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ABSTRACT

This paper describes the first iteration of a top-

down approach for building a computer simulation

model for use in the evolution and evaluation of

strategic aeromedical evacuation policy and planning.

The model is modular in nature, completely data driven,

quickly adaptable to scenario changes, and meant for

use as a policy/planning aid for the Air Mobility

Command Surgeon and his staff. In addition, this paper

demonstrates the value of using factor analysis in

validating a simulation model. It is seen that these

techniques can also be employed by a decision-maker

to identi~ the most important factors in a model and

describe the relationships between them.

1 INTRODUCTION

Wartime aeromedical evacuation (AE) can be

defined as the medically supervised movement of

casualties by air transportation to and between medical

treatment facilities. AE seeks to improve casualty

recovery rates and sustain the morale of combat forces

by providing those forces the knowledge that lifesaving

medical resources are available and can be quickly and

effectively provided to any location in the world

(Department of the Air Force 1992b). Strategic AE

refers to the movement of casualties from the theater of

operations to the continental United States (CONUS).

It is a complex operation that involves the integration

of medical personnel and policies with airlift concepts

and capabilities.

Military analysts within the Air Mobility Command
(AMC) Analysis Group at Scott Air Force Base,

Illinois, have traditionally used deterministic linear

programming techniques to estimate the number of
aircrafl the United States Air Force (USAF) requires for

given contingency scenarios. However, this group

desired to develop a stochastic approach to validate
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their resource recommendations, and more importantly,

to study the interrelationships between key factors

comprising strategic AE. As the possibility for many

smaller campaigns around the world increases, USAF

medical planners also require a flexible, analytical tool

which captures the major elements of this important

mission in order to quickly evaluate differing medical

airlifi plans and policies. The model described in this

paper was developed to meet these objectives.

1.1 A Brief History of Strategic AE

Strategic aeromedical evacuation has its roots in the

Vietnam War when, for the frost time, the USAF

airlifted casualties directly fkom the theater of opera-

tions (Saigon) to Andrews AFB in the CONUS, reduc-

ing the total patient travel time by as much as three

days (Department of the Air Force 1992a). This new

concept saved countless lives. Since then, the minimi-

zation of both the travel time from the theater of

operations to the CONUS and the number of times a

patient is handled during this transit to a hospital has

guided nearly all basic efforts to improve strategic AE

operations.

Stimulated by these two goals, in May of 1986,

Congress authorized the Military Airlift Command, now

the Air Mobility Command, to use aircraft ffom the

Civil Reserve Air Fleet (CRAF) to accomplish strategic

AE during wartime. For the first time, dedicated

aircraft were assigned to this important mission.

During the recent Gulf War, with our airlift capa-

bilities stretched beyond their limits, our forces experi-

enced miraculously low casualty rates. Fortunately, the
question of how well the AE system could have ser-

viced mass casualties, originally anticipated to reach

into the thousands, did not demand a real answer. It is

expected that AE will play an even more visible and

prominent role in fiture warfare.
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1.2 Concepts of Aeromedical Evacuation

Management of casualties from the theater to the

CONUS is accomplished through a multi-echelon

system of care. As described in a report by Battelle

Memorial Institute (1990), there are five separate

echelons distinguished by the level of care that each

echelon is capable of providing. The first echelon (1 E)

resides on the battlefield at the point of contact and is

characterized by self aid or buddy care. The second

echelon (2E) provides emergency treatment and tries to

return minimally injured casualties to duty as soon as

possible. Those who can’t be returned to duty are

stabilized for movement to a higher echelon facility.

Movement from 2E facilities to third echelon (3E)

facilities is normally the responsibility of the parent

service (Department of the Air Force 1992b). The

purpose of a 3E facility is to provide surgical and other

specialty care within the combat zone. Fourth echelon

(4E) facilities, located within the communications zone

(rear part of the theater of operations), offer complete

medical facilities including enhanced surgical and other

medical subspecialties. These 4E facilities also serve as

the aeromedical ports of embarkation (APOES) for

patients to the CONUS. Finally, hospitals located

within the CONUS represent the fifth echelon (SE).

CONUS hospitals consist of DOD, Veterans

Administration (VA], and civilian hospitals within the

National Disaster Medical System (NDMS). The

NDMS is a national plan to care for the victims of

large-scale natural disasters using military and civilian

resources. NDMS will also provide beds to wartime

casualties (Lee 1986).

Strategic AE is driven by a process known as

patient regulation, in which a casualty is matched to a

CONUS hospital capable of providing the appropriate

level of medical care. Regulation results in a require-
ment to move a specific patient to a specific hospital

(Department of the Air Force 1992b). The regulation

process identifies and tracks stabilized patients within

the theater, finds appropriate beds for them at a destina-

tion hospital in the CONUS, and coordinates airlift for

the needed transportation.

2 MODEL DEVELOPMENT

The simulation model was written using the person-

al computer version of SIMSCRIPT 11.5. The use of

SIMSCRIPT was specified by the sponsor and turned

out to be a good choice since it allowed a modular,

data-driven design (as described later) to be readily

incorporated and is very portable, requiring only slight

inputloutput modifications to run on different machines.

2.1 Assumptions and Limitations

This research models only the strategic operation of

the Boeing 767 CRAF for medical evacuation, i.e., the

aircraft operations and patient movement from the

designated aerial ports of embarkation in the theater of

operations to the CONUS receiving hubs. It does not

explicitly model patient movement below the 4E level

in the theater of operations nor does it consider the

physical redistribution of patients in the CONUS once

they have been delivered to a regional hub. (The

reason for this is to concentrate on the strategic element

of AE, not its interaction with tactical theater or CO-

NUS airlift.) The methodology is built around the

assumption that strategic AE missions are primarily

demand driven, responding directly to the number of

casualties requiring airlift. It assumes ample support

personnel, flight crews, support equipment, etc. to

sustain 767 operations and to handle casualties.

The simulation controls the number of concurrent

strategic flights to a particular 4E facility by means of

a resource called MOG (an acronym for maximum on

ground). While the name implies ramp space allocated

for aircraft, it can be used for the most limiting con-

straint at the 4E facility, say the number of medical

personnel available to onload patients or the number of

medical aircrews available to fly strategic missions.

2.2 Model Design

In order to be able to respond efficiently to the

“what-if’ nature of a contingency planning environment,

a data-driven design was incorporated in developing the

model. By this we mean that only the general structure

of the AE process is modeled by the simulation code,

while any aspects relating to specific scenarios is

controlled solely through the input data, These scenari-

os may differ in the intensity of conflict, location and
number of medical facilities, quantity of airlift and

medical resources available, or AE strategy and policies

employed. Divorcing these aspects from the simulation

code enables the analyst to quickly change the array of

options under consideration by medical planners by

editing the input data structure, and not by recoding the
simulation.

In order to provide as flexible a model as possible,

a modular approach was taken in developing the

simulation code, with each module either representing

a particular process (or major element) of strategic AE

or providing control of the simulation. This provides a

convenient structure for modifying or embellishing the

model, say by incorporating tactical AE, if desired.

In all, fifteen different modules or routines make up

the simulation program. The modules which model the
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strategic AE process perform the following functions:

● create the appropriate numbers and types of patients

at the appropriate times;

● perform the patient regulation function;

● search every 3E facility which needs to transport

patients and “move” these to the appropriate APOE (4E

facility) for subsequent AE to the CONUS;

● check the demand for strategic AE for each 4E;

● schedule strategic AE missions by assigning

specific aircraft (if any are available) to specific routes;

● perform the event scheduling required to represent

the activities associated with flying a strategic AE

mission;

● match aircraft as they become available against mis-

sions that have been previously delayed; and

● check within each CONUS region and discharge

patients one they have healed,

3 SCENARIO

Although the model is not scenario dependent, it is

beneficial to use a representative scenario to exercise,

evaluate, and to some extent validate the capabilities of

the methodology. The following scenario, provided by

the sponsors of this research, serves this purpose and

also provides a baseline for analyzing the simulation

output .

A 180-day period of conflict fought in two separate

theaters, Southwest Asia (SWA) and the Far East.

(This places a great demand on AE airlift operations

since aircraft are flying in two separate directions ffom

the CONUS with one of the destinations being approxi-

mately half way around the world.) The SWA theater

contains three APOES that are each fed by two 3E

facilities. The Far East theater has two APOES that are

also each fed by two 3E facilities. This accounts for a

total of five APOES serviced by ten 3E facilities.

A total of 45 Boeing 767-200 series aircraft with a

capacity of 102 patients each are available from the

CRAF. These aircraft are based on either the east or

west coast of the United States. Each can be used to

fly any one of 37 different routes between the basing
locations, the APOES, and the CONUS destinations.

Casualties begin arriving on day one in the SWA

theater and 40 days later they begin arriving in the Far

East. Figure 1 shows the rate at which approximately

67,000 patients will arrive over the 180 day period.

Patients are of eight different types and must be as-

signed to hospital beds in the CONUS appropriate for
their type of injury. A total of 142,000 beds axe

available in the six CONUS regions for patients, with

37,000 available at DOD hospitals, 34,000 at VA
hospitals, and the rest at NDMS hospitals.
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Figure 1: Two Theater Casualties

4 VERIFICATION AND VALIDATION

The fact that the personal computer version of

SIMSCRIPT allows code to be compiled separately in

modules facilitated the initial verification of each

module to ensure that the corresponding code worked

as desired. The code was verified in a traditional

manner by tracing the values of relevant variables and

statistics within both scaled-down and deterministic

versions of the scenario, checking the output for

reasonableness, and subjecting it to a number of struc-

tured walk-throughs with members of the research team

and the sponsoring organization.

Validating a model such as this is a much more

formidable task since it portrays a system that, although

currently foreseen and planned for, does mot yet exist.

That is, the strategic AE process being modelled is

actually nothing more than a plan, based on general

policies, to employ during periods of conflict a set of

resources that are used in different ways ducing peace-

time. The Boeing 767 aircraft are presently airliners

that will come from the CRAF. Likewise, 93 percent

of the personnel that will execute the plan will come

from the Air Reserve Component (Department of the

Air Force 1992b).

The authors have aggressively pursued the three-

step approach for model validation described by Law

and Kelton (1991). The first step, referred to as

gaining “high face validity,” describes how this research

began. There have been two face-to-face meetings with

both the end user (the AMC medical planning staff) and

the organization that will inherit and exercise the tool.

These meetings with the “system experts” produced the
fi-amework and assumptions for the simulation model.

In addition, dozens of other telephone conversations

with these and other experts in closely related fields

have helped to define reasonable assumptions about



1092 Wo~e et al.

model fidelity, values for input dat~ and model logic.

The second step toward validating a computer

model is to test its assumptions empirically. The

primary tool used to accomplish this was a preliminary,

univariate analysis. This provided a quantitative way to

test whether or not the simulation responded in the way

expected when a single factor or policy was changed.

The results of this analysis also helped to guide the

choice of appropriate factors (and their levels) used in

a more extensive designed experiment.

The last step is to examine whether or not the

simulation output is representative of the real world.

Since there is no ongoing AE process to measure in this

case, one must rely on what experts in the field think is

representative. We found factor analysis to be particu-

larly well-suited for this task since it can provide a

simplified description of the complex interrelation-

ships that exist among the multiple output variables

which, in turn, can then be compared against the

insights and intuition of the system experts.

We discuss these last two validation steps in more

detail in the following sections.

5 UNIVARIATE ANALYSIS

The objective of this analysis was to assess model

validity by examining the effects of changing one input

factor at a time on a single measure of system perfor-

mance--the average time patients spend in the strategic

AE system, as measured from the time a patient is

stabilized (and thus eligible for AE) to the time he/she

arrives at the CONUS region. Five input factors that

were expected to be important were identified and

“baseline” levels for each were postulated. These are

[with baseline levels in brackets]:

1. Frequency of regulation [once every 8 hours];

2. Regulation policy [“organization-then-region”];

3. Number of Boeing 767 aircrafl available [45];

4. Command and control structure [centralized];

5. Resources available at the APOE as measured

MOG [3].

by

In the baseline scenario, patients are regulated
every eight hours and are first assigned to DOD beds in

the closest CONUS region. Once a certain specified
proportion of DOD beds in that region are filled, pa-

tients are assigned to DOD beds in the next closest
region. Once all DOD beds are filled in all regions,
patients are then assigned to VA beds in nearest region

order. If all these are filled, they are then assigned to

NDMS beds, again in nearest region order. We refer to

this as the “organization-then-region” fill policy.

An alternative regulation policy is to search for a

bed for a given patient fwst within a region in DOD-

VA-NDMS order. Once a region is fill, the search

continues in the next closest region. This is referred to

as the “region-then-organization” fill policy.

The baseline case also assumes that command and

control of the CRAF fleet is “centralized” in the sense

that the aircraft are under the control of a single inte-

grated manager and can be assigned to routes in either

theater as needed. An alternative structure, described

here simply as “decentralized,” places the aircraft under

the control of the theater commanders and limits their

service to routes specific to their assigned theater.

Five replications of the simulation were performed

for the baseline scenario and for twenty-three others

which differed from the baseline case (or each other) by

changing the level of one factor. Table 1 summarizes

the results for the baseline case and seven of the most

interesting alternatives.

Table 1: Results of Univariate Analysis

Mean Time in

Policy/Resource Change System (hours)

Baseline Scenario 73.1

Theater Regulation Frequency: 68.1

Once Every 4 Hours

Regulation Policy:

“Region-then-organization” 56.2 **

Cnmd./Control: Decentralized 74.6

Number of Aircraft: 15 75.0

Cmnd./Control: Decentralized 116.8 **
Number of Aircraft: 15

MOG Resource: 2 108.4 **

MOG Resource: 4 73.8

** Mem timein Sys.km diffem from baseline by 26 ho~s at

the 570 level of significance.

The choice to regulate fwst across CONUS regions

produced the most dramatic improvement, a nearly 25%

reduction in average time in system. In fact, the

average time in system for every run that used the

regulation policy “region-then-organization” was about

25’?40smaller than when the “organization-then-region”

policy was used. Increasing the regulation ffequency to

once every 4 hours for each theater was the only other

policy change that decreased time in system. Decreas-
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ing the regulation frequency increased time in system,

It was, at first, surprising that decreasing the

number of aircraft from 45 to 15 only slightly increased

the time in system, as did changing to decentralized

command and control. On the other hand, when the

combination of these two changes was applied, average

time in system ballooned to 116.8 hours. This, howev-

er, reflects the fact that 15 aircratl are essentially

adequate to handle the demand provided that they can

be assigned to either theater as needed. When they are

dedicated to theaters, missions may be delayed in one

theater while aircraft sit idle in the other.

Time in system was seen to be insensitive to

increases in MOG from its baseline value of three.

However, when 1 unit of MOG was removed, time in

system rose dramatically to 108.4 hours. This suggests

that the use of MOG to represent the aggregated

resources at an APOE has introduced a lack of fidelity

that requires attention.

In all, however, the results of this one-at-a-time

analysis suggested that the model was performing in

accordance with the experts’ intuition, To then investi-

gate the magnitude or relative importance of the five

main input factors and to check for the existence of

possible interactions between them, an analysis of vari-

ance (ANOVA) was performed on the results from a

full 25 factorial experiment wherein each factor was

varied between two relatively high and low levels. The

factor level settings are displayed in Table 2. Five

replications were performed at each design point.

Table 2: Factor Levels for 25 Experiment

I Input Factor II Low I High I

Regulate Frequency II 8 hours I 24 hours I

Number of Aircraft II 15 I 45

Q===Q-11cen”alixd!Decen”alizedI
MOG Resource 112141

All main effects and all but two of the two-way

interactions (and some three-way interactions) turned

out to be significant. Among main effects, the MOG

resource seems most influential, followed by the regula-
tion policy and number of aircraft. These results

generally confm the experts’ intuition of what factors

are important. The number of significant two- and

three factor interactions highlights the fact that AE is a

complicated business that possesses many tradeoffs.

This suggests that it would be worthwhile to pursue a

broader analysis which investigates the relationships

between factors.

6 MULTIVARIATE ANALYSIS

The desire to understand the general impact and

interrelationships of the major strategic AE elements

influenced the choice of statistical techniques used to

study the simulation output. The purpose was not to

perform a definitive analysis to determine a patient’s

mean time in system for a given scenario but rather, for

a representative scenario, to investigate the major

drivers affecting strategic AE. This not only serves the

analyst in validating the simulation, but also serves the

medical contingency planning community by confirm-

ing or denying their intuition of the process, and

providing a framework for better understanding the

possible tradeoffs amongst the key elements and

policies for strategic AE.

Multivariate statistical techniques are particularly

usefid for studying the correlations between many

variables. The primary technique which we apply is

factor analysis. [The description of factor analysis

which follows is based on discussions found in both

Dillon and Goldstein (1984) and Morrison (1976).]

In particular, we apply factor analysis to the output

obtained from the results of the experiment described

earlier in Table 2. Five replications of the simulation

were performed at each of the 32 design points and the

following seven output variables were observed:

1. Average time patients spend in the AE system;

2. Average time in system for the Far East theate~

3. Average time in system for the SWA theater;

4. Average aircraft utilization (ute) rate;

5. Maximum aircraft utilization rates over the length

of the conflict (measured every ten days);

6. Average number of patients in all 3E facilities;

7. Percentage of missions that were delayed because

there were no aircraft available to fly the mission.

Factor analysis assumes that the output variables

are linear functions of a small number of unobservable

“common factors” and an unobservable “unique” or

“specific factor.” That is, it assumes a model of the

form

Xi = LilY~ + li~Y~ + ““” + Zi~Y~ + ei

for each i = 1, 2, ... . 7 where

Xi = vector of responses for the iti output variable;
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y, =

ei =

A,j =

a vector representing the

common factor and whose

sumed to be independent

random variables;

J“lh unobservable

elements are as-

standard normal

a vector representing the unique factor associ-

ated with response variable i whose elements

are assumed to be normally distributed with

zero mean;

the “factor loading” which relates the jti com-

mon factor to the ith response variable;

and the e,’s are assumed to be independent random

vectors that are, in turn, independent of the common

factors. In this case, the factor loading Aij represents

the correlation between the iti output variable and the j’h

factor and thus relates the degree to which a specific

variable loads on the specific factor.

We (somewhat arbitrarily) assume that the appro-

priate number of common factors to use in this case is

m = 3. This is based on the common judgement that

more than two or three factors are generally not needed

and are difficult to interpret. [It is also consistent with

the results of a preliminary principal components

analysis, as described in Wolfe (1993 ).] A set of factor

loadings for our observed output is summarized in

Table 3. Loadings (or correlations) whose absolute

values are greater than 0.3 can be considered signifi-

cant.

Table 3: Factor Loadings

9VY!!-I ‘1 ‘i, ‘3

7Avg. Time in 0.94147 0.17157 0.28393

System (TIS)

SWA TIS 0.29847 0.00998 0.95153

Max Ute Rate II 0.08291 I 0.99009 I 0.05140 I

Avg # in 3E II 0.92299 I 0.16875 I 0.33837 I

0/0 Delayed II0.63350 I 0.72505 -0.10480 I

(Interestingly, it is possible to obtain an infinite

number of sets of factor loadings for a specific set of

observations of the output variables, with each set

corresponding to a different rotation or reflection of the

coordinate axes of the m-dimensional common-factor

space. The loadings displayed in Table 3 result from a

“varimax rotation” which has mathematical properties

usually associated with a set of meaningful and inter-

pretable common factors.)

The factor loadings (i.e., the kii’s) can be used to

help interpret what the factors represent. Usually, the

highest loadings for each component are identified and

the analyst then attempts to assign a meaning or

interpretation to each factor accordingly. In our case,

it appears ffom Table 3 that the first factor is an overall

measure of patient handling since it the highest loadings

occur for patient time in system (overall and Far East)

and the number in 3E hospitals awaiting transport. The

second factor appears to be a measure of aircraft use

since heavy loadings are obtained for the two utilization

rates and the percentage of missions delayed. The third

factor has a high loading only for a single variable,

time in system for the Southwest Asia theater.

To help better understand what these factors mean,

one can additionally estimate the values of the common

factors corresponding to each observation from our

simulation experiment, usually referred to as the “factor

scores.” These are obtained by estimating “scoring

coefficients” which are used to compute the factor

scores as linear combinations of the values of the

output variables and are obtained using regression

methods. Table 4 displays the standardized scoring

coefficients that can be used to compute the factor

scores for each of the 160 observations in the designed

experiment.

Table 4: Standardized Scoring Coefficients

Avg Ute Rate -0.13453 0.44238 0.08680

Max Ute Rate 0.29686 -0.08090 0.07353

Avg # in 3E 0.19609 0.20549 -0.27770

0/0 Delayed 0.63350 0.72505 -0.10480

Figures 2 through 4 show the results of plotting the

standardized scores corresponding to the average

responses observed over the five replications performed

at each of the 32 design points in our simulation experi-

ment. By studying these figures, in conjunction with

the input parameters associated with each observation,

one can assign a label to each of the factors and begin



The Use of Simulation to Evaluate Strategic Aeromedical Evacuation Policy and Planning 1095

to better understand which input parameters influence

each factor.
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Figure 2: Factor 1 vs. Factor 2

Figure 2, the plot of Factor 1 versus Factor 2,

reveals several things. First, there are two distinct

groups of data alon~ the Factor 2 axis which clearly

correspond to the number of aircraft. Factor 2 is thus

labeled “Airlift Resources.” This is consistent with the

fact that the variables which describe aircraft utilization

load high on this factor.

It is also interesting that several items influence the

variance along the Factor 1 axis. The primary variable

is MOG, with higher values of MOG being toward the

bottom of the graph. For this reason Factor 1 is labeled

“APOE Resources.” Within each MOG subgroup,

another set of groups is defined by the regulation

policy, with “region-then-organization” producing lower

Factor 1 scores. In general, because the overall time in

system and the time in system for the Far East theater

load heavily on Factor 1, the lower the Factor 1 score,

the lower are these measures of performance.
Figure 3, the plot of Factor 1 versus Factor 3, again

reveals the importance of MOG on the Factor 1 scores.

In general, observations with positive factor scores have

a MOG value of 2, while those with negative scores

WOE Raauma$ (F#mr 1)

‘r

2im“’
L

1

0

.1

-2 —
.2 -? 0 2 3

Fkgulatkm P0116yK%mdh’9U0n (Fackm 3)

Figure 3: Factor 1 vs. Factor 3

have a MOG value of 4. The exceptions are observa-

tions 18 and 20, whose positions are attributed to a low
number of aircraft used in conjunction with a decentral-

ized command and control policy.

The variance in Factor 3 indicated by the groupings

along the Factor 3 axis in Figure 3 is clearly attributed

to the regulation policy. Therefore, Factor 3 is labeled

“Regulation Policy/Coordination.” Additionally, the

observations within the “region-then-organization”

groups tend to be more tightly clustered than those

within the “organization-then-region” groups. This is

because the former policy is more flexible in handling

fewer airlift in a decentralized command and control

structure.

Figure 4, the plot of Factor 2 versus Factor 3, again

shows a big split in the observations along the Airlift

Resources (Factor 2) axis. Note that the higher the

number of aircraft, the lower the factor score. Since the

utilization rates load heavily on this factor and since

the ute rates are inversely related to the number of

aircraft, a higher number of aircraft produces lower ute
rates and, thus, lower factor scores.

Again, the variance along the Factor 3 (Regulation
Policy/Coordination) axis is defined by the regulation

policy and the regulation frequency. Interestingly, since



1096 Wolfe et al.

AmKt Rea0um8(Fact0rz)

1.6

1

0.s

o

-0.5

-1

-1.5

--’’+’”

I I I I

Figure 4: Factor 2 vs. Factor 3

Factor 3 is heavily loaded by time in system for the

SWA theater, as ti&e in system for the Southwest Asia

theater decreases, so too does the Factor 3 score.

Finally, with 15 aircraft, the tradeoffs between regula-

tion policy and frequency are more complex than they

are with 45 aircraft. This makes sense since the more

resources one has, the more options there should be.

Many, many more inferences can be made horn

these plots. The point is that they unveil what the main

factors are and how they are related, and spur both the

modeler and the planner to ask key what-if questions.

7 INSIGHTS & CONCLUSIONS

Three main factors appear to significantly affect
strategic AE operations: resources located at an APOE,

the regulation policy used, and the number of aircraft

available. The prominent role of MOG on “APOE

Resources” factor again suggests that model fidelity

could be enhanced by modeling APOE operations more

explicitly. ‘A large amount of interaction exists between

the major elements of strategic AE, indicating that there

is vast potential for tradeoffs, depending on the end

user’s objectives.

There are many possible uses for this simulation

model. Some particular objectives that could be

accommodated and which would be of interest to

medical planners are:

● to assist CRAF activation planning in estimating the

cost of different activation options (e.g., numbers of

aircraft or aircraft capacities) based on an expected

utilization rate of the fleet;

● to identi~ the set of regulating policies that will

work best under the most common scenario conditions;

● to identi~ and plan for bed shortages by patient

type;

● to study the effect of limiting bed availability to

certain organizational types, such as just DOD, or DOD

and VA only;

● to study broad medical resource allocation tradeoffs,

for example, the tradeoff between assigning trained

medical personnel to aircrews or assigning them to 3E

or 4E facilities.

There are many more topics that could be dis-

cussed, but the point is that the model has the fidelity

and flexibility to address these types of questions fairly

quickly. Further, the use factor analysis can also

simply this analysis by focusing attention on a few key

common factors. After the model is used to answer

some of these type questions, no doubt it will spur the

medical planners to explore even more options and ask

more questions. The proper application of this tool

should, in the end, result in better medical contingency

plans.
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