
Integrated Modulo Scheduling and Cluster Assignment for
TI TMS320C64x+ Architecture ∗

Nikolai Kim Andreas Krall

Institute of Computer Languages,
Vienna University of Technology

{kim,andi}@complang.tuwien.ac.at

ABSTRACT

For the exploitation of the available parallelism clustered
Very Long InstructionWord (VLIW) processors rely on high-
ly optimizing compilers. Aiming this parallelism, many ad-
vanced compiler concepts have been developed and proposed
in the past. Many of them concentrate on loops only as
most of the execution time is usually spent executing re-
peating patterns of code. Software pipelining techniques,
such as modulo scheduling, try to speed up the execution
of loops by simultaneous initiation of multiple iterations,
thus additionally exploiting parallelism across loop itera-
tion boundaries. This increases processor utilization at the
cost of higher complexity which is especially true for archi-
tectures featuring multiple clusters and distributed register
files. Additional scheduling constraints need to be consid-
ered in order to produce valid schedules. Targeting TI’s
TMS320C64x+ clustered VLIW architecture, we describe a
code generation approach that adapts an iterative modulo
scheduling scheme, and also propose two heuristics for clus-
ter assignment, all together implemented within the popular
LLVM compiler framework. We cover implementation of de-
veloped algorithms, present evaluation results for a selection
of benchmarks popular for embedded system development
and discuss gained insights on the topics of integrated mod-
ulo scheduling and cluster assignment in this paper.

Keywords

VLIW, instruction level parallelism, modulo scheduling, clus-
ter assignment, phase ordering, integer linear programming,
LLVM

1. INTRODUCTION
Software pipelining is an effective loop scheduling tech-

nique for exploiting instruction level parallelism. The main

∗This work is supported by the Austrian Science Fund
(FWF) under contract P21842, Optimal Code Generation
for Explicitly Parallel Processors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ODES’14 , February 15 - 16 2014, Orlando, FL, USA
Copyright 2014 ACM 978-1-4503-2595-0/14/02 ...$15.00.

idea is to restructure loops for the overlapped execution of
multiple iterations and to issue them at a computed, con-
stant rate. This issue rate, called initiation interval (II),
depends on the loop properties and is subject to additional
restrictions. Resource constraints restrict the initiation in-
terval regarding the number and availability of functional
units on the target machine, recurrence constraints require
II that no data dependences, that span multiple loop iter-
ations, are violated. Thus, for the highest performance in
terms of pipeline throughput, the II is the smallest value
that satisfies all of these constraints [19] [1].

Conditional control flow within a loop complicates schedul-
ing in general. To prevent applicability to extremely simple
loops only, software pipelining techniques need therefore to
be capable of dealing with it. One solution is hierarchi-
cal reduction [13] which introduces artificial pseudo opera-
tions for conditional constructs and allows scheduling them
in the usual manner. After scheduling, conditional code cor-
responding to these constructs is regenerated. While not re-
quiring special hardware features, this leads to a code size
increase because of code duplication during the regenera-
tion step. Another way to deal with conditionals within a
loop is to remove them entirely by a forward if-conversion
[9]. Given hardware support for predication, conditional
branches are removed by predicating and merging instruc-
tions within branch destination blocks. Iterative application
of if-conversion helps decreasing the amount of control de-
pendences, at the expense of higher register pressure how-
ever, since the number of live registers in the resulting block
is increased.

Independent of the conditional control flow, restructuring
the body of a loop into overlapping stages creates additional
constraints for register reuse. In order to avoid conflicts be-
tween pipeline stages covered by a particular data depen-
dency, allocation of additional registers is required in many
cases. In absence of special hardware support, such as ro-
tating register files [10], this issue is traditionally resolved
by modulo variable expansion (MVE). First, the amount of
kernel unrolling is computed by identifying register lifetimes
exceeding II in length. After unrolling the kernel, conflict-
ing registers are renamed for each stage within the conflict
range. Lam in [13] describes modulo variable expansion in
more detail, Dinechin [4] additionally addresses complica-
tions with respect to the general pipeline construction.

Along with established heuristic approaches, various opti-
mal solutions to instruction scheduling have been proposed
in the past. Ertl and Krall [8] produce optimal schedules for
the Motorola 88100 RISC processor using constraint logic

25

programming. Wilken et al. [25] follow an integer linear pro-
gramming approach for scheduling single basic blocks and
propose Dependence Graph (DG) transformations, such as
partitioning, linearization and edge elimination, profitable
for scalability and effective for solver time improvement.
Shobaki et al. extend the scheduling scope to superblocks
[21] and traces [22], and propose a solution that finds opti-
mal region schedules through enumeration. Eriksson [7] ad-
dresses optimal modulo scheduling, describes an integer lin-
ear programming formulation specific to the TMS320C64x+
architecture, and further discusses on topics of instruction
selection- and cluster assignment-integration. Altman pro-
vides an enumeration scheme for finding optimal modulo
schedules and contrasts obtained timing results to the re-
sults based on integer linear programming [2].

While optimal, most of those approaches are not tractable
for production compilers due to a high time complexity and
exponential scaling, and are therefore limited to small prob-
lem instances. On the other hand, many heuristic solutions
perform nearly optimal, at the same time featuring a com-
parably low processing time overhead. Huff [12] describes a
solution that mainly aims at lowering register pressure for
produced modulo schedules. This is achieved through the
computation of a slack which represents a range of possible
placement slots for a particular instruction. After compu-
tation, this range is scanned and the corresponding instruc-
tion heuristically placed either as early or as late as possible,
depending on the already scheduled nodes and for the pref-
erence of short register lifetimes. Another approach, known
as swing scheduling, is presented by Llosa et al. as part of
a production compiler [15]. The proposed solution adapts
an iterative scheme and, similar to slack scheduling, also
uses precomputed parameters, such as valid placement slots
and mobility values, to assist in scheduling. In contrast to
Huff’s algorithm, no backtracking is used for the profit of
lower processing times. Eichenberger et al. describe stage
scheduling [5], a backtracking variant that attempts to lower
register requirements by moving instructions across pipeline
stages.

Clustered VLIW architectures present a number of advan-
tages. Clustering simplifies on-chip wiring, increases den-
sity and scalability due to a better chip area utilization,
lowers production costs and reduces power consumption.
For compilers clustering means an additional code gener-
ation step that is responsible for distributing the workload
over all available machine resources, and is therefore criti-
cal to overall system performance. Early work of Ellis [6]
gives a good introduction into the problem and proposes a
greedy bottom-up BUG solution that tries to minimize the
number of intercluster transfers by assigning DG nodes in
the latency-weighted, depth-first manner. List scheduling is
then applied that is adapted to respect cluster assignments.
Since both steps are performed more or less independent of
each other in different compiler phases, scheduling is even-
tually restricted more than necessary by prior clustering de-
cisions. Addressing this issue, Özer et al. [17] describe UAS,
an algorithm that unifies the process of cluster assignment
with instruction scheduling. The main idea is to extend
the resource model by a priority list of available clusters
and intercluster busses, and to check this list during greedy
list scheduling. Exposing cluster assignment choices to the
scheduler is shown to be profitable, since generally more ef-
ficient schedules are generated by UAS when compared to

Register file A

Register file B

cluster A

cluster B

SA MA DALA

SB MB DBLB

crosspath B

crosspath A

Figure 1: TI C64x clustered register file and func-
tional units

BUG. Stotzer et al. [23] provide basic insights into cluster
assignment in the context of modulo scheduling and present
an adaptation of slack scheduling to the TMS320C6x VLIW
target. However, no clustering algorithm is given, the sched-
uler is set up to operate on already cluster-assigned nodes,
which in turn is done by hand as preprocessing. Sanchez
et al. [20] employ UAS within a swing scheduler implemen-
tation in order to perform modulo scheduling and cluster
assignment in one step. Additionally, loop unrolling is se-
lectively applied for the reason of lowering the pressure on
intercluster paths. Fernandes et al. [11] describe distributed
modulo scheduling, an alternative integrated approach that
sequentially uses three strategies for cluster assignment. The
first strategy tries to assign a node to a cluster without in-
volving explicit intercluster transfers. If such an assignment
is not possible, the second strategy is attempted, which is
to resolve cluster requirements through insertion of copies.
If that in turn fails, the node is arbitrarily assigned to any
of the available clusters and backtracking is applied in order
to unschedule some of the node’s predecessors. Nystrom et
al. [16] also concentrate on clustering and propose a clus-
ter assignment algorithm that produces graph annotations
suitable to serve as input to any traditional modulo schedul-
ing algorithm. So, for example, a swing modulo scheduler is
used by the authors for evaluation.

2. CONTRIBUTION
In this paper we propose an integrated solution for gener-

ating modulo schedules targeting TI’s TMS320C6000 signal
processor family. The optimization combines an adapta-
tion and extension of the swing scheduling scheme [15] with
fast heuristics for cluster assignment, and is entirely imple-
mented as part of an experimental backend within the LLVM
[26] compiler framework. We cover major implementational
details of proposed algorithms, discuss obtained results, and
relate them for comparison to available alternative solutions.

3. TARGET ARCHITECTURE
For our implementation we targeted TI’s TMS320C6000

DSP family [27] and concentrated especially on C64x and
C64x+ VLIW CPU’s. These CPU’s provide predication
support for almost every non-compact, non-call instruction,
and feature two clusters (A and B). Each cluster contains
four functional units: L, S, M, and D. Units L and S are the
integer arithmetic/logic units (ALUs), with S units being
additionally responsible for control flow changes (branches).

26

B0 = ...

B1B1 = COPY A0A0

B2 = LOAD B0 [B1B1]

. . .

. . .

. . .

A0A0 = ...

. . .

. . .

a)

B0 = ...

B1 = ADD B0, A0A0

. . .

. . .

. . .

A0A0 = ...

. . .

. . .

cluster B cluster A

b)

Figure 2: Source operand access: a) because
LOAD is not allowed to use crosspaths for address
operands, register A0 is explicitly copied to cluster
B; b) register A0 is not copied but is referenced by
ADD directly via crosspath

Loads, stores, as well as complex address calculations are
performed on D units. Unit M is exclusively used for dif-
ferent multiplication variants together with specialized DSP
instructions. Given 2 clusters with 4 functional units in each
of them, up to 8 operations can therefore be executed in par-
allel. Each cluster is connected to its own register file, each
file contains 32 general purpose registers, 3 of them (A0-A2,
resp. B0-B2) can additionally be used as predicate registers.
Figure 1 depicts the general organization of our target.

For intercluster transfers two directed crosspaths exist.
Within an execution packet, all operations that are allowed
to use a crosspath and are assigned to a particular clus-
ter (f.e. A) are restricted to access at most one register in
the opposite register file (i.e. B). Thus, at most two dif-
ferent crosspath register accesses are permitted per cycle.
For instructions that are not allowed to use crosspaths, re-
quired data must be copied explicitly to the desired cluster.
Figure 2 shows both intercluster transfer variants. One spe-
cialty of the target is the presence of crosspath stalls. In case
a crosspath is used to access a register that has been written
in the previous cycle, a hardware stall occurs. An example
is given in Figure 2 b): if register A0 is set in cycle n and is
read via crosspath in cycle n + 1, the execution is delayed
by 1 cycle.

C64x+ CPU’s additionally feature a hardware buffer that
is dedicated to software pipelining and offers space for up
to 14 instruction packets. The buffer is controlled by spe-
cial instructions and requires II as well as the number of
iterations to be specified explicitly. Additionally, the end of
the kernel needs to be marked in order to drain the pipeline
properly. Since implemented in hardware, this buffer en-
tirely eliminates the latency of the trailing branch and does
not call for any special actions about pipeline construction.
Unfortunately, the size limit of 14 packets prevents a general
application and allows this buffer to be used for small loops
only.

4. IMPLEMENTATION
This section is structured as follows. First, a brief descrip-

tion of if-conversion will be given, which we implemented for
preprocessing prior to scheduling. We then describe modulo
scheduling extensions, and depict our clustering solutions,
addressing a simple naive implementation first, and present-
ing extended integrated implementation at the end of this
section.

b)

entry

for.cond

land.end

land.rhs BB#6

for.bodyfor.end

a)

entry

for.loop

for.end

land.rhs

BB#6

land.end

for.body

p

!p

!q

for.cond

p !p

q !q

c)

!q

q

Figure 3: If conversion: a) original CFG; b) loop
structure after two conversion steps; c) predicated
loop content

4.1 If-conversion
If-conversion is a compilation technique that eliminates

conditional branches and increases the size of basic blocks
by using predication. Extensive description and discussion
on predication can be found in [18] and [9]. Here we only
mention the basic idea, which is to encode a special flag into
a machine instruction that determines at runtime whether
this instruction is to be executed or ignored.

For our experiments we have implemented a simple if-
conversion variant, that iteratively collapses patterns of ba-
sic blocks based on profitability heuristics. While being sim-
ple, such an iterative design is effective for producing single
block loops as shown in Figure 3. Given a CFG together
with predicates as branching conditions (p and q) in a), two
conversion steps are performed to produce a self-looping ba-
sic block b). The first step collapses a diamond consisting of
for.cond, land.rhs, BB#6 and land.end. The result is then
merged with for.body to produce for.loop. The predicated
content of the transformed loop is depicted in c). As an
addition to the if-converter, tail duplication has been imple-
mented, which further increases conversion scope, and allows
more aggressive transformations.

Alternative if-conversion implementations are found in [14]
and [3]. Warter et al. discuss benefits of if-conversion in the
context of software pipelining in detail in [24].

4.2 Modulo scheduler
For the task of modulo scheduling we adapted and ex-

tended a heuristic swing algorithm originally proposed by
Llosa [15]. The algorithm computes ALAP (As Late As Pos-
sible), the latest possible issue slot respecting successors in

27

the DG, and ASAP (As Soon As Possible), the earliest issue
slot in dependence on predecessors, parameters which assist
in scheduling decisions and aim at minimizing total regis-
ter requirements. Additionally, a mobility function MOB is
provided which represents a range of valid issue slots for a
node, and is used in case no rational priority decision is pos-
sible (f.e. when two nodes have the same ALAP resp. ASAP
values). However, it is possible for two nodes to have the
same mobility value as well. For that we extend the original
heuristic by a balancing factor that assigns priorities based
on the number of supporting functional units. For example,
a move instruction can be executed on any of the L, S, D
units, a sign extension ext in turn is only executable on S
units. Thus, move will be given a lower priority leading to
the sign extension being processed first.

A

B
Initiation interval 3

Node A scheduled in flat cycle 5
Valid flat cycle range for B = [2; 4]

If A and B are scheduled on opposite clusters,
(as shown) the ordering B, C, A is preferred

C

Figure 4: Example of cycle reordering for crosspath
stall reduction

As mentioned in Section 3, one source for a potential per-
formance degradation that is specific to our target, is the
presence of crosspath stalls. Thus, for a high performance
minimization of such stalls is desirable. To deal with this
issue, another extension is provided to the scheduler which
becomes active during the final scheduler run. Given a valid
cycle range for a particular instruction to be scheduled, a cy-
cle reordering is performed. Each cycle within the obtained
range is inspected and a cycle distance to each DG succes-
sor scheduled on opposite cluster is calculated. A distance
of one cycle signals a crosspath stall detection, in this case
the cycle currently inspected is given a lower priority. Given
a DG fragment consisting of nodes A, B and C as shown in
Figure 4, assume (for II=3) the node A to be scheduled in
cycle 5 which translates to the modulo resource table row
2 (cycle modulo II). Now, when scheduling node B, a cycle
range [2; 4] is obtained which is processed in a reverse order
(to keep register lifetimes short). Cycle 4 translates to row
1, the distance between A and B equals 1, thus, assigning B
to this slot would introduce a stall. Cycles 3 and 2 do not
expose any crosspath conflicts, therefore a new cycle priority
order is established which is 3, 2, 4. Note, that only cycles
need to be considered which result in distances less than II.
Dependences longer than II are ignored, since subject to
modulo variable expansion later.

For the purpose of resource tracking we utilize a modulo
resource table which is parameterizable to support multi-
ple executions of the scheduler. During the first run, no
crosspath constraints are considered, instructions are greed-
ily placed in the first available cycle/functional unit slot
found. After the step of cluster assignment, the schedul-
ing is eventually repeated, in this case a modulo resource
table is used which is now set up to respect the mapping of
instructions to clusters and to track the use of crosspaths.

Figure 5 shows in a) a flat schedule for a simple loop used

cycle 0 cycle 1 cycle 2

LA A8 = B7 A3 = add B6, 1 A13 = A3

SA A9 = ext A5, 2 A6 = mvk 31 A5 = shl B6, 1

MA

DA store A0, A9, B10

LB B6 = A13 B7 = cmpgt B6, A6

SB brcond, A8 B12 = mvk 1 B10 = mvk 0

MB

DB B11 = addm B14, B6 store B11, 1, B12

xA x x

xB x x x

0:
1: B6 = A13
1: A6 = mvk 31
2: B10 = mvk 0
2: A5 = shl B6, 1
2: B7 = cmpgt B6, A6
3: A9 = ext A5, 2
3: A8 = B7
4: store A0, A9, B10
4: B12 = mvk 1
4: B11 = addm B14, B6
4: A3 = add B6, 1
5: A13 = A3
5: store B11, 1, B12
6: brcond, A8

b)a)

Figure 5: a) flat schedule example; b) corresponding
modulo resource table

to zero-initialize an array1 and in b) a corresponding modulo
resource table for II=3. LA-DB represent functional units
L-D within corresponding clusters A-B, and xA, xB capture
occupation of intercluster busses in the current instruction
packet. Instructions that use a crosspath are boldfaced. As
can be seen, a left-shift instruction shl in cycle 2 references
register B6 that is set in cycle 1. This extends the runtime
of the depicted schedule by 1 cycle due to the mentioned
architectural crosspath restriction. The compare instruction
cmpgt also involves an implicit intercluster operand transfer
(register A6). Here however, the crosspath stalls do not
accumulate, since shl and cmpgt are scheduled to be issued
together in the same cycle.

4.3 Cluster assignment

4.3.1 Simple heuristic
For cluster assignment to be used with the swing sched-

uler two models are provided. The first model implements
a simple top-down heuristic that processes the entire DG at
once and is therefore only loosely coupled with the schedul-
ing routine.

Since operating on a preliminary schedule which is cor-
rect in terms of the data-flow, loop-carried dependences are
eliminated and DG nodes put in ascending order (while var-
ious criterias are possible here, we used node’s depth for
ordering). Given this priority order, nodes are then pro-
cessed with assignment preference of a least number of reg-
ister copies. This is achieved by inspecting predecessors of
a given node that already have been assigned. Given their
cluster distribution, and taking crosspath access possibility
for each predecessor into account, copy counts are estimated,
which then translate by comparison into the final decision.

4.3.2 Extended integrated implementation
The second heuristic employs a similar idea, but instead

of computing copy costs naively on-the-fly, it derives cluster
assignment decisions from annotated DG edges. A simple
annotation example is given in Figure 7. In case a data de-
pendency exists between a node and its predecessor, a copy
cost is generated that equals 0 if the result of the predecessor
can be supplied via crosspaths, and 1 otherwise. Therefore,

1The code shown is not in the most compact form. Since reg-
ister allocation has not been performed yet, register copies
can be seen which are eventually eliminated by coalescing.
Also, loop-invariant definitions are visible and only basic ad-
dressing modes are used for this example.

28

success

ed nodes

Emit schedule

Increase II

yes

no

Label DG edges

Schedule nodes

Assign clusters

Figure 6: General organization of modulo scheduling
and cluster assignment

a

c d

e f

h

i

g

b

0
0

0 0

0

0

1

1

1

1

Figure 7: DG copy cost annotation example

a 0-edge means that adjacent nodes can be assigned to any
cluster without involving copy overhead, while 1-edges en-
force copy insertion.

While qualifying the data dependences between adjacent
nodes in terms of register copies, the result of the annotation
itself is cluster-independent, i.e. there is no assignment in-
formation available yet. This concrete information is gener-
ated during the scheduling step and - additionally to register
transfers - takes cluster utilization into account.

For each node to be scheduled, data successors are consid-
ered that already have been scheduled. Given their number
and weights of incident edges, a concrete assignment is gen-
erated for the node. So for example, if there is only one
successor that is reachable via a 1-edge and scheduled on
cluster A, a decision is made to assign the node to cluster
A as well. In turn, in case no decision is possible based on
the successor count, the heuristic maintains two utilization
counters (utilA, utilB), one for each cluster, which are used
for the favor of a balanced clustering and indeed account for
a more even distribution, as demonstrated in Section 5.

After the cluster assignment information has been gener-
ated for a given node, a functional unit assignment takes
place. If done successfully, the global clustering information
map is updated, cluster utilization counters increased prop-
erly, and the heuristic continues with the next node in the

Algorithm 1 Labeling of DG edges

edgeList← empty list for annotated DG edges

function labelDGEdges

nodes← list of DG nodes
for each node N contained in nodes do

predList← list of predecessors of N

for each node P contained in predList do
copyCost← 0
if no crosspath between N and P then

copyCost← 1
end if

edgeList← edgeList+ (P,N, copyCost)
end for

end for
end function

ordering queue, as described in Section 4.2.
In integration with modulo scheduling, the presented trans-

formation therefore heuristically approaches optimization of
following performance influencing factors:

1. initiation interval for the shortest possible schedule
through iterative modulo scheduling scheme;

2. reduction of crosspath stalls through explicit code re-
scheduling after preliminary schedule has been cluster
assigned, and intercluster transfers committed;

3. number of intercluster copies through labeling of DG
edges, hereby taking target properties, such as avail-
ability of crosspath support and functional unit assign-
ment for a given instruction, into consideration;

4. even cluster balance through simple counters capturing
utilization during cluster assignment;

A general collaboration of cluster assignment and modulo
scheduling steps is shown in Figure 6. Algorithm 1 depicts
the annotation procedure, Algorithm 2 additionally presents
the cluster assignment routine in pseudo-code.

5. EXPERIMENTAL RESULTS
Our performance evaluation is based on a collection of

35 loops as found in benchmark suites, such as DSPStone
(DSP), MiBench (MiB),mediabench (MB), and Benchmark-
Game (BG), popular for general DSP compiler development
and suitable for testing loop related optimizations. Addi-
tionally, 5 calculation intensive single unit tests (SU) have
been added to the collection in order to extend the scope
and stress both optimizers. All tests have been run on TI’s
software simulator configured for cycle accuracy.

We first intended to compare the efficiency of our imple-
mentations to the TI compiler shipped as part of the TI
Code Composer Studio. Unfortunately, due to the experi-
mental state of our entire backend, no fair and undistorted
comparison is possible that allows rational conclusions. One
of the reasons is the instruction selection phase, which lacks
capability of complex pattern matching and currently only
exploits basic addressing modes. Additionally, no advanced
loop analysis and optimization passes for the machine code

29

Algorithm 2 Cluster assignment heuristic

Require: DG node N
Require: edgeList: list of labeled DG edges
Require: utilA, utilB: current cluster utilization
Require: assignments: list of already assigned nodes

function getClusterAssignment(N , utilA, utilB)
succList← list of successors of N
numSuccsA← 0
numSuccsB ← 0

for each node S contained in succList do
if S is in assignments then

succCluster ← cluster assigned to S
edgeWeight← weight of edge (N , S)

if edgeWeight is greater than 0 then
if succCluster equals CLUSTER A then

numSuccsA← numSuccsA + 1
else

numSuccsB ← numSuccsB + 1
end if

end if
end if

end for

cluster ← CLUSTER A
if numSuccsB greater than numSuccsA then

cluster ← CLUSTER B
else

if numSuccsA equals numSuccsB then
if utilA greater than utilB then

cluster ← CLUSTER B
end if

end if
end if

assignments← assignments+ (N, cluster)
if cluster equals CLUSTER A then

utilA← utilA+ 1
else

utilB ← utilB + 1
end if

end function

are available within LLVM, resp. currently implemented
within our backend. This leads to the fact that our compiler,
compared to TI’s tool, produces a different code, with differ-
ences (in terms of size and content) being significant enough
to prevent any serious comparison. Instead, we first compare
our solutions against each other taking a UAS implementa-
tion as reference. This baseline implementation is cluster-
aware, it heuristically performs scheduling and clustering,
but does so in a non-modulo fashion. Since comparing lin-
ear vs. modulo schedules is not entirely fair, we additionally
present a comparison to a fully integrated ILP solution that
is developed in our group, optimizes for the same parame-
ters as listed at the end of the Section 4, and additionally in-
corporates register requirements into the model. Described
heuristics as well as the ILP reference employ modulo vari-
able expansion and therefore basically utilize loop unrolling
by replicating kernel blocks. The amount of unrolling is not

0 00

0 00

0 00

20 00

40 00

60 00

e AS xtended AS

S
ee

du
n

Figure 8: Cycle speedup (%) comparison to UAS for
a selection of tested loops

controlled directly but determined implicitly during process-
ing as a result of register pressure estimation.

Figure 8 compares described heuristics to UAS and Fig-
ure 9 lists detailed statistics. While presented results match
the expectation of both solutions being more potent than
UAS in terms of parallelization and hence runtime, some
cases demand further explanation.

benchmark extended s

name c es co s c s c es

st 16 1 4 5 0 1484 8 4

earc 1 13 5439 4 0 5943 6 2

earc 2 1 3989 6 1 4052 6 3

ns 29 1665 10 0 1800 11 4

ndtrans 25 14428 9 3 1 0 11 5

ested2 23 12442 1 15450 10 4

dec ddb ck 24 181 2 219 11 3

dec d 23 835 9 2 965 11

dec ormc 24 823 9 2 3 8 4

annkuc 1 16 3946 4 3913 5 2

dates 15 380 5 1 3 6 1

dates 28 504 8 1 612 12 10

dates 4 1 9 24 6 1108 25 6

a 16 89386 6 2 89286 6 2

Figure 9: Detailed statistic for a selection of tested
loops

For MiB-dijkstra.1 a significant runtime degradation is
observed for both implementations (19.29% resp. 38.95%).
Here, the extended candidate achieves a schedule length that
is, compared to UAS, shorter by 33% (9 vs. 6 instructions).
Nevertheless, without unrolling being performed, the length
benefit of 3 cycles is not sufficient to equalize the latency
of one additional branch in the latch block (6 cycles). For
MiB-stringsearch.1 a low trip count (8 iterations) together
with the loop size (13 instructions) is recorded. This makes
a pipeline representation not profitable, the runtime over-
head induced by prologues and epilogues together with the
latch block terminating the kernel outweigh the advantage
of increased parallelization. Further, for machines with high

30

branch latencies such small loops are likely to be compressed
entirely into the branch delay slots, again minimizing per-
formance gain, or even causing a performance drop. While
the extended heuristic still manages to improve marginally
(0.09%), the simple clustering candidate suffers a degrada-
tion by 9.17%. For loops bigger in size, such a behavior
is however not observed, most of the depicted loops clearly
benefit from proposed optimizations. The simple heuristic
solution scores 16.71% on average, the improved heuristic
achieves a speedup of 24.82% and is therefore clearly more
profitable.

0.00

10.00

20.00

30.00

40.00

50.00

60 00

0 00

e L ended L

un
tm

e
o

tm
a

t
a

Figure 10: Cycle optimality gap (%), compared to
the integrated ILP solution

A comparison to an integrated ILP model for scheduling
and clustering is found in Figure 10. The used ILP ref-
erence creates optimal solutions for multiple performance
factors (initiation interval, copies, crosspath stalls, register
pressure), thus, the presented data can be seen as overall
optimality gap with respect to those factors. The extended
heuristic performs significantly better, resulting in the aver-
age value of 15.81%.

Figure 11 shows a comparison of achieved initiation inter-
vals for presented kernels. Here too, the naive implemen-
tation results in longer schedules, leading to the extended
model to be consistently rendered as a winner, resulting in
an average of 8.29 (vs. 9.71).

Figure 12 finally addresses balancing capabilities of pro-
posed heuristics. The displayed data corresponds to the per-
centage of instructions assigned to cluster A. For example,
taking the naive implementation, for MB-mpeg2dec.addblock
70% of all instructions are scheduled on A and 30% on B.
Generally, the extended clustering heuristic distributes more
evenly, which is not entirely surprising due to the distribu-
tion counters incorporated into the clustering mechanism.

6. CONCLUSION
In this paper we have addressed generation of cluster as-

signed modulo schedules for the popular TMS320C64X DSP
family by Texas Instruments. First, adaptations and exten-
sions of the swing modulo scheduling scheme are described
in order to address major specialties of the TMS320C64X

0

5

10

15

20

25

30

e AS tended AS

n
ta

to
n

nt
er

va

Figure 11: Comparison of absolute initiation inter-
val values

20

30

40

50

60

0

80

B ba ance e B ba ance extended
us

te
ru

t
to

n
n

Figure 12: Cluster (A to B) balance (%) graph

architecture. Then, a simple greedy clustering heuristic is
presented that is combined with the swing scheduler and is
especially suitable for a fast schedule generation. As alterna-
tive, an extended clustering is provided which achieves sig-
nificantly better results, with respect to both, dynamic cycle
performance, as well as static parameters, such as copies and
initiation intervals.

Compared to UAS and independent of the cluster as-
signment heuristic in use, a substantial performance gain
is achieved for generated schedules for most of the tested
kernels. However, when considering numbers obtained from
the optimal integrated ILP solution, there is still enough
space for further improvements which we intend to do in
future.

7. FUTURE WORK
One of the major issues we want to address in near future

is a tighter collaboration of the modulo scheduler with the
register allocation process. Both presented implementations
realize a register pressure estimation scheme which conser-

31

vatively rejects scheduling attempts for a given II in case
register demands are estimated to be too high. While func-
tional and robust, a proper integration of spill code may be
more profitable in some particular cases.

Fully integrated integer linear programming approaches
are not attractive for the daily routine due to temporal re-
quirements that usually restrict effective application to tiny
loops only. However, hybrid approaches that model selected
parts of a global problem as ILP can be a promising com-
promise, pairing good quality code with low compile time
demands. Thus, additionally to purely heuristic integrated
solutions, we also intend to develop hybrid solutions that ap-
proach optimality (in terms of code) within a compile time
span that qualifies them to be suitable for an industrial use.

8. REFERENCES
[1] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan.

Software pipelining. ACM Computing Surveys, 27(3),
Sept. 1995.

[2] E. R. Altman and G. R. Gao. Optimal modulo
scheduling through enumeration. Int. J. Parallel
Program., 26(3):313–344, June 1998.

[3] C. Bruel. If-conversion ssa framework for partially
predicated vliw architectures. In ODES Workshop on
Optimizations for DSP and Embedded Systems, pages
5–13, 2006.

[4] B. Dupont de Dinechin. A unified software pipeline
construction scheme for modulo scheduled loops.
Lecture Notes in Computer Science, 1277:189–200,
1997.

[5] A. E. Eichenberger and E. S. Davidson. Stage
scheduling: a technique to reduce the register
requirements of a modulo schedule. In Proceedings of
the 28th annual international symposium on
Microarchitecture, MICRO 28, pages 338–349, Los
Alamitos, CA, USA, 1995. IEEE Computer Society
Press.

[6] R. Ellis. Bulldog: A compiler for VLIW architectures.
The MIT Press, 1986.

[7] M. Eriksson and C. Kessler. Integrated code
generation for loops. ACM Trans. Embed. Comput.
Syst., 11S(1):19:1–19:24, June 2012.

[8] A. Ertl and A. Krall. Optimal instruction scheduling
using constraint logic programming. Programming
Language Implementation and Logic Programming
(PLILP), 1991.

[9] J. Fang. Compiler algorithms on if-conversion,
speculative predicates assignment and predicated code
optimizations. In LCPC ’96 Proceedings of the 9th
International Workshop on Languages and Compilers
for Parallel Computing, 1996.

[10] K. I. Farkas, N. P. Jouppi, and P. Chow. Register file
design considerations in dynamically scheduled
processors. In In Proceedings of the Second IEEE
Symposium on High-Performance Computer
Architecture, pages 40–51, 1995.

[11] M. M. Fernandes, J. Llosa, and N. Topham.
Distributed modulo scheduling. pages 130–134, 1999.

[12] R. A. Huff. Lifetime-sensitive modulo scheduling. In
Proceedings of the ACM SIGPLAN 1993 conference
on Programming language design and implementation,
PLDI ’93, pages 258–267, New York, NY, USA, 1993.

ACM.
[13] M. S. Lam. Software pipelining: an effective

scheduling technique for vliw machines. SIGPLAN
Not., 39(4):244–256, Apr. 2004.

[14] R. Leupers. Code generation for embedded processors.
In Proceedings of the 13th international symposium on
System synthesis, ISSS ’00, pages 173–178,
Washington, DC, USA, 2000. IEEE Computer Society.

[15] J. Llosa, E. Ayguadeá, A. González, M. Valero, and
J. Eckhardt. Lifetime-sensitive modulo scheduling in a
production environment. IEEE Transactions on
Computers, 50:234–249, 2001.

[16] E. Nystrom and A. E. Eichenberger. Effective cluster
assignment for modulo scheduling. In Proceedings of
the 31st annual ACM/IEEE international symposium
on Microarchitecture, MICRO 31, pages 103–114, Los
Alamitos, CA, USA, 1998. IEEE Computer Society
Press.

[17] E. Özer, S. Banerjia, and T. M. Conte. Unified assign
and schedule: A new approach to scheduling for
clustered register file microarchitectures. In In
International Symposium on Microarchitecture, pages
308–315, 1998.

[18] S. Park. On predicated execution. Technical report,
Tech. report, HP laboratories, 1991.

[19] B. R. Rau. Iterative modulo scheduling: an algorithm
for software pipelining loops. In Proceedings of the
27th annual international symposium on
Microarchitecture, MICRO 27, pages 63–74, New
York, NY, USA, 1994. ACM.

[20] J. Sánchez and A. González. Instruction scheduling for
clustered vliw architectures. In Proceedings of the 13th
international symposium on System synthesis, ISSS
’00, pages 41–46, Washington, DC, USA, 2000. IEEE
Computer Society.

[21] G. Shobaki and K. Wilken. Optimal superblock
scheduling using enumeration. In Proceedings of the
37th annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 37, pages 283–293,
Washington, DC, USA, 2004. IEEE Computer Society.

[22] G. Shobaki, K. Wilken, and M. Heffernan. Optimal
trace scheduling using enumeration. ACM Trans.
Archit. Code Optim., 5(4):19:1–19:32, Mar. 2009.

[23] E. Stotzer and E. Leiss. Modulo scheduling for the
tms320c6x vliw dsp architecture. In Proceedings of the
ACM SIGPLAN 1999 workshop on Languages,
compilers, and tools for embedded systems, LCTES
’99, pages 28–34, New York, NY, USA, 1999. ACM.

[24] N. J. Warter, G. E. Haab, K. Subramanian, and J. W.
Bockhaus. Enhanced modulo scheduling for loops with
conditional branches. In Proceedings of the 25th
annual international symposium on Microarchitecture,
MICRO 25, pages 170–179, Los Alamitos, CA, USA,
1992. IEEE Computer Society Press.

[25] K. Wilken, J. Liu, and M. Heffernan. Optimal
instruction scheduling using integer programming. In
Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation,
PLDI ’00, pages 121–133, New York, NY, USA, 2000.
ACM.

[26] www.llvm.org.
[27] www.ti.com.

32

