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Abstract We study an admissions control problem, where a queue
with service rate 1 − p receives incoming jobs at rate λ ∈ (1 − p,1),
and the decision maker is allowed to redirect away jobs up to a rate
of p, with the objective of minimizing the time-average queue length.

We show that the amount of information about the future has a sig-
nificant impact on system performance. When the future is unknown,
the optimal average queue length diverges at rate ∼ log 1

1−p

1
1−λ

, as

λ → 1. In sharp contrast, when all future arrival and service times
are revealed beforehand, the optimal average queue length converges
to a finite constant, (1 − p)/p, as λ → 1. We further show that the
finite limit of (1− p)/p can be achieved using only a finite lookahead
window starting from the current time frame, whose length scales as
O (log 1

1−λ
), as λ → 1. This leads to the conjecture of an interesting

duality between queuing delay and the amount of information about
the future.
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1. Introduction.

1.1. “Variable, but Predictable”. The notion of queues have been used
extensively as a powerful abstraction in studying dynamic resource allo-
cation problems, where one aims to match demands that arrive over time
(e.g., manufacturing orders or data queries) with available resources (e.g.,
raw material or computation power). A queue is used to store unprocessed
demands. Two important ingredients often make the design and analysis of
a queueing system difficult, namely, that the demands and resources can be
both variable and unpredictable. Variability refers to the fact that the ar-
rivals of demands or the availability of resources can be highly volatile and
non-uniformly distributed across the time horizon. Unpredictability means
that such non-uniformity “tomorrow” is unknown to the decision maker “to-
day”, and she is obliged to make allocation decisions only based on the state
of the system at the moment, and some statistical estimates of the future.

While the world will remain variable as we know it, in many cases, the
amount of unpredictability about the future may be reduced thanks to fore-
casting technologies and the increasing accessibility of data. For instance,
the adoption of advance booking in the hotel and textile industries has al-
lowed for accurate forecasting of demands ahead of time [12], the availability
of monitoring data enables traffic controllers to predict the traffic pattern
around potential bottlenecks [4], and advance scheduling for elective surg-
eries could inform care providers several weeks before the intended appoint-
ment [11]. In all of these examples, future demands remain exogenous and
variable, yet the decision maker is revealed with (some of) their realizations.

Is there significant performance gain to be harnessed by “looking into the
future”? In this paper we provide a largely affirmative answer, in the context
of a class of admissions control problems.

1.2. Admissions Control Viewed as Resource Allocation. We begin by
informally describing our problem. As depicted in Figure 1.1, consider a
single queue equipped with a server that runs at rate 1 − p jobs per unit
time, where p is a fixed constant in (0,1). The queue receives a stream of
incoming jobs, arriving at rate λ ∈ (0,1). If λ > 1−p, the arrival rate is greater
than the maximum processing rate, and some form of admissions control is
necessary to keep the queue from becoming unstable. In particular, upon its
arrival to the system, a job will either be admitted, in which case it joins the
queue, or redirected, in which case it does not join the queue, and, from the
perspective of the queue, disappears from the system entirely. The goal of
the decision maker is to minimize the delays experienced by the admitted
jobs, while obeying the constraint that the average rate at which jobs are
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Figure 1.1. An illustration of the admissions control problem, with a constraint on the a
rate of redirection.

redirected does not exceeded p. Note that as λ→ 1, the rate of admitted jobs,
which is at least λ − p, approaches the server capacity 1 − p, and hence we
will refer to the system’s behavior when λ→ 1 as the heavy-traffic regime.

One can think of our problem as that of resource allocation, where a deci-
sion maker tries to match incoming demands with two types of constrained
resources: a slow local resource that corresponds to the server, and a fast
external resource that can process any job redirected to it almost instanta-
neously. Both the fast and slow resources are constrained in the sense that
their capacities (1 − p and p, respectively) cannot not change over time, by
physical or contractual predispositions. The key feature that distinguishes
the fast resource from the slow one is the fact that its processing delay is al-
ways negligible and does not suffer any short-term congestion effect, so long
as the incoming traffic stays below p in the long run. In this interpretation,
minimizing the delay among admitted jobs is equivalent to minimizing the
average delay across all jobs, since the redirected jobs can be thought of
experiencing no delay at all.

For a more concrete example, consider a web service company that enters
a long term contract with an external cloud computing provider for a fixed
amount of computation resources (e.g., virtual machine instance time) over
the contract period, in order to absorb any additional incoming traffic that
is beyond the maximum capacity of its own in-house server.1 During the
contract period, any incoming request can be either served by the in-house
server (slow resource), or be redirected to the cloud (fast resource), and in the
latter case, the job does not experience congestion delay since the scalability
of cloud allows for multiple VM instance to be running in parallel (and

1Example. As of September 2012, Microsoft’s Windows Azure cloud services offer a
6-month contract for $71.99 per month, where the client is entitled for up to 750 hours
of virtual machine (VM) instance time each month, and any additional usage would be
charged at a 25% higher rate. Due to the large scale of the Azure data warehouses, the
speed of any single VM instance can be treated as roughly constant, and independent of
the total number of instances that the client is running concurrently.
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potentially on different physical machines). The decision maker’s constraint
is that the total amount of redirected jobs to the cloud must stay below
the amount prescribed by the contract, which, in our case, translates into a
maximum redirection rate over the contract period.

Similar scenarios can also arise in other domains, where the slow versus
fast resources could, for instance, take on the forms of:

1. an in-house manufacturing facility, versus an external contractor;
2. a slow toll booth on the freeway, versus a special lane that lets a car

pass without paying the toll;
3. hospital bed resources within a single department, versus a cross-

departmental central bed pool.

In a recent work [17], a mathematical model was proposed to study the
benefits of resource pooling in large scale queueing systems, which is also
closely connected to our problem. They consider a multi-server system where
a fraction 1 − p of a total of N units of processing resources (e.g., CPUs) is
distributed among a set of N local servers, each running at rate 1− p, while
the remaining fraction of p is being allocated in a centralized fashion, in the
form of a central server that operates at rate pN (See Figure 5.1). It is not
difficult to see, when N is large, the central server operates at a significantly
faster speed than the local servers, so that a job processed at the central
server experiences little or no delay. In fact, the admissions control problem
studied in this paper is essentially the problem faced by one of the local
servers, in the regime where N is large (Figure 5.2). This connection will be
explored in greater detail in Section 5, where we discuss what the results in
this paper tell us about the potential of a resource pooling system.

1.3. Overview of Main Contributions. We preview some of the main re-
sults below. The formal statements will be given in Section 3.

1.3.1. Summary of the Problem. We consider an admissions control prob-
lem depicted in Figure 1.1, which is characterized by three parameters: λ, p,
and w.

1. Jobs arrives to the system at a rate of λ jobs per unit time, with λ ∈ 1.
The server operates at a rate of 1−p jobs per unit time, with p ∈ (0,1).

2. The decision maker is allowed to decide whether an arriving job is
admitted to the queue, or redirected away, with the goal of minimizing
the time-average queue length, and subject to the constraint that the
time-average rate of redirection does not exceed p jobs per unit time.

3. The decision maker has access to information about the future, which
takes the form of a lookahead window of length w ∈ R+. In particular,
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at any time t, the times of arrivals and service availability within the
interval [t, t +w] are revealed to the decision maker. We will consider
the following cases of w.

(a) w = 0, the online problem, where no future information is avail-
able.

(b) w = ∞, the offline problem, where entire the future has been
revealed.

(c) 0 < w <∞, where future is revealed only up to a finite lookahead
window.

1.3.2. Overview of Main Results. Our main contribution is to demon-
strate that the performance of a redirection policy is highly sensitive to the
amount of future information available, measured by the value of w.

Fix p ∈ (0,1), and let the arrival and service processes be Poisson. For
the online problem (w = 0), we show the optimal time-average queue length,
Copt0 , approaches infinity in the heavy-traffic regime, with

Copt0 ∼ log 1
1−p

1

1 − λ, as λ→ 1.

In sharp contrast, the optimal average queue length among offline policies
(w =∞), Copt∞ , converges to a constant,

Copt∞ → 1 − p
p

, as λ→ 1,

and this limit is achieved by a so-called No-Job-Left-Behind policy.
Finally, we show that the No-Job-Left-Behind policy for the offline prob-

lem can be modified, so that the same optimal heavy-traffic limit of 1−p
p is

achieved even with a finite lookahead window, w(λ), where

w(λ) = O (log
1

1 − λ) , as λ→ 1.

This is of practical important, because in any realistic application only a
finite amount of future information can be obtained.

On the methodological end, we use a sample-path-based framework to
analyze the performance of the offline and finite-lookahead policies, using
tools from renewal theory and the theory of random walks. We believe the
methodology have the potential to be substantially generalized to incorpo-
rate general arrival and service processes, diffusion approximations, as well
as observational noises (See Section 9 for a more elaborate discussion).
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1.4. Related Work. There is an extensive body of literature devoted to
the online version (w = 0) of the admissions (or flow) control problem and its
variants; the reader is referred to the survey of [5], and references therein.
Typically, the problem is formulated as an instance of a Markov decision
problem (MDP), where the decision maker, by admitting or rejecting in-
coming jobs, seeks to maximize a long-term average objective consisting of
rewards (e.g., throughput) minus costs (e.g., waiting time experienced by a
customer). The case where the maximization is performed subject to a con-
straint on some average cost has also been studied, and it has been shown,
for a family of reward and cost functions, that an optimal policy assumes a
“threshold-like” form, where the decision maker redirects the next job only if
the current queue length is great or equal to L, with possible randomization
if at level L − 1, and always admits the job if below L − 1 (c.f., [2]). Indeed,
our problem, where one tries to minimize average queue length (delay) sub-
ject to a lower-bound on the throughput (i.e., a maximum redirection rate),
can be shown to belong to this category, and the online heavy-traffic scaling
result is a straightforward extension following the MDP framework, albeit
dealing with technicalities in extending the threshold characterization to an
infinite state space, since we are interested in the regime of λ→ 1.

However, the resource allocation interpretation of our admissions control
problem as that of matching jobs with fast and slow resources, and, in par-
ticular, its connections to resource pooling in the many-server limit, seems
to be largely unexplored. The difference in motivation perhaps explains why
the optimal online heavy-traffic delay scaling of log 1

1−p

1
1−λ that emerges by

fixing p and taking λ→ 1 has not appeared in the literature, to the best our
knowledge.

In contrast to our understanding of online admissions control problems,
much less is known for settings in which information about the future is
taken into consideration. In [6], the author considers a variant of the flow
control problem where the decision maker knows the job size of the arriving
customer, as well as the arrival and time and job size of the next customer,
with the goal of maximizing certain discounted or average reward. A char-
acterization of an optimal stationary policy is derived under a standard
semi-Markov decision problem framework, since the lookahead is limited to
the next arriving job. In [7], the authors consider a scheduling problem with
one server and M parallel queues, motivated by applications in satellite sys-
tems where the link qualities between the server and the queues vary over
time. The authors compare the throughput performance between several
online policies with that of an offline policy, which has access to all future
instances of link qualities. However, the offline policy takes the form of a
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Viterbi-like dynamic program, which, while being throughput-optimal by
definition, provides limited qualitative insight.

One challenge that arises as one tries to move beyond the online setting is
that policies with lookahead typically do not admit a clean Markov descrip-
tion, and hence common techniques for analyzing Markov decision problems
do not easily apply. To circumvent the obstacle, we will first relax our prob-
lem to be fully offline, which turns out to be surprisingly amenable to analy-
sis. We then use the insights from the optimal offline policy to construct an
optimal policy with a finite look-ahead window, in a rather straightforward
manner.

In other application domains, the idea of exploiting future information or
predictions to improve decision making has been explored. Advance reser-
vations (a form of future information) have been studied in lossy networks
[8, 9] and, more recently, in revenue management [10]. Using simulations,
[11] demonstrates that the use of a one- and two-week advance scheduling
window for elective surgeries can improve the efficiency at the associated
intensive care unit (ICU). The benefits of advanced booking program for
supply chains have been shown in [12] in the form of reduced demand un-
certainties. While similar in spirit, the motivations and dynamics in these
models are very different from ours.

Finally, our formulation of the slow an fast resources had been in part
inspired by the literature of resource pooling systems, where one improves
overall system performance by (partially) sharing individual resources in
collective manner. The connection of our problem to a specific multi-server
model proposed by [17] will be discussed in Section 5. For the general topic
of resource pooling, interested readers are referred to [13, 14, 15, 16] and the
references therein.

1.5. Organization of the Paper. The rest of the paper is organized as
follows. The mathematical model for our problem is described in Section
2. Section 3 contains the statements of our main results, and introduces
the No-Job-Left-Behind policy (πNOB), which will be a central object of
study for this paper. Section 4 presents two alternative interpretations of
the No-Job-Left-Behind policy (as a “stack” and “cave”, respectively) that
have important structural, as well as algorithmic, implications. Sections 6
through 8 are devoted to the proofs for the results concerning the online,
offline and finite-lookahead policies, respectively. Finally, Section 9 contains
some concluding remarks and future directions.

2. Model and Setup.
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2.1. Notation. We will denote by N, Z+, and R+, the set of natural num-
bers, non-negative integers, and non-negative reals, respectively. We will use

the following asymptotic notation throughout: f(x) ≲ g(x) if limx→1
f(x)
g(x) ≤ 1,

f(x) ≳ g(x) if limx→1
f(x)
g(x) ≥ 1; f(x) ≪ g(x) if limx→1

f(x)
g(x) = 0, and f(x) ≫

g(x) if limx→1
f(x)
g(x) =∞.

2.2. System Dynamics. An illustration of the system setup is given in
Figure 1.1. The system consists of a single-server queue running in contin-
uous time (t ∈ R+), with an unbounded buffer that stores all unprocessed
jobs. The queue is assumed to be empty at t = 0.

Jobs arrive to the system according to a Poisson process with rate λ,
λ ∈ (0,1), so that the intervals between two adjacent arrivals are independent
and exponentially distributed with mean 1

λ . We will denote by {A(t) ∶ t ∈ R+}
the cumulative arrival process, where A(t) ∈ Z+ is the total number of ar-
rivals to the system by time t.

The processing of jobs by the server is modeled by a Poisson process of of
rate 1 − p. When the service process receives a jump at time t, we say that
a service token is generated. If the queue is not empty at time t, exactly
one job “consumes” the service token and leaves the system immediately.
Otherwise, the service token is “wasted” and has no impact on the future
evolution of the system.2 We will denote by {S(t) ∶ t ∈ R+} the cumulative
token generation process, where S(t) ∈ Z+ is the total number of service
tokens generated by time t.

When λ > 1−p, in order to maintain the stability of the queue, a decision
maker has the option of “redirecting” a job at the moment of its arrival.
One redirected, a job effectively “disappears”, and for this reason, we will
use the word deletion as a synonymous term for redirection throughout the

2When the queue is non-empty, the generation of a token can be interpreted as the
completion of a previous job, upon which the server is ready to fetch the next job. The
time between two consecutive tokens corresponds to the service time. The waste of a token
can be interpreted as the server starting to serve a “dummy job”. Roughly speaking, the
service token formulation, compared to that of a constant speed server processing jobs with
exponentially distributed sizes, provides a performance upper-bound due to the inefficiency
caused by dummy jobs, but has very similar performance in the heavy-traffic regime, in
which the tokens are almost never wasted. Using such a point process to model services
is not new, and the reader is referred to [17] and the references therein.

It is, however, important to note a key assumption implicit in the service token formu-
lation: the processing times are intrinsic to the server, and independent of the job being
processed. For instance, the sequence of service times will not depend on the order in
which the jobs in the queue are served, so long as the server remains busy throughout the
period. This distinction is of little relevance for an M/M/1 queue, but can be important
in our case, where the redirection decisions may depend on the future.
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rest of the paper, because it is more intuitive to think of deleting a job in
our subsequent sample-path analysis. Finally, the decision maker is allowed
to delete up to a time-average rate of p.

2.3. Initial Sample Path. Let {Q0 (t) ∶ t ∈ R+} be the continuous-time
queue length process, where Q0(t) ∈ Z+ is the queue length at time t if no
deletion is applied at any time. We say that an event occurs at time t, if
there is either an arrival, or a generation of service token, at time t. Let Tn,
n ∈ N, be the time of the nth event in the system. Denote by {Q0 [n] ∶ n ∈ Z+}
the embedded discrete-time process of {Q0 (t)}, where Q0 [n] is the length
of the queue sampled immediately after the nth event, 3

Q0 [n] = Q0 (Tn−) , n ∈ N.

with the initial condition Q0[0] = 0. It is well-known that Q0 is a random
walk on Z+, such that for all x1, x2 ∈ Z+ and n ∈ Z+,

P (Q0[n + 1] = x2 ∣ Q0[n] = x1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ
λ+1−p , x2 − x1 = 1,

1−p
λ+1−p , x2 − x1 = −1,

0, otherwise,

(2.1)

if x1 > 0, and

P (Q0[n + 1] = x2 ∣ Q0[n] = x1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ
λ+1−p , x2 − x1 = 1,

1−p
λ+1−p , x2 − x1 = 0,

0, otherwise,

(2.2)

if x1 = 0. Note that, when λ > 1 − p, the random walk Q0 is transient.
The process Q0 contains all relevant information in the arrival and service

processes, and will be the main object of study of this paper. We will refer
to Q0 as the initial sample path throughout the paper, to distinguish it from
sample paths obtained after deletions have been made.

2.4. Deletion Policies. Since a deletion can only take place when there
is an arrival, it suffices to define the locations of deletions with respect to
the discrete-time process {Q0[n] ∶ n ∈ Z+}, and throughout, our analysis will
focus on discrete-time queue length processes unless otherwise specified. Let

3The notation f(x−) denotes the right-limit of f at x ∶ f(x−) = limy↓x f(y). In this
particular context, the values of Q0 [n] are well defined, since the sample paths of Poisson
processes are right-continuous-with-left-limits (RCLL) almost surely.
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Φ (Q) be the locations of all arrivals in a discrete-time queue length process
Q, i.e.,

Φ (Q) = {n ∈ N ∶ Q [n] > Q [n − 1]} ,

and for any M ⊂ Z+, define the counting process {I(M,n) ∶ n ∈ N} associated
with M as4

I(M,n) = ∣{1, . . . , n} ∩M ∣ . (2.3)

Definition 1. (Feasible Deletion Sequence) The sequence M =
{mi} is said to be a feasible deletion sequence with respect to a discrete-
time queue length process, Q0, if all of the following hold:

1. All elements in M are unique, so that at most one deletion occurs at
any slot.

2. M ⊂ Φ (Q0) , so that a deletion occurs only when there is an arrival.
3.

lim sup
n→∞

1

n
I (M,n) ≤ p

λ + (1 − p) , a.s., (2.4)

so that the time-average deletion rate is at most p.

In general, M is also allowed to be a finite set.

The denominator λ + (1 − p) in Eq. (2.4) is due to the fact that the total
rate of events in the system is λ+ (1 − p).5 Analogously, the deletion rate in
continuous time is defined by

rd = (λ + 1 − p) ⋅ lim sup
n→∞

1

n
I (M,n) . (2.5)

The impact of a deletion sequence to the evolution of the queue length
process is formalized in the following definition.

Definition 2. (Deletion Maps) Fix an initial queue length process
{Q0[n] ∶ n ∈ N} and a corresponding feasible deletion sequence M = {mi}.

1. The point-wise deletion map DP (Q0,m) outputs the resulting pro-

cess after a deletion is made to Q0 in slot m. Let Q′ = DP (Q0,m).
Then

Q′ [n] =
⎧⎪⎪⎨⎪⎪⎩

Q0 [n] − 1, n ≥m, and Q0[t] > 0,∀t ∈ {m, . . . , n} .
Q0 [n] , otherwise,

(2.6)

4∣X ∣ denotes the cardinality of X.
5This is equal to the total rate of jumps in A(⋅) and S(⋅).



12 SPENCER, SUDAN, AND XU

2. The multi-point deletion map D (Q0,M) outputs the resulting pro-

cess after all deletions in the set M are made to Q0. Define Qi recur-
sively as Qi =DP (Qi−1,mi), ∀i ∈ N. Then, Q∞ =D (Q0,M) is defined
as the point-wise limit

Q∞[n] = lim
i→min{∣M ∣,∞}

Qi[n], ∀n ∈ Z+. (2.7)

The definition of the point-wise deletion map reflects the earlier assump-
tion that the service time of a job only depends on the speed of the server at
the moment, and is independent of the job’s identity (See Section 2). Note
also that the value of Q∞ [n] depends only on the total number of deletions
before n (Eq. (2.6)), which is at most n, and the limit in Eq. (2.7) is justified.
Moreover, it is not difficult to see that the order in which the deletions are
made has no impact on the resulting sample path, as stated in the lemma
below. The proof is omitted.

Lemma 1. Fix an initial sample path Q0, and let M and M̃ be two fea-
sible deletion sequences that contain the same elements. Then D (Q0,M) =
D (Q0, M̃).

We next define the notion of a deletion policy, which outputs a deletion
sequence based on the (limited) knowledge of an initial sample path Q0.
Informally, a deletion policy is said to be w-lookahead if it makes its deletion
decisions based on the knowledge of Q0 up to w units of time into the future
(in continuous time).

Definition 3. (w-Lookahead Deletion Policies) Fix w ∈ R+∪{∞}.
Let Ft = σ (Q0(s); s ≤ t) be the natural filtration induced by {Q0(t) ∶ t ∈ R+},

and F∞ = ∪t∈Z+Ft. A w-predictive deletion policy is a mapping, π ∶ ZR+
+ →

N∞, such that

1. M = π (Q0) is a feasible deletion sequence a.s.;
2. {n ∈M} is FTn+w measurable, for all n ∈ N.

We will denote by Πw the family of all w-lookahead deletion policies.

The parameter w in Definition 3 captures the amount of information that
the deletion policy has about the future.

1. When w = 0, all deletion decisions are made solely based on the knowl-
edge of the system up till the current time frame. We will refer to Π0

as online policies.
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2. When w =∞, the entire sample path of Q0 is revealed to the decision
maker at t = 0. We will refer to Π∞ as offline policies.

3. We will refer to Πw,0 < w <∞, as policies with a lookahead window of
size w.

2.5. Performance Measure. Given a discrete-time queue length process
Q and n ∈ N, denote by S (Q,n) ∈ Z+ the partial sum

S (Q,n) =
n

∑
k=1

Q [k] . (2.8)

Definition 4. (Average Post-deletion Queue Length) Let Q0 be
an initial queue length process. Define C(p, λ, π) ∈ R+ as the expected average
queue length after applying a deletion policy π:

C(p, λ, π) = E(lim sup
n→∞

1

n
S (Q∞

π , n)) , (2.9)

where Q∞
π =D (Q0, π (Q0)) , and the expectation is taken over all realizations

of Q0, and the randomness used by π internally, if any.

Remark: Delay versus Queue Length. By Little’s Law, the long-term av-
erage waiting time of a typical customer in the queue is equal to the long-
term average queue length divided by the arrival rate (independent of the
service discipline of the server). Therefore, if our goal is to minimize the
average waiting time of the jobs that remain after deletions, it suffices to
use C(p, λ, π) as a performance metric in order to judge the effectiveness
of a deletion policy π. In particular, denote by Tall ∈ R+ the time-average
queueing delay experienced by all jobs, where deleted jobs are assumed to
have a delay of zero, then

E(Tall) =
1

λ
⋅C(p, λ, π), (2.10)

and hence the average queue length and delay coincide in the heavy-traffic
regime, as λ → 1. With an identical argument, it is easy to see that the
average delay among admitted jobs, Tadt, satisfies

E (Tadt) =
1

λ − rd
⋅C(p, λ, π), (2.11)

where rd is the continuous-time deletion rate under π. Therefore, we may
use the terms “delay” and “average queue length” interchangeably in the
rest of the paper, with the understanding that they represent essentially the
same quantity up to a constant.
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Definition 5. (Optimal Delay) Fix w ∈ R+. We call C∗
Πw

(p, λ) the
optimal delay in Πw, where

C∗
Πw(p, λ) = inf

π∈Πw
C(p, λ, π). (2.12)

3. Summary of Main Results. We state the main results of this
paper in this section, whose proofs will be presented in Sections 6 through
8.

3.1. Optimal Delay for Online Policies.

Definition 6. (Threshold Policies) We say that πLth is an L-threshold
policy, if a job arriving at time t is deleted if and only if the queue length at
time t is greater or equal to L.

The following theorem shows that the class of threshold policies achieves
the optimal heavy-traffic delay scaling in Π0.

Theorem 7. (Optimal Online Policies) Fix p ∈ (0,1), and let

L (p, λ) = ⌈log λ
1−p

p

1 − λ⌉ .

Then,

1. π
L(p,λ)
th is feasible for all λ ∈ (1 − p,1).

2. π
L(p,λ)
th is asymptotically optimal in Π0 as λ→ 1:

C (p, λ, πL(p,λ)th ) ∼ C∗
Π0

(p, λ) ∼ log 1
1−p

1

1 − λ, as λ→ 1.

Proof. See Section 6.2.

3.2. Optimal Delay for Offline Policies. Given the sample path of a ran-
dom walk Q, let U (Q,n) the number of slots till Q reaches the level Q[n]−1
after slot n:

U (Q,n) = inf {j ≥ 1 ∶ Q [n + j] = Q[n] − 1} . (3.1)

Definition 8. (No-Job-Left-Behind Policy6) Given an initial sam-
ple path Q0, the No-Job-Left-Behind policy, denoted by πNOB, deletes all
arrivals in the set Ψ, where

Ψ = {n ∈ Φ (Q0) ∶ U (Q0, n) =∞} . (3.2)

6The reason for choosing this name will be made in clear in Section 4.1, using the
“stack” interpretation of this policy.
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We will refer to the deletion sequence generated by πNOB as MΨ = {mΨ
i ∶ i ∈ N},

where MΨ = Ψ.

In other words, πNOB would delete a job arriving at time t if and only if the
queue length never returns to below the current level in the future, assuming
no more deletions are made after t. Note that by the above definition, we
have

Q0[n] ≥ Q0[mΨ
i ], ∀n ≥mΨ

i , (3.3)

for all i ∈ N. Examples of the πNOB policy being applied to a particular
sample path is given in Figures 3.1 and 3.2 (illustration), as well as in Figure
4.1 (simulation).

Figure 3.1. Illustration of applying πNOB to an initial sample path, Q0, where the dele-
tions are marked by bold red arrows.

Figure 3.2. The solid lines depict the resulting sample path, Q̃ = D (Q0,MΨ), after

applying πNOB to Q0.

It turns out that the delay performance of πNOB is about as good as we
can hope for in heavy traffic, as is formalized in the next theorem.
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Theorem 9. (Optimal Offline Policies) Fix p ∈ (0,1).

1. πNOB is feasible for all λ ∈ (1 − p,1), and 7

C (p, λ, πNOB) = 1 − p
λ − (1 − p) . (3.4)

2. πNOB is asymptotically optimal in Π∞ as λ→ 1:

lim
λ→1

C (p, λ, πNOB) = lim
λ→1

C∗
Π∞

(p, λ) = 1 − p
p

.

Proof. See Section 7.4.

Remark 1. Heavy-traffic “Delay Collapse”. It is perhaps surprising to
observe that the heavy-traffic scaling essentially “collapses” under πNOB: the
average queue length converges to a finite value, 1−p

p , as λ → 1, which is in

sharp contrast with the optimal scaling of ∼ log 1
1−p

1
1−λ for the online policies,

given by Theorem 7 (See Figure 3.3 for an illustration of this difference). A
“cave” interpretation of the No-Job-Left-Behind policy, to be introduced in
Section 4.2, will help us understand intuitively why such a drastic discrep-
ancy exists between the online and offline heavy-traffic scaling behaviors.
See discussion in Section 4.2.1.

Also, as a by-product of Theorem 9, observe that

lim
λ→1

C∗
Π∞

(p, λ) ∼ 1

p
,

as rate of deletion p → 0. This is intuitively consistent with our concept of
flexibility: that delay should degenerate as the system’s ability to redirect
jobs diminishes.

Remark 2. Connections to Branching Processes and Erdős-Rényi Ran-
dom Graphs. Let d < 1 < c satisfy de−d = ce−c. Consider a Galton-Watson
birth process in which each node has Z children, where Z is Poisson with
mean c. Conditioning on the finiteness of the process gives a Galton-Watson
process where Z is Poisson with mean d. This occurs in the classical analy-
sis of the Erdős-Rényi random graph G(n, p) with p = c/n. There will be a

7It is easy to see that πNOB is not a very efficient deletion policy for relative small
values of λ. In fact, C (p, λ, πNOB) is a decreasing function of λ. This problem can be
fixed by injecting into the arrival process an Poisson process of “dummy jobs” of rate
1 − λ − ε, so that the total rate of arrival is 1 − ε, where ε ≈ 0. This reasoning implies that
(1 − p)/p is a uniform upper-bound of C∗

Π∞
(p, λ) for all λ ∈ (0,1).
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giant component and the deletion of that component gives a random graph
G(m,q) with q = d/m. As a rough analogy, πNOB deletes those nodes that
would be in the giant component.
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Figure 3.3. Comparison between the heavy-traffic delay scalings associated with πNOB
and π

L(p,λ)
th , with p = 0.1 and λ→ 1.

3.3. Policies with a Finite Lookahead Window. In practice, infinite pre-
diction into the future is certainly too much to ask for. In this section, we
show that a natural modification of πNOB allows for the same delay to be
achieved, using only a finite lookahead window, whose length, w(λ), in-
creases to infinity as λ → 1. In a way, this is not entirely surprising, since
the πNOB leads to a deletion rate of λ − (1 − p), and there is an additional
p − [λ − (1 − p)] = 1 − λ unused deletion rate that can be exploited.

Denote by w ∈ R+ the size of the lookahead window in continuous time,
and W (n) ∈ Z+ the window size in the discrete-time embedded process Q0,
starting from slot n. Letting Tn be the time of the nth event in the system,
then

W (n) = sup{k ∈ Z+ ∶ Tn+k ≤ Tn +w} . (3.5)

For x ∈ N, define the set of indices

U (Q,n,x) = inf {j ∈ {1, . . . , x} ∶ Q [n + j] = Q[n] − 1} . (3.6)
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Definition 10. (w-No-Job-Left-Behind Policy) Given an initial
sample path Q0 and w > 0, the w-No-Job-Left-Behind policy, denoted by
πwNOB, deletes all arrivals in the set Ψw, where

Ψw = {n ∈ Φ (Q0) ∶ U (Q0, n,W (n)) =∞} .

It is easy to see that πwNOB is simply πNOB applied within the confinement
of a finite window: a job at t is deleted if and only if the queue length does not
return to below the current level within the next w units of time, assuming
no further deletions are made. Since the window is finite, it is clear that
Ψw ⊃ Ψ for any w < ∞, and hence C (p, λ, πwNOB) ≤ C (p, λ, πNOB) for all
λ ∈ (1−p). The only issue now becomes that of feasibility: by making decision
only based on a finite lookahead window, we may end up deleting at a rate
greater than p. The following theorem summarizes the above observations,
and gives an upper bound on the appropriate window size, w, as a function
of λ. Note that this result implies Theorem 9 and is hence stronger.

Theorem 11. (Optimal Delay Scaling with Finite Lookahead)
Fix p ∈ (0,1). There exists C > 0, such that if

w (λ) = C ⋅ log
1

1 − λ,

then π
w(λ)
NOB is feasible, and

C (p, λ, πw(λ)
NOB) ≤ C (p, λ, πNOB) = 1 − p

λ − (1 − p) , (3.7)

Since C∗
Πw(λ)

(p, λ) ≥ C∗
Π∞

(p, λ) and C∗
Πw(λ)

(p, λ) ≤ C (p, λ, πw(λ)
NOB), we also

have that

lim
λ→1

C∗
Πw(λ)

(p, λ) = lim
λ→1

C∗
Π∞

(p, λ) = 1 − p
p

. (3.8)

Proof. See Section 8.1.

3.3.1. Delay-Information Duality. Theorem 11 says that one can attain
the same heavy-traffic delay performance as the the optimal offline algo-
rithm, if the size of the lookahead window scales as O(log 1

1−λ). Is this the
minimum amount of future information necessary to achieve the same (or
comparable) heavy-traffic delay limit as the optimal offline policy? We con-
jecture that this is the case, in the sense that thee exists a matching lower-
bound, as follows.
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Conjecture 1. Fix p ∈ (0,1). If w(λ) ≪ log 1
1−λ as λ→ 1, then

lim sup
λ→1

C∗
Πw(λ)

(p, λ) =∞.

In other words, “delay collapse” can occur only if w(λ) = Θ (log 1
1−λ).

If the conjecture is proven, it would imply a sharp transition in the sys-
tem’s heavy-traffic delay scaling behavior, around the critical “threshold” of
w(λ) = Θ (log 1

1−λ). It would also imply the existence of a symmetric dual

relationship between future information and queueing delay : Θ (log 1
1−λ)

amount of information is required to achieve a finite delay limit, and one
has to suffer Θ (log 1

1−λ) in delay, if only finite amount of future information
is available.

Figure 3.4. “Delay v.s Information.” Best achievable heavy traffic delay scaling as a func-
tion of the size of the lookahead window, w. Results presented in this paper are illustrated
in the solid lines and circles, and the gray dotted line depicts our conjecture of the unknown
regime of 0 < w(λ) ≲ log ( 1

1−λ
).

Figure 3.4 summarizes the main results of this paper from the angle of
the delay-information duality. The dotted line segment marks the unknown
regime, and the sharp transition at its right end point reflects the view of
Conjecture 1.

4. Interpretations of πNOB. We present two equivalent ways of de-
scribing the No-Job-Left-Behind policy πNOB. While the interpretations
may be interesting in their own right, they also provide us with operational
insights into the dynamics of the policy. In particular, the stack interpreta-
tion helps us derive asymptotic deletion rate of πNOB in a simple manner,
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and the cave interpretation, which takes a time-reversal point of view, shows
us that the set of deletions made by πNOB can be calculated efficiently in
linear time (with respect to the length of the time horizon).

4.1. Stack Interpretation. Suppose that the service discipline adopted by
the server is that of last-in-first-out (LIFO), where the it always fetches a
task that has arrived the latest. In other words, the queue works as a stack.
Suppose that we first simulate the stack without any deletion. It is easy
to see that, when the arrival rate λ is greater than the service rate 1 − p,
there will be a growing set of jobs at the bottom of the stack that will never
be processed. Label all such jobs as “left-behind”. For example, Figure 3.1
shows the evolution of the queue over time, where all “left-behind” jobs are
colored with a blue shade. One can then verify that the policy πNOB given in
Definition 8 is equivalent to deleting all jobs that are labeled “left-behind”,
hence the namesake “No-Job-Left-Behind”. Figure 3.2 illustrates applying
πNOB to a sample path of Q0, where the ith job to be deleted is precisely the
ith job among all jobs that would have never been processed by the server
under a LIFO policy.

One advantage of the stack interpretation is that it makes obvious the
fact that the deletion rate induced by πNOB is equal to λ − (1 − p) < p, as
illustrated in the following lemma.

Lemma 2. For all λ > 1 − p, the following statements hold.

1. With probability one, there exists T <∞, such that every service token
generated after time T is matched with some job. In other words, the
server never idles after some finite time.

2. Let Q =D (Q0,MΨ). We have

lim sup
n→∞

1

n
I (MΨ, n) ≤ λ − (1 − p)

λ + 1 − p , a.s., (4.1)

which implies that πNOB is feasible for all p, λ ∈ (0,1).

Proof. See Appendix A.1

4.2. Cave Interpretation. We now view the sample path of {Q0[n] ∶ n ∈ N}
as the wall of a cave: the x axis is the “floor”, the area above Q0 the “rock”,
and the cave opens up towards right. Now, suppose there is a light source
placed at n = ∞, emitting parallel beams of light (illustrated by the blue
shades in Figure 3.1) into the cave from the right. By Definition 8, it is easy
to see that the deletions made by πNOB are precisely the areas on the wall
that are “lit” by this light source.
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The cave interpretation shows that the deletions made by πNOB are ar-
guably more natural when viewing the process Q0 in reverse. It may be
counter-intuitive that the notion of time should matter, since the problem
is “offline” after all. However, as we will see in the next section, the time-
reverse view leads naturally to an algorithm of computing MΨ over a finite
time horizon n ∈ {1, . . . ,N}, whose running time scales linearly with respect
to N as N →∞, and is very simple to describe.

4.2.1. “Anticipation” v.s “Reaction”. Another important value of the
cave interpretation is that it demonstrates the power of πNOB’s being highly
anticipatory, in a geometrically intuitive manner. Looking at Figure 3.1, one
sees immediately that the wall areas “under light” correspond to all the
segments where the initial sample path Q0 are taking a consecutive “up-
ward hike”. In other words, the policy πNOB begins to delete jobs precisely
when it anticipates that the arrivals are just about to get intense. Similarly,
a wall area will be “in the shade” only if the wall curves down eventually
in the future, which corresponds πNOB’s stopping deleting jobs as soon as
it anticipates that the next few arrivals can be handled by the server alone.

In sharp contrast is the nature of the optimal online policy, π
L(p,λ)
th , which

is by definition “reactionary” and begins to delete only when the current
queue length has already reached a high level. The differences in the result-
ing sample paths are illustrated via simulations in Figure 4.1. For example,
as Q0 continues to increase during the first 1000 time slots, πNOB begins

deleting immediately after t = 0, while no deletion is made by π
L(p,λ)
th during

this period.
To summarize this comparison with a rough analogy, the offline policy

starts to delete before the arrivals get busy, but the online policy can only
delete after the burst in arrival traffic has been realized, by which point it is
already “too late” to fully contain the delay. This explains, to certain extend,
why πNOB is capable of achieving “delay collapse” in the heavy-traffic regime
(i.e., a finite limit of delay as λ→ 1, Theorem 9), while the delay under even
the best online policy diverges to infinity as λ→ 1 (Theorem 7).

4.2.2. A Linear-time Algorithm for πNOB. While the offline deletion
problem serves as a nice abstraction, it is impossible to actually store in-
formation about the infinite future in practice, even if such information is
available. A natural finite-horizon version of the offline deletion problem can
be posed as follows: given the values of Q0 over the first N slots, where N
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finite, one would like to compute the set of deletions made by πNOB:

MΨ
N =MΨ ∩ {1, . . . ,N},

assuming that Q0[n] > Q0[N] for all n ≥ N . Note that this problem also
arises in computing the sites of deletions for the πwNOB policy, where one
would replace N with the length of the lookahead window, w.

We have the following algorithm, which identifies all slots on which a new
“minimum” is achieved in Q0, when viewed in the reverse order of time.
Note that these are precisely the slots “under light” according to the cave
interpretation (Section 4.2).

A Linear-time Algorithm for πNOB

S ← Q0[N], and MΨ
N ← ∅

for n = N down to 1 do
if Q0[n] < S then
MΨ
N ←MΨ

N ∪ {n + 1}
S ← Q0[n]

else
MΨ
N ←MΨ

N
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end if
end for
return MΨ

N

It is easy to see that the running time of the above algorithm scales
linearly with respect to the length of the time horizon, N . Note that this
is not the unique linear-time algorithm. In fact, one can verify that the
simulation procedure used in describing the stack interpretation of πNOB
(Section 4), which keeps track of which jobs would eventually be served, is
itself a linear-time algorithm. However, the time-reverse version given here
is arguably more intuitive and simpler to describe.

5. Applications to Resource Pooling. We discuss in this section
some of the implications of our results in the context of a multi-server model
for resource pooling [17], illustrated in Figure 5.1, which has partially moti-
vated our initial inquiry.

We briefly review the model in [17] below, and the reader is referred to
the original paper for a more rigorous description. Fix a coefficient p ∈ [0,1].
The system consists of N stations, each of which receives an arrival stream
of jobs at rate λ ∈ (0,1) and has one queue to store the unprocessed jobs.
The system has a total amount of processing capacity of N jobs per unit
time, and is divided between two types of servers. Each queue is equipped
with a local server of rate 1 − p, which is capable of serving only the jobs
directed to the respective station. All stations share a central server of rate
pN , which always fetches a job from the most loaded station, following a
Longest-Queue-First (LQF) scheduling policy. In other words, a fraction p of
the total processing resources is being pooled in a centralized fashion, while
the remainder is distributed across individual stations. All arrival and service
token generation processes are assumed to be Poisson and independent from
one another (same as in Section 2).

A main result of [17] is that even a small amount of resource pooling
(small but positive p) can have significant benefits over a fully distributed
system (p = 0). In particular, for any p > 0, and in the limit as the system size
N → ∞, the average delay across the whole system scales as ∼ log 1

1−p

1
1−λ ,

as λ → 1 (note this is the same scaling as in Theorem 7). This is an expo-
nential improvement over the scaling of ∼ 1

1−λ when no resource pooling is
implemented, i.e., p = 0.

We next explain how our problem is intimately connected to the resource
pooling model described above, and how the current paper suggests that the
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Figure 5.1. Illustration of a model for resource pooling with distributed and centralized
resources, [17].

Figure 5.2. Resource pooling using a central queue.

results in [17] can be extended along several directions. Consider a similar
N -station system as in [17], with the only difference being that instead of the
central server fetching jobs from the local stations, the central server simply
fetches jobs from a “central queue”, which stores jobs redirected from the
local stations (See Figure 5.2. Denote by {Ri(t) ∶ t ∈ R+}, i ∈ {1, . . . ,N}, the
counting process where Ri(t) is the cumulative number of jobs redirected to
the central queue from station i by time t. Assume that lim supt→∞

1
tRi(t) =

p − ε almost surely for all i ∈ {1, . . . ,N}, for some ε > 0.8

From the perspective of the central queue, it receives an arrival stream
RN , created by merging N redirection streams, RN(t) = ∑Ni=1Ri(t). The

8Since the central server runs at rate pN , the rate of Ri(t) cannot exceed p, assuming
it is the same across all i.



QUEUEING WITH FUTURE INFORMATION 25

process RN is of rate (p− ε)N , and it is served by a service token generation
process of rate pN . The traffic intensity of the of central queue (arrival rate
divided by service rate) is therefore ρc = (p − ε)N/pN = 1 − ε/p < 1. Denote
by QN ∈ Z+ the length of the central queue in steady-state. Suppose that it
can be shown that9

lim sup
N→∞

E (QN) <∞. (5.1)

A key consequence of Eq. (5.1) is that, for large values of N , QN becomes
negligible in the calculation of the system’s average queue length: the aver-
age queue length across the whole system coincides with the average queue
length among the local stations, as N →∞. In particular, this implies that,
in the limit of N → ∞, the task of scheduling for the resource pooling sys-
tem could alternatively be implemented by running a separate admissions
control mechanism, with the rate of redirection equal to p − ε, where all
redirected jobs are sent to the central queue, granted that the streams of
redirected jobs (Ri(t)) are sufficiently well-behaved so that Eq. (5.1) holds.
This is essentially the justification for the equivalence between the resource
pooling and admissions control problems, discussed at the beginning of this
paper (Section 1.2).

With this connection in mind, several implications follows readily from
the results in the current paper, two of which are given below

1. The original LQF scheduling policy employed by the central server in
[17] is centralized : each fetching decision of the central server requires
the full knowledge of the queue lengths at all local stations. How-
ever, Theorem 7 suggests that the same system-wide delay scaling in
the resource pooling scenario could also be achieved by a distributed
implementation: each server simply runs the same threshold policy,

π
L(p−ε,λ)
th , and routes all deleted jobs to the central queue. To prove

this rigorously, one needs to establish the validity of Eq. (5.1), which
we will leave as future work.

2. A fairly tedious stochastic coupling argument was employed in [17] to
establish a matching lower bound for the ∼ log 1

1−p

1
1−λ delay scaling,

by showing that the performance of the LQF policy is no worse than
any other online policy. Instead of using stochastic coupling, the lower

9For an example where this is true, assume that every local station adopts a randomized
rule and redirects an incoming job to the central queue with probability p−ε

λ
(and that λ

is sufficiently close to 1 so that p−ε
λ

∈ (0,1)). Then Ri(t) is a Poisson process, and by the
merging property of Poisson processes, so is RN(t). This implies that the central queue
is essentially an M/M/1 queue with traffic intensity ρc = (p − ε)/p, and we have that
E (QN) = ρc

1−ρc
for all N .
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bound in Theorem 7 immediately implies a lower bound for the re-
source pooling problem in the limit of N → ∞, if one assumes that
the central server adopts a symmetric scheduling policy, where the it
does not distinguish between two local stations beyond their queue
lengths.10 To see this, note that the rate of Ri(t) are identical under
any symmetric scheduling policy, which implies that it must be less
than p for all i. Therefore, the lower bound derived for the admissions
control problem on a single queue with a redirection rate of p automat-
ically carries over to the resource pooling problem. Note that, unlike
the previous item, this lower bound does not rely on the validity of
Eq. (5.1).

Both observations above exploit the equivalence of the two problems in
the regime of N → ∞. With the same insight, one could also potentially
generalize the delay scaling results in [17] to scenarios where the arrival
rates to the local stations are non-uniform, or where future information is
available. Both extensions seem difficult to accomplish using the original
framework of [17], which is based on a fluid model that heavily exploits
the symmetry in the system. On the downside, however, the results in this
paper tell us very little when system size N is small, in which case it is
highly conceivable that a centralized scheduling rule, such as the Longest-
Queue-First policy, can out-perform a collection of decentralized admissions
control rules.

6. Optimal Online Policies. Starting from this section and through
Section 8, we present the proofs of the results stated in Section 3.

We begin with showing Theorem 7, by formulating the online problem as
a Markov decision problem (MDP) with an average cost constraint, which
then enables us to use existing results to characterize the form of optimal
policies. Once the family of threshold policies has been shown to achieve
the optimal delay scaling in Π0 under heavy-traffic, the exact form of the
scaling can be obtained in a fairly straightforward manner from the steady-
state distribution of a truncated birth-death process.

6.1. A Markov Decision Problem Formulation. Since both the arrival
and service processes are Poisson, we can formulate the problem of finding
an optimal policy in Π0 as a continuous-time Markov decision problem with
an average-cost constraint, as follows. Let {Q(t) ∶ t ∈ R+} be the resulting
continuous-time queue length process after applying some policy in Π0 to

10This is a natural family of policies to study, since all local servers, with the same
arrival and service rate, are indeed identical.
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Q0. Let Tk be the kth upward jump in Q and τk the length of the kth inter-
jump interval, τk = Tk −Tk−1. The task of a deletion policy, π ∈ Π0, amounts
to choosing, for each of the inter-jump interval, a deletion action, ak ∈ [0,1],
where the value of ak corresponds to the probability that the next arrival
during the current inter-jump interval will be deleted. Define R and K to
be the reward and cost functions of an inter-jump interval, respectively,

R(Qk, ak, τk) = −Qk ⋅ τk, (6.1)

K(Qk, ak, τk) = λ(1 − ak)τk, (6.2)

where Qk = Q(Tk). The corresponding MDP seeks to maximize the time-
average reward

R̄π = lim inf
n→∞

Eπ (∑nk=1R(Qk, ak, τk))
Eπ (∑nk=1 τk)

(6.3)

while obeying the average-cost constraint

C̄π = lim sup
n→∞

Eπ (∑nk=1K(Qk, ak, τk))
Eπ (∑nk=1 τk)

≤ p. (6.4)

To see why this MDP solves our deletion problem, observe that R̄π is the
negative of the time-average queue length, and C̄π is the time-average dele-
tion rate.

It is well known that the type of constrained MDP described above admits
an optimal policy that is stationary [1], which means that the action ak
depends solely on current state, Qk, and is independent of the time index k.
Therefore, it suffices to describe π using a sequence, {bq ∶ q ∈ Z+}, such that
ak = bq whenever Qk = q. Moreover, when the state space is finite11, stronger
characterizations of the bq’s have been obtained for a family of reward and
cost functions under certain regularity assumptions (Hypotheses 2.7, 3.1 and
4.1 in [2]), which ours do satisfy (Eqs. (6.1) and (6.2)). Theorem 7 will be
proved using the next known result (adapted from Theorem 4.4 in [2]):

Lemma 3. Fix p and λ, and let the buffer size B be finite. There exists
an optimal stationary policy, {b∗q}, of the form

b∗q =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, q < L∗ − 1,

ξ, q = L∗ − 1,

0, q ≥ L∗,

for some L∗ ∈ Z+ and ξ ∈ [0,1].
11This corresponds to a finite buffer size in our problem, where one can assume that

the next arrival is automatically deleted when the buffer is full, independent of the value
of ak.
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6.2. Proof of Theorem 7.

Proof. (Theorem 7) In words, Lemma 3 states that the optimal policy
admits a “quasi-threshold” form: it deletes the next arrival when Q(t) ≥ L∗,
admits when Q(t) < L∗−1, and admits with probability ξ when Q(t) = L∗−1.
Suppose, for the moment, that the statements of Lemma 3 also hold when
the buffer size is infinite, an assumption to be justified by the end of the
proof. Denoting by π∗p the stationary optimal policy associated with {b∗q},
when the constraint on the average of deletion is p (Eq. (6.4)). The evolution
of Q(t) under π∗p is that of a birth-death process truncated at state L∗,
with the transition rates given in Figure 6.1, and the time-average queue
length is equal to the expected queue length in steady state. Using standard
calculations involving the steady-state distribution of the induced Markov
process, it is not difficult to verify that

C(p, λ, πL∗−1
th ) ≤ C(p, λ, π∗p) ≤ C(p, λ, πL∗th ), (6.5)

where L∗ is defined as in Lemma 3, and C(p, λ, π) is the time-average queue
length under policy π, defined in Eq. (2.9).

Figure 6.1. The truncated birth-death process induced by π∗p .

Denote by {µLi ∶ i ∈ N} the steady-state probability of the queue length

being equal to i, under a threshold policy πLth. Assuming λ ≠ 1− p, standard
calculations using the balancing equations yield

µLi = ( λ

1 − p)
i

⋅
⎛
⎜⎜
⎝

1 − λ
1−p

1 − ( λ
1−p)

L+1

⎞
⎟⎟
⎠
, ∀1 ≤ i ≤ L, (6.6)

and µLi = 0 for all i ≥ L + 1. The time-average queue length is given by

C(p, λ, πLth) =
L

∑
i=1

i ⋅ µLi

= θ

(θ − 1) (θL+1 − 1) ⋅
[(2θ − 1) (θL − 1) +L (θ − 1) θL] , (6.7)
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where θ = λ
1−p . Note that when λ > 1 − p, µLi is decreasing with respect to

L for all i ∈ {0,1, . . . , L} (Eq. (6.6)), which implies that the time-average
queue length is monotonically increasing in L, i.e.,

C(p, λ, πL+1
th ) −C(p, λ, πLth)

=(L + 1) ⋅ µL+1
L+1 +

L

∑
i=0

i ⋅ (µL+1
i − µLi )

≥(L + 1) ⋅ µL+1
L+1 +L ⋅ (

L

∑
i=0

µL+1
i − µLi )

=(L + 1) ⋅ µL+1
L+1 +L ⋅ (1 − µL+1

i − 1)
=µL+1

L+1 > 0. (6.8)

It is also easy to see that, whenever θ > 1,

C(p, λ, πLth) ∼
LθL+1

θL+1 − 1
∼ L, as L→∞. (6.9)

Since deletions only occur when Q(t) is in state L, from Eq. (6.6), the
average rate of deletions in continuous time under πLth is given by,

rd (p, λ, πLth, ) = λ ⋅ πL = λ ⋅ ( λ

1 − p)
L

⋅
⎛
⎜⎜
⎝

1 − λ
1−p

1 − ( λ
1−p)

L+1

⎞
⎟⎟
⎠
. (6.10)

Define
L(x,λ) = min{L ∈ Z+ ∶ rd (p, λ, πLth, ) ≤ x} , (6.11)

that is, L(x,λ) is the smallest L for which πLth remains feasible, given an
deletion rate constraint of x. Using Eqs. (6.10) and (6.11) to solve for L(p, λ),
we obtain, after some algebra,

L (p, λ) = ⌈log λ
1−p

p

1 − λ⌉ ∼ log 1
1−p̃

1

1 − λ, as λ→ 1, (6.12)

and, by combining Eq. (6.12) and Eq. (6.9) with L = L (p, λ), we have

C(p, λ, πL(p,λ)th ) ∼ L(p, λ) ∼ log 1
1−p

1

1 − λ, as λ→ 1. (6.13)

By Eqs. (6.8) and (6.11), we know that π
L(p,λ)
th achieves the minimum

average queue length among all feasible threshold policies. By Eq. (6.5), we
must have that

C (p, λ, πL(p,λ)−1
th ) ≤ C(p, λ, π∗p) ≤ C (p, λ, πL(p,λ)th ) , (6.14)
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Since Lemma 3 only applies when B <∞, Eq. (6.14) holds whenever the
buffer size, B, is greater than L(p, λ) but finite. We next extend Eq. (6.14)
to the case of B =∞. Denote by ν∗p a stationary optimal policy, when B =∞
and the constraint on average deletion rate is equal to p (Eq. (6.4)). The
upper bound on C(p, λ, π∗p) in Eq. (6.14) automatically holds for C(p, λ, ν∗p ),
since C(p, λ, πL(p,λ)th ) is still feasible when B =∞. It remains to show a lower
bound of the form

C(p, λ, ν∗p ) ≥ C (p, λ, πL(p,λ)−2
th ) (6.15)

when B =∞, which, together with the upper bound, will have implied that

the scaling of C(p, λ, πL(p,λ)th ) (Eq. (6.13)) carries over to ν∗p ,

C (p, λ, ν∗p ) ∼ C(p, λ, πL(p,λ)th ) ∼ log 1
1−p

1

1 − λ, as λ→ 1, (6.16)

thus proving Theorem 7.
To show Eq. (6.15), we will use a straightforward truncation argument

that relates the performance of an optimal policy under B =∞ to the case
of B <∞. Denote by {b∗q} the deletion probabilities of a stationary optimal

policy, ν∗p , and by {b∗q(B′)} the deletion probabilities for a truncated version,
ν∗p (B′), with

b∗q(B′) = I (q ≤ B′) ⋅ b∗q ,
for all q ≥ 0. Since ν∗p is optimal and yields the minimum average queue
length, it is without loss of generality to assume that the Markov process
for Q(t) induced by ν∗p is positive recurrent. Denoting by {µ∗i } and {µ∗i (B′)}
the steady-state probability of queue length being equal to i under ν∗p and
ν∗p (B′), respectively, it follows from the positive recurrence of Q(t) under
νp and some algebra, that

lim
B′→∞

µ∗i (B′) = µ∗i , (6.17)

for all i ∈ Z+, and

lim
B′→∞

C (p, λ, ν∗p (B′)) = C (p, λ, ν∗p ) . (6.18)

By Eq.(6.17) and the fact that b∗i (B′) = b∗i for all 0 ≤ i ≤ B′, we have that12

lim
B′→∞

rd (p, λ, ν∗p (B′)) = lim
B′→∞

λ
∞
∑
i=0

µ∗i (B′) ⋅ (1 − b∗i (B′)) = rd (p, λ, ν∗p ) ≤ p.

(6.19)

12Note that, in general, rd (p, λ, ν∗p(B′)) could be greater than p, for any finite B′.
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It is not difficult to verify, from the definition of L(p, λ) (Eq. (6.11)), that

lim
δ→0

L(p + δ, λ) ≥ L(p, λ) − 1,

for all p, λ. For all δ > 0, choose B′ to be sufficiently large, so that

C (p, λ, ν∗p (B′)) ≤ C (p, λ, ν∗p ) + δ, (6.20)

L (λ, rd (p, λ, ν∗p (B′))) ≥ L(p, λ) − 1, (6.21)

Let p′ = rd (p, λ, ν∗p (B′)). Since b∗i (B′) = 0 for all i ≥ B′ + 1, by Eq. (6.21)
we have

C (p, λ, ν∗p (B′)) ≥ C (p, λ, π∗p′) , (6.22)

where π∗p is the optimal stationary policy given in Lemma 3 under any the
finite buffer size B > B′. We have

C (p, λ, ν∗p ) + δ
(a)
≥ C (p, λ, ν∗p (B′))
(b)
≥ C (p, λ, π∗p′)
(c)
≥ C (p, λ, πL(p

′,λ)−1
th )

(d)
≥ C (p, λ, πL(p,λ)−2

th ) , (6.23)

where the inequalities (a) through (d) follow from Eqs. (6.20), (6.22), (6.14),
and (6.21), respectively. Since Eq. (6.23) holds for all δ > 0, we have proven
Eq. (6.15). This completes the proof of Theorem 7.

7. Optimal Offline Policies. The proof of Theorem 9 is given in this
section, in two parts. In the first part (Section 7.2), we give a full characteri-
zation of the sample path resulted by applying πNOB (Proposition 1), which
turns out to be a recurrent random walk. This allows us to obtain the steady-
state distribution of the queue length under πNOB in closed-form. From this,
the expected queue length, which is equal to the time-average queue length,
C (p, λ, πNOB), can be easily derived and is shown to be 1−p

λ−(1−p) . Several side
results we obtain along this path will also be used in subsequent sections.

The second part of the proof (Section 7.3) focuses on showing the heavy-
traffic optimality of πNOB among the class of all feasible offline policies,
namely, that limλ→1C (p, λ, πNOB) = limλ→1C

∗
Π∞

(p, λ), which, together with
the first part, proves Theorem 9. The optimality result is proved using a
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sample-path-based analysis, by relating the resulting queue length sample
path of πNOB to that of a optimal greedy deletion rule, which is optimal over
any a finite time horizon, N . We then show that the discrepancy between
the two, in terms of the time-average queue length, diminishes as N → ∞
and λ→ 1 (with the two limits taken in this order).

7.1. Additional Notation. Define Q̃ as the resulting queue length process
after applying πNOB

Q̃ =D (Q0,MΨ) .

and Q as the shifted version of Q̃, so that Q starts from the first deletion in
Q̃,

Q[n] = Q̃[n +mΨ
1 ], n ∈ Z+. (7.1)

We say that B = {l, . . . , u} ⊂ N is a busy period of Q, if

Q[l − 1] = Q[u] = 0, and Q[n] > 0 for all n ∈ {l, . . . , u − 1}. (7.2)

We may write Bj = {lj , . . . , uj} to mean the jth busy period of Q. An
example of a busy period is illustrated in Figure 3.2.

Finally, we will refer to the set of slots between two adjacent deletions in
Q (note the offset of m1),

Ei = {mΨ
i −mΨ

1 ,m
Ψ
i + 1 −mΨ

1 , . . . ,m
Ψ
i+1 − 1 −mΨ

1 } , (7.3)

as the ith deletion epoch.

7.2. Performance of the No-Job-Left-Behind Policy. For simplicity of
notation, throughout this section, we will denote by M = {mi ∶ i ∈ N} the
deletion sequence generated by applying πNOB to Q0, when there is no am-
biguity (as opposed to using MΨ and mΨ

i ). The following lemma summarizes
some important properties of Q which will be used repeatedly.

Lemma 4. Suppose 1 > λ > 1 − p > 0. The following hold with probability
one.

1. For all n ∈ N, we have Q[n] = Q0[n +m1] − I(M,n +m1).
2. For all i ∈ N, we have n =mi −m1, if and only if

Q[n] = Q[n − 1] = 0, (7.4)

with the convention that Q[−1] = 0. In other words, the appearance of
two consecutive zeros in Q is equivalent to having a deletion on the
second zero.
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3. Q[n] ∈ Z+ for all n ∈ Z+.

Proof. See Appendix A.2

The next proposition is the main result of this subsection. It specifies the
probability law that governs the evolution of Q.

Proposition 1. {Q[n] ∶ n ∈ Z+} is a random walk on Z+, with Q[0] = 0,
and, for all n ∈ N and x1, x2 ∈ Z+,

P (Q[n + 1] = x2 ∣ Q[n] = x2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−p
λ+1−p , x2 − x1 = 1,
λ

λ+1−p , x2 − x1 = −1,

0, otherwise,

if x1 > 0, and

P (Q[n + 1] = x2 ∣ Q[n] = x1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−p
λ+1−p , x2 − x1 = 1,
λ

λ+1−p , x2 − x1 = 0,

0, otherwise,

if x1 = 0.

Proof. For a sequence {X[n] ∶ n ∈ N} and s, t ∈ N, s ≤ t, we will use the
short-hand

Xt
s = {X[s], . . . ,X[t]} .

Fix n ∈ N , and a sequence (q1, . . . , qn) ⊂ Zn+. We have

P (Q[n] = q[n] ∣Qn−1
1 = qn−1

1 )

=
n

∑
k=1

∑
t1,...,tk,

tk≤n−1+t1

P (Q[n] = q[n] ∣Qn−1
1 = qn−1

1 ,mk
1 = tk1,mk+1 ≥ n + t1)

⋅ P (mk
1 = tk1,mk+1 ≥ n + t1 ∣Qn−1

1 = qn−1
1 ) (7.5)

Restricting to the values of ti’s and q[i]’s under which the summand is
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non-zero, the first factor in the summand can be written as

P (Q[n] = q[n] ∣Qn−1
1 = qn−1

1 ,mk
1 = tk1,mk+1 ≥ n + t1)

=P (Q̃[n +m1] = q[n] ∣ Q̃m1+n−1
m1+1 = qn−1

1 ,mk
1 = tk1,mk+1 ≥ n + t1)

(a)= P (Q0[n + t1] = q[n] + k ∣Q0[s + t1] = q[s] + I ({ti}ki=1 , s + t1) ,∀1 ≤ s ≤ n − 1,

and min
r≥n+t1

Q0[r] ≥ k)

(b)= P(Q0[n + t1] = q[n] + k ∣Q0[n − 1 + t1] = q[n − 1] + k, and min
r≥n+t1

Q0[r] ≥ k) ,
(7.6)

where Q̃ was defined in Eq. (7.1). Step (a) follows from Lemma 4 and the
fact that tk ≤ n − 1 + t1, and (b) from the Markov property of Q0 and
the fact that the events {minr≥n+t1 Q

0[r] ≥ k}, {Q0[n + t1] = q[n] + k}, and

their intersection, depend only on the values of {Q0[s] ∶ s ≥ n + t1}, and are

hence independent of {Q0[s] ∶ 1 ≤ s ≤ n − 2 + t1} conditional on the value of
Q0[t1 + n − 1].

Since the process Q lives in Z+ (Lemma 4), it suffices to consider the case
of q[n] = q[n − 1] + 1, and show that

P (Q0[n + t1] = q[n − 1] + 1 + k ∣Q0[n − 1 + t1] = q[n − 1] + k,

and min
r≥n+t1

Q0[r] ≥ k)

= 1 − p
λ + 1 − p, (7.7)

for all q[n− 1] ∈ Z+. Since Q[mi −m1] = Q[mi − 1−m1] = 0 for all i (Lemma
4), the fact that q[n] = q[n − 1] + 1 > 0 implies that

n <mk+1 − 1 +m1. (7.8)

Moreover, since Q0[mk+1 − 1] = k and n <mk+1 − 1 +m1, we have that

q[n] > 0 implies Q0[t] = k, for some t ≥ n + 1 +m1. (7.9)

We consider two cases, depending on the value of q[n − 1].
Case 1: q[n − 1] > 0. Using the same argument that led to Eq. (7.9), we

have that

q[n − 1] > 0 implies Q0[t] = k, for some t ≥ n +m1. (7.10)
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It is important to note that, despite the similarity in conclusions, Eqs. (7.9)
and (7.10) are different in their assumptions (i.e., q[n] versus q[n − 1]). We
have

P (Q0[n + t1] = q[n − 1] + 1 + k ∣Q0[n − 1 + t1] = q[n − 1] + k,

and min
r≥n+t1

Q0[r] ≥ k)

(a)= P (Q0[n + t1] = q[n − 1] + 1 + k ∣Q0[n − 1 + t1] = q[n − 1] + k,

and min
r≥n+t1

Q0[r] = k)

(b)= P(Q0[2] = q[n − 1] + 1 ∣Q0[1] = q[n − 1], and min
r≥2

Q0[r] = 0)

(c)= 1 − p
λ + 1 − p, (7.11)

where (a) follows from Eq. (7.10), (b) from the stationary and space-homogeneity
of the Markov chain Q0, and (c) from the following well-known property of
a transient random walk conditional to returning to zero.

Lemma 5. Let {X[n] ∶ n ∈ N} be a random walk on Z+, such that for all
x1, x2 ∈ Z+ and n ∈ N,

P (X[n + 1] = x2 ∣X[n] = x2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q, x2 − x1 = 1,

1 − q, x2 − x1 = −1,

0, otherwise,

if x1 > 0, and

P (X[n + 1] = x2 ∣X[n] = x1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q, x2 − x1 = 1,

1 − q, x2 − x1 = 0,

0, otherwise,

if x1 = 0, where q ∈ (1
2 ,1). Then for all x1, x2 ∈ Z+ and n ∈ N,

P(X[n + 1] = x2 ∣X[n] = x1, min
r≥n+1

X[r] = 0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − q, x2 − x1 = 1,

q, x2 − x1 = −1,

0, otherwise,

if x1 > 0, and

P(X[n + 1] = x2 ∣X[n] = x1, min
r≥n+1

X[r] = 0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − q, x2 − x1 = 1,

q, x2 − x1 = 0,

0, otherwise,
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if x1 = 0. In other words, conditional on the eventual return to 0 and before
it happens, a transient random walk obeys the same probability law as a
random walk with the reversed one-step transition probability.

Proof. See Appendix A.3.

Case 2: q[n − 1] = 0. We have

P (Q0[n + t1] = q[n − 1] + 1 + k ∣Q0[n − 1 + t1] = q[n − 1] + k,

and min
r≥n+t1

Q0[r] ≥ k)

(a)= P(Q0[n + t1] = 1 + k, and min
r>n+t1

Q0[r] = k ∣Q0[n − 1 + t1] = k,

and min
r≥n+t1

Q0[r] ≥ k)

(b)= P(Q0[2] = 2, and min
r>2

Q0[r] = 1 ∣Q0[1] = 1, and min
r≥2

Q0[r] ≥ 1) ,
△=x, (7.12)

where (a) follows from Eq. (7.9) (note its difference with Eq. (7.10)), and
(b) from the stationarity and space-homogeneity of Q0, and the assumption
that k ≥ 1 (Eq. (7.5)).

Since Eqs. (7.11) and (7.12) hold for all x1, k ∈ Z+ and n ≥ m1 + 1, by
Eq. (7.5), we have that

P (Q[n] = q[n] ∣Qn−1
1 = qn−1

1 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1−p
λ+1−p , q[n] − q[n − 1] = 1,
λ

λ+1−p , q[n] − q[n − 1] = −1,

0, otherwise,

(7.13)

if q[n − 1] > 0, and

P (Q[n] = q[n] ∣Qn−1
1 = qn−1

1 ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x, q[n] − q[n − 1] = 1,

1 − x, q[n] − q[n − 1] = 0,

0, otherwise,

(7.14)

if q[n− 1] = 0, where x represents the value of the probability in Eq. (7.12).
Clearly, Q[0] = Q0[m1] = 0. We next show that x is indeed equal to 1−p

λ+1−p ,
which will have proven our claim.

To do so, one can in principle directly calculate the probability in line
(b) of Eq. (7.12), which can be quite difficult to do. We will use an indirect



QUEUEING WITH FUTURE INFORMATION 37

approach that is computationally much simpler. As a by-product, we will
also get a better understanding of an important regenerative structure of
πNOB, which will be useful in subsequent analysis. By Eqs. (7.13) and (7.14),
Q is a positive recurrent Markov chain, and Q[n] converges to a well defined
steady-state distribution, Q[∞], as n → ∞. Letting πi = P (Q[∞] = i), it is
easy to verify via the balancing equations that,

πi = π0
x(λ + 1 − p)

λ
⋅ (1 − p

λ
)
i−1

, ∀i ≥ 1, (7.15)

and since ∑i≥0 πi = 1, we obtain

π0 =
1

1 + x ⋅ λ+1−p
λ−(1−p)

. (7.16)

Since the chain Q is also irreducible, the limiting fraction of time that Q
spends in state zero is therefore equal to π0:

lim
n→∞

1

n

n

∑
t=1

I (Q[t] = 0) = π0 =
1

1 + x ⋅ λ+1−p
λ−(1−p)

. (7.17)

Next, we would like to know many of these visits to the state zero correspond
to a deletion.

Recall the notion of a busy period and deletion epoch, defined in Eqs. (7.2)
and (7.3), respectively. By Lemma 4, n corresponds to a deletion if any only
if Q[n] = Q[n − 1] = 0. Consider a deletion in slot mi. If Q[mi + 1] = 0,
then mi + 1 also corresponds to a deletion, i.e., mi + 1 = mi+1. If instead
Q[mi+1] = 1, which happens with probability x, the fact that Q[mi+1−1] = 0
implies that there exists at least one busy period, {l, . . . , u}, between mi and
mi+1, with l = mi and u ≤ mi+1 − 1. At the end of this period, a new busy
period starts with probability x, and so on. In summary, a deletion epoch
Ei in Q consists of the slot mi −m1, plus Ni busy periods, where the Ni’s
are i.i.d, with13

N1
d= Geo(1 − x) − 1, (7.18)

and hence

∣Ei∣ = 1 +
Ni

∑
j=1

Bi,j , (7.19)

where {Bi,j ∶ i, j ∈ N} are i.i.d random variables, and Bi,j corresponds to the
length of the jth busy period in the ith epoch.

13Geo(p) denotes a geometric random variable with mean 1
p
.
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Define W [t] = (Q[t],Q[t + 1]), t ∈ Z+. Since Q is Markov, W [t] is also a
Markov chain, taking values in Z2

+. Since a deletion occurs in slot t if and
only if Q[t] = Q[t − 1] = 0 (Lemma 4), ∣Ei∣ corresponds to excursion times
between two adjacent visits of W to the the state (0,0), and hence are i.i.d.
Using the Elementary Renewal Theorem, we have

lim
n→∞

1

n
I (M,n) = 1

E(∣E1∣)
, a.s., (7.20)

and by treating each visit of W to (0,0) as a renewal event and using the
fact that exactly one deletion occurs within a deletion epoch. Denoting by
Ri the number of visits to the state zero within Ei, we have that Ri = 1+Ni.
Treating Ri as the reward associated with the renewal interval Ei, we have,
by the time-average of a renewal reward process (c.f., Theorem 6, Chapter
3, [3]), that

lim
n→∞

1

n

n

∑
t=1

I (Q[t] = 0) = E (R1)
E (∣E1∣)

= E (N1) + 1

E (∣E1∣)
, a.s., (7.21)

by treating each visit of Q to (0,0) as a renewal event. From Eqs. (7.20)
and (7.21), we have

limn→∞
1
nI (M,n)

limn→∞
1
n ∑

n
t=1 I (Q[t] = 0)

= 1

E(N1)
= 1 − x. (7.22)

Combing Eqs. (4.1), (7.17) and (7.22), and the fact that E(N1) = E(Geo(1−
x)) − 1 = 1

1−x − 1, we have

λ − (1 − p)
λ + 1 − p ⋅ [1 + x ⋅ λ + 1 − p

λ − (1 − p)] = 1 − x, (7.23)

which yields

x = 1 − p
λ + 1 − p. (7.24)

This completes the proof of Proposition 1.

We summarize some of the key consequences of Proposition 1 below, most
of which are easy to derive using renewal theory and well-known properties
of positive-recurrent random walks.

Proposition 2. Suppose that 1 > λ > 1−p > 0, and denote by Q[∞] the
steady-state distribution of Q.
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1. For all i ∈ Z+,

P (Q[∞] = i) = (1 − 1 − p
λ

) ⋅ (1 − p
λ

)
i

. (7.25)

2. limn→∞
1
n ∑

n
i=1Q[i] = E (Q [∞]) = 1−p

λ−(1−p) , a.s.

3. Let Ei = {mΨ
i ,m

Ψ
i + 1, . . . ,mΨ

i+1 − 1,mΨ
i+1}. Then the ∣Ei∣ are i.i.d, with

E (∣E1∣) =
1

limn→∞
1
nI (MΨ, n)

= λ + 1 − p
λ − (1 − p) , (7.26)

and there exists a, b > 0 such that for all x ∈ R+

P (∣E1∣ ≥ x) ≤ a ⋅ exp (−b ⋅ x) . (7.27)

4.

mΨ
i ∼ 1

E (∣E1∣)
⋅ i = λ − (1 − p)

λ + 1 − p ⋅ i, a.s, (7.28)

as i→∞.

Proof. See Appendix A.4.

7.3. Optimality of the No-Job-Left-Behind Policy in Heavy Traffic. This
section is devoted to proving the optimality of πNOB as λ → 1, stated in
the second claim of Theorem 9, which we isolate here in the form of the
following proposition.

Proposition 3. Fix p ∈ (0,1). We have that

lim
λ→1

C (p, λ, πNOB) = lim
λ→1

C∗
Π∞

(p, λ) .

The proof is given at the end of this section, and we do so by showing the
following:

1. Pver a finite horizon N and given a fixed number of deletions to be
made, a greedy deletion rule is optimal in minimizing the post-deletion
area under Q over {1, . . . ,N}.

2. Any point of deletion chosen by πNOB will also be chosen by the greedy
policy, as N →∞.

3. The fraction of points chosen by the greedy policy but not by πNOB
diminishes as λ → 1, and hence the delay produced by πNOB is the
best possible, as λ→ 1.
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Fix N ∈ N. Let S (Q,N) be the partial sum S (Q,N) = ∑Nn=1Q [n]. For
any sample path Q, denote by ∆ (Q,n) the marginal decrease of area under
Q over the horizon {1, . . . ,N} by applying a deletion at slot n, i.e.,

∆P (Q,N,n) = S (Q,N) − S (DP (Q,n) ,N) ,

and, analogously,

∆ (Q,N,M ′) = S (Q,N) − S (D (Q,M ′) ,N) ,

where M ′ is a deletion sequence.
We next define the notion of a greedy deletion rule, which constructs a

deletion sequence by recursively adding the slot that leads to the maximum
marginal decrease in S(Q,N).

Definition 12. (Greedy Deletion Rule) Fix an initial sample path
Q0, and K,N ∈ N. The greedy deletion rule is a mapping, G (Q0,N,K) ,
which outputs a finite deletion sequence MG = {mG

i ∶ 1 ≤ i ≤K}, given by

mG
1 ∈ arg max

m∈Φ(Q0,N)
∆P (Q0,N,m) ,

mG
k ∈ arg max

m∈Φ(Qk−1,N)
∆P (Qk−1

MG ,N,m) , 2 ≤ k ≤K,

where Φ (Q,N) = Φ (Q) ∩ {1, . . . ,N} is the set of all deletable locations in
Q in the first N slots, and Qk

MG = D (Q0,{mG
i ∶ 1 ≤ i ≤ k}). Note that we

will allow mG
k = ∞, if there is no more entry to delete (i.e., Φ (Qk−1) ∩

{1, . . . ,N} = ∅).

We now state a key lemma that will be used in proving Theorem 9. It
shows that over a finite horizon and for a finite number of deletions, the
greedy deletion rule yields the maximum reduction in the area under the
sample path.

Lemma 6. (Dominance of Greedy Policy) Fix an initial sample path
Q0, horizon N ∈ N, and number of deletions K ∈ N. Let M ′ be any deletion
sequence with I(M ′,N) =K. Then

S (D (Q0,M ′) ,N) ≥ S (D (Q0,MG) ,N) ,

where MG = G (Q0,N,K) is the deletion sequence generated by the greedy
policy.
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Proof. By Lemma 1, it suffices to show that, for any sample path
{Q[n] ∈ Z+ ∶ n ∈ N} with ∣Q[n+1]−Q[n]∣ = 1 if Q[n] > 0 and ∣Q[n+1]−Q[n]∣ ∈
{0,1} if Q[n] = 0, we have

S (D (Q,M ′) ,N) ≥ ∆P (Q,N,mG
1 ) + min

∣M̃ ∣=k−1,

M̃⊂Φ(D(Q,mG1 ),N)

S (D (Q1
MG , M̃) ,N) .

(7.29)
By induction, this would imply that we should use the greedy rule at every
step of deletion up to K. The following lemma states a simple monotonicity
property. The proof is elementary, and is omitted.

Lemma 7. (Monotonicity in Deletions) Let Q and Q′ be two sample
paths such that

Q [n] ≤ Q′ [n] , ∀n ∈ {1, . . . ,N} .
Then, for any K ≥ 1,

min
∣M ∣=K,

M⊂Φ(Q,N)

S (D (Q,M) ,N) ≤ min
∣M ∣=K,

M⊂Φ(Q′,N)

S (D (Q′,M) ,N) . (7.30)

and, for any finite deletion sequence M ′ ⊂ Φ (Q,N),

∆ (Q,N,M ′) ≥ ∆ (Q′,N,M ′) . (7.31)

Recall the definition of a busy period in Eq. (7.2). Let J(Q,N) be the total
number of busy periods in {Q[n] ∶ 1 ≤ n ≤ N}, with the additional convention

Q[N + 1] △= 0 so that the last busy period always ends on N . Let Bj =
{lj , . . . , uj} be the jth busy period. It can be verified that a deletion in
location n leads to a decrease in the value of S(Q,N) that is no more than
the width of the busy period to which n belongs (c.f., Figure 3.2). Therefore,
by definition, a greedy policy always seeks to delete in each step the first
arriving job during a longest busy period in the current sample path, and
hence

∆ (Q,N,G(Q,N,1)) = max
1≤j≤J(Q,N)

∣Bj ∣ . (7.32)

Let
J ∗(Q,N) = arg max

1≤j≤J(Q,N)
∣Bj ∣ .

We consider the following cases, depending on whether M ′ chooses to delete
any job in the busy periods in J ∗(Q,N).

Case 1: M ′ ∩ (∪j∈J ∗(Q,N)Bj) ≠ ∅. If lj∗ ∈ M ′ for some j∗ ∈ J ∗, by

Eq. (7.32), we can set mG
1 to lj∗ . Since mG

1 ∈M ′ and the order of deletions
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does not impact the final resulting delay (Lemma 1), we have that Eq. (7.29)
holds, and we are done. Otherwise, choose m∗ ∈M ′ ∩Bj∗ for some j∗ ∈ J ∗,
and we have m∗ > lj∗ . Let

Q′ =DP (Q,m∗) , and Q̂ =DP (Q, lj∗) .

Since Q [n] > 0,∀n ∈ {lj∗ , . . . , uj∗ − 1}, we have Q̂ [n] = Q [n] − 1 ≤ Q′[n],
∀n ∈ {lj∗ , . . . , uj∗ − 1} , and Q′[n] = Q[n] = Q̂[n], ∀n ∉ {lj∗ , . . . , uj∗ − 1},
which implies that

Q̂ [n] ≤ Q′ [n] , ∀n ∈ {1, . . . ,N} . (7.33)

Eq. (7.29) holds by combining Eq. (7.33) and Eq. (7.30) in Lemma 7, with
K = k − 1.

Case 2: M ′ ∩ (∪j∈J ∗(Q,N)Bj) = ∅. Let m∗ be any element in M ′, and
Q′ = DP (Q,m∗). Clearly, Q [n] ≥ Q′ [n] for all n ∈ {1, . . . ,N}, and by
Eq. (7.31) in Lemma 7, we have that14

∆ (Q,N,M ′/ {m∗}) ≥ ∆ (DP (Q,m∗) ,N,M ′/ {m∗}) . (7.34)

Since M ′ ∩ (∪j∈J ∗(Q,N)Bj) = ∅, we have that

∆P (D (Q,M ′/ {m∗}) ,N,mG
1 ) = max

1≤j≤J(Q,N)
∣Bj ∣ > ∆P (Q,N,m∗) . (7.35)

Let M̂ =mG
1 ∪ (M ′/ {m∗}) , we have that

S (D (Q,M̂) ,N)
= S (Q,N) −∆ (Q,N,M ′/ {m∗}) −∆P (D (Q,M ′/ {m∗}) ,N,mG

1 )
(a)
≤ S (Q,N) −∆ (DP (Q,m∗) ,N,M ′/ {m∗}) −∆P (D (Q,M ′/ {m∗}) ,N,mG

1 )
(b)
< S (Q,N) −∆ (DP (Q,m∗) ,N,M ′/ {m∗}) −∆P (Q,N,m∗)
= S (D (Q,M ′) ,N) ,

where (a) and (b) follow from Eqs. (7.34) and (7.35), respectively, which
shows that Eq. (7.29) holds (and in this case the inequality there is strict).

Case 1 and 2 together complete the proof of Lemma 6.

We are now ready to prove Proposition 3.

14For finite sets A and B, A/B = {a ∈ A ∶ a ∉ B}.
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Proof. (Proposition 3) Lemma 6 shows that, for any fixed number of
deletions over a finite horizon N , the greedy deletion policy (Definition 12)
yields the smallest area under the resulting sample path, Q, over {1, . . . ,N}.
The main idea of proof is to show that the area under Q after applying πNOB
is asymptotically the same as that of the greedy policy, as N →∞ and λ→ 1
(in this particular order of limits). In some sense, this means that the jobs
in MΨ account for almost all of the delays in the system, as λ → 1. The
following technical lemma is useful.

Lemma 8. For a finite set S ⊂ R, and k ∈ N, define

f(S, k) = sum of the k largest elements in S

∣S∣ .

Let {Xi ∶ 1 ≤ i ≤ n} be i.i.d random variables taking values in Z+, where
E (X1) < ∞. Then for any sequence of random variables {Hn ∶ n ∈ N}, with
Hn ≲ αn a.s. as n→∞ for some α ∈ (0,1), we have

lim sup
n→∞

f ({Xi ∶ 1 ≤ i ≤ n} ,Hn) ≤ E (X1 ⋅ I (X1 ≥ F
−1
X1

(α))) , a.s., (7.36)

where F
−1
X1

(y) = min{x ∈ N ∶ P (X1 ≥ x) < y}.

Proof. See Appendix A.5.

Fix an initial sample path Q0. We will denote by MΨ = {mΨ
i ∶ i ∈ N} the

deletion sequence generated by πNOB on Q0. Define

l (n) = n − max
1≤i≤I(MΨ,n)

∣Ei∣ (7.37)

where Ei is the ith deletion epoch of MΨ, defined in Eq. (7.3). Since Q0[n] ≥
Q0[mi] for all i ∈ N, it is easy to check that

∆P (D (Q0,{mΨ
j ∶ 1 ≤ j ≤ i − 1}) , n,mΨ

i ) = n −mΨ
i + 1,

for all i ∈ N. The function l was defined so that the first I(MΨ, l(n)) deletions
made by a greedy rule over the horizon {1, . . . , n} are exactly {1, . . . , l(n)}∩
MΨ. More formally, we have the following lemma.

Lemma 9. Fix n ∈ N, and let MG = G (Q0, n, I (MΨ, l (n))). Then mG
i =

mΨ
i , for all i ∈ {1, . . . , I (MΨ, l(n))}.
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Fix K ∈ N, and an arbitrary feasible deletion sequence, M̃ , generated by
a policy in Π∞. We can write

I (M̃,mΨ
K)

=I (MΨ, l (mΨ
K)) + (I (MΨ,mΨ

K) − I (MΨ, l (mΨ
K)))

+ (I (M̃,mΨ
K) − I (MΨ,mΨ

K))
=I (MΨ, l (mΨ

K)) + (K − I (MΨ, l (mΨ
K)))

+ (I (M̃,mΨ
K) − I (MΨ,mΨ

K))
=I (MΨ, l (mΨ

K)) + h(K), (7.38)

where

h(K) = (K − I (MΨ, l (mΨ
K))) + (I (M̃,mΨ

K) − I (MΨ,mΨ
K)) . (7.39)

We have the following characterization of h.

Lemma 10. h(K) ≲ 1−λ
λ−(1−p) ⋅K, as K →∞, a.s.

Proof. See Appendix A.6

Let
MG,n = G (Q0, n, I (M̃, n)) , (7.40)

where the greedy deletion map G was defined in Definition 12. By Lemma
9 and the definition of MG,n, we have that

MΨ ∩ {1, . . . , l (mΨ
K)} ⊂MG,mΨ

K . (7.41)

Therefore, we can write

MG,mΨ
K = (MΨ ∩ {1, . . . , l (mΨ

K)}) ∪MG
K , (7.42)

where M
G
K

△= MG,mΨ
K / (MΨ ∩ {1, . . . , l (mΨ

K)}). Since ∣MG,mΨ
K ∣ = I (M̃,mΨ

K)
by definition, by Eq. (7.38),

∣MG
K ∣ = h(K). (7.43)

We have

S (D (Q0,MΨ) ,mΨ
K) − S (D (Q0, M̃) ,mΨ

K)
(a)
≤ S (D (Q0,MΨ) ,mΨ

K) − S (D (Q0,MG,mΨ
K) ,mΨ

K)
(b)= ∆ (D (Q0,MΨ) ,mΨ

K ,M
G
K) , (7.44)
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where (a) is based on the dominance of the greedy policy over any finite
horizon (Lemma 6), and (b) follows from Eq. (7.42).

Finally, we claim that there exists g(x) ∶ R→ R+, with g(x)→ 0 as x→ 1,
such that

lim sup
K→∞

∆ (D (Q0,MΨ) ,mΨ
K ,M

G
K)

mΨ
K

≤ g(λ), a.s. (7.45)

Eqs. (7.44) and (7.45) combined imply that

C (p, λ, πNOB) = lim sup
K→∞

S (D (Q0,MΨ) ,mΨ
K)

mΨ
K

≤g(λ) + lim sup
K→∞

S (D (Q0, M̃) ,mΨ
K)

mΨ
K

,

=g(λ) + lim sup
n→∞

S (D (Q0, M̃) , n)
n

, a.s., (7.46)

which shows that

C (p, λ, πNOB) ≤ g(λ) + inf
π∈Π∞

C (p, λ, π) .

Since g(λ)→ 0 as λ→ 1, this proves Proposition 3.
To show Eq. (7.45), denote by Q the sample path after applying πNOB,

Q =D (Q0,MΨ) ,

and by Vi the area under Q within Ei,

Vi =
mΨ
i+1−1

∑
n=mΨ

i

Q [n] .

An example of Vi is illustrated as the area of the shaded region in Figure
3.2. By Proposition 1, Q is a Markov chain and so is the process W [n] =
(Q[n],Q[n + 1]). By Lemma 4, Ei corresponds to the indices between two
adjacent returns of the chain W to state (0,0). Since the ith return of a
Markov chain to a particular state is a stopping time, it can be shown, using
the strong Markov property of W , that the segments of Q, {Q[n] ∶ n ∈ Ei},
are mutually independent and identically distributed among different values
of i. Therefore, the Vi’s are i.i.d. Furthermore,

E (V1)
(a)
≤ E (∣E1∣2)

(b)
< ∞, (7.47)
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where (a) follows from the fact that ∣Q[n+1]−Q[n]∣ ≤ 1 for all n, and hence
Vi ≤ ∣Ei∣2 for any sample path of Q0, and (b) from the exponential tail bound
on P(∣E1∣ ≥ x), given in Eq. (7.27).

Since the value of Q on the two ends of Ei, m
Ψ
i and mΨ

i+1 − 1, are both
zero, each additional deletion within Ei cannot produce a marginal decrease
of area under Q of more than Vi (c.f., Figure 3.2). Therefore, the value of

∆ (D (Q0,MΨ) ,mΨ
K ,M

G
K) can be no greater than the sum of the h(K)

largest Vi’s over the horizon n ∈ {1, . . . ,mΨ
K}. We have

lim sup
K→∞

∆ (D (Q0,MΨ) ,mΨ
K ,M

G
K)

mΨ
K

= lim sup
K→∞

f ({Vi ∶ 1 ≤ i ≤K} , h(K)) ⋅ K
mΨ
K

(a)= lim sup
K→∞

f ({Vi ∶ 1 ≤ i ≤K} , h(K)) ⋅ λ + 1 − p
λ − (1 − q)

(b)= E(V1 ⋅ I(X1 ≥ F
−1
V1

( 1 − λ
λ − (1 − p)))) ⋅

λ + 1 − p
λ − (1 − q) (7.48)

where (a) follows from Eq. (7.28), and (b) from Lemmas 8 and 10. Since

E (V1) <∞, and F
−1
V1

(x)→∞ as x→ 0, it follows that

E(V1 ⋅ I(X1 ≥ F
−1
V1

( 1 − λ
λ − (1 − p))))→ 0,

as λ→ 1. Eq. (7.45) is proved by setting g(λ) = E (V1 ⋅ I (X1 ≥ F
−1
V1

( 1−λ
λ−(1−p))))⋅

λ+1−p
λ−(1−q) . This completes the proof of Proposition 3.

7.3.1. Greedy v.s No-Job-Left-Behind Policies. The proof of Proposition
3 relies on a sample-path-wise coupling to the performance of a greedy dele-
tion rule. It is then only natural to ask: since the time horizon is indeed
finite in all practical applications, why don’t we simply use the greedy rule
as the offline policy of choice?

There are at least two reasons for focusing on πNOB instead of the greedy
rule. First, the structure of the greedy rule is highly global, in the sense that
each deletion decision uses information of the entire sample path over the
horizon. As a result, the greedy rule tells us little on how to design a good
policy with a fixed lookahead window (e.g., Theorem 11). In contrast, the
performance analysis of πNOB in Section 7.2 reveals a highly regenerative
structure: the deletions made by by πNOB essentially depend only on the
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dynamics of Q0 in the same deletion epoch (the Ei’s), and what happens
beyond the current epoch becomes irrelevant. This is the key intuition that
led to our construction of the finite-lookahead policy in Theorem 11. A
second (and perhaps minor) reason is that of computational complexity. By
a small sacrifice in performance, πNOB can be efficiently implemented using
a linear-time algorithm (Section 4.2.2), while it is easy to see that a naive
implementation of the greedy rule would require super-linear complexity
with respect to the length of the horizon.

7.4. Proof of Theorem 9.

Proof. (Theorem 9) Let {Q[n] ∶ n ∈ Z+}be the resulting sample path
after applying πNOB. By Proposition 2, Q is a

The feasibility of πNOB follows from Eq. (4.1), that, almost surely,

lim
n→∞

1

n
I (MΨ, n) = λ − (1 − p)

λ + 1 − p < p

λ + 1 − p,

Let Q̃ = D (Q0,MΨ) and Q[n] = Q̃ [n +mΨ
1 ], ∀n ∈ N. Since λ > 1 − p, the

random walk Q0 is transient, and hence mΨ
1 < ∞ almost surely. We have

that

C (p, λ, πNOB) = lim
n→∞

1

n

n

∑
i=1

Q̃[i] = lim
n→∞

1

n

mΨ
1

∑
i=1

Q̃[i] + lim
n→∞

1

n

n

∑
i=1

Q[i] = 1 − p
p

,

(7.49)
almost surely. where the last equality follows from the second claim of Propo-
sition 2, and the fact that m1 < ∞ almost surely. Finally, the fact that
limλ→1C (p, λ, πNOB) = limλ→1C

∗
Π∞

(p, λ) was proved in Proposition 3. This
completes the proof of Theorem 9.

8. Policies with a Finite Lookahead.

8.1. Proof of Theorem 11.

Proof. (Theorem 11) It suffices to focus on showing the feasibility of

π
w(λ)
NOB. The performance guarantee of π

w(λ)
NOB is an immediate consequence of

Theorem 9 and the fact that the set of deletions made by π
w(λ)
NOB is a superset

of that made by πNOB, as was pointed out in the discussion preceding The-
orem 11. We begin by stating an exponential tail bound on the distribution
of the discrete-time predictive window, W (λ,n),

W (λ,n) = max{k ∈ Z+ ∶ Tn+k ≤ Tn +w(λ)} .
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It is easy to see that {W (λ,mΨ
i ) ∶ i ∈ N} are i.i.d, with W (λ,mΨ

1 ) dis-

tributed as Poisson with mean (λ + 1 − p)w(λ). Since P (W (λ,mΨ
1 ) ≥ x) ≤

P (∑⌊w(λ)⌋
k=1 Xk), where the Xk’s are i.i.d Poisson random variables with mean

λ + (1 − p), applying the Chernoff bound, we obtain that there exist c, d > 0
such that

P(W (λ,mΨ
1 ) ≥ λ + 1 − p

2
⋅w(λ)) ≤ c ⋅ exp(−d ⋅w(λ)), (8.1)

for all w(λ) > 0.
For the purpose of analysis (as opposed to conceptual simplicity), we will

consider a further relaxation from the policy π
w(λ)
NOB, denoted by σw(λ).

Definition 13. Fix w ∈ R+. σw is a deletion policy, such that for each
deletion epoch Ei, i ∈ N,

1. if ∣Ei∣ ≤W (λ,mΨ
i ), then only the arrival in slot mΨ

i is deleted;
2. otherwise, all arrivals within the epoch Ei are deleted.

It is easy to verify that σw can be implemented with w units of look-

ahead, and the set of deletions made by σw(λ) is a strict superset of π
w(λ)
NOB

a.s. Hence, the feasibility of σw(λ) will imply that of π
w(λ)
NOB.

Denote by Di the number of deletions made by σw(λ) in the ith epoch.
By the construction of the policy, the Di’s are i.i.d, and depend only on the
length of Ei and the number of arrivals within. We have15

E (D1)
≤1 +E [∣Ei∣ ⋅ I (∣Ei∣ ≥W (λ,mΨ

i ))]

≤1 +E [∣Ei∣ ⋅ I(∣Ei∣ ≥
λ + 1 − p

2
⋅w(λ))]

+E (∣Ei∣) ⋅ P(W (λ,mΨ
i ) ≤

λ + 1 − p
2

⋅w(λ))

≤1 +
⎛
⎜
⎝

∞
∑

k=λ+1−p
2

⋅w(λ)
k ⋅ a ⋅ exp(−b ⋅ k)

⎞
⎟
⎠
+ λ

λ − (1 − p) ⋅ c ⋅ exp(−d ⋅w(λ))

(a)
≤ 1 + h ⋅w(λ) ⋅ exp(−l ⋅w(λ)), (8.2)

for some h, l > 0, where (a) follows from the fact that ∑∞k=n k ⋅ exp(−b ⋅ k) =
O (n ⋅ exp(−b ⋅ n)) as n→∞.

15For simplicity of notation, we assume that λ+1−p
2

⋅ w(λ) is always an integer. This
does not change the scaling behavior of w(λ).
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Since the Di’s are i.i.d, using basic renewal theory, it is not difficult to

show that the average rate of deletion in discrete time is equal to
E(D1)
E(E1) . In

order for the policy to be feasible, one must have that

E(D1)
E(E1)

= E(D1)
λ

≤ p

λ + 1 − p. (8.3)

By Eqs. (8.2) and (8.3), we have that

pλ

λ − (1 − p) ≥ 1 + h ⋅w(λ) ⋅ exp(−l ⋅w(λ)),

which yields, after taking the logarithm on both sides,

w(λ) ≥ 1

b
log ( 1

1 − λ) +
1

b
log([λ − (1 − p)] ⋅ h ⋅w(λ)

1 − p ) . (8.4)

It is not difficult to verify that for all p ∈ (0,1) there exists a constant C
such that the above inequality holds for all λ ∈ (1 − p,1) by letting w(λ) =
C log( 1

1−λ). This proves the feasibility of σw(λ), which implies that π
w(λ)
NOB is

also feasible. This completes the proof of Theorem 11.

9. Conclusion Remarks and Future Work. The main objective of
this paper is to study the impact of future information on the performance of
a class of admissions control problems, with a constraint on the time-average
rate of redirection. Our model is motivated as a study of a dynamic resource
allocation problem between slow (congestion-prone) and fast (congestion-
free) processing resources. It also serves as a simple canonical model for
studying resource pooling in large server farms and large clusters [17] (Sec-
tion 5). Our main results show that the availability of future information can
dramatically reduce the delay experienced by admitted customer: the delay
converges to a finite constant even as the traffic load approaches the system
capacity (“heavy-traffic delay collapse”), if the decision maker is allowed for
a sufficiently large lookahead window (Theorem 11).

There are several interesting directions for future exploration. On the
theoretical end, a main open question is whether a matching lower-bound
on the amount of future information required to achieve heavy-traffic delay
collapse can be proved (Conjecture 1), which, together with the upper bound
given in Theorem 11, would imply a duality between delay and the length
of lookahead into the future.

Second, we believe that our results can be generalized to the cases where
the arrival and service processes are non-Poisson. We note that the πNOB



50 SPENCER, SUDAN, AND XU

policy is indeed feasible for a wide range of non-Poisson arrival and service
processes (e.g., renewal processes), as long as they satisfy a form of strong
law of large number, with appropriate time-average rates (Lemma 2). It
seems more challenging to generalize results on the optimality of πNOB and
the performance guarantees. However, since our analysis of πNOB depends
primarily on macroscopic properties of the initial sample path Q0 (e.g.,
lengths of deletion epochs), and it may be possible to establish the gener-
alizations using limiting theorems (e.g., diffusion approximations). For in-
stance, with sufficiently well-behaved arrival and service processes, we expect
that one can establish a result similar to Proposition of 1 and by charac-
terizing the resulting queue length process of πNOB as a reflected Brownian
motion in R+, in the limit of λ→ 1 and p→ 0, with appropriate scaling.

There are other issues that need to be better understood if the method-
ology presented here is to be used in practice. A most important question
can be the impact of observational noise to performance, since in reality the
future seen in the lookahead window cannot be expected to match the ac-
tual realization exactly. We conjecture, based on the analysis of πNOB, that
the performance of both πNOB, and its finite-lookahead version, is robust to
small noise or perturbation (e.g., if the actual sample path is at most ε away
from the predicted one), while it remains to thoroughly verify and quantify
the extend of the impact, either empirically or through theory. Also, it is
unclear what the best practices should should be when the lookahead win-
dow is very small relative to the traffic intensity λ (w ≪ log 1

1−λ), and this
regime is not covered by the results in this paper (as illustrated in Figure
3.4).
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APPENDIX A: ADDITIONAL PROOFS

A.1. Proof of Lemma 2.

Proof. (Lemma 2) Since λ > 1 − p, with probability one, there exists
T <∞ such that the continuous-time queue length process without deletion
satisfies Q0(t) > 0 for all t ≥ T . Therefore, without any deletion, all service
tokens are matched with some job after time T . By the stack interpretation,
πNOB only deletes jobs that would not have been served, and hence does
not change the original matching of service tokens to jobs. This prove the
first claim.

By the first claim, since all subsequent service tokens are matched with a
job after some time T , there exists some N <∞, such that

Q̃[n] = Q̃[N] + (A[n] −A[N]) − (S[n] − S[N]) − I (MΨ, n) , (A.1)

for all n ≥ N , where A[n] and S[n] are the cumulative numbers of arrival
and service tokens by slot n, respectively. The second claim follows by multi-
plying both sides of Eq. (A.1) by 1

n , and using the fact that limn→∞
1
nA[n] =

λ
λ+1−p and limn→∞

1
nS[n] =

1−p
λ+1−p a.s., Q̃[n] ≥ 0 for all n, and Q̃[N] < ∞

a.s.
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A.2. Proof of Lemma 4.

Proof. (Lemma 4)

1. Recall the point-wise deletion map, DP (Q,n), defined in Definition
2. For any Q0, let Q1 = DP (Q0,m) for some m ∈ N. It is easy to see
that, for all n > m, Q1[n] = Q0[n] − 1, if and only if Q0[s] ≥ 1 for all
s ∈ {m + 1, . . . , n}. Repeating this argument I(M,n) times, we have
that

Q[n] = Q̃[n +m1] = Q0[n +m1] − I (M,n +m1) , (A.2)

if any only if, for all k ∈ {1, . . . , I(M,n +m1)},

Q0[s] ≥ k, for all s ∈ {mk + 1, . . . , n +m1}. (A.3)

Note that Eq. (A.3) is implied by (and in fact, equivalent to) the
definition of the mk’s (Definition 8), namely, that for all k ∈ N, Q0[s] ≥
k for all s ≥mk + 1. This proves the first claim.

2. SupposeQ[n] = Q[n−1] = 0. Since P (Q0[t] ≠ Q0[t − 1] ∣ Q0[t − 1] > 0) =
1 for all t ∈ N (c.f., Eq. (2.1)), at least one deletion occurred in
{n − 1 +m1, n +m1}. If the deletion occurred on n +m1, we are done.
Suppose a deletion occurred on n− 1+m1. Then Q0[n+m1] ≥ Q0[n−
1 +m1], and hence

Q0[n +m1] = Q0[n − 1 +m1] + 1,

which implies that a deletion must have also occurred on n +m1, for
otherwise Q[n] = Q[n − 1] + 1 = 1 ≠ 0. This shows that n =mi −m1 for
some i ∈ N.
Now, suppose that n =mi −m1 for some i ∈ N. Let

nk = inf {n ∈ N ∶ Q0[n] = k, and Q0[t] ≥ k,∀t ≥ n} . (A.4)

Since the random walk Q0 is transient and whose step sizes are at most
1, it follows that nk < ∞ for all k ∈ N a.s., and that mk = nk,∀k ∈ N.
We have

Q[n] (a)= Q0[n +m1] − I (M,n +m1)
=Q0[mi] − I (M,mi)

(b)= Q0[ni] − i
=0, (A.5)
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where (a) follows from Eq. (A.2), and (b) from the fact that ni =mi.
To show that Q[n−1] = 0, note that since n =mi−m1, an arrival must
have occurred on mi in Q0, and hence Q0[n−1+m1] = Q0[n+m1]−1.
Therefore, by the definition of mi,

Q0[t] −Q0[n − 1 +m1] = (Q0[t] −Q0[n +m1]) + 1 ≥ 0, ∀t ≥ n +m1,

which implies that n − 1 =mi−1 −m1, and hence Q[n − 1] = 0, in light
of Eq. (A.5). This proves the claim.

3. For all n ∈ Z+, we have

Q[n] =Q [mI(M,n+m1) −m1] + (Q[n] −Q [mI(M,n+m1) −m1])
(a)= Q[n] −Q [mI(M,n+m1) −m1]
(b)= Q0[n +m1] −Q0 [mI(M,n+m1)]
(c)= 0, (A.6)

where (a) follows from the second claim (c.f., Eq. (A.5)), (b) from the
fact that there is no deletion over {I (M,n +m1) , . . . , n +m1}, and (c)
from the fact that n +m1 ≥ I (M,n +m1) and Eq. (3.3).

A.3. Proof of Lemma 5.

Proof. (Lemma 5) Since the random walk X lives in Z+ and can take
jumps of size at most 1, it suffices to verify that

P(X[n + 1] = x1 + 1 ∣X[n] = x1, min
r≥n+1

X[r] = 0) = 1 − q,

for all x1 ∈ Z+. We have

P(X[n + 1] = x1 + 1 ∣X[n] = x1, min
r≥n+1

X[r] = 0)

=
P (X[n + 1] = x1 + 1,minr≥n+1X[r] = 0 ∣X[n] = x1)

P (minr≥n+1X[r] = 0 ∣X[n] = x1)

(a)=
P (X[n + 1] = x1 + 1 ∣X[n] = x1) ⋅ P (minr≥n+1X[r] = 0 ∣X[n + 1] = x1 + 1)

P (minr≥n+1X[r] = 0 ∣X[n] = x1)
(b)= q ⋅ h(x1 + 1)

h(x1)
, (A.7)
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where

h(x) = P(min
r≥2

X[r] = 0 ∣X[1] = x) ,

and steps (a) and (b) follow from the Markov property and stationarity of
X, respectively. The values of {h(x) ∶ x ∈ Z+} satisfy the set of harmonic
equations

h(x) =
⎧⎪⎪⎨⎪⎪⎩

q ⋅ h(x + 1) + (1 − q) ⋅ h(x − 1), x ≥ 1,

q ⋅ h(1) + 1 − q, x = 0,
(A.8)

with the boundary condition

lim
x→∞

h(x) = 0. (A.9)

Solving Eqs. (A.8) and (A.9), we obtain the unique solution

h(x) = (1 − q
q

)
x

,

for all x ∈ Z+. By Eq. (A.7), this implies that

P(X[n + 1] = x1 + 1 ∣X[n] = x1, min
r≥n+1

X[r] = 0) = q ⋅ 1 − q
q

= 1 − q,

which proves the claim.

A.4. Proof of Proposition 2.

Proof. (Proposition 2) Claim 1 follows from the well-known steady-
state distribution of a random walk, or equivalently, the fact that Q[∞] has
the same distribution as the steady-state distribution of an M/M/1 queue
with traffic intensity ρ = 1−p

λ . For Claim 2, since Q is an irreducible Markov
chain that is positive recurrent, it follows that its time-average coincides
with E (Q[∞]) a.s.

The fact that Ei’s are i.i.d was shown in the discussion preceding Eq. (7.20)
in the proof of Proposition 1. The value of E (∣E1∣) follows by combining
Eqs. (4.1) and (7.20).

Let Bi,j be the length of the jth busy period (defined in Eq. (7.2)) in Ei.
By definition, B1,1 is distributed as the time till the random walk Q reaches
state 0, starting from state 1. We have

P (B1,1 ≥ x) ≤ P
⎛
⎝

⌊x⌋
∑
j=1

Xj ≤ −1
⎞
⎠
,
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where the Xj ’s are i.i.d, with P (X1 = 1) = 1−p
λ+1−p and P (X1 = −1) = λ

λ+1−p ,

which, by the Chernoff bound, implies an exponential tail bound for P (B1,1 ≥ x),
and in particular,

lim
θ↓0

GB1,1(θ) = 1, (A.10)

By Eq. (7.19), we have

G∣E1∣(ε) =E (exp (ε ⋅ ∣E1∣))

=E
⎛
⎝

exp
⎛
⎝
ε ⋅

⎛
⎝

1 +
N1

∑
j=1

B1,j
⎞
⎠
⎞
⎠
⎞
⎠

(a)= E (eε) ⋅E (exp (N1 ⋅GB1,1(ε)))
=E (eε) ⋅GN1 (ln (GB1,1(ε))) , (A.11)

where (a) follows from the fact that {N1} ∪ {B1,j ∶ j ∈ N} are mutually

independent, and GN1(x) = E (exp (x ⋅N1)). Since N1
d= Geo(1 − x) − 1,

limx↓0GN1(x) = 1, and by Eq. (A.10), we have that limε↓0G∣E1∣(ε) = 1, which
implies Eq. (7.27).

Finally, Eq. (7.28) follows from the third claim and the Elementary Re-
newal Theorem.

A.5. Proof of Lemma 8.

Proof. (Lemma 8) By the definition of F
−1
X1

and the strong law of large
numbers (SLLN), we have

lim
n→∞

1

n

n

∑
i=1

I (Xi ≥ F
−1
X1

(α)) = E (I (Xi ≥ F
−1
X1

(α))) < α, a.s. (A.12)

Denote by Sn,k set of top k elements in {Xi ∶ 1 ≤ i ≤ n}. By Eq. (A.12) and
the fact that Hn ≲ αn a.s., there exists N > 0 such that

P{∃N, s.t. minSn,Hn ≥ F
−1
X1

(α),∀n ≥ N} = 1,

which implies that

lim sup
n→∞

f ({Xi ∶ 1 ≤ i ≤ n} ,Hn)

≤ lim sup
n→∞

1

n

n

∑
i=1

Xi ⋅ I (Xi ≥ F
−1
X1

(α))

=E (X1 ⋅ I (X1 ≥ F
−1
X1

(α))) a.s., (A.13)

where the last equality again follows from the SLLN. This proves our claim.
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A.6. Proof of Lemma 10.

Proof. (Lemma 10)
We begin by stating the following fact:

Lemma 11. Let {Xi ∶ i ∈ N} be i.i.d random variables taking values in
R+, such that for some a, b > 0, P (X1 ≥ x) ≤ a ⋅exp(−b ⋅x) for all x ≥ 0. Then

max
1≤i≤n

Xi = o(n), a.s.,

as n→∞.

Proof.

lim
n→∞

P(max
1≤i≤n

Xi ≤
2

b
lnn) = lim

n→∞
P(X1 ≤

2

b
lnn)

n

≤ lim
n→∞

(1 − a ⋅ exp(−2 lnn))n

= lim
n→∞

(1 − a

n2
)
n

= 1. (A.14)

In other words, max1≤i≤nXi ≤ 2
b lnn a.s. as n →∞, which proves the claim.

Since the ∣Ei∣’s are i.i.d with E (∣E1∣) = λ+1−p
λ−(1−p) (Proposition 2), we have

mΨ
K =

K−1

∑
i=0

∣Ei∣ ∼ E (∣E1∣) ⋅K = λ + 1 − p
λ − (1 − p) ⋅K, a.s., (A.15)

by the strong law of large numbers. By Lemma 11 and Eqs. (7.27), we have

max
1≤i≤K

∣Ei∣ = o(K), a.s., (A.16)

as K →∞. By Eq. (A.16) and the fact that I (MΨ,mΨ
K) =K, we have

K − I (MΨ, l (mΨ
K)) =K − I (MΨ,mΨ

K − max
1≤i≤K

∣Ei∣)

(a)
≤ K − I (MΨ,mΨ

K) + max
1≤i≤K

∣Ei∣

= max
1≤i≤K

∣Ei∣

=o (K) , a.s., (A.17)
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as K → ∞, where (a) follows from the fact that at most one deletion can
occur in a single slot, and hence I(M,n+m) ≤ I(M,n)+m for all m,n ∈ N.
Since M̃ is feasible,

I (M̃, n) ≲ p

λ + 1 − p ⋅ n, (A.18)

as n→∞. We have,

h(K) = (K − I (MΨ, l (mΨ
K))) + (I (M̃,mΨ

K) − I (MΨ,mΨ
K))

(a)
≲ (K − I (MΨ, l (mΨ

K))) + p

λ + 1 − p ⋅m
Ψ
K −K

(b)∼ ( p

λ + 1 − p ⋅
λ + 1 − p
λ − (1 − p) − 1) ⋅K,

= 1 − λ
λ − (1 − p) ⋅K, a.s.,

asK →∞, where (a) follows from Eqs. (A.15) and (A.18), (b) from Eqs. (A.15)
and (A.17), which completes the proof.
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