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In this article,  we extend the methods of Rabin et al.10,11 
in a major way and provide a solution to the long-standing 
important problem of preventing collusion in second-
price (Vickrey) auctions. The new tools presented are 
deniable revelation of a secret value and uncontrollable 
deniable bidding. In Rabin et al.,10,11 new highly efficient 

methods for proving correctness of 
announced results of computations 
were introduced. These proofs com-
pletely conceal input values and inter-

mediate results of the computation. 
One application was to enable an 
Auctioneer to announce outcome of a 
sealed bid auction and provide verifi-
cation of correctness of the outcome, 
while keeping bid values information-
theoretically secret. We quickly survey 
these methods for completeness of 
the discussion and because of their 
wide applicability. Another example 
of an application is to prove to par-
ticipants of a stable matching process 
such as the assignment residents to 
hospitals, of the correctness of the an-
nounced assignment without reveal-
ing any preferences of residents with 
respect to hospitals and vice-versa.
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 key insights

 � �Practically efficient secrecy of values 
preserving proofs of correctness of 
computations are useful for many 
financial and social processes.

 � �In particular, they supply a solution to  
the long-standing open problem of 
countering collusion of bidders in  
second-price (Vickrey) auctions.

 � �An important feature of these new 
methods is their understandability by  
a wide audience of potential users.
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IT, then the fact he won will remain 
secret/unknown to the other bidders. 
This assumption holds, for example, 
for digital goods but may be difficult 
to implement for some physical goods 
such as radio spectrum. This issue is 
fully discussed later.

We shall prove that these properties 
1–9 enable the Auctioneer to pre-
vent collusion by promising, when 
announcing the auction, a kickback 
payment to the second highest bidder, 
whoever he may turn out to be.

The implementation of properties 
1–8 requires of the Auctioneer proofs 
of correctness of announced results of 
computations while keeping input values 
and intermediate results secret. A new 
highly efficient tool for doing this was 
presented in Rabin et al.10,11

A new construct of a deniable proof of 
value presented in this paper is employed 
in implementing the properties 1 and 8.

Sealed Bid Auctions 
Implementation by Encryption 
and Secure Bulletin Board
In this article, we assume that the Auc-
tioneer employs an electronic Secure 
Bulletin Board (SBB) with the following 
properties. The SBB is controllable by 
the AU who can post data. Posted data 
is time stamped and signed by the AU. 
Data cannot be erased. The SBB is view-
able by all participants in the auction 
and they are assured that they all view 
the same content. Detailed implemen-
tations of a SBB use standard algorith-
mic tools and are not discussed herein.

Much of the data posted on the 
SBB will be in “sealed envelopes” 
created by bidders or by the AU. In 
Definition 3, we specify the Pedersen 
Commitment function which will be 
used in detailed proofs of the secrecy 
properties of our bidding mecha-
nism. In practice, we implement 
sealed envelopes and commitments 
by an encryption function E( , ), say 
a 128-bit AES (Advanced Encryption 
Standard) used in authenticated 
encryption mode such as GCM.

Previous Results and Background
The method of value-secrecy preserving 
proofs of correctness in Rabin et al.10,11 
and in the present work was motivated 
by the ground-breaking methodology of 
Zero Knowledge Proofs (ZKP) innovated 

By way of motivation, let us outline 
the main application given in this arti-
cle for the extended method for secrecy 
preserving proofs of correctness. We 
consider Vickrey auctions where bid-
ders B1, . . ., Bn submit sealed bids b1, . . ., bn 
for a single item IT to a seller/auctioneer 
AU. At an announced end of bidding 
time T1, the AU opens the bids and deter-
mines that, say, bw was the highest bid 
value and bs was the second highest bid. 
Bidder Bw will get the item IT and pay to 
AU the second-highest bid value bs.

This bidding mechanism, absent col-
lusion, makes it worth while for every bid-
der to bid his true value for the item IT. It 
thus assures the AU a return of the sec-
ond highest private true value for the IT.14

When setting up the auction, AU 
specifies a reserve price r. If none of 
the bids is ≥r, then the IT is not sold. 
If the second price is smaller than r, 
then the winner (if there is one) pays 
r for the IT.

The possibility of collusion com-
pletely subverts the above advantage 
to the AU from the second price auc-
tion. Assume that all bidders form 
a Cartel to collude against AU. They 
determine ahead of closing time T 
that B1’s true value b1 (as claimed by 
him) for the item IT is the largest 
among all true values as claimed by 
bidders. They agree that in the actual 
auction, B1 will bid b1 and each of the 
other bidders B2, . . ., Bn will bid r. They 
also agree that if B1 gets the IT, then 
he will make certain side payments 
to Cartel members B2, . . ., Bn. They 
also specify fines to be paid by cartel 
members who deviate from the agree-
ment. Now, if all Cartel members keep 
to their agreement, then B1 will get the 
IT and pay r to the AU. Thus, all of the 
seller’s potential gain from conduct-
ing the auction is wiped out. Because 
of possibility of collusion, second-
price auctions are rarely used despite 
their theoretical advantage.5, 6, 12, 13

We shall show how the use of cryp-
tography enables prevention of collu-
sion in one-time second-price auctions 
by making cartel agreements unen-
forceable and making it worthwhile for 
colluders to break those agreements. In 
repeated auctions involving the same 
bidders, the participants have an incen-
tive to voluntarily keep collusion agree-
ments so as to gain in the long run. The 
extent to which our methods can be 

applied to these cases and to other auc-
tions is under study.

Using the methods of Rabin et al.10,11 
and the new tools of deniable revela-
tion of a secret value and uncontrollable 
deniable bidding, we design an auc-
tion mechanism with the following 
properties.

1.	 Bidders submit sealed bids b1, . . ., bn  
to AU in an uncontrollable and deniable 
manner. This means that a bidder can-
not be compelled by anybody to submit 
a specified bid value. Also, he cannot 
be compelled to reveal any information 
about his submitted bid.

2.	 The AU assigns to every bidder 
Bi a secret identifier idi. Identifiers are 
known to AU but NOT known to bidders.

3.	 After the closing time of the auc-
tion, the AU determines that bidder Bw 
is the highest/winning bidder and that 
Bs is the second highest bidder with bid 
value bs.

4.	 AU proves to the bidders, refer-
ring only to identifiers, that the bid by 
the bidder with identifier value idw (say 
identifier value 10325) is the highest 
bid. Also that the bid by the bidder with 
identifier value ids (say identifier value 
21131) is the second highest bid.

5.	 The proof in 4 is information-
theoretic hiding with respect to all bid 
values and with respect to the correla-
tion between identifiers and bidders. 
Thus at this stage, bidders know nothing 
about who bid what and even the winner 
and second highest bidder do not know 
about their status as such.

6.	 The AU proves to Bw that his iden-
tifier is the above-mentioned idw, that is, 
that he is the winner of the IT. AU proves 
to Bw that the bid value associated with 
the above-mentioned identifier ids is bs. 
AU collects from the winner Bw the price 
bs. That is, the winner gets IT and pays 
to the AU the second highest bid value bs 
(Vickrey). These proofs to Bw are again 
secrecy preserving with respect to the 
actual identity of Bs and any other bid 
value except bs.

7.	 The AU proves to Bs that his identi-
fier is ids. The AU proves to every bidder 
Bj,  j ≠ s, that his identifier is different 
from ids.

8.	 The proofs of 6–7 are again secrecy 
preserving and deniable by the bidders 
involved.

9.	 Every bidder Bi, if he so desires, 
can arrange that if he wins the item 
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We show how the 
use of cryptography 
enables prevention 
of collusion in  
one-time  
second-price 
auctions by making 
cartel agreements 
unenforceable 
and making it 
worthwhile for 
colluders to break 
those agreements.

in Goldreich et al.3 and Goldwasser  
et al.,4 and the subject of thousands 
of subsequent papers. ZKP and other 
methods of verification of truth of 
claimed statements are, however, not 
sufficiently efficient for providing prac-
tical solutions for the auction-verifica-
tion problems treated in Rabin et al.10,11 
and herein.

By way of example, in Parkes et  al.8 
a method using Paillier homomorphic 
encryption7 was employed for verifi-
cation of claimed results of an auc-
tion while keeping bid values secret. 
Verification of a hundred-bidder sec-
ond-price auction required several 
hundred minutes. By comparison, the 
new method of Rabin et al.10 verifies a 
hundred-bidder second-price auction 
in two milliseconds. The use of multi-
party computations (see Ben-David et 
al.1) provides secrecy of bids but no ver-
ification of correctness of announced 
results. It is also by far slower than that 
of Rabin et al.10,11 and that presented in 
the present work.

The main innovation of Rabin 
et al.10,11 is to work directly with the 
input values to a computation and 
its intermediate results as numbers 
rather than going down to the bit level. 
Furthermore, numbers are randomly 
represented by two-coordinate vectors.

The papers by Rabin et al.10,11 con-
sider a generalized form of straight line 
computations on elements of a finite 
field Fp. For our applications, a 128-bit 
prime p is completely adequate. Thus, 
the field operations (x + y) mod p and 
(x × y) mod p are rapidly executable on 
an ordinary 64-bit processor.

A number of players P1, . . ., Pn 
secretly submit to an Evaluator Prover 
EP input values x1, . . ., xn taken from Fp 

(i.e., x ∈ {0, 1, . . ., p − 1}). The EP per-
forms a computation on these inputs 
and announces the results of that 
computation.

Definition 1. A Generalized Straight Line 
Computation (GSLC) on inputs x1, . . ., xn ∈ 
Fp with K outputs xL+1, . . ., xL+K is a sequence

GSLC = �x1, . . ., xn, xn+1, . . ., xL,  
xL+1, . . ., xL+K� (1)

where for all m > n there exist i, j < m, L, 
such that xm = (xi + xj) mod p, or xm = (xi × xj) 
mod p, or xm = xi, or xm = TruthValue (xi ≤ xj).

An example of a GSLC for the output 

x(2n − 1) = x1 + . . . + xn is

x1, . . ., xn, x (n+1), . . ., x (2n–1), 
where x (n+1) �= x1 + x2, x(n+2)  

= x(n+1) + x3, etc.� (2)

Random vector representations of 
values x ∈ Fp. We now come to the main 
construct for enabling Secrecy Preserving 
Proofs for the correctness of the results 
xL+1, . . ., xL+K of the GSLC(1).

Definition 2. Let x ∈ Fp be a value.  
 A random vector representation RR(x) of 
x is a vector X = (u, v) where u, v ∈ Fp; u 
was chosen randomly (notation u ← Fp ) 
and x = (u + v) mod p. For a vector X = (u, v) 
we denote val(X) = (u + v) mod p.

The method for creating a RR(x) = 
(u, v) of x is to randomly choose u ← Fp 
and set v = (x − u) mod p. Note that from 
u (or v) by itself, no information about 
x can be deduced.

Commitment functions. We shall use 
the Pedersen commitment function9 
for values u ∈ Fp. Let G be a group of 
prime order q > p for which computing 
the discrete log function is intractable. 
Let g, h in G be two generators such that 
logg(h) = e (i.e., g e = h) is not known and 
by the intractability assumption not 
computable in, say, a thousand years.

Definition 3. Let u ∈ Fp, the commit-
ment COM(u, r) to u, using the help value 
r ∈ [0, q − 1], is COM(u, r) = g u × hr.

Note that under a random choice 
of the help value r, COM(u, r) is a ran-
dom element of G. Consequently, the 
commitment function COM(u, r) is 
information-theoretically hiding. Since 
computation of logg(h) = e is intractable, 
the commitment function is computa-
tionally binding. The latter means that 
for no commitment value C is it possible 
to compute two different pairs (u, r) ≠ 
(v, s) such that C = COM(u, r) = COM(v, s). 
The reason is that logg(h) = e is effi-
ciently computable from the equation 
gu × hr = gv × hs. Consequently, a player 
who has created and posted a commit-
ment COM(u, r) can open it only in one 
way to reveal the original value u.

Even the above strong binding prop-
erty of the Pedersen commitment leaves 
it exposed to an attack by imitation. 
Assume that one bidder in an auction 
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val(X3), etc., will be done simultane-
ously for all equations. The EP will pres-
ent to Verifier n − 1 values w1,  . . ., wn−1. 
The Verifier will then randomly choose 
a challenge c ← {1, 2}. The same chal-
lenge c will be used by EP and Verifier to 
check all the n − 1 equalities. It is clear 
that if not all n − 1 claimed equations are 
true, then the probability that Verifier 
will accept is at most 1/2. Also, the argu-
ment of Theorem 2 that the interactive 
proof is information-theoretic value-
hiding holds without change.

Proving claimed correctness of mul-
tiplications. For proving correctness 
of the operations of multiplication 
xm = xi × xj in the SLC (1), the EP will 
have posted on the SBB for the Verifier 
commitments COM(Xm), COM(Xi), 
COM(Xj) for random representations 
of the values xm, xi, xj. The EP has to 
prove to Verifier that

val(Xi) × val(Xj) = val(Xm)� (5)

Let Xi = (u1, v1), Xj = (u2, v2), and Xm = (u3, 
v3). The EP prepares auxiliary vectors  
Z0 = (u1u2, v1v2), Z1 = (u1v2 + w1, p − w1), 
Z2 = (u2v1 + w2, p − w2), where w1, w2 are 
randomly chosen values. The EP aug-
ments the commitments presented to 
Verifier into:

COM(Xm), COM(Xi), COM(Xj),  
COM(Z0), COM(Z1), COM(Z2)� (6)

Clearly (5) holds if the following 
Aspects 0–4 hold true for the vectors 
committed in (6):

Aspect 0: Z0 = (u1u2, v1v2).
Aspect 1: val(Z1) = u1v2.
Aspect 2: val(Z2) = u2v1.
Aspect 4: val(Xm) = val(Z0) + val(Z1) + val(Z2).

In the interactive proof/verification, 
either Aspects 0 and 4 are checked 
together, or Aspect 1 or Aspect 2 is sepa-
rately checked. The Veifier randomly 
chooses with probability 1/2 to verify 
Aspect 0 and the addition in Aspect 4. He 
randomly chooses c ← {1, 2}. Say c = 1.  
The EP reveals the first coordinates 
of Xm, Xi, Xj and Z0. Aspect 0 is verified. 
Aspect 4 is verified in the manner of ver-
ification of additions. If the EP’s claim is 
false with respect to Aspect 0 or Aspect 
4, then the probability of Verifier accept-
ing is at most 3/4 = 1 − (1/2) × (1/2).

has committed to his bid using a value u 
committed to as C = COM(u, r) = g u × hr. 
Another bidder who sees the posted C 
will post D = C × g × hs. When the first bid-
der decommits the value u by revealing 
u and r, the second bidder will open D 
by revealing u + 1 and r + s, thus decom-
mitting the value u + 1 and raising 
the bid by 1. In the following, such an 
attack will be enabled if there is collu-
sion between the auctioneer and the 
second bidder.

To counter exposure to imita-
tion, we assume that an independent 
agent, such as NIST, has created and 
signed randomly chosen pairs (gi, 
hi), i = 0, 1,  . . ., of generators of the 
group G. When setting up the auc-
tion, the AU and every participant are 
assigned a different pair of genera-
tors from the above list to be used for 
their commitments.

Proving claimed correctness of an addi-
tion x + y = z. We can now show how the 
EP can prove to a Verifier correctness of 
an equation x + y = z. The EP prepares 
random representations X = (u1, v1), Y = 
(u2, v2), and Z = (u3, v3), of the values x, y, 
and z. Note that

val(X) + val(Y) = val(Z)� (3)

if and only if there exists a w ∈ Fp such 
that X + Y = Z + (w, −w).
The EP prepares commitments

COM(X) = [COM(u1, r1), COM(v1, s1)], 
COM(Y) = [COM(u2, r2), COM(v2, s2)],�(4) 
COM(Z) = [COM(u3, r3), COM(v3, s3)]

The EP posts the commitments (4) or 
sends them to the Verifier VER and 
claims that the hidden vectors X, Y, Z 
satisfy (3).

When challenged by VER to prove 
this claim, the EP posts or sends to 
Verifier the above value w. The Verifier 
now presents to EP a randomly chosen 
challenge c ← {1, 2}.

Assume that c = 1. The EP decom-
mits/reveals to Verifier uj, rj, j = 1, 2, 3. 
The Verifier checks the commitments, 
that is, computes COM(uj, rj), j = 1, 2, 3, 
and compares to the posted first coor-
dinates of COM(X), COM(Y), COM(Z).

The Verifier next checks that u1 + u2 
= u3 + w. If c = 2 was chosen, then the 
Verifier asks for the second coordi-
nates of X, Y, Z, and checks that u1 + u2 = 

u3 − w. The following two theorems are 
immediately obvious.

Theorem 1. If (3) is not true for the vectors 
committed in COM(X), COM(Y), COM(Z), 
then Verifier will accept with probability at 
most 1/2 the claim that (3) holds.

Proof. Under our assumption about 
the COM function being computation-
ally binding, the EP can open the com-
mitments for uj, vj, j = 1, 2, 3, in only 
one way. Now, if (3) does not hold, then 
at least one of the equations u1 + u2 = u3 
+ w, or v1 + v2 = v3 − w is not true. So the 
probability that a random challenge  
c ← {1, 2} will not uncover the falsity 
of the claim (3) is less than 1/2.

Theorem 2. The above interactive proof 
between EP and Verifier reveals nothing 
about the values val(X), val(Y), val(Z) 
beyond, if successful, that the claim that 
(3) is true (subject to probability at most 
1/2 of Verifier accepting a false claim).

Proof. We note that the interac-
tive proof involves only the revela-
tion of either all the first coordinates 
or all the second coordinates of X, 
Y, Z. Assume that Verifier’s chal-
lenge was c = 1. The only revealed 
values were random u1, u2, u3, w 
which satisfy u1 + u2 = u3 + w. Because 
the commitment function C( , )  
is information-theoretically hiding, the 
un opened second coordinates in the 
commitments (3) of COM(X), COM(Y), 
COM(Z) are consistent with any three 
values v1,1, v2,2, v3,3, satisfying v1,1 + v2,2 
= v3,3 − w. Thus, the interactive proof is 
consistent with any three vectors X1, Y1, 
Z1 satisfying the sum equality (3).

A probability of 1/2 of the Verifier 
being cheated is of course not accept-
able. The probability of being cheated 
is exponentially reduced by simulta-
neously employing k repetitions of 
the process.

Simultaneous verification of several 
additions. Consider the GSLC (2) which 
involves n inputs x1, . . ., xn, and has as 
output their sum x1 + . . . + xn. The EP will 
present to Verifier 2n − 1 commitments 
COM(Xj), 1 ≤ j ≤ 2n − 1, for random rep-
resentation for the values xj, 1 ≤ j ≤ 2n − 1. 
The interactive proofs for correctness 
of all n − 1 claimed equalities val(Xn+1) = 
val(X1) + val(X2), val(Xn+2) = val(Xn+1) + 



contributed articles

february 2014  |   vol.  57  |   no.  2  |   communications of the acm     89

The Verifier chooses to check either 
Aspect 1 or Aspect 2, each with prob-
ability 1/4. Say Aspect 1 was chosen by 
Verifier. The EP reveals the first coordi-
nate u1 of Xi and the second coordinate 
v2 of Xj and both coordinates of Z1 and 
checks the equality of Aspect 1. Note that 
if Aspect 1 is false and is chosen for veri-
fication, then Verifier will never accept. 
Similarly for Aspect 2. Consequently, if 
(5) is false and the proof of correctness 
(6) presented by EP to Verifier is false in 
Aspect 1, or Aspect 2, then the probabil-
ity that Verifier will accept is at most 3/4.
Altogether we have:

Theorem 3. If the product claim (5) is 
false then the probability that the Verifier 
will accept EP’s proof of correctness is at 
most 3/4.

Remark. To achieve the information-
theoretic value hiding property of the 
above interactive proof of correctness, 
we require an additional step in EP’s con-
struction of the posted proof (6). We note 
that the same xi can appear in the GSLC 
(1) as left factor and as right factor. One 
example arises if the GSLC has an opera-
tion xm = xi × xi. In this case, verifying 
Aspect 1 will reveal both coordinates of 
Xi and hence reveal the value xi = val(Xi). 
When preparing a proof of correctness 
of the GSLC (1), the EP creates for every xi 
involved in multiplications two random 
vector representations XL

i and XR
i .

The proof of correctness of the mul-
tiplication xm = xi × xj will be:

COM(Xm), COM(Xi
L), COM(Xj

R),  
COM(Z0), COM(Z1), COM(Z2),

where now XL
i = (u1, v1), XR

i  = (u2, v2). It is 
clear that even if i = j, and Aspect 1 is 
checked, u1 and v2 are independent ran-
dom values from Fp. Similarly if SLC con-
tains another multiplication xk = xs × xi,  
it, as well as xm = xi × xj, is verified with 
respect to Aspect 1. For the first multi-
plication, XR

i  will be employed, and for 
the second multiplication, XL

i will be 
used. Thus again independent random 
first coordinate of XR

i  and second coor-
dinate of XL

i are revealed.

Proving claimed inequalities xm = 
TruthValue(xi ≤ xj). Such inequalities x ≤ 
y are proved for cases x, y < p/2. It is clear 
that for such x, y, we have x ≤ y iff y − x 
< p/2. Example: Let p = 17, x = 7, y = 5. 

Then x ≤ y is false and y − x = 15 > 17/2.
So the EP can prove correctness 

of inequalities if he can, when true, 
prove for a commitment COM(X) that 
val(X) < p/2.

In Rabin et al.,10, 11 Lagrange’s theo-
rem that every integer x is the sum of 
four squares of integers: x = w2

1 + w2
2 + 

w2
3 + w2

4 is employed to enable the EP 
to create a Value Hiding Proof of the 
GSLC (1) by use of which he can achieve 
[Rabin et al.,10,11 Theorem 1]:

Theorem 4. Let commitments COM(X1), 
. . ., COM(Xn) to input values x1, . . ., xn be 
posted and let the EP perform the GSLC 
(1) and post the K output values x(L+1), . . ., 
x(L+k). The claimed correctness of the out-
put values can be interactively proven 
by the EP and a Verifier while keeping all 
inputs and intermediate values informa-
tion-theoretically secret. If the Prover’s 
claim is true then the Verifier will always 
accept the claim. If the Prover’s claim is 
false then the probability that Verifier 
will accept the claim is at most 3/4.

Amplification of  
Verifier’s Confidence
In the previous section, we saw how the 
EP has expanded the GSLC (1) into a 
sequence of commitments to be called 
a Value Hiding Proof (VHP-GSLC). The 
Value Hiding Proof is employed by EP 
and VER in an input and intermedi-
ate value-hiding interactive proof of 
correctness of the output values of the 
GSLC as claimed by the EP. We have 
shown that the probability of the VER 
to accept a false claim is at most 3/4. In 
applications, a 3/4 probability of being 
cheated is of course unacceptable. The 
solution is of course duplication of the 
interactive proof in k translations of 
the GSLC (1). A successful verification 
of correctness of all k translations by 
VER will assure him that the probabil-
ity of him having been cheated by the 
EP is smaller than (3/4)k.

In practice, the EP may be called upon 
to interactively prove correctness of 
announced results to different Verifiers 
upon K different occasions. So, what is 
needed is for the EP to prepare and post 
K × k Value Hiding Proofs of the GSLC. 
Next we give an algorithm for doing that.

Making multiple copies of a sequence 
of hidden values. The reader who 
is mainly interested in the overall 

structure of our results may skip the 
details of this section and just take 
for granted its conclusion that many 
copies of posted hidden values can be 
made and their value consistency can 
be proved without revelation of actual 
values.

In the general case, as well as in the 
application to securing Vickrey auc-
tions, the EP will have a sequence of m 
hidden  input values y1, . . ., ym. Some of 
these inputs were supplied by players  
P1, . . ., Pn (in the case of auctions by bid-
ders) and some of these inputs are created 
by the EP as part of the GSLC computa-
tion and proofs that he will conduct.

To begin with, the AU posts on the 
Secure Bulletin Board 3k rows:

COM(Y 1
(  j)), . . ., COM(Y m

(  j)),  1 ≤ j ≤ 3k.� (7)

Each of these 3k rows consists of m 
commitments to vector representations 
of the m values val(Yi

(  j)) = yi, 1 ≤ i ≤ m. 
For some column indices i, the 3k com-
mitments COM(Y i

(  j)), 1 ≤  j ≤ 3k, to vector 
representations of the value yi were pro-
vided by one of the players P1, . . ., Pn. For 
the other column indices i, the 3k com-
mitments were supplied by the EP. For 
a proof of correctness of announced 
output results, the question arises: 
How can the EP prove to a Verifier that 
for each column index i the posted 
commitments COM(Y i

(  j)), 1 ≤ j ≤ 3k, all 
contain vector representations of the 
same value. That is, how can the EP 
prove that the rows in (7) are pairwise 
value consistent in the following sense.

Definition 4: Two rows of commitments

COM(X1), . . ., COM(Xm)  
COM(Y1), . . ., COM(Ym)�

(8)

are called value consistent if val(Xi) = 
val(Yi), 1 ≤ i ≤ m.

Assume that the EP wants to prove 
for two posted commitments COM(X) 
and COM(Y), where X = (u1, v1) and  
Y = (u2, v2), a claim that val(X) = val(Y). 
He reveals to VER the pair (w, −w) such 
that X = Y + (w, −w). As in the verifi-
cation of addition, the Verifier now 
presents to EP a randomly chosen 
challenge c ← {1, 2}. If c = 1, then the 
EP reveals to VER the first coordinates  
u1 and u2. The VER checks that u1 = u2 + w. 
Similarly if c = 2. Clearly, if the EP’s 
claim is false, then the probability that 
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In practice, the EP 
may be called upon 
to interactively 
prove correctness 
of announced 
results to different 
Verifiers upon K 
different occasions.

of correctness of outputs, where each 
proof uses k rows extended to Value 
Hiding Proofs. Every such interactive 
proof employing k rows reduces proba-
bility of Verifier being cheated to (1/10 
+ 3/4)k.

In the following treatment of 
Vickrey auctions, we shall assume the 
availability of any needed number of 
value-consistent rows of commitments 
to input values without repeating 
the details as to how these rows were 
obtained from the initial input rows.

Deniable Revelation of a Value
We want to show that the EP can post 
commitments COM(X) to vector pre-
sentations of a value x and reveal the 
value x to a player P in a manner that 
P  can subsequently deny knowledge of 
the value x. Furthermore, even though the 
commitments are publicly posted on the 
SBB and viewable by other players, P 
cannot open any of these commitments. 
Consequently, the value x remains infor-
mation-theoretically hidden from every-
body except for the EP and P.

Our algorithm requires a step where 
P privately meets with the EP in a man-
ner unobserved by anybody else and that 
P does not carry away from the meet-
ing a record of the value x. The ques-
tion whether this private meeting can 
be replaced by exchanges of encrypted 
messages is a topic for further research.

Theorem 6. Assume that the EP has 
posted on the SBB 20k commitments:

(P, COM(X(  j))),  1 ≤ j ≤ 20k,� (10)

where P is a name of a player, to ran-
dom representations of a value x, that 
is, val(X ( j )) = x, 1 ≤ j ≤ 20k. Note that 
these posted commitments are pub-
licly associated with the player P.

The EP reveals the value x to P and 
claims to him that the posted commit-
ments (10) are to vector representations 
of this x. The EP can prove to P that the 
commitments are to random represen-
tations of the value x in a manner that 
(a) If more than 2k of the above 20k com-
mitments are not to vector representa-
tions of x, then the probability that P 
will accept the false claim is at most 
dk; (b) P cannot be compelled to reveal 
that value x to another party or prove 
to another party that the commitments 
are to the value x.

VER will accept the claim is at most 1/2.
The same procedure will apply to 

proving/verifying a claim that the two 
rows (8) are value consistent. Here, 
EP posts m vectors (wi, −wi), 1 ≤ i ≤ m. 
The VER uses one random challenge 
c ← {1, 2} to require from the EP to 
either reveal/open all first coordinates 
in all commitments or to reveal/open 
all second coordinates.

We now come to the procedure 
whereby the EP proves to a VER the 
value consistency of the initially posted 
3k rows of commitments (7) and cre-
ates additional N rows of commitments 
to be used in multiple proofs of correct-
ness of announced results of the GSLC.

Theorem 5. (Rabin et al.,10,11 Theorem 8) 
Let the EP choose an L (say L = 10) and pre-
pare and post M = 10 × k × L new rows (9):

COM(X1
(  j)), . . ., COM(Xm

(  j)),  1 ≤ j ≤ M,� (9)

so that each row of (9) is pairwise value 
consistent with every one of the 3k 
rows (7). That is, for every input index i, 
val(Xi

(  j)) = yi , 1 ≤  j ≤ M.

Upon demand, EP can conduct an 
information-theoretic value-hiding inter-
active proof convincing a Verifier that:

1.	 Among the initially posted 3k 
rows (7) at least a majority of 2k rows 
are pairwise value consistent. By defi-
nition, the m values y1, . . ., ym of the vec-
tors committed to in that 2k majority 
are the input values to the process.

2.	 In the additional M rows (9) post-
ed by EP, at least (1 − 1/L)M rows are 
pairwise value consistent with at least 
2k pairwise value consistent rows of (7).

3.	 The probability that the Verifier 
will accept claims 1–2 when not both 
are true is at most (1/2 + 1/e2)k + (1/2 + 1/
e2)3k < 2(1/2 + 1/e2)k.� 

The interactive proof involves EP open-
ing one coordinate in every one of the 
3 km pairs (7) and opening one coor-
dinate in each commitment in 6 kL 
rows of (9). Thus this interactive proof 
leaves 4 kL untouched rows of (9) with 
the assurance that at least (1 − 1/L)4 kl 
of these rows are pairwise value con-
sistent with the m values initially com-
mitted to in (7). The untouched rows 
can be employed in N = 4L = 40 proofs 
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Proof. Player P meets privately with 
the EP. The EP claims to P that the 
hidden value is x. Player P randomly 
chooses 10k commitments out of the 
20k commitments (P, COM(X(i) )).

For each of the 10k commitment 
(P,  COM(X(i)) ) chosen by P, the EP 
privately claims to P that X(i) = (u(i ), 
v(i )). Note that this is what EP claims, 
without opening the commitment 
COM(X(i)).

Player P checks that for every claimed 
value of a vector X(i), (u(i) + v(i)) mod p = x.

Next, P chooses, for each of the 10k 
selected COM(X(i)), independently a ran-
dom challenge ci ∈ {1, 2} and presents 
ci to EP. If ci = 1, then EP opens/reveals 
to P the first commitment of the chosen 
pair COM(X(i)). Player P checks that for 
COM(X(i)), the revealed coordinate value 
matches the above value u(i) as claimed 
by EP. Similarly for the case ci = 2. Player 
P accepts that (10) are 20k commit-
ments to representations of the value x 
only if all the above 10k checks are true.

The opening of the commitment to 
the coordinate ci is done by EP on the 
SBB so that the identity of the opened 
commitment is publicly known.

Why is knowledge of the value x 
deniable by P? Player P was privately 
shown both coordinates, u(i) and v(i), of 
10k vectors X(i). Thus he has deniabil-
ity of what he saw. For each of these 
vectors, the EP publicly opened just 
one of the two posted commitments 
COM(u(i)), COM(v(i))), where COM(X(i))) 
= (COM(u(i)), COM(v(i))). Hence, nobody 
except for the EP can open the other 
coordinate and the value x remains 
information-theoretically hidden.

We turn to the probability that 
the player P will accept a false 
claim. For brevity of discussion, 
we present a heuristic argument 
that if, say, k > 30 then the value d 
in the above bound dk on the prob-
ability of P being cheated is close to 

, e being the natural log base 
2.71 . . .. Namely, if more than 2k 
of the 20k vectors X(i) have val(X(i)) 
≠ x, then the probability for a ran-
domly chosen X(i) to lead P to find 
that EP is cheating is >(1/10) × 1/2.  
Consequently, the probability of 
accepting EP’s claim for a randomly 
chosen X(i) that val(X(i)) = x is < 11/20. 
For 10k choices, the probability of 
accepting is smaller than (11/20)10k. 
But (11/20)10 approximates .�

Uncontrollable, Deniable Bidding
We turn to describe the method im-
plementing uncontrollable, deniable 
bidding by use of deniable revelation 
of a value. In the following sections, 
the auctioneer AU will play the role 
of an evaluator prover EP vis-à-vis the 
bidders in the auction. The terms AU 
and EP will be used interchangeably.

Step 6.1 Assume a one-time single-
item Vickrey auction. The auctioneer 
AU, who will later also act as a prover, 
announces the auction and a reserve 
price r below which the item will not be 
sold. AU announces a time T for clos-
ing of the auction participation phase. 
AU also announces a time T1 > T for 
completion of submission of bids.
Step 6.2 Assume that bidders B1, . . ., 
Bn have decided to participate in the 
auction. As each bidder Bi declares to 
AU prior to time T his intention to par-
ticipate in the auction, the AU assigns 
to Bi a randomly chosen identifica-
tion number idi ∈ Fp and a randomly 
chosen value xi ∈ Fp. The value xi will 
be subsequently used to enable Bi to 
submit his bid in an uncontrollable, 
deniable way.

The EP posts for every Bi 20k pairs 
(Bi, COM(Xi

(  j))), 1 ≤ j ≤ 20k, to random 
vector representations of the value xi, 
that is, val(Xi

(  j)) = xi, 1 ≤ j ≤ 20k.
In a private meeting, EP reveals to 

Bi the value xi in a deniable way as dis-
cussed earlier.
Step 6.3 To bid the value bi, bidder Bi 
computes, while still privately meeting 
with EP, the zi ∈ Fp such that xi + zi = bi 
mod p.

Bidder Bi prepares 3k commitments 
COM(Zi

(  j)), 1 ≤ j ≤ 3k, to random vector 
representations of the value zi, that is, 
val(Zi

(  j)) = zi, 1 ≤ j ≤ 3k. He digitally signs 
these commitments and hands them 
over to EP who posts them on the SBB.

Now Bi erases from his device the 
values xi and bi but retains the value zi 
and the data required for opening/ 
decommitting COM(Zi

(  j)), 1 ≤ j ≤ 3k.
Note that at this point in time, 

before the closing of the auction, Bi 
has made his chosen bid bi, but the EP 
does not know what that bid value is 
because he does not know the value zi.

Theorem 7. The above process imple-
ments a sealed-bid uncontrollable and 
deniable submission of a bid by bidder Bi.

Proof. The bid value bi equals the sum 
xi + zi. While EP knows the value xi, he 
will know the value zi only after bidder 
Bi will reveal it to the EP at the closing 
of the auction at time T1. Thus we have 
a sealed-bid auction.

Bidder Bi cannot be compelled to 
make a specified bid because until his 
private meeting with the EP he does 
not know the value xi. After he made 
his bid he can perhaps be made, or 
volunteer, to reveal the value zi. But the 
value xi was revealed to Bi in a deniable 
way. As shown earlier and in Theorem 
6, Bi can claim anything about that 
value but can prove nothing about it. 
Thus this deniability extends to his 
bid value xi + zi = bi.

Conducting the Second 
Price Auction
The purpose of the following proce-
dure is to enable the EP to prove to 
bidders who won and what price the 
winner should pay by referring only to 
id numbers assigned by the EP to bid-
ders. The procedure keeps bid values 
information-theoretically secret as 
well as the correlation between id num-
bers and actual bidders.

Step 7.1 The EP chooses for every bid-
der Bi a random identifier idi. The 
identifiers are known only to the EP. At 
time T, the announced end of auction 
participation phase, the AU will post 
on the Secure Bulletin Board (SBB) the 
following data:

〈B1, COM(I D1
(  j)), COM(Y1

(  j)),  
COM (Z1

(  j ))〉, . . ., 
〈Bn, COM (I Dn

(  j), COM(Yn
(  j),  

COM(Zn
(  j))〉,  1 ≤ j ≤ 3k�

(11)

where ID1
(  j) is the jth random vector 

representation of the identifier id1; 
COM(Y1

(  j)) is the jth random vector rep-
resentation of the value x1 chosen as 
explained at the end of of the section 
“Deniable Revelation of a Value”; and 
Z1

(  j) is the jth random vector represen-
tation of the value z1. Similarly for the 
other subscripts 2, . . ., n.
Step 7.2 After time T of closing the sub-
mission of sealed-bid auction and post-
ing of the 3k rows (11), every bidder Bi 
opens his 3k commitments COM(Zi

(  j)), 
for the EP.

The EP chooses M = 10 kL, L = 10, and 
randomly chooses M permutations p 
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Countering Collusion
The construction of a bidding process 
having Properties 1–8 is now complete.

Formation of the cartel. By way of exam-
ple we assume that seven bidders, B1, . . ., 
B7, out of the n bidders get together 
before the closing of the auction and, 
following a discussion, agree that:

a.	 �Bidder Bi will bid according to 
strategy si, 1 ≤ i ≤ 7.

b.	 �If a cartel bidder Bi is the winner, 
he will make side payments p(i)

j  to 
each player Bj, j ≠ i, in the cartel.

Remark. Clauses (a)–(b) enable, for 
example, an agreement that B1 will be 
the highest bidder among B1, . . ., B7, 
and that if he wins he will make prom-
ised side payments to B2, . . ., B7. On the 
other hand, if one of B2, . . ., B7 wins by 
deviating from the agreement then 
he will make punitively high side pay-
ments to the other cartel members.

Theorem 8. If the auction mechanism 
satisfies conditions 1–9 then collusion is 
avoidable.

Proof. We assume that the bidders  
B1, . . ., B7 are independent self-interested 
entities and that the auction for the 
item IT with reserve price r is a one-
time event.

When announcing the auction, the 
AU promises in a binding way that the 
second price bidder Bj among all bid-
ders B1, . . ., Bn, whoever he will turn 
out to be, will get a kick back pay-
ment of (bj − r)/k, where bj is his bid 
and r is the announced reserve price. 
Say k = 10.

Now, every cartel member Bi argues 
for himself as follows. In the proof of 
correctness of the auction result, all 
bid values will remain information-
theoretically secret. Each of the cartel 
members can arrange it so that if he 
wins, the fact that he won will remain 
unknown to me (bidder Bi). Because 
that winner is self-interested, he will 
not make the side payment to me 
without any danger of reprisal. Also if 
I  win, this fact will remain unknown 
to everyone except to me and to the 
AU, hence I shall not need to make 
any side payments. On the other hand, 
if I bid bi = my true private value for IT, 
then if I win I shall get the IT at the 
second highest bid value. If I am the 

of the indexes {1, . . ., n}. The EP cre-
ates for every bidder Bi M commit-
ments COM(VBi) to random vector 
representations VBi of the value Bi (the 
names of the bidders are ASCII code 
words reduced to numbers).

The EP now creates and posts M 
new rows R3k+h, 1 ≤ h ≤ M each row R3k+h, 
a random permutation ph of the n 
quadruples:

〈COM(V B1
(3k+h)), COM(I D1

(3k+h)), 
COM(Y1

(3k+h)), COM(Z1
(3k+h))〉, . . .,

〈COM (V Bn
(3k+h)), COM(I Dn

(3k+h)), 
COM(Yn

(3k+h), COM(Zn
(3k+h))〉, 

1 ≤ h ≤ M.�

(12)

Each of the rows (12) contains m = 4n 
commitments and, before being per-
muted, is pairwise value consistent 
with each of the rows (11) viewed as a 
sequence of m = 4n commitments to 
vector representations of values.
Step 7.3 The EP acting as Prover and 
all bidders B1, . . ., Bn jointly acting as 
Verifier, now conduct the secrecy pre-
serving proof noted earlier confirm-
ing that out of the 3k rows (11) at least 
2k are pairwise value consistent and 
out of the new M rows (12) no more 
than M/L are not value consistent with 
at least 2k majority of the rows (11).

The only new point in this inter-
active proof is that whenever a row 
R3k+h is chosen by the Verifier, the EP/
Prover opens all the n commitments 
COM(VBi

(3k+h)) revealing the names 
B1, . . ., Bn and ordering the quadruples 
according to the names.

As mentioned, 4 kL of the rows R3k+h 
remain untouched at the end of this 
Step 7.3.
Step 7.4 Now the EP proves which 
identifier number idw had highest 
bid and which identifier number ids 
had the second highest bid. Without 
revealing bid values and without 
revealing names of the bidders asso-
ciated with these identifier numbers, 
this is done as follows:

The Verifiers B1, . . ., Bn randomly 
choose k rows R3k+h out of the 4 kL 
remaining untouched rows in Step 7.3. 
Slightly abusing notations, call these 
rows R1, . . ., Rk.

The EP orders the identifier num-
bers id1, . . ., idn he has assigned to the 
bidders B1, . . ., Bn according to size. 
This induces a permutation p on the 
indices {1, . . ., n} so that

idp (1) < idp (2) <, . . ., < idp (n)� (13)

The EP opens in each of the rows R1, . . ., 
Rk the n commitments COM(ID). Thus 
the rearranged row Rj will look to the 
Verifiers as:

〈COM(V Bp
( j)

(1) ), idp (1), COM(Yp
( j)
(1) ), 

COM(Zp
(  j)
(1))〉, . . ., 

〈COM (V Bp
(  j)
(n)), idp (n),  

COM(Yp(n)(  j), COM(Zp(n)(  j))〉, 
1 ≤ j ≤ k�

(14)

Recall that for every quadruple 
〈COM(V B), id, COM(Y), COM(Z)〉, the 
bid value b of the bidder B to whom 
the EP secretly attached the identifier 
number id is b = val(Y) + val(Z).

Using the k rows (14) as inputs and 
noting that the pairwise value con-
sistency for these rows has already 
been established for the Verifiers, 
the EP can interactively prove to the 
Verifiers that for identifier numbers 
idw and ids the bid value represented 
in the quadruple containing idw is the 
highest and the bid value represented 
in the quadruple containing ids is 
the second highest. The interactive 
proofs are as in Rabin et al.10,11 and 
as detailed in the section discussing 
previous results.
Step 7.5 Informing the winner, the 
second highest bidder and the other 
bidders. The EP now privately proves 
to the winning bidder that his asso-
ciated identifier number is the idw of 
step 7.4, thereby proving to him that 
he is the Winner. The EP reveals to the 
winner in a deniable way that the bid 
value associated with the identifier 
number ids is bs and collects that pay-
ment from the Winner.

In preparation for the kick back 
promised by the EP/AU to the second 
highest bidder, the EP privately and 
deniably proves to the second highest 
bidder that his identifier number is ids.

The EP also privately proves to 
every other bidder that his identifier 
number is neither ids nor idw. These 
interactive proofs are conducted with-
out revealing to the bidder in question 
his identifier number.

In the interest of brevity, we omit 
the detailed constructions of the 
above proofs. They follow the pat-
terns and employ the tools developed 
in Rabin et al.10,11 and in previous sec-
tions of this article.
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second highest bidder, then I shall 
get a kick back payment of (bi − r)/k, 
where bi = my private true value for 
the IT. The fact that I got the kick 
back payment will remain secret and 
be deniable by me.

The above argument can be strength-
ened to cover certain instances where 
the identity of the winner does not 
remain secret. Namely, the winner 
Bw has to pay the AU the second high-
est bid value bs. But the identity of the 
second highest bidder Bs is secret from 
everyone except for the AU and Bs him-
self. The bidder Bs is informed that he 
is the second highest in a deniable 
way. The winner Bw learns from the 
AU in a deniable way of the payment bs 
he has to make. Thus he can claim to 
other cartel members anything about 
that payment and consequently cheat 
them about the level of side payments 
he has to make.

The only concern that a cartel mem-
ber Bi planning to deviate from the 
cartel agreement may have is that if 
another cartel member was designated 
as winner and that if he (Bi) bids his true 
value, he may turn out to be the winner 
and be subject to a fine payment. If Bi, 
based on his estimate of bids by other 
bidders, concludes that this is a likely 
outcome, then he will deviate only if he 
knows that his becoming the winner 
can be concealed. Possible conceal-
ment strategies are described follow-
ing this Theorem.
Conclusion. Cartels are useless and the 
best strategy for every bidder is to bid 
his private true value. � 

Keeping the winner’s identity secret. 
The possibility of doing so depends 
on laws governing auctions and on 
special circumstances of a bidder, 
auctioneer, and the nature of the item 
IT up for auction.

For example: If the Auctioneer is a 
government agency, then there are 
often transparency requirements with 
respect to who gets the IT. Similarly, if 
a bidder is a government agency. The 
same restrictions may apply to pub-
licly held corporations. In the latter 
case, the corporation may circumvent 
restrictions by use of an entity regis-
tered in another jurisdiction.

If the IT is a financial instrument, 
then transfer to the winner may be 

secretly done and subsequently known 
only to tax authorities.

Consider an auction of a large 
plot of land. If a bidder is a developer 
intending to build on it, then if he wins 
the fact is not concealable. If the bid-
der is an investor who intends to later 
on resell for a profit, then if he wins he 
can ask the AU to transfer right to sell 
to a confidentiality protecting trust. 
That trust will arrange the transfer of 
title to a subsequent buyer while keep-
ing the winner’s identity concealed.

All in all the possibility of keeping the 
winner’s identity concealed depends on 
a myriad of legal and practical factors 
governing the auction in question. It 
gives rise to creative solutions. It is in 
the interest of the auctioneer and a win-
ning bidder to cooperate in implement-
ing a solution when legal and possible.

Verification of Stable 
Matching Solutions
In 1962, Gale and Shapley2 formulat-
ed the stable matching problem and 
provided an efficient algorithm for its 
solution. A number of players H1, . . ., 
Hm are looking at a pool of candidates 
G1, . . ., Gk.

In one example, the players are 
women, the candidates are men, and 
m = k. Every woman has her ordering 
of preference of men as spouses, and 
similarly for every man. A matching is a 
permutation µ: [1, n] → [1, n] assigning 
to Hi the spouse Gµ(i ). The matching is 
stable if there is no pair of indexes i, j 
such that Hi prefers Gµ( j) to Gµ(i ) and 
Gµ( j) prefers Hi to Hj. If the latter hap-
pens, then Hi can drop Gµ(i ) and Gµ( j ) 
will move to Hi.

In another important example, the 
players are hospital departments (say 
surgery departments) and the candi-
dates are graduating medical interns 
looking to become residents. In this 
case, k > m and every department may 
induct several residents. Again every 
department has its ordering of pref-
erence of candidates and every can-
didate has his ordering of preference 
of departments. These orderings are 
submitted to an agency that computes 
a stable matching and announces the 
assignments while keeping the prefer-
ences secret.

Assume that a resident Gi assigned 
to hospital department Hj suspects that 
the agency could have assigned him to 

another department preferred by him 
because such a department got assigned 
a resident less desirable to it than Gi. 
Upon demand, Gi can get a proof that 
that is not the case. The proof of correct-
ness does not reveal any preferences, 
only that Gi was not cheated. Similarly 
a department can obtain a secrecy pre-
serving proof that no more desirable 
candidate is willing to move over to it.
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