
Seven Challenges for RESTful Transaction Models

Nandana Mihindukulasooriya, Miguel Esteban-Gutiérrez, Raúl García-Castro
Center for Open Middleware, Ontology Engineering Group

Universidad Politécnica de Madrid, Spain
{nmihindu,mesteban,rgarcia}@fi.upm.es

ABSTRACT
The REpresentational State Transfer (REST) architectural style de-
scribes the design principles that made the World Wide Web scal-
able and the same principles can be applied in enterprise context to
do loosely coupled and scalable application integration. In recent
years, RESTful services are gaining traction in the industry and are
commonly used as a simpler alternative to SOAP Web Services.

However, one of the main drawbacks of RESTful services is
the lack of standard mechanisms to support advanced quality-of-
service requirements that are common to enterprises. Transaction
processing is one of the essential features of enterprise information
systems and several transaction models have been proposed in the
past years to fulfill the gap of transaction processing in RESTful
services. The goal of this paper is to analyze the state-of-the-art
RESTful transaction models and identify the current challenges.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures; H.1 [In-
formation Systems]: Models and Principles; H.2.4 [Information
Systems]: Transaction processing

Keywords
REST, Transactions, Challenges

1. INTRODUCTION
REpresentational State Transfer (REST) architectural style, ini-

tially known as “HTTP object model”, was developed as a means
of communicating Web concepts and is the foundation for the mod-
ern Web architecture [4]. REST introduces several architectural
constraints on hypermedia systems design such asresource iden-
tification (addressability),uniform interface, stateless interactions,
self-describing messages, andhypermedia as the engine of applica-
tion state(HATEOAS). These constraints induce certain desirable
properties that enable the development of loosely coupled scalable
systems.

However, not every web application (including those calling them-
selvesRESTful) adheres to all these REST constraints. Models such
as theRichardson Maturity Modelcategorize services according to
their adherence to the REST constraints [24], and provide an insight
about the impact and consequences of dropping these constraints.

Nonetheless, Web Services built following the REST architec-
tural constraints (RESTful services, from now on) are getting trac-
tion in the industry in recent years as a simpler alternative to appli-
cation integration. However, one of the main criticisms is the lack

Copyright is held by the author/owner(s).
WWW’14 Companion,, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2579218.

of standard mechanisms to support the advanced quality of service
requirements that are required by enterprises [14].

Transaction support is an important quality-of-service require-
ment in most enterprise business scenarios. A real life transaction
example would be transferring money from one account to another
in a banking application. Both the deduction of money from one
account and the addition to the other should happen in an “all-or-
nothing” manner and the intermediate inconsistent states such as
when only one account is modified should not be visible outside the
transaction. In computer applications, a transaction is defined as a
sequence of operations on the physical or abstract application state
that can be considered as a single unit of work [7]. Gray defined the
transaction concept withatomicity, durability, andconsistency[6]
and Haerder & Reuter coined the acronymACID addingisolation
to the aforementioned three properties [8].

Beyond this basicflat transaction definition, further transaction
types have been developed in order to meet the requirements of
other real-life complex transactional scenarios:chained transac-
tions, nested transactions, distributed transactions, long-lived trans-
actions, etc [7].

However, the strong consistency property of the ACID model
may hinder other quality aspects of data-sharing systems. Accord-
ing to theCAPtheorem [2], these systems can only exhibit at most
two of the following three properties:consistency, availability, and
tolerance to network partitions. Furthermore, even in the absence
of network partitions, data replication based high-availability sys-
tems require a tradeoff betweenconsistencyandlatencyas stated by
thePACELCtheorem [1]. To overcome these issues, other consis-
tency models propose to make a compromise betweenconsistency
andavailability/latencyby relaxing consistency guarantees in order
to catter for network partition fault-tolerance and high-availability
(seeeventual consistency[23] andBASE[15]).

Up to now, there have been several efforts to define ACID-based
flat transactions for RESTful services. In this paper we analyze the
state-of-the-art to this extent and identify the current challenges for
REST-compliant strongly consistent transaction models.

The rest of the paper is organized as follows: Section 2 provides
an overview of RESTful transactions with different characteristics
and analysis of existing models; Section 3 presents a set of chal-
lenges that were identified based on the previous analysis; and, Sec-
tion 4 draws some conclusions.

2. RESTFUL TRANSACTIONS

2.1 RESTful transaction characteristics
In order to understand the nature of transactional scenarios for

RESTful applications, we have characterized them according to
three dimensions: (1) theresourcesthat are involved in the trans-



action; (2) theworkflow of actionsthat will be carried out during
the transaction; and (3) the specific characteristic of thebusiness
application domain.

Resourcecharacteristics include the number of resources (car-
dinality), the ownership and management of resources, and their
physical distribution. The characteristics of theworkflow dimen-
sion include flexibility (i.e., whether the transaction workflow has
to be known at design time or it can be defined on-the-fly at run-
time), whether the actions are interactive or not, whether the ac-
tions are organized as a flat sequential workflow or include more
complex organizations such as chains or hierarchies, and whether
the participating resources have to have a pre-agreement (context)
or they are loosely-coupled (i.e. any resource in the wild can partic-
ipate in a transaction). Finally,domain-specificcharacteristics in-
clude the average expected duration of a transaction, the reversibil-
ity or compensability of actions, and the level of transactional guar-
antees required by the business use case. Table 1 summarizes the
different characteristics.

Dimension Characteristic Variations

Resource

Cardinality Single
Multiple

Management Centralized authority
Decentralized authority

Distribution Single node
Distributed

Workflow

Flexibility Predefined
Free-form

Interactivity Interactive
Non-interactive

Structure Flat
Chained

Hierarchical

Scope Predefined context
Global

Domain-
specific

Lifetime Short-lived
Long-lived

Actions Reversible
Nonreversible
Compensable

Required guarantees ACID
BASE

Reservation (ACD)

Table 1: Characteristics of RESTful transaction scenarios

2.2 RESTful transaction models
The most intuitive way to support transactions in RESTful appli-

cations is to design the resource model in a way that state transitions
that have to happen in a transactional manner can be done through
a single resource by introducing coarse-grained resources that cap-
ture the complete transactional state (e.g. two account resources
vs. a single money transfer resource). However, looking at the dif-
ferent characteristics identified in the previous section, it becomes
clear that this is not always possible. Thus, several transaction mod-
els have been proposed for RESTful services over the past years
as summarized in Table 2. In addition to the aforementioned ap-
proaches, there are other implementation oriented approaches such
as REST-* / JBoss JAX-RS transaction support (both ACID and
compensating transactions)1.

We have analyzed the aforementioned models using an exam-
ple scenario of updating two resources with each model, summa-
rized in Table 3. The goal was not to select one model as the best
model but to understand the state of the art about RESTful trans-
action models. First we looked at the model’s ability to provide

1
https://community.jboss.org/wiki/

TransactionalSupportForJAXRSBasedApplications

Key Year Transaction Model
1 ∼2000 Batched transactions with overloaded POST
2 2007 Transactions as resources [18]
3 2009 Optimistic technique for transactions using

REST [19]
4 2009 A consistent and recoverable RESTful transac-

tion model (RETRO) [12, 17, 16]
5 2010 Timestamp-based two phase commit protocol

for RESTful services (TS2PC4RS) [20, 22,
21]

6 2011 Try-Cancel/Confirm pattern (TCC) [13]
7 2012 Atomic REST batched transactions [9]

Table 2: RESTful transaction models

ACID guarantees in transactions. One thing to note is that while
atomicity and isolation are guaranteed by the transaction protocols,
consistency validation and durability are mostly guaranteed by the
implementation (thus are not included in Table 3). Another crite-
rion was the RESTfulness of the model, remarking whether or not
the protocol communications adhere to relevant REST constraints.

Property Transaction models
1 2 3 4 5 6 7

Transaction properties
Atomicity X X X

1
X X X X

Isolation X X
2 X X X X X

REST Constraints
Uniform interfaces X X X X X X X

Statelessness X X3 X X3 X X X

HATEOAS X X X X X X X
HTTP related properties

Semantics not violated X X X X X X X

Common verbs supported X X X X X X X

Low overhead X X X X X X X

Miscellaneous properties
Optionality X ? ? X ? ? X

Discoverable ? ? ? X ? ? X

Distributed transactions X X X ? X X ?
Theoretical proofs ? ? ? X X X ?
Implementation available X ? ? X ? X X

Performance evaluation ? ? ? ? ? X ?
Legend -XTrue / X False / ? Unknown or not defined in the model
1 - Given the actions can be compensated
2 - Possible lost update problem
3 - See section 3.3

Table 3: Analysis of existing RESTful transaction models

Because in practice most RESTful services are implemented us-
ing HTTP, we verified that the models do not violate HTTP seman-
tics (e.g. safety and idempotency of certain operations), support the
commonly used HTTP verbs (GET, PUT, POST, and DELETE) and
only use the standard verbs defined in HTTP/1.1. These aspects are
important for the interoperability and wide adoption of the model.
In addition, we analyzed the overhead added by the transaction pro-
tocol (in the success case) to the communication, i.e. additional
HTTP round trips and payload data.

Further, other miscellaneous properties were considered: (a)pro-
tocol optionality, that is, whether or not servers and clients that do
not support the protocol can co-exist with others that support it (this
should facilitate the progressive adoption of the model); (b)discov-
erability, that is, all the metadata needed to execute the transactions
can be discoveredws in a RESTful manner without out-of-band
knowledge (i.e. following links); (c) the availability of theoreti-
cal proofs that demonstrate whether or not the model is correct;
(d) the availability of implementations; and (e) the provision of an
evaluation of the overhead introduced by the protocol.

The results of the analysis show that most models fail to fulfill
several desirable properties and cannot be used in some of the sce-

https://community.jboss.org/wiki/TransactionalSupportForJAXRSBasedApplications
https://community.jboss.org/wiki/TransactionalSupportForJAXRSBasedApplications


narios identified in Table 1 due to some challenges for RESTful
transaction processing that will be discussed in the next section.

3. CHALLENGES FOR RESTFUL TRANS-
ACTIONS

Based on the analysis of the existing transaction models and com-
paring them with the different characteristics of RESTful transac-
tion scenarios, we have identified the following challenges.

3.1 Decentralized authorities
Transactions that involve resources managed by multiple author-

ities is one of the main challenges in current RESTful transaction
models. The main problem of decentralized authorities is the need
for coordination and agreement with regards to the final outcome
of a transaction whilst ensuring its atomicity, an issue that requires
complex failure modes and recovery mechanisms [3]. This is a
common problem in distributed computing that is typically solved
using a consensus protocol, i.e., the two-phase commit (usually the
XA protocol). However, the majority of the RESTful transaction
models do not cover this scenario and the challenge is the design a
stateful consensus protocol without violating REST constraints.

3.2 Distributed servers
Distributed systems in which the ordering and timing of events is

relevant2 require the synchronization oflogical clocks of different
nodes [10]. Currently, mechanisms such as Lamport timestamps
and vector clocks are used for ordering events in distributed sys-
tems [10]. How these approaches can be applied in REST services
for ordering the actions on different resources and how timestamps
can be used consistently still remains a challenge to be solved.

3.3 Statelessness and isolation
The statelessnessREST constraint states that servers should be

stateless and should not maintain any conversation state with the
client (client-stateless-server) [5]. However, theisolation ACID
property states that any intermediate change of a transaction should
not be visible to ongoing parallel transactions. This requires servers
to maintain intermediate states for actions that are not committed
by maintaining a session state for a transaction. Thus, these two
properties are in conflict.

Current isolation-preserving REST transaction models solve this
problem representing these session states as a set of temporary re-
sources that have their own identifiers (URLs). Despite this ap-
proach aligns with W3C best practices3, it is arguably a REST
anti-pattern, as those temporary resources do not represent resource
state but application (or session) state. Furthermore, this approach
introduces a new challenge: link transparency. When working with
temporary resources, it is necessary to distinguish links that point
to temporary resources from those that point to original resources,
so that when the transaction is committed, all the links of original
representations point to original resources.

An alternative approach to solve this issue could be the usage of
a mechanism similar to that proposed by the Memento framework4

for providing access to representations of different resource states
using the same identifier (URL). However, this approach directly
violates the stateless REST constraint.

2Those in which agents residing in different nodes of the system
have to perform actions in a particular order.
3
http://www.w3.org/2001/tag/doc/IdentifyingApplicationState#

UseURIsforStates
4
http://www.ietf.org/rfc/rfc7089.txt

3.4 Availability, deadlocks, and fairness guar-
antees

Locking has been the prominent solution for achieving isolation
in transactions in the database field [7] and most RESTful trans-
action models have followed the same path. However, there are
several issues that need to be taken care of when using this tech-
nique, in particular: availability, deadlock prevention, and fairness
guarantees.

Availability is a fundamental aspect of distributed applications,
therefore transaction models should minimize the negative effects
of locks on the availability of resources. This issue is deepened
by the fact that is REST applications operations take longer due to
transport overheads (HTTP).

Deadlocks and resource starvation are common problems when
locks are not used consistently or when fairness is not guaranteed.
These become important specially when the acquisition and release
of locks is managed by different clients. One corner case would be
a misbehaved client (or a client with a defect) not releasing the
locks after it has finished with a transaction.

Current approaches use two-phase locking with a growing phase
and a shrinking phase to prevent deadlocks, and use timeouts to
get some degree of fairness (lock auto-release after timeout). How-
ever, the enforcement of two-phase locking and achieving fairness
remains a challenge for the RESTful transaction models.

Another alternative is to use optimistic concurrency control mech-
anisms provided by HTTP using conditional updates with ETags.
However, this approach does not guarantee isolation as intermedi-
ate states of the resources become visible outside the transaction.

3.5 Resource granularity and composition
REST allows resources to be at different granularity levels. Think-

ing in a hierarchical model, an application could simultaneously
provide a high-level view of an entity via a coarse-grained resource
and a detailed view using a fine-grained resource. Also,collec-
tion resources found in specifications such as AtomPub5, Hydra
[11], or the Linked Data Platform6 are special cases of resource
composition. These particular cases lead to problematic situations
when locks are used with these resources, i.e., locking a specific
resource might not prevent the information carried in that resource
from being read or updated because this information is not exclu-
sively bounded to such resource. Thus, resource locking might not
effectively prevent the access to the locked resource state since the
same data may be exposed by a different resource that is not being
locked. Managing the overall consistency when the same state is
exposed via multiple resources remains a challenge for RESTful
transaction models.

3.6 Heuristic generation
Most of the transaction models make use of heuristics when de-

ciding on certain transaction parameters such as the timeouts used
in [12, 13]. In this case, generating a suitable timeout is a challenge
because it not only affects the performance but the correctness of
the model, i.e., a premature timeout can decrease the performance
or make the system consistently fail [13]. In scenarios that involve
decentralization and distribution, heuristics generation is even more
difficult since most of the information is (a) not known in advance,
and (b) not known by a single party. Most of the RESTful transac-
tion models do not provide algorithms nor guidelines for heuristic
generation, and thus remains as a challenge.

5
http://atompub.org/

6
http://www.w3.org/TR/ldp/

http://www.w3.org/2001/tag/doc/IdentifyingApplicationState#UseURIsforStates
http://www.w3.org/2001/tag/doc/IdentifyingApplicationState#UseURIsforStates
http://www.ietf.org/rfc/rfc7089.txt
http://atompub.org/
http://www.w3.org/TR/ldp/


3.7 Gap between research and industry
Though several transaction models have been proposed in the

past decade, only few are used in industry. Out of the current
approaches, the overloaded POST method seems to be the most
widely used mechanism for REST transactions due to its simplic-
ity and efficiency. However, it has a main disadvantage: it cannot
handle distributed and decentralized authority scenarios.

It is worth taking a look at why the other approaches are not tak-
ing as much traction. One of the key issues is the complexity and
overhead added by the transaction mechanisms. Another aspect is
that they are defined on their own, when in practice they have to be
integrated with existing development frameworks as well as to take
into account other cross-cutting concerns, i.e., security. Thus, the
challenge is defining a simple yet efficient REST-compliant proto-
col that provides transactional guarantees, which can be seamlessly
integrated with other technologies of the REST development stack.

4. CONCLUSIONS
The main conclusion of the analysis of the existing RESTful

transaction models is thatone model does not fit all. RESTful trans-
action scenarios are diverse in many dimensions and no transaction
model fulfills the requirements of every scenario. On the contrary,
these models are designed to cover specific scenarios. However,
there are still some scenarios that are not sufficiently supported by
the current models.

In this paper we have identified several challenges that have been
overlooked by current models, which have to be considered when
addressing the uncovered RESTful transaction scenarios. Some of
the challenges are similar to those faced by distributed database
transactions (i.e., decentralized authorities and distributed servers)
while others (i.e., statelessness and resource granularity) are spe-
cific to REST architectural style. Thus, it is worth to take a look at
how these problems are solved in database and distributed systems
research areas to evaluate whether the same solutions apply or how
they can be adapted in the context of RESTful services.

5. ACKNOWLEDGMENTS
This research is supported by the ALM iStack project of the Cen-

ter for Open Middleware.

6. REFERENCES
[1] Abadi, D.J.: Consistency Tradeoffs in Modern Distributed

Database System Design: CAP is Only Part of the Story.
Computer 45(2), 37–42 (2012)

[2] Brewer, E.A.: Towards Robust Distributed Systems. In:
Proceedings of the Nineteenth Annual ACM Symposium on
Principles of Distributed Computing. p. 7. PODC ’00, ACM,
New York, NY, USA (2000)

[3] Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.:
Distributed Systems: Concepts and Design, 5th edition.
Addison-Wesley (2011)

[4] Fielding, R.T., Taylor, R.N.: Principled design of the modern
web architecture. ACM Transactions on Internet Technology
(TOIT) 2(2), 115–150 (2002)

[5] Fielding, R.T.: Architectural styles and the design of
network-based software architectures. Ph.D. thesis,
University of California (2000)

[6] Gray, J.: The Transaction Concept: Virtues and Limitations
(Invited Paper). In: Proceedings of the Seventh International
Conference on Very Large Data Bases - Volume 7. pp.
144–154. VLDB ’81, VLDB Endowment (1981)

[7] Gray, J., Reuter, A.: Transaction processing. Kaufmann
(1993)

[8] Haerder, T., Reuter, A.: Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR) 15(4),
287–317 (1983)

[9] Kochman, S., Wojciechowski, P.T., Kmieciak, M.: Batched
transactions for RESTful web services. In: Current Trends in
Web Engineering, pp. 86–98. Springer (2012)

[10] Lamport, L.: Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM 21(7),
558–565 (1978)

[11] Lanthaler, M., Guetl, C.: Hydra: A Vocabulary for
Hypermedia-Driven Web APIs. In: Bizer, C., Heath, T.,
Berners-Lee, T., Hausenblas, M., Auer, S. (eds.) LDOW.
CEUR Workshop Proceedings, vol. 996. CEUR-WS.org
(2013)

[12] Marinos, A., Razavi, A., Moschoyiannis, S., Krause, P.:
RETRO: A consistent and recoverable RESTful transaction
model. In: Web Services, 2009. ICWS 2009. IEEE
International Conference on. pp. 181–188. IEEE (2009)

[13] Pardon, G., Pautasso, C.: Towards distributed atomic
transactions over RESTful services. In: REST: From
Research to Practice, pp. 507–524. Springer (2011)

[14] Pautasso, C., Zimmermann, O., Leymann, F.: Restful Web
Services vs. "Big"’ Web Services: Making the Right
Architectural Decision. In: Proceedings of the 17th
International Conference on World Wide Web. pp. 805–814.
WWW ’08, ACM, New York, NY, USA (2008)

[15] Pritchett, D.: BASE: An Acid Alternative. Queue 6(3),
48–55 (May 2008)

[16] Razavi, A., Marinos, A., Moschoyiannis, S., Krause, P.:
Recovery management in RESTful interactions. In: Digital
Ecosystems and Technologies, 2009. DEST’09. 3rd IEEE
International Conference on. pp. 419–424. IEEE (2009)

[17] Razavi, A., Marinos, A., Moschoyiannis, S., Krause, P.:
RESTful transactions supported by the isolation theorems.
In: Web Engineering, pp. 394–409. Springer (2009)

[18] Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly
(2008)

[19] da Silva Maciel, L.A.H., Hirata, C.M.: An optimistic
technique for transactions control using REST architectural
style. In: Proceedings of the 2009 ACM symposium on
Applied Computing. pp. 664–669. ACM (2009)

[20] da Silva Maciel, L.A.H., Hirata, C.M.: A timestamp-based
two phase commit protocol for web services using rest
architectural style. Journal of Web Engineering 9(3),
266–282 (2010)

[21] da Silva Maciel, L.A.H., Hirata, C.M.: Extending
timestamp-based two phase commit protocol for RESTful
services to meet business rules. In: Proceedings of the 2011
ACM Symposium on Applied Computing. pp. 778–785.
ACM (2011)

[22] da Silva Maciel, L.A.H., Hirata, C.M.: Fault-tolerant
timestamp-based two-phase commit protocol for RESTful
services. Software: Practice and Experience (2012)

[23] Vogels, W.: Eventually Consistent. Queue 6(6), 14–19 (Oct
2008)

[24] Wilde, E., Pautasso, C.: REST: From Research to Practice.
Springer (2011)


	Introduction
	RESTful transactions
	RESTful transaction characteristics
	RESTful transaction models

	Challenges for RESTful transactions
	Decentralized authorities
	Distributed servers
	Statelessness and isolation
	Availability, deadlocks, and fairness guarantees
	Resource granularity and composition
	Heuristic generation
	Gap between research and industry

	Conclusions
	Acknowledgments
	References

