
Infrastructure Support for Evaluation as a Service

Jimmy Lin1 and Miles Efron2

1 The iSchool, University of Maryland, College Park
2 Graduate School of Library and Information Science, University of Illinois, Urbana-Champaign

jimmylin@umd.edu, mefron@illinois.edu

ABSTRACT
How do we conduct large-scale community-wide evaluations
for information retrieval if we are unable to distribute the
document collection? This was the challenge we faced in
organizing a task on searching tweets at the Text Retrieval
Conference (TREC), since Twitter’s terms of service forbid
redistribution of tweets. Our solution, which we call “eval-
uation as a service”, was to provide an API through which
the collection can be accessed for completing the evaluation
task. This paper describes the infrastructure underlying the
service and its deployment at TREC 2013. We discuss the
merits of the approach and potential applicability to other
evaluation scenarios.

Categories and Subject Descriptors: H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval

Keywords: TREC Microblog; tweet search

1. INTRODUCTION
Large-scale community-wide evaluations are integral to in-
formation retrieval research and play an important role in
advancing the state of the art. Typically, they are orga-
nized around shared tasks, collections, and metrics, which
support meaningful comparisons between systems. The Text
Retrieval Conferences (TRECs) [9] in the US exemplify such
evaluations, and the model has been successfully replicated
in Europe (CLEF) and Asia (NTCIR, FIRE).

The Cranfield Paradigm [3], which underlies the evalu-
ation methodology in TREC and other evaluation series,
assumes that researchers can acquire the document collec-
tion under study—whether via physical CD-ROMs or DVDs
(in the early days), hard drives (today), or directly down-
loadable “from the cloud”. What if this is not possible?
One example is a collection of tweets: Twitter’s terms of
service forbid redistribution of such data and thus it would
not be permissible for an organization to host a collection
of tweets for download by researchers. Although there are
third-party resellers of Twitter data, the costs are too high
for distributing research collections. Other examples of data

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2577014.

that make wide distribution difficult include electronic med-
ical records, a subject of substantial interest by researchers
today—for obvious privacy concerns. Similar issues exist for
email search and desktop search as well.

We present one workable solution to this challenge that
has been operationalized in the TREC 2013 Microblog track:
an approach we call “evaluation as a service”, a play on cur-
rent cloud computing technologies such as “infrastructure as
a service” (IaaS), “platform as a service” (PaaS), and “soft-
ware as a service” (SaaS). The basic idea is that, instead
of distributing the collection, the evaluation organizers pro-
vide an API through which the collection can be accessed
for completing the evaluation task. This paper describes the
infrastructure underlying the service and its deployment at
TREC 2013. We conclude with a discussion of its merits
and potential applicability to other evaluation scenarios.

2. EVALUATION AS A SERVICE
The “evaluation as a service” approach implemented in the
TREC 2013 Microblog track evolved out of an attempt to
address deficiencies in the data distribution approach im-
plemented in the previous two iterations of the track, which
began in 2011. To provide better context we offer a quick
recap here, but refer the reader to previous track overview
papers for more details [5, 7]. In TREC 2011 and 2012,
the Microblog track used the Tweets2011 collection, specif-
ically created for those evaluations. Since Twitter’s terms
of service prohibit redistribution of tweets, it was necessary
to develop an alternative mechanism for researchers to ob-
tain the collection. The track organizers devised a process
whereby NIST distributed the ids of the tweets (rather than
the tweets themselves). Given these ids and a downloading
program developed by the organizers, a participant could
“recreate” the corpus. Since the downloading program ac-
cessed the twitter.com site directly, the tweets were deliv-
ered in accordance with Twitter’s terms of service.

The“download it yourself”approach adequately addressed
the no-redistribution issue but exhibited scalability limits.
In particular, the speed of the downloading program, which
had built-in rate limiting for “robotic politeness”, set a prac-
tical upper bound on collection size. The Tweets2011 col-
lection originally contained 16 million tweets, which is small
by modern standards. For 2013, we hoped to increase the
collection size by at least an order of magnitude, which re-
quired a completely new approach.

Our solution was to implement evaluation as a service.
We gathered a collection of tweets centrally, but instead of
distributing the tweets, we provided a service API through

79



which participants could access the tweets to complete the
task. Below, we describe this approach in more detail.

2.1 Collection Construction
To build the official collection, we developed a custom crawler
using the twitter4j Java library1 that gathered tweets from
Twitter’s streaming API.2 We crawled all tweets from the
public sample stream between February 1 and March 31,
2013 (inclusive). This level of access is available to anyone
with a Twitter account and does not require special autho-
rization. The collection was gathered from two separate vir-
tual machine instances on Amazon’s EC2 service, one on the
east coast of the US, and the other on the west coast of the
US. The redundant setup guarded against network outages
and other operational issues during the collection period.
Fortunately, no downtime was experienced during the data
collection period, so one of the copies was simply designated
as the official collection.

Messages are delivered in JSON from Twitter’s stream-
ing API: these messages contain posted tweets as well as
notifications of tweets that have been deleted. The crawler
packages all messages in one-hour compressed chunks. Thus,
the collection is comprised of 1416 gzipped files. In total, we
gathered 259 million tweets, although at the time of the eval-
uation the collection was reduced to 243 million tweets after
the removal of deleted tweets.

We made a decision early in the track planning phase
that all software infrastructure associated with the evalu-
ation would be open source and hosted on GitHub.3 The
code for the crawler was developed during January 2013,
with input and discussion on a mailing list for developers.
By mid-January, we had an operational crawler ready for
testing by a few volunteers, and on January 23, 2013, the
crawler was released to all participants.

The official collection period was publicized on the track
mailing list well in advance of the actual start date, which
gave participants the opportunity to run the crawler them-
selves to gather contemporaneous tweets. Although these
crawls may not have the same content as the official collec-
tion, they are nevertheless useful for computing term statis-
tics, background models, etc. Based on an informal survey
conducted over the track mailing list in November 2013, at
least half a dozen groups from around the world gathered
their own local private collections.

2.2 API Specification
The main idea behind “evaluation as a service” is to pro-
vide a shared API using which participants can complete
the evaluation without needing access to the raw collection.
To this end, we provided a search API built using Thrift.4

Thrift is a software framework for developing scalable ser-
vices. It was originally developed at Facebook, but is now
an open-source Apache project. The framework has gained
popularity over the last several years and is currently an in-
tegral part of production software stacks at many internet
companies, including Facebook and Twitter. Thrift pro-
vides an Interface Definition Language (IDL) for describing
services and data types. From these definitions, the Thrift
compiler automatically generates RPC clients and servers as

1http://twitter4j.org/en/index.html
2https://dev.twitter.com/docs/streaming-apis
3http://twittertools.cc/
4http://thrift.apache.org/

struct TQuery {
1: string group,
2: string token,
3: string text,
4: i64 max_id,
5: i32 num_results

}

struct TResult {
1: i64 id,
2: double rsv,
3: string screen_name,
4: i64 epoch,
5: string text,
6: i32 followers_count,
7: i32 statuses_count,
8: string lang,
9: i64 in_reply_to_status_id,
10: i64 in_reply_to_user_id,
11: i64 retweeted_status_id,
12: i64 retweeted_user_id,
13: i32 retweeted_count
}

Figure 1: Thrift definition of a query and a result.

service TrecSearch {
list<TResult> search(1: TQuery query)
throws (1: TrecSearchException error)

}

exception TrecSearchException {
1: string message

}

Figure 2: Thrift definition of the search API. The
service accepts a query and returns a list of results
(as defined in Figure 1).

well as code for serializing, deserializing, and manipulating
the defined datatypes. Thrift handles generation of boiler-
plate code for communications protocols, object transport,
method invocation, and other functionalities necessary to
build distributed services. The framework provides support
for Java, C++, Python, Ruby, as well as many other lan-
guages, which allows the development of language-neutral
services. For example, a Python Thrift client can commu-
nicate easily with a Thrift server written in Java because
the communication protocols and data types are defined in
a language-independent manner.

The Thrift definitions of the two main data types in the
TREC Microblog search API are shown in Figure 1. The
Interface Definition Language is similar to a C struct, and
contains an enumeration of numbered fields, each with a
type and a name. Most of the types are self-evident; i32

represents a 32-bit integer (int in Java), while i64 repre-
sents a 64-bit integer (long in Java). The TQuery object
represents a query, which contains the query text, a max_id

(i.e., requests the service to return only results smaller than
the id), and the number of results requested. For simplicity,
the service is stateless; access control is granted through a
group and token, which must be passed in the query each
time. The TResult object defines the search result (more de-
tails later). The service definition is shown in Figure 2. The
single method search, receives a TQuery object and returns
a list of TResult objects.

The service for the evaluation was written in Java using
the open-source Lucene search engine (version 4.3.1 at the

80



Table 1: Detailed Description of a Search Result.
Thrift field JSON element Optional? Type Description

id status.id no long unique tweet id assigned by Twitter

rsv no double retrieval status value, i.e., document score

screen_name status.user.id no String user who posted the tweet

epoch no long UNIX epoch second when the tweet was posted

text status.text no String text of the tweet

followers_count status.user.followers_count no int the number of followers the user has

statuses_count status.user.friends_count no int the number of tweets the user has posted

lang status.lang yes String the language of the tweet

in_reply_to_status_id status.in_reply_to_status_id yes long the id of the tweet that this tweet replies to

in_reply_to_user_id status.in_reply_to_user_id yes long the id of the user who posted the tweet that this

tweet replies to

retweeted_status_id status.retweeted_status_id yes long the id of the tweet that this tweet is a retweet of

retweeted_user_id status.retweeted_user_id yes long the id of the user who posted the tweet that this

tweet is a retweet of

retweeted_count status_retweet_count yes int number of times this tweet has been retweeted

time of the evaluation).5 We provided a sample client in Java
to illustrate the features of the API. In addition, we received
the contribution of a Python client from the community,
which was later integrated into the code base.

Search ranking was provided using Lucene’s implementa-
tion of query-likelihood (LMDirichletSimilarity). Results
were filtered such that tweets with ids greater than max_id

(as specified in the TQuery object) were discarded. Each
search result was populated with the fields described in Ta-
ble 1 (corresponding to the Thrift definition in Figure 1). For
each field, the table also provides its corresponding element
in the original JSON messages from the Twitter stream-
ing API, whether the element is optional (for example, only
retweets have certain fields), the corresponding Java data
type, and a short description.

3. TREC DEPLOYMENT
The service described in the previous section was deployed
for the first time in the TREC 2013 Microblog evaluation.
Implementation of the search infrastructure progressed dur-
ing Spring 2013 and by June the service endpoint, which
ran on Amazon’s EC2 service, was released to all regis-
tered TREC participants. The service was available until
the TREC evaluation deadline in August. We maintained
two distinct services: one on the Tweets2011 collection cre-
ated for the Microblog tracks in TREC 2011 and TREC
2012, and another on the new collection gathered in 2013.
Both services behaved exactly the same, except on different
document collections. Since evaluation data were available
for the Tweets2011 collection, that service allowed partici-
pants to train their systems on old topics.

In the official evaluation, TREC received 71 runs from
twenty groups around the world, making the Microblog track
the largest at TREC 2013 in terms of number of participat-
ing teams. From June 7 to August 16, 2013, the API on the
Tweets2011 collection served over 555k queries—this usage
corresponded to teams developing systems with data from
previous years. During roughly the same interval, the API
on the 2013 collection served 93k queries.

Based on the level of participation and the usage statis-
tics, the evaluation-as-a-service approach seems to have been

5http://lucene.apache.org/

successful. We were able to meet our original goal of expand-
ing the collection by an order of magnitude while respecting
Twitter’s terms of service. The API was easy enough to use
and did not pose a high barrier to entry for participation.
At the same time, the API was rich enough to allow teams
to explore the research questions they were interested in.

4. DISCUSSION
The evaluation-as-a-service approach enabled community-
wide evaluations on documents that cannot be distributed.
However, we see other advantages to this model as well:

More meaningful system comparisons. Modern infor-
mation retrieval systems have become complex collections
of components for document ingestion, inverted indexing,
query evaluation, document ranking, and machine learning.
As a result, it can be difficult to isolate and attribute dif-
ferences in effectiveness to specific components, algorithms,
or techniques. Consider a baseline retrieval model such
as BM25 or query-likelihood within the language modeling
framework—alternative implementations may produce sub-
stantially different retrieval results due to small but conse-
quential decisions such as the tokenization strategy, stem-
ming algorithm, method for pruning the term space (e.g.,
discarding long or rare terms), and other engineering is-
sues. Although the prevalence of open-source retrieval en-
gines makes it possible for a researcher to see exactly what
a system is doing, in practice few cross-system comparisons
are performed with“calibration”on baseline models, making
it sometimes difficult to compare advanced techniques based
on different system implementations. In some cases, the ef-
fects that we are hoping to study are masked by differences
we are not interested in.

The evaluation-as-a-service model addresses many of these
issues by deploying a common API that is used by all par-
ticipants. This means that everything “below” the API is
exactly the same for everyone. Thus, we can be confident
that differences in effectiveness can be attributed to retrieval
techniques on top of the API, rather than “uninteresting” is-
sues such as tokenization and stemming.

Support of open-source community development. A
decision we made early on in the development of the evalu-
ation infrastructure was that all associated software would

81



be open source. It is desirable that all participants know
exactly how the API works and have access to all the minor
but potentially important decisions that were made in its
implementation (see above).

We hope that this decision has the additional effect of
more effectively fostering an open-source community of plug-
gable system components. There is growing recognition
within the IR community that open source software helps
advance the state of the art; a common API increases the
likelihood that code components inter-operate, thus increas-
ing the likelihood of adoption. Although there is already
widespread availability of open-source retrieval engines, near-
ly all systems are monolithic in the sense that they were not
designed for service decomposition along functional bound-
aries. This means that a particular algorithm developed for
one system cannot be easily used by researchers who have
written their code on another system due to interface incom-
patibilities. A common API begins to address this issue.

Solution for systems engineering issues. To reflect to-
day’s retrieval environment, modern document collections
for IR evaluations have grown quite large—sizes in the tens
of terabytes are common. Manipulating these large collec-
tions represents non-trivial engineering challenges. Despite
the field’s growing familiarity with large-scale distributed
frameworks such as Hadoop, the available open-source so-
lutions are not quite yet “turn key”. Although the size
of the tweet collection used in the TREC 2013 Microblog
track remains manageable (∼100 GB compressed), the large
sizes of other document collections (e.g., ClueWeb12 or the
TREC KBA corpus) pose a barrier to entry for many re-
search groups. Even for well-resourced research teams with
access to large compute clusters, the effort devoted to sys-
tems engineering challenges might be better spent on the
development of retrieval techniques.

The evaluation-as-a-service model provides a solution to
these systems engineering issues. Scalability challenges only
need to be solved once, by the developers of the API. Par-
ticipants need not be concerned about systems issues that
are hidden behind the abstraction.

To be fair, however, the evaluation-as-a-service model suffers
from several challenges:

Limited diversity in retrieval techniques. The biggest
drawback of a common API is that it prescribes a particular
approach to the evaluation task. Any abstraction necessarily
restricts the flexibility of researchers to tackle the problem in
creative ways. One possible way to mitigate this concern is
to institute community-driven processes for refining the API
so that researchers’ needs are met. Since the code is open
source, we are able to accept contributions that augment the
capabilities of the service.

Unknown evaluation characteristics. The information
retrieval literature has a tradition of studies that enhance
our understanding of the limits of test collections, e.g., their
reusability, stability, topic effects, and other related issues
(e.g., [8, 1, 6], just to name a few). These studies collectively
give us confidence that our evaluation tools can be“trusted”.
These meta-evaluations need to be conducted on the API.

Long-term availability of service APIs. One essen-
tial property of well-built test collections is reusability by
researchers who did not participate in their original cre-
ation, often long after the initial evaluation. A traditional
test collection, once created, requires relatively modest re-

sources to maintain. Service APIs, on the other hand, are
far more expensive to operate: first, hardware resources must
be procured (whether physical servers or infrastructure “in
the cloud”); second, humans must be in the loop for both
administrative functions (e.g., granting access to new users)
and to ensure availability (e.g., restarting the service when
it crashes). Longevity is especially a concern—for example,
TREC collections from the 1990s are still used today. In
the evaluation-as-a-service model, we have not developed a
process for sustaining the service API in the long term.

5. DEMONSTRATION
In this demonstration we will take the user on a tour of
the infrastructure described in this short paper to provide a
sense of how all the software components fit together. We
have prepared two different open-source clients that use the
API: the first performs minimal post-processing on the raw
output to create a baseline ranking, while the second imple-
ments relevance models for query expansion [4], which has
been shown to be very effective for the tweet search task.
Users will be able to try different queries and examine the
execution traces of both algorithms.

6. CONCLUSIONS
“Evaluation as a service” began as an attempt to overcome
a specific usage restriction, but we see broader applicability
for other evaluation scenarios where collections cannot be
distributed, such as medical records search. We can push
the idea even further, by shipping code to the evaluation in-
frastructure: Participants would submit their systems, and
evaluation would be conducted without the participants ever
touching the sensitive evaluation data. Although this ap-
proach is not entirely new – previous examples include the
TREC 2005 Spam track [2] and the Music Information Re-
trieval Evaluation eXchange (MIREX) – the maturation of
technologies such as virtualization and standardized RPC
mechanisms make this approach easier to implement.

7. ACKNOWLEDGMENTS
This work has been supported by NSF under awards IIS-
0916043, IIS-1217279, and IIS-1218043. Any opinions, find-
ings, conclusions, or recommendations expressed are the au-
thors’ and do not necessarily reflect those of the sponsor.

8. REFERENCES
[1] C. Buckley and E. M. Voorhees. Retrieval evaluation with

incomplete information. SIGIR, 2004.
[2] G. Cormack and T. Lynam. TREC 2005 spam track

overview. TREC, 2005.
[3] D. Harman. Information Retrieval Evaluation. Morgan &

Claypool Publishers, 2011.

[4] V. Lavrenko and W. B. Croft. Relevance-based language
models. SIGIR, 2001.

[5] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of
the TREC-2011 Microblog Track. TREC, 2011.

[6] M. Sanderson and J. Zobel. Information retrieval system
evaluation: Effort, sensitivity, and reliability. SIGIR, 2005.

[7] I. Soboroff, I. Ounis, C. Macdonald, and J. Lin. Overview of
the TREC-2012 Microblog Track. TREC, 2012.

[8] E. M. Voorhees. Variations in relevance judgments and the
measurement of retrieval effectiveness. SIGIR, 1998.

[9] E. M. Voorhees. The philosophy of information retrieval
evaluation. CLEF, 2002.

82




