation 1001dc~elopers i} cre forced to

build thcm around a spccilic simulation language.

Simulation projects arc initiated to simulate a

systcm for the purpose of understanding its beha~ior

(if the systcm already exists) or of establishing the

impacts of it (if the system is at the design stage), A

.~l’.rte}~),for the purposes of designing a SME, should

therefore be \le\vcd as a group of objects that are

linked together by a set of relationships. i.e. a system

must be trca[cd as an object composed of other

“smaller” objects This ~le~~ of .~tx(ems nmmmizes

d:lta entry rcdundanc! b! ollo~ving reusability of

prc~iousl! described SJstcm components. and It

enables consistent classitlcatlon and labehnp, of each

node in the hicrarch} representing the attributes of the

Systcnl,

In summan. implementing an integrated SME

~~ould realize at least the follo~wng benctlts:

I Reusability of components pre~iously described

since they can be used for more than onc model

~ritlloul the need of re-entermg their basic
information,

2. Realization of language indcpcndcnce as systems

(and models about thcm) can be described in terms
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of objects which are not necessarily linked directly

to the underlying execution mechanism.
3. Simulation of a sys@IJ at various levels of

aggregation. Since a system is defined as a set of

hierarchical connected objects. it can be modeled as

a black box (at the higher level of abstraction), or it

can be opened up to simulate it at an expanded

level of detail.

-1. Support for \’arious types of users as it is needed in

simulation studies.

5. Support for the various phases in the SMP.

6. Focus on the modeling aspects of the SMP as the

model builder and model user are relieved from
ha~ing to know 10V le~el details about the

simulation language and other tools in the SME.

3 THE ROLE OF DATABASES IN A SME

Over the years. database teclmolog} has evolved to a

point in Ivhich conmcrcl$il DBMS (relational models

in particular) can be either the masfer (actitc)

component of a softlwwe environment. or a

.wibordinatc (passive) component of it. For a SME. a

DBMS must be mostly passwe. i.e. it should submit

itself to the control of other soft~vare tools (such as
high le~el programming languages), so as to allo~v

simulation specific packages to retrieve and store data

frontiinto databases. However. the DBMS may be

ac~we for typical data management activities. so as to

exploit all of its potential

As Jvith most evolving technologies. the role of a

DBMS Ivhcn used for simulation purposes has

changed over the years, ‘Hlree roles have been given

to a DBMS in this con[cxt: 1) as a progrmtl)tllng

/aI?guage to develop interfaces as 11ell as simulation

functions (Hmstev role). 2) as a pmfmr that

communicates Ivith other tools in batch via the

operating systcm. and 3) as a submissive partner that

communicates directly ~vith other tools via an

embedded query language

During the early 198(!’s. researchers were forced to

treat the DBMS as the }/,aster because these DBMS

~verc closed. isolated packages that allo~vcd no foreign

tools to penetrate their databases These packages
often came equipped ~vidl a Ii mited progmmmi ng

hlnguage that couId do smile l~l{))]ber crllm’hlllg on

user inputs or on the database contents. ho~t clcr.

these languages ~vere in general interpreted languages

nll ich made them ven s!mv to process the massive

quantities of data in a simulation nm.

Enhancements to DBMS and to operating systems

rnadc communication among heterogeneous tools. \I/a

text J/es, a common acti~ity; in this Jvay, the DBMS

bcca me a partner ;vorking independently. yet

informing (and recei~ing information from) the

simulation tool. Although simulation related

performance was not being impacted by the

performance of the DBMS, the overall simulation

project was still being penalized with the overhead of

data import and export activities. Attempts to

overcome this hurdle lead many researchers to

develop their own DBMS for their SME. Ketcham

(1986. 1989), for instance, developed a hierarchical

DBMS that enables IBIS (his SME) to store nlode/

components as Mell as simulation functions. He then

contlgured the simulation engine in such a way that it

would look into a procedure ~eld, retrieve the name

of the simulation procedure to execute, and then

match it against IBIS executable library.

TESS [Standridge (198 lb), Standridge, Vaughan,

and Sale (1985)] is another example of a customized

database. TESS }] m one of the first commercial

simulation cnfironments, It ]ntegrates simulation.

data management. and graphics capabilities,

protiding a common mterfacc for SLAM II (Pritsker.

1986). SDL (Standr’ldgc. 198 la). MAP/1 (Norman.

1991). and GPSS/H (Schribcr. 1990). TESS

organ izcs Simukltion outputs in a customized

relational database similar to that used in SIMDABS

(Standridge and Pritsker. 1978). Some of the

schemes in the database are pre-dctined, vllercas

others are defi ncd ~vithin the experimental control

information.

To otwcomc some of these problems, Balci and

Nance (1987) and Centcno (1990) proposed SMES

based on commercial relational DBMS. SMDE (Balci

and Nancc) util]zcs INGRES as the relational DBMS.

~rhcrcas ISME (Ccntcno) uscs ORACLE as its

RDBMS. Both INGRES and ORACLE otTer full

implementation of tlLe relational data model.

portabilit~ across multiple platforms. and SQL as the

query language. SQL became the indust~’ standard

during the 1980’s. It attained a level of maturity in

Tvhich semantic information may be incorporated

through special consl ructs such as associa/iolfs.

properlle.$. e)lllfje.v [Codd (1979). Gardarin and

Valdurlcz ( 19X9). and Stonebraker. Anton and

Hanson ( 1987)]. clo.wef and /71erGv4c/71e.~ [Goldberg

and Robson ( 1983). Hammer and McLeod (1980),

ICI(Z ( 1985). Smith and Smith ( 1977)].

The potcntlal of the rc]atlonal data model for the

SME underlying database stems from the work done

b! Smith and Smith (1977) ~rhich clearly depicts a
relational model that can be enhanced to hold various

types of entilies. inchlding hierarchy-like entities.

Through the concept of aggregation (a concept in

~vhich a relationship bet~veen objects is in itself
mother ob-icct at a higher level in the taxonomy) and
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of generalizatlo}7 (a concept in which a set of similar

objects are regarded as belonging to the same generic

object class), it is possible to represent the kind of
hierarchical systems that are found In simulation

studies.

These efforts have led to a better understanding of

the inner workings of available database technology,

and how it can be intert!vined wth simulation. We

discuss next how databases can be used for some of

the SME components.

3.1 Interfaces for a SME

An effective user interface encourages its users to

focus their energies on the substance of their ~vork

rather that on extraneous requirements of the

comptttcr softv’are being used. Furthermore. 10 the

extent that a user interface successfully models the

system’s and user’s domain, the process of in[cracting

~~itll the computer begins to assume the character of

manipulating domain objects directly. This allows the

user think about the probl ml being solved rather than

the way it is being solwd,

A database may be used to store the characteristics

of the interface. such a 5 display mode. headings.

menus. menu options. and so forth: thus. supporting

the SME designer to tailor the SME to a particular

application.

Relational DBMS. such as ORACLE or INGRES.

offer the capability of embedding SQL statements in a

high Ic\el programming language such as C or

FORTRAN. This programmatic capability has

enabled SME designers to design and implement

llser-se~~sirn’e and e.x-te)?sl>/e interfaces for simu 1at ion

model i ng,

ISME (Centeno. 1990). for instance, uses an object

based approach to the interface Screen definitions

and afailablc options are stored in a set of tables

nllose schema holds information This information

reveals the coordinates ef the upper left corner of the

window screen to be displayed. as Jvcll as the height

and ~~idtll of it. so as to properly positioned it. Other
information pertains to lnessages tlkat are to bc

displayed as part of the screen. Options in any menu

arc retrieved from the SME database. at excculion

time. along lvith the name of the corresponding

function that executes the actions of tllc option

3.2 Information En(ry And Editing

A SME database is populated by using graphical

editors. textual templates. or sub program lnvoca(iom

from ~~ithin a model (at execution time - /70rlzo}lia/

/~?[(’gra[/0/7) or transparcn 1]~ fronl a SME tool throtigh

the SME interface (\ ’ertica/ i}7tegratio}7). Current

relational and object-oriented DBMS posses the

capabilities to create user interfaces that take

advantage of text-based icons, “poi~7t and c//ck”

devices. English-1ike query languages, or natural

language processors

Graphical editors are important to SME as far as

the animation component of the simulation model is

conccrncd. Although current RDBMSS. such as

ORACLE and INGRES, do not provide full graphical

support for all platforms. their ~ersions for \vindo\vs-

based platforms do provide some support. \Ne believe

that current trends of RDBMS, in this particular area,

\vIll comergc to meet the graphical editor provided

II ith simulation tools such as SLAMSYTEM and

SIMAN/ARENA. Specific models of a system can be

described through a collection of icons, each one

uniquely identified by its spatial location and a name

The data structures needed hold these icons. and the

operations to manipulate these structures are supplied

by the DBMS, Under a strict relational model.

hierarchically linked tables are needed to fully

dcscribc the attributes of irregular shapes, These

attributes lllCIUde the llUlllbCr of vertices and the

coordinates of each point. the type of arc connecting

any t~l o \’crtices. the name of the icon. the Initial

position to display It. color attributes. and shading.

Tcxtua] editors pro\idc for entering and changing

mode] input data. simulation experimental control

information. animation scripts. presentation formats

and the Iikc. dlrcctly from the user. Information of

this type can bc ~icll cd as a set of records ~vitb each

record composed of a set of fields ([up/es in the

relation data model). Different record classes lme

different SC(Sof fields (different tables), Operations

supported b! textual editors include copying. deleting,

and meting as well as changing the field \’alues in

existing records, As ~vitl~ a model. the textual

information ma! be suftlcicntl! ~oluminous to

prccludc concurrently keeping it all in main memon,

A user \vorks }vith on]! a small subset of the

information at a time. ThLN. buffering of textual

information is requlrcd. Current DBMS provide

application building capabllltles to de~elop ~[ser

flPP//cfl~/o/? J1ith data entn forms that ~lct as tile
textual editor. These ‘data entry forms are

manipulated directly by the DBMS: therefore. data

integrity. data buffering. and similar operations are

carried transparcntlj to the user.

For example. TESS has tlko t~’pes of textual editors

Onc type 1s for informmon organ]zed into the ro~vs of

one database table. Such reformation illChldeS

cxpcrimcntal controls. animation scripts. and input

data \’:liUCS The other t!-l)c of editor processes
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presentation formats organized into one database table

row. Keyed retrieval functions are used to access a

format object by name and replace the function to

update that object when editing IS completed. ISME

uses a dynamic template approach to gather

information, e.g. the actual node at level i+ 1 in the

data collection tree is determined by the actual value

entered for the node at level i. The data management

functions used to perform with the collected data are

executed using SQL. By using embedded SQL, ISME

relies on the DBMS to properly handle all integrity

constraints defined for the particular schema.

3.3 Information Processing

This component collects and stores simulation results,

including traces, time series of values, and summary

statistics, for future analysis and presentation. Each

class of simulation results is a set of records. Each

object in a particular simulation result class may have

a unique set of fields comprising its records. Multiple

sets of time series and statistics may be saved.

Statistical summaries are stored at the end of a

simulation run as well ar optionally throughout the

run.

To support the storage of the results of a simulation

run, the SME database nwst accept information into

many distinct tables at one time. This is done using a

standard database storage function (e.g. INSERT

INTO). Buffering is not an issue since no reference is

made during a run to previously collected results.

The results, therefore, can be place on secondary

storage as necessary. The organization of results on

secondary storage, however, is important due to

volume being a major issue. One ad hoc method for

doing this has been reported by Norman (1991).

Within an SME, minimizing secondary storage

requirements and using organizations that provide for

fast retrieval of information processing operations are

necessary. Experience has shown that one good

organization for results, in keeping with the overall

structure of an SME database, is as follows. Each

table of results occupies its own set of physical

records; thus, the number of records retrieved during
information processing per table is minimized. Each

record also has three pieus of overhead: the ID of the

previous physical record. the ID of the subsequent

physical record, and the offset from the beginning of

the record where the next row can be placed.

Statistical analysis is typically performed on one

table of time series values,, or a selected subset of its

rows and variables. The computed statistical

quantities are either displayed immediately or stored

for later presentation or use within a model. Thus,

statistical analyses of results need not be specified or

performed within simulations but can be defined and

computed on a post-simulation basis. Rows of data

values are retrieved, one at a time, using database

sequential retrieval functions (e.g. SELECT - FROM).

The necessary statistical computations are made, and

rows of statistical summaries are rewritten to the SME

database. Again, using TESS as an example, two

statistical analysis operations are available: fitting a

distribution function to data and computing summary

statistics. Fitting a distribution function is an

interactive, graphically based process where a set of

values for one variable are inputted from one database

table using a sequential retrieval operation, All

potential distribution functions and their parameters

that could fit the data are stored in another database

table using a sequential storing operation. On the

other hand, computing statistical summaries is not an

interactive operation. Summary statistics are

computed from all values, or a selected subset of all

variables, in one database table. Multiple sets, one for

each specified subdivision of simulation time, of

summary statistics may be computed for each

variable. The result of the computations are stored in

one database table per variable. Rows of a table

correspond to batches. and each batch has a unique ID

that serves as its key.

ISME uses a prototype KBS to analyze the raw data

to establish the inputs for a particular model. Most of

the standard statistical analysis is carried out without

the intervention of the human user. In selecting

among several feasible hypotheses, however, the

proto~e KBS presents to the user the various

alternatives and requests the final decision from the

user. Database technology is being used to allow the

user to explore as many alternatives as he decides

without having to conduct the entire analysis every

tmle. The statistical analysis is thus viewed as a

decision tree about which partial results are kept at

various node levels. At any point, the user may

backtrack and choose another analysis path.

3.4 Model Extraction Component

Models can be defined about systems previously

described and stored in the database. This component

has two major functions to fulfill in a SME: 1)

convert, with the help of the end user, information

about a system into a model of it, and 2) convert the

model into a specific format to meet the requirements

of the simulation engine. Through the SELECT

operation of the DBMS (executing JOINs and/or

UNIONS on tables), components of a system can be

presented to the modeler for his/her modeling
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decision. Once models have been fully defined, they

need to be “translated” into the format of the

simulation engine. This translation can be made in

several ways using database capabilities. The

database can be used to “merely” store the final

product of the translation process, or it can be used to

dynamically define the classes of systems that can be

modeled, and the simulation engine to utilize. The

latter approach may, in the near future, enable

language independence in a SME.

In TESS, the translation of the graphical and

intermediate network forms to a model executable by

SLAM II and is accomplished externally to the

database. Classes of symbols providing definition

information, resource blocks for example, are selected

and processed first. Connectivity between nodes and

branches is checked based on relative graphical
location. Accomplishing this includes processing the

network in order of the horizontal coordinate location

of each symbol. The executable form of the network

is stored in the TESS database for later simulation.

In ISME, on the othel hand, a builder (editor) is

used to define the classes of systems that can be

simulated and models of systems in this class. Once a

system class and models have been defined, ISMES

model synthesizer produces an equivalent SIMAN

(Pegden, Shannon, Sadowski, 1990) model and

experiment source file. During the synthesis, the

engine makes an extensi~ c use of SQL statements to

ensure that the integrity of object relationships is

preserved. For instanct; since ISME captures the

definition of a system independently of the models

about it, it may be possible that there are no models

defined for a requested system at the moment the

simulation engine is triggered. Thus, before

attempting the synthesis of “nothing”, the engine

checks that there is at least one model for the given

system, using the following SQL statement from

within a C program:

SELECT MODLCODE> MODLNAME

INTO :rnodcocles, :modnames

FROM MODELb

WHERE PROJCO!X = :projcod:

In general, ISMES snmdation engine begins by

retrieving all the “custom :rji” to be processed through

the simulated system and their relevant attributes. It

then proceeds to retrie\.e the “resources” in the

system. To illustrate. consider a class of

manufacturing systems where c?~stower.s ave parts

and resources are stations or cqulpment. Model

retrieval is achieved through a series of SQL

statements such as the following:

purts to process:

SELECT PARTCODE. BATCHSIZE, INTERTPARS,

TERTDIST

INTO :pcodes, :bsize,: iatflars, :iat..dist

FROM PART LIODEL

WHERE h40D~coDE = :modlcod;

attributes to observe for each part:

SELECT ATTRIBDESCR, ATTRIBCLASS

INTO :attr_desc, :attr_class

FROM PART ATTRIBUTES—

WHERE PARTCODE = :partcod

AND MODLCODE = :modlcod;

routes to be followed by parts:

SELECT SEQUENCE, PARTFROM, PARTGOTO>

TRVLTIME, PROCTIME, PROB

INTO :seq, :sfrom, :sgoto, :ttime, :ptime,
:probability

FROM PART ROUTES

WHERE PART=• DE= :partcod

ORDER BY SEQUENCE ASC;

equiptnent:

SELECT EQUIPMENT. EQUINAME,

STATCOMP.COMPQNTY

INTO :equiname, :compqnt

FROM STATION MODEL>

STATCOh~P MODEL, STATCC)MP,—

EQUIPMENT

WHERE

STATION h40DEL, MoDLcoDE=:modlcod AND

STATION~MODEL.ST ATCODE = :partgot AND

STATCOMP.COMPTYPE = ‘dual’ AND

EQuIPi14ENT. EQuIcoDE=sTATcoMP. coMPcoD;

Notice that SQL statements can be conditioned to

retrieve information in certain order, or they can be

multi-conditioned (or nested) to execute a join

operation across several tables in the database.

Consequently, a system may be modeled at various

levels of expansion.
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3.5 The simulation engine

In a SME, neutrality is easily realized and further

enhanced by database technology since these generic

structures, and instances of them. can be physically

stored in a database, and later retrieved and updated.

For instance, structures for inputioutput data objects

(and the operations performed on them) have been

found not to depend on the simulation language that

needs them or outputs them. The neutrality of

simulation results is a direct result of the

philosophical approach used by many simulation
languages: the next event approach. which yields

results in the form of traces, time series, sets of

tallied values as they occur, and summaty statistics.

In the patlicular case of TESS (Standridge, 1981).

individual events belong to a particular Event Class.

and each event is identified by its class and its ID

within the class. Possible event class schema may

vary from one simulation language to another, but

this becomes an implementation problem only if the

underlying DBMS is custom made. No\v consider the

logical organization for time series of a model’s state

variables as proposed in SIMDABS. A column in the

schema must hold the sinlulation clock time, uhereas

the other columns may correspond to user selected

state variables, Each ro~~ in the table contains one

value for each state variable. as well as the simulation

clock, and thus represents simulated changes of state.

These tables may well be part of a larger simulation

database, with their schemes defined in the

experimental control unit of a model run.

Neutrality using descripti~e modeling has been

proven feasible by Centeno ( 199[)). As an example.

consider the system shown in Figure 1 (Pegden. et

al.). A description of the ~m-ious objects in the system

is mapped into the relational tables shonm in Figures

2 and 3, The modeler uses a model builder/editor to

describe the objects in Lhe system which in turn

populate these tables. ‘WLIS, the modeler needs no

knowledge of the model analjws component. e.g the

simulation language. The Model Extraction

component transforms the information in these tables

into the inputs required bv the simulation engine.

-t. SUMMARY

Database management concepts and capabilities are

an important enabling tet hnology for the design and

implementation of simulatmn environments This has

been demonstrated by the use of these concepts and

capabilities in previousl~ developed commercial and

prototype SMES. Database concepts contribute to the
development of effective, user-based interfaces that
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Figure 1: GT Cell Example
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Figure 2: Job objects for GT cell example
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that help unite the various components of a SME.

Language independence may be realized by

using DBMS concepts such as data hiding and

standard query languages. Although current

commercial RDBMS do not offer all of their potential

to the simulation domain, efforts to make them

accessible and compatib,c with other technologies,

such as artificial intelligence, are under way.
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