
APRIL 13-18, 1996 CH196

StarLogo: An Environment for
Decentralized Modeling and Decentralized Thinking

Mitchel Resnick
MIT Media Laboratory

20 Ames Street
Cambridge, MA 02139 USA

+1 6172539783
mres @media. mit.edu

ABSTRACT

StarLogo is programmable modeling environment designed
to help nonexpert users (in particular, precollege students)
model and explore decentralized systems, such as ant
colonies and market economies. People often have difficulty
understanding the workings of such systems. By using
StarLogo, people can move beyond the “centralized
mindset’’—that is, they begin to understand how patterns
can arise through decentralized interactions, not from the
dictates of a centralized authority.

Keywords
Educational applications, end-user programming, modeling

INTRODUCTION
In recent years, computer scientists have developed and
experimented with a wide range of new programming
paradigms: object orientation, logic, constraints,
parallelism. Each of these paradigms offers new design
possibilities—that is, new ways to create things with
computers. But perhaps more important, each new paradigm
also offers new epistemological possibilities—that is, new
ways to think about computation and other phenomena in
the world. An old saying goes something like this: If a
person has only a hammer, the whole world looks like a
nail. Adding new tools to the carpenter’s toolkit changes
the way the carpenter looks at the world. So, too, with
computational paradigms: new paradigms can change the
way computer users think about the world.

StarLogo is new modeling environment based on the
paradigm of massive parallelism [3]. StarLogo is designed
to help nonexpert users (such as precollege students) model
the workings of decentralized systems, such as ant colonies
and market economies. Users can write simple rules for
thousands of objects, then observe the patterns that arise
from the interactions. In doing so, users develop new ways
of thinking about decentralized systems.

PARALLELISM
In most parallel-computing research, the primary goal is to
improve the speed of computation. Many people see
parallelism as a “necessary evil” in order to improve the

O Copyright on this material
is held by the author

speed at which programs execute. Indeed, some language
developers try to hide parallelism from the user through
“parallelizing compilers.”

In creating StarLogo, I had a very different set of goals. I
was not particularly concerned with performance or speed.
Rather, I was interested in providing new ways for users to
model, control, and think about actions that actually happen
in parallel. Many things in the world really do act in
parallel; the most natural way to model such situations is
with a parallel programming language. In these cases,
parallelism isn’t a “trick” to improve performance; it is the
most natural way of expressing the desired behavior.

THE CENTRALIZED MINDSET
StarLogo is especially designed for modeling decentralized
systems—that is, systems in which patterns are determined
not by some central authority but by local interactions
among many (parallel) components. The world is full of
such systems. As ants forage for food, their trail patterns
are determined not by the dictates of the queen ant, but by
local interactions among thousands of worker ants.
Macroeconomic patterns arise from local interactions
among millions of buyers and sellers. In immune systems,
armies of antibodies seek out bacteria in a systematic,
coordinated attack—-without any “generals” organizing the
overall battle plan.

In recent years, there has been a growing scientific interest
in decentralized systems [4]. But most people continue to
have great difficulty reasoning about and understanding such
situations. When people see patterns in the world, they tend
to assume some type of centralized control, even where it
doesn’t exist. When people see a flock of birds, for
example, they typically assume that the bird in the front is
leading and the others are following. But most bird flocks
don’t have leaders at all. Rather, each bird follows a set of
simple rules, reacting to the movements of the birds
nearby. Orderly flock patterns arise from these simple, local
interactions [1]. StarLogo is intended to help people model
such systems—and, in the process, move beyond the
“centralized mindset.”

STARLOGO
StarLogo is an extension of the Logo programming
language [2]. In traditional versions of Logo, students create
pictures and animations by giving commands to a graphic
“turtle.” StarLogo extends Logo in three major ways:

11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F257089.257095&domain=pdf&date_stamp=1996-04-18


CH196 APRIL 13-18, 1996

First, StarLogo has many more turtles. While traditional
versions of Logo typically have only a few turtles,
StarLogo has thousands of turtles-and all of the turtles can
perform their actions at the same time, in parallel. For
many colony-type explorations, having hundreds of turtles
is a necessity. The behavior of a colony can change
qualitatively when the number of turtles is increased. An
ant colony with 10 ants might not be able to make a stable
pheromone trail to a food source, whereas a colony with
100 ants (following the exact same rules) might.

Second, StarLogo turtles have better “senses.” The
traditional Logo turtle was designed primarily as a drawing
turtle, for creating geometric shapes. But the StarLogo
turtle is more of a behavioral turtle. StarLogo turtles come
equipped with “senses.” They can detect and distinguish
other turtles nearby, and they can “sniff” scents in the
world. Such turtle-turtle and turtle-world interactions are
essential for creating and experimenting with decentralized
phenomena. Parallelism alone is not enough. If each turtle
just acts on its own, without any interactions, interesting
colony-level behaviors will never arise.

Third, StarLogo reifies the turtles’ world. In traditional
versions of Logo, each pixel of the turtles’ world has a
single piece of state information—its color. StarLogo
attaches a much higher status to the turtles’ world. The
world is divided into small square sections called patches.
The patches have many of the same capabilities as turtles—
except that they can not move. Each patch can hold an
arbitrary variety of information. For example, each patch
can keep track of the amount of “chemical” that has been
released within its borders. Patches can also execute
StarLogo commands, just as turtles do. For example, each
patch could diffuse some of its “chemical” into neighboring
patches, or it could grow “food” based on the level of
chemical within its borders. Thus, the environment is given
a status equal to that of the creatures inhabiting it.

StarLogo was originally implemented on the Connection
Machine, a massively-parallel supercomputer. Recently,

StarLogo was ported to the Macintosh. (To obtain a copy,
write to starlogo-re~est@media. mit. edu)

EXAMPLE: SLIME-MOLD AGGREGATION
Figure 1 shows a StarLogo simulation inspired by the
aggregation behavior of slime-mold cells. For many years,
scientists believed that the aggregation process was
coordinated by specialized slime-mold cells, known as
“pacemaker” cells. But that is not the case, In fact, each
slime-mold ceil follows the same simple rules. In the
StarLogo model, each “turtle” emits a chemical pheromone,
while also following the gradient of the pheromone. The
patches cause the pheromone to diffuse and evaporate. With
this simple decentralized strategy, the creatures aggregate
into clusters after several dozen time steps.

High-school students have used StarLogo in many similar
projects, modeling the behaviors of traffic jams, termite
colonies, and predator-prey ecosystems.

ACKNOWLEDGMENTS
Brian Silverman and Andy Begel implemented the
Macintosh version of StarLogo and contributed many
design ideas. Hal Abelson, Seymour Papert, Randy Sargent,
and Uri Wilensky have provided encouragement and ideas
for the StarLogo project. The LEGO Group and the
National Science Foundation (grant 93585 19-RED) have
provided financial support for this research.

REFERENCES
1.

2.

3.

4.

Heppner, F., & Grenander, U. A Stochastic Nonlinear
Model for Coordinated Bird Flocks. In The Ubiqui~ of
Chaos. AAAS, Washington DC, 1990.

Papert, S. Windstorms. Basic Books, New York, 1980.

Resnick, M. Turtles, Termites, and Traffic Jams:
Explorations in Massively Parallel Microworlds. MIT
Press, Cambridge, MA, 1994.

Waldrop, M. Complexity: The Emerging Science at the
Edge of Order and Chaos. Simon ~nd”Schuster, New
York, 1992.

Figure 1
StarLoEo simulation insuired bv slime-mold azzre~ation,

Each “turtle” emits a che~cal pheromone,’while ~lso following t% g~adient of the pheromone,

12


