Evolutionary Algorithms for Classification of Malware
Families through Different Network Behaviors

M. Zubair Rafique, Ping Chen, Christophe Huygens, Wouter Joosen
iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium

{zubair.rafique,ping.chen,christophe.huygens,wouter.joosen} @ cs.kuleuven.be

ABSTRACT

The staggering increase of malware families and their di-
versity poses a significant threat and creates a compelling
need for automatic classification techniques. In this paper,
we first analyze the role of network behavior as a pow-
erful technique to automatically classify malware families
and their polymorphic variants. Afterwards, we present a
framework to efficiently classify malware families by mod-
eling their different network behaviors (such as HTTP, SMTP,
UDP, and TCP). We propose protocol-aware and state-space
modeling schemes to extract features from malware network
behaviors. We analyze the applicability of various evolu-
tionary and non-evolutionary algorithms for our malware
family classification framework. To evaluate our framework,
we collected a real-world dataset of 6,000 unique and active
malware samples belonging to 20 different malware fami-
lies. We provide a detailed analysis of network behaviors
exhibited by these prevalent malware families. The results
of our experiments shows that evolutionary algorithms, like
sUpervised Classifier System (UCS), can effectively classify
malware families through different network behaviors in real-
time. To the best of our knowledge, the current work is the
first malware classification framework based on evolutionary
classifier that uses different network behaviors.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software (e.g., viruses,
worms, Trojan horses); H.3.4 [Information Storage and Re-

trieval]: Systems and Software—performance evaluation (effi-

ciency and effectiveness).

General Terms

Algorithms, Experimentation, Security

Keywords

Malware Classification, Network Behaviors, Machine Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.

1. INTRODUCTION

The classification of the diverse and massive amount of
malware variants into families is one of the most challenging
problem faced by the security community. A recent report
by security company McAfee indicates a steep rise in distri-
bution of malware variants, with the collection of more than
128 million samples in duration of one year [16]. Another
report [10] demonstrates the same trend with the collection
of 200,000 malware samples each day by security analysts.
This problem has persisted for many years and is only get-
ting worse owing to easy availability of ready-made infection
vectors (e.g., exploit kits [20]) and existence of disreputable
malware crafting and dissemination services [12][7].

The traditional host-based defenses, like anti-virus soft-
wares, lag behind to contend with this enormous increase
of malware. This is largely due to extensive exploitation of
evasive techniques (e.g., repacking, polymorphism, and ob-
fuscation) in malware development [26]. Furthermore, the
notable prevalence of malware families — zeroaccess with
approximately 9 million infected PCs [31], zbot/zeus with
anti-virus detection rate of only 39.35% [32], ransomware
the number one threat of 2013/2014 [29], and winwebsec
an infamous fake anti-virus fraud [20] — not only shows the
limitations of anti-virus softwares, but also highlights the
emerging need for tools to automatically classify unknown
variants of known malware families. To this end, security
analysts are profoundly inclined to use behavioral attributes
for malware classification [26]. Behavioral attributes are ef-
fective, as they model specific behaviors that are persistent
across the variants of a particular malware family.

One of the powerful behavioral attribute to classify ever-
growing malware families and their polymorphic variants
is the malware network behavior. The behavior is power-
ful because a vast majority of real-world malware relies on
network communication to perform illegal malicious activ-
ities including identity theft, on line advertisement clicks,
sending Spam, launching denial of service (DoS) attacks,
downloading additional malware and collection of fraudu-
lent ransoms. In addition, inferring knowledge from net-
work behavior (of malware variants) can enable take-downs
of malicious servers, identify compromised machines [21],
and establish intelligence on the criminals running the fla-
grant operations [20]. Last but not least, detection of mal-
ware through network behavior is more feasible than host-
based techniques, facilitating detection at the network edge
rather than resource-consuming installations at every end
host [24]. Despite the effectiveness of this powerful behav-
ioral attribute, malware family classification through net-

work behavior has received negligible attention in the rich
paradigm of evolutionary classification algorithms.

In this paper we performed an empirical study to ana-
lyze the applicability of different evolutionary algorithms in
classification of malware variants into families using network
behaviors. Our study does not focus malware family classifi-
cation by assuming a single malware family or a single proto-
col in the malware traffic [21, 19]. In contrast, we here pro-
pose a classification framework that extracts features from
different network protocols (e.g., HTTP, SMTP, UDP, TCP) ex-
ploited by variants of multiple, recent and active malware
families. The extraction of features from different proto-
cols is important, as malware families can use various pro-
tocols for different purposes (e.g., an unknown protocol on
UDP to communicate with command and control (C&C) and
HTTP for click-fraud [31]). We therefore use a combination of
protocol-aware and state-space modelings to extract features
from different network behaviors exhibited by malware sam-
ples. For our study, we selected four evolutionary and four
non-evolutionary classifiers from different machine learning
paradigms. These classifiers are enumerated in Table 1.

We evaluate the performance of the selected classifiers on
our collection of real-world active malware samples. Our
dataset contains more than 6,000 unique malware samples.
These samples belong to 20 recent and active malware fam-
ilies. We collected the malware samples by using our cus-
tomized malware-downloader tool and choosing active mal-
ware samples from [20]. We executed the collected malware
samples in a controlled environment to obtain network be-
haviors for feature extraction and classification.

The results of our experiments show that our framework,
using evolutionary classifiers (like UCS), achieves high ac-
curacy in classifying malware samples of different families.
Moreover, the processing overheads of our framework are
low; as a result, it can be easily deployed for larger datasets.
Finally, we make the implementation of our feature extrac-
tion tool publicly available to promote further research and
allow future scholars to compare their results to ours.

The remainder of this paper is organized as follows. We
present our classification framework in Section 2. We ex-
plain feature extraction schemes in Section 3. We discuss
the classifiers in Section 4 and describe the evaluation strat-
egy in Section 5. We report the results of our experiments
in Section 6. Finally, we discuss the related work on mal-
ware family classification in Section 7 and then conclude the
paper with an outlook to our future work in Section 8.

2. FRAMEWORK OVERVIEW

Our framework is designed to automatically learn different
network behaviors of malware from the labeled binaries and
extract discriminative features to classify unknown variants
of known malware families. We set the following require-
ments for our framework: (1) it should correctly identify the
unknown variants of known malware families (malware fam-
ily classification), (2) the learning process must be robust to
consolidate different network behaviors used by malware to
communicate with its C&C (multiple protocol incorporation)
and (3) the classification process should be efficient in terms
of processing overheads (real-world deployable). Our frame-
work is modular in nature, allows it to operate on different
sets of attributes and with large variety of classification al-
gorithms. We now discuss the different components of our
system to classify malware families.

Evolutionary
Classifiers

£ Vi
DOL

Feature
Extraction

HTTP SMTP

J

II Malware
Execution

—
S —

Malware TCP UDP
Classification
=] Feature
II Malware B Extraction [0 @ Malware
Execution HTTP SMTP Family
Malware TCP UDP

(7 NetworkTraces [[] Features

Figure 1: Architecture of malware family classifica-
tion framework using different network behaviors.

Figure 1 shows the architecture of our framework. Our
framework takes malicious executables as an input. These
executables are marked with malware family label and can
be obtained from different sources and honey-pots.

Next, the malware execution module runs each malware
binary in a controlled environment. The fundamental objec-
tives of running a malware in a controlled environment are
to provoke the malicious executable to generate traffic, to
gather different network behaviors such as HTTP, SMTP, TCP
and UDP, and to avoid infections through network. To this
end, we automatically execute malware binaries in different
virtual machines (such as Virtual-box and Qemu), as pro-
voking the malware to communicate through network usu-
ally requires executing the same malware sample numerous
times in different environments. The traffic generated by
executables is stored in Packet CAPture (PCAP) format. Note
that malware execution is a well studied research problem
[12, 20, 21] and is not the main contribution of this paper.

As network traces are obtained, our feature extraction
module models the information from different network be-
haviors of real-world malware. We designed our framework
to analyze all kind of network requests generated by the mal-
ware. We use two separate modeling schemes, (1) protocol-
aware modeling and (2) state-space modeling. In the first
modeling we use protocol grammars to extract fine-grained
information from application protocols (e.g., HTTP, SMTP etc.).
The advantage of this modeling is that we can extract dis-
tinct information from different fields of known protocol
messages. In the second modeling, we use state-space fea-
tures to deal with unknown protocol requests. This mod-
eling enables us to incorporate expert knowledge from mal-
ware network behaviors that do not follow any formal proto-
col specifications. In the interest of optimization, we discard
all requests sent towards benign endpoints by malware. Fur-
ther, we use gain ratio to select discriminative features for
state-space modeling of unknown protocol requests.

The classification module takes the features, from both
protocol-aware and state-space modeling, as input and solves
a multi-class problem to distinguish instances of different
malware families. This problem is solved with the help of
rules (population) stored in the rules database. In this study,
we analyze the performance of the malware detection frame-
work on wide range of classification algorithms. These al-
gorithms are described in Section 4. The decision made by
the classification module can categorize unknown variants
of known malware families based on their network behav-
iors. It can equally be used to identify if a network message
belongs to a known malware family.

Port Protocol:Payload or Request Line
34354 TCP:ebaac031b4dc3e40315b74084d9b39c1beb4ffb8

53 UDP:4ee3750a8a9c9e981d396c39c7047a624eb8d8f1

16471 UDP:9dc8708a28948dabc9c0d199940c89e5

80 HTTP:GET /stat2.php?w=30461&i=963e6170&
a=3291195

80 HTTP:GET /56995-BS8EBEDA4/counter.img?
theme=1&digits=10&siteId=31226369

80 HTTP:GET /count.php?id=31226369&c=1&
d=7& ; s=0

Figure 2: Real-world example of single malware family
(Zeroaccess) exhibiting different network behaviors.

Our malware classification approach consists of two phases.
In the learning phase, network traffic obtained from malware
execution (labeled with family name) is passed to the mal-
ware family classification system. The classification module
of system learns its rules or evolves its population based on
extracted features from network behaviors (that correspond
to different protocols). For effective classification, the sys-
tem can be periodically updated to accommodate changes in
the network behaviors of malware families. Once the learn-
ing phase of system is terminated, it starts operating on
network behaviors of malicious binaries to classify malware
family based on the knowledge acquired during learning.

3. FEATURE EXTRACTION

The key intuition behind incorporating different network
behaviors, exhibited by real-world malware samples, in our
feature extraction process is that the patterns in requests
generated by malware (when communicating with a mali-
cious server) tend to remain consistent and are not affected
by code obfuscation techniques. This is likely due in part to
the considerable amount of effort required to change C&C
protocol, with code changes in both malware and malicious
server. At the same time, incorporating network behav-
iors in feature extraction process is challenging as malware
families often use multiple C&C protocols. For instance, a
malware family can use both HTTP protocol and an unknown
C&C protocol built on top of TCP to communicate with the
malicious server, and additionally even a separate protocol
to perform its fraudulent actions (like SMTP for sending Spam
or IRC to send bot commands).

To further illustrate this fact, we provide example of Ze-
roaccess, the most prevalent and active malware family [31].
Figure 2 shows six different network behaviors of Zeroac-
cess. The malware family uses TCP-based protocol on port
34354 (to communicate with malicious servers), two sep-
arate unknown UDP-based protocols on ports 53 and 16471
respectively (for peer-to-peer communication), and three dif-
ferent application protocol (HTTP) requests (to communicate
malware affiliate-id and to perform click-fraud [31]). Since
malware families can use different protocols, it is important
and relevant to extract features from different protocols to
achieve better accuracy. Specifically, we argue that classifi-
cation scheme based on malware network behaviors should
accommodate both application and unknown protocols.

As described in Section 2, we use two separate modelings
to extract features from malware network behaviors. These
are (1) protocol-aware modeling (for application protocol
requests like HTTP, SMTP etc.) and (2) state-space modeling
(for unknown protocol requests built on transport protocols
i.e., UDP and TCP). We now provide details on these schemes.

<proto name="http">

<field name="http.req.method" value="GET"/>

<field name="http.req.url" value="/stat2.php"/>
<field name="http.req.ver" value="HTTP/1.1"/>
<field name="http.req.user_agent" value="Opera 6"/>

</proto>
——————————————— Feature Embedding---------------
attribute|http.req.method|http.req.url| - -
value |GET |/stat2.php | - -

Figure 3: Protocol-aware feature extraction example.

Protocol-aware Modeling. The main advantage of us-
ing protocol-aware modeling is the possibility to extract fine-
grained information from different fields of the application
protocol messages. Malware families widely use different
message fields of known protocols for malicious communica-
tion. For instance, in Figure 2 the siteId parameter in uri
of second last HTTP request is used by malware to commu-
nicate its affiliate-id [31]. Moreover, a number of malware
families craft custom protocol requests, which may include
peculiar field values (like a customized value of User-Agent
header in HTTP [24]). Therefore, it is pertinent to incorpo-
rate information from the application protocol fields in our
feature extraction process.

We use Wireshark® dissectors to parse requests generated
by malware into the field structures of known protocols.
Wireshark dissectors can be used to parse a wide range of
protocols, allowing us to extract information from variety of
malware network behaviors. Figure 3 shows the dissection
of an HTTP request, initiated by malware, into the structured
format and the embedding of message fields into correspond-
ing feature space. Here, we treated each field name as at-
tribute and field value as attribute value. Any changes in the
values of particular fields shows a different crafting of C&C
message. This difference indicates a network behavior of a
different malware family or a different network behavior of
the same malware family. Our approach is not constrained
to a specific protocol (e.g., only HTTP) or manual incorpo-
ration of limited protocol fields (like, http.req.method and
http.req.url) as in [21].

One problem of using Wireshark is that it can not au-
tomatically parse common protocols on unusual ports. For
instance, it cannot automatically parse HTTP on the unusual
TCP port 1435, as it only uses the destination port to select
the right protocol dissector. This unusual port communi-
cation is a common practice of malware families to avoid
detection and bypass firewall rules. We therefore use pro-
tocol fingerprints for each TCP connection made by malware
during execution. These fingerprints are designed to identify
application layer traffic by checking the existence of protocol
keywords in the starting bytes of a payload (e.g., GET in HTTP
or EHLO in SMTP). Once the known protocol is identified, we
use appropriate Wireshark dissector to parse the message
into the field structure.

State-space Modeling. In compare to protocol-aware
modeling, state-space modeling is more challenging as it
deals with the network behaviors consisting of unknown pro-
tocol requests. For such requests we extract four attributes
to transform a given payload into a feature vector. These
attributes are: (proto, size,dest_port,[state_space]). Here,

"Mttp://www.wireshark.com

proto represents transport protocol (i.e., UDP or TCP), size
is the number of bytes in the payload, and dest_port repre-
sents the destination port to which an unknown message is
sent by the malware. The [state_space] maps the payload
information of unknown request into the feature vector.

The first two features (proto and size) are useful as it is
less probable that different malware families use the same
transport protocol with the same message size for an un-
known protocol request. The third feature dest_port can be
effective if a particular malware family utilize the specific set
of ports for unknown protocol requests (e.g., ports 16471 or
34354 in Figure 2). Finally, the [state_space] attributes are
valuable to extract the information from the byte sequences
of unknown protocol requests.

In order to extract [state_space], we present a payload
P, of an unknown protocol message, as order of bytes P =
{bo,b1,bz2...bi}, where [is the length of UDP or TCP payload.
Without loss of generality, we can use n-gram (joint distri-
bution of bytes) by computing frequency of consecutive n
bytes in P to model the information from the payload of
unknown protocol requests. However, the major problem
with n-gram is that such feature-space contains redundant
information and the selection of right value of n is not triv-
ial (i.e., if m is small, the accuracy of the system decreases
whereas large values of n significantly increase the process-
ing overheads) [23].

We therefore use a first order state-space system to in-
corporate the relevant information from the payloads of un-
known protocol requests. The state-space uses conditional
distribution rather than joint distribution, which results in
small and discriminative feature-space [23]. We build our
system as a set of states & = {So, 81, S2......S% }, where o
is the initial system state. We apply transformation func-
tion ¢ that operates on UDP or TCP protocol to transform
each byte of an unknown protocol request into a system
state as: (¢ : b — 35 € §). With each byte b; in payload,
such that b; — 3, we compute the probability of byte bi41
followed by byte b; as a state transition tg;g,,,. Finally,
the transitions probabilities of a given P between k states
are detailed in a state transition matrix as:

150,90 10,3 S0,k
ts1,80 99,9y tsy,9

() = . (1)
13,90 lsp,9 Iy,

The total number of states are bounded by the length [of
any given unknown protocol payload. The state transitions
values represent the complete formation of the unknown pro-
tocol payload for a particular malware family. Any variation
in the state transition values reflects a dissimilar payload
(i.e., a different crafting of unknown protocol message). We
use the transition values as [state_space] attributes in our
defined feature vector for unknown protocol requests.

Optimization. We use two kind of optimizations to make
our feature space more discriminative and computationally
feasible. First, we filtered all the known protocol requests
sent towards the benign top 200,000 Alexa domains. This is
because malware often sends requests to benign sites in order
to check Internet connectivity. Including these requests, in
our feature space, has little impact on classification of mal-
ware families and is obviously an additional overhead. Sec-

Table 1: Classification algorithms and machine learning
paradigms (Evolutionary and Non-Evolutionary).

Algorithm Learning Paradigm
S
¢ GAssist-ADI Pittsburgh-Style GBML
é SLAVE Genetic Fuzzy
§ UcCs Michigan-Style GMBL
m XCS Michigan-Style GMBL
>
- § C4.5 Decision Tree Induction
2 % C-SVM Support Vector Machine
E KNN Instance Based Learning
m Naive Bayes Statistical Modeling

ond, we use the gain ratio feature selection scheme to choose
the most discriminative transitions in the [state_space].

4. CLASSIFICATION

Our research analyzed the utility of evolutionary algo-
rithms in the classification of malware families through net-
work behaviors. In addition, we also incorporated known
non-evolutionary algorithms to gain knowledge about the
classification potential of algorithms in our framework. We
then evaluate the effectiveness of the selected algorithms
based on their classification accuracy and processing over-
heads (their training and testing times). Our goal is to iden-
tify the best algorithm that can accurately classify malware
families using different network behavior attributes.

We have used a diverse set of well-known evolutionary and
non-evolutionary classification algorithms in our classifica-
tion module. Our prime driver, for selecting various clas-
sification algorithms, was an attempt to cover the various
paradigms of evolutionary computing and machine learn-
ing. The paradigms and corresponding classifiers used in our
study are shown in Table 1. We now briefly describe each
algorithm to make the manuscript self contained. Details on
these algorithms can be found in the cited references.

4.1 Evolutionary Algorithms

eXtended Classifier System (XCS). XCS is a Michigan-
style classifier that derives a set of rules based on accuracy
[30]. In the training phase, the input data is used to generate
the initial rules. Afterwards, these initial rules are evolved
into new rules using a niche Genetic Algorithm (GA) re-
served in the population. The fitness of the individual (or
rule) is determined based on the accuracy of each rule. The
predicted payoff values for all actions are saved in prediction
array. Based on the criteria for rules, some of them are also
deleted from the population. The evolution of accurate gen-
eralizations and accommodation of real values makes XCS
suitable to solve various real-world problems.

sUpervised Classifier System (UCS). UCS is also a
Michigan style classifier and is based on accuracy [5]. UCS
inherits same principle and structure of XCS where an initial
population of rules is derived from training data. However,
it differs from XCS as (1) it is based on a supervised learning
scheme that computes fitness instead of reinforcement, (2)
the GA is applied to correct the rule-set for updating its
population, and (3) it does not use a prediction array. The
on-line learning and evolving abilities of UCS make it useful
in efficiently solving different real-world problems.

Genetic clASSIfier SysTem (GAssist). GAssist [3]
is a Pittsburgh style classifier based on the approach where

each individual in the population depicts a complete solu-
tion to the classification problem. It uses GA to evolve the
rulesets of the population and exploits a fitness function to
get a good balance between complexity and accuracy of the
generated rules. The incremental learning with alternating
strata (ILAS) windowing approach is used to improve the
generalization of rulesets. For this study we have used the
adaptive discretization intervals (ADI) rule representation.

Structural Learning Algorithm in Vague Environ-
ment (SLAVE). SLAVE is a genetic learning algorithm
based on the use of fuzzy logic concepts and the genetic it-
erative approach [11]. The algorithm elects and gains knowl-
edge by only one fuzzy rule in each iteration. This results
in pruning of the search space for potential solutions. Next,
it chooses the most suitable prior for the class by fixing a
class. Finally, a series of repeated iterations outputs a full
rule-set for the classification of instances. Here, the fitness of
rules is computed by using completeness and consistency of
the rules. The algorithm has been effectively used in several
real-world applications and shows promising results [25].

4.2 Non-Evolutionary Algorithms

C4.5 Algorithm. C4.5 generates a decision-tree to in-
terpret the class and is based on the theory of information
entropy [22]. Decision trees are mostly adopted to map in-
formation about an attribute for getting outcomes of the
attribute’s target value using some predictive models. To
generate decision-tree from training data, C4.5 uses infor-
mation gain of attributes by grading a set of attributes to
an individual class. It then, recursively operates on the sub-
sets of the attributes till each of the attribute is examined
or no further information can be achieved by separating the
rest of attributes. Finally, the attributes with the highest
information gain are chosen to build the classification model.

Support Vector Machine (SVM). SVMs build hyper
planes between elements of separate classes and are based on
the concept of a decision surface to solve classification prob-
lems [13]. SVM converts diverse domain knowledge with
overlapping inputs into non-overlapping parametric objects
by modeling the input elements to feature space using math-
ematical functions called kernels. The commonly used ker-
nels in SVM are Linear, Polynomial, Radial Basis Function
(RBF) and Sigmoid kernels.

Naive Bayes Algorithm (NB). Naive Bayes is a simple
probabilistic classifier based on Bayes’ theorem [27]. The
classifier assumes that the features used in model building
are statistically independent. Mathematically, given a fea-
ture vector F' = {f1, f2,....fn} and class C, the probability
of F' belongs to C'is computed as P(F/C) = H‘Zi‘l P(F;/C).
The disjoint of class conditional feature distributions implies
that each distribution can be independently computed as
one dimensional distribution. Naive Bayes is notably suited
for a high-dimensional feature space and has been empiri-
cally proven to be effective in various real-world applications.

K Nearest Neighbors (KNN). KNN algorithm is a non-
parametric way of categorizing instances into classes based
on the k closest training instances in the feature space [8].
In KNN;, there is no explicit training phase and it only stores
features and class information. However, the testing phase is
costly (both in time and space) because an instance is clas-
sified by a majority vote of its neighbors through computing

Table 2: Network behavior analysis of malware families.

Family (Samples) Regqs. HTTP SMTP TCP UDP
1.Cleaman (32) 49 100% 0% 0% 0%
2.Coinminer (3) 8 100% 0% 0% 0%
3.Cridex (72) 1,175 100% 0% 0% 0%
4.Cutwail (2) 747 40.0% 56.7% 3.3% 0%
5.Drstwex.A (45) 51 0% 0% 100% 0%
6.Foreign (6) 6 100% 0% 0% 0%
7.Malagent(8) 15 100% 0% 0% 0%
8.Onescan (9) 85 100% 0% 0% 0%
9.Qakbot-AE (11) 65 100% 0% 0% 0%
10.Ramnit (5) 22 0% 0% 100% 0%
11.Simda (20) 60 100% 0% 0% 0%
12.Spybot.bfr (1) 151 6.0% 94.0% 0% 0%
13.Spyeye (7) 27 59.3% 0% 40.7% 0%
14.Suspectcrc (10) 192 100% 0% 0% 0%
15.Waledace.C (14) 14 100% 0% 0% 0%
16.Waledace.R. (29) 29 100% 0% 0% 0%
17.Webprotection (3) 17 100% 0% 0% 0%
18.Winwebsec (2541) 3,395 100% 0% 0% 0%
19.Zbot (2095) 53,568 20.0% 0% 3.6% 76.5%
20.Zeroaccess (1087) 251,874 1.3% 0% 0.3% 98.4%

Total: (6000) 311,550 6.2% 0.05% 1% 92.3%

the least distance from its k nearest neighbors. The major-
ity class of nearest instances advocates the classification of
the instance under test.

S. EVALUATION

In this section, we present our methodology for assessing
and comparing the selected machine learning algorithms.
Our leading objective was to investigate the classification
potential of various algorithms to categorize real-world mal-
ware samples into families. Therefore, we first present our
strategy to acquire recent and active malware samples. We
then provide detailed analysis on different network behaviors
of the real-world malware families. Finally, we explain our
experimental setup for the classification of malware samples
into families using network behavior attributes.

Dataset. Our dataset contains 6,000 binaries from 20
different recent and active malware families, shown in Ta-
ble 2. The dataset contains a broad range of recent malware
classes such as fake anti-viruses, malware-kits, and peer-to-
peer bots. All the malware families contain a high range
of diversity in network behaviors with their traffic exhibit-
ing common obfuscation techniques such as encryption and
polymorphism (in IPs, domains, and payloads). The ma-
jority of malware binaries in our dataset are obtained from
the publicly available MALICIA dataset [20]. These malware
binaries are collected from different exploit kit servers from
March 2012 to February 2013 (we only choose prevalent and
active malware families’ samples.) Apart from the MALI-
CIA dataset, we also developed a malware-downloader to
acquire recent malware samples from different infection vec-
tors (such as phishing). This gives us a diverse set of recent
malware samples that are not present in MALICIA dataset
and exist in the wild.

To acquire malware from different feeds we make use of
public security forums such as Malware Domain List (MDL)
and Anti Network Virus Alliance (ANVA) [17]. These public
forums are used by security analysts and volunteers to report
and analyze malicious URLs. Our malware-downloader pe-
riodically visits these forums and downloads fresh malware
samples by visiting the malicious URLs. For a downloaded
sample, malware-downloader uses the same family label as
mentioned in MDL or ANVA since the links leading to malware

Table 3: Qualitative analysis of HT'TP attributes.

Name Distinct Missing Unique GR
http.user_agent 39 1.2% 0.02% 0.72
http.connection 3 4.0% 0% 0.60
http.accept 6 31.0% 0% 0.40
http.method 2 0% 0% 0.40
http.accept_encoding 4 54.0% 0% 0.30
http.url 3,385 0% 15.0% 0.26
http.host 2,226 0% 6.0% 0.25
http.content_type 5 72.0% 0% 0.18
http.cookie 13 98.0% 0.04% 107%
http.referer 16 94.0% 0% 1074
http.accept_language 1 90.0% 0% 0
http.authbasic 2 99.9% 0% 0
http.cache_control 1 74.0% 0% 0
http.content_encoding 1 74.0% 0% 0
http.authorization 2 99.9% 0% 0

samples reported in these forums are manually checked by
experts and only verified ground-truth is reported [20].

Table 2 shows our analysis of the dataset of malware fam-
ilies. It presents the number of binaries for each malware
family that generate network traffic, number of requests
transmitted by malware of each family, as well as the %
split of requests according to the network protocols for each
family. We found that HTTP is the most common proto-
col used among malware families. However, some malware
families do not completely rely on HTTP. For instance, we
found that malware belonging to Ramnit solely uses an un-
known binary protocol built on top of TCP. Furthermore,
Cutwail and Cridex largely exploits SMTP for sending Spam,
whereas Zbot and Zeroaccess heavily rely on UDP for ma-
licious communication because of their C&C infrastructure
and peer-to-peer nature. In summary, our analysis of recent
and active malware samples indicates that the malware fam-
ilies exhibits different network behaviors during execution.
Therefore, any scheme based on network behaviors should
accommodate different protocols (not only HTTP [21]) to ac-
curately classify real-world malware samples into families.

Ezxperimental Setup. For our experiments, we have used
the standard implementations of selected classifiers in an
open source tool Knowledge Extraction based on Evolution-
ary Learning (KEEL) [2]. The classifiers are trained by us-
ing a combination of all extracted network traffic attributes.
Afterwards, we used a stratified 10-fold cross validation pro-
cedure on requests belonging to different network behaviors
extracted from malware dataset.

6. EXPERIMENTS AND RESULTS

In this section we demonstrate the results of our experi-
ments. We first provide qualitative analysis of features ob-
tained from state-space and protocol-aware modelings. This
analysis is useful in measuring the effectiveness of algorithms
used to classify malware samples into families. We then dis-
cuss the classification accuracy of algorithms. Finally, we
provide the training and testing time analysis.

Qualitative Analysis of Features. We now analyze
some of the discriminative characteristics of the attributes
extracted from network behaviors of the malware dataset.
We focus on the quality of the extracted attributes using
protocol-aware and state-space modelings (see Section 3).
Several information and theoretic measures have been used
to evaluate the quality of attributes in a given dataset. For
our analysis, we employ the widely used gain ratio (GR) [9] to
analyze the quality of attributes extracted from the protocol-

0.999}
0.99f
0.95f

0.75r

0.25¢

Probability

0.05}
0.01}

0.001

‘ + State-space Features ‘

0.4 0.6 0.8
GR
Figure 4: Normal probability plot for gain ratio of

[state-space] attributes (unknown protocols).

aware modeling and to select distinctive attributes obtained
from the state-space modeling.

Figure 4 shows the normal probability plot for the GR of
the [state_space] attributes. As the value of GR ranges from 0
to 1, the values near 1 show a higher discriminative nature of
computed transition probabilities and vice versa. Figure 4
shows that there are four attributes showing very high GR
values. These are attributes present in UDP payload (port
16471) of Zeroaccess corresponding to the encrypted com-
mand GETL [31]. Apart from that, majority of [state_space]
attributes have very low GR and can be redundant for classifi-
cation algorithms. We therefore empirically choose only top
50 attributes with highest GR values in [state_space] tran-
sitions. We also tabulated our analysis on protocol-aware
modeling for HTTP protocol in Table 3. Table 3 shows at-
tribute names, distinct values of attributes in dataset, %
of missing and unique values of attributes in dataset, and
finally GR of each attribute. The attributes with higher GR
(like http.user_agent etc.) can be regarded crucial for clas-
sification of malware families using network behaviors.

Classification Accuracy. The classification accuracy
represents the percentage of correctly assigned family labels
to malware binaries by using a combination of protocol-
aware and state-space attributes. Table 4 shows the per
family accuracy achieved by each classifier. It also shows
the average accuracy attained by the particular classifier on
the complete dataset (Samples).

Training Accuracy. Table 4 shows that all algorithms
achieved different training accuracies for each of the 20 se-
lected malware families. Most algorithms achieved high
training accuracies for Winwebsec (18), Zbot (19), and Ze-
roaccess (20). This was an expected result as these families
constitutes about 99% of requests generated by all malware
samples in our dataset. Therefore, the average accuracy
(samples) attained by a majority of the classifiers on the
complete malware dataset was quite high. The only excep-
tion was SLAVE that achieved very poor training accuracy
for Winwebsec (18) and Zeroaccess (20). The Michigan
style UCS achieved training accuracy of 96.49% (per family)
in classification of network behaviors exhibited by different
malware families. The evolutionary classifiers, GAssist-ADI,
SLAVE, and XCS showed poor training accuracies for the
majority of malware classes. NB achieved 0% training ac-
curacy in classifying malware belongs to Foriegn (6) and
Waledace.C (15). Similarly, the non-evolutionary classifiers,
C4.5 and KNN achieved 0% training accuracy in classify-

Table 4: Classification accuracy in (%) of the selected classifiers on the malware dataset.

Evolutionary | Non-Evolutionary

Classifiers G Assist-ADI SLAVE UcCs XCSs C4.5 C-SVM KNN NB
Malware Families Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test
1.Cleaman 9.98 10.20 0 0 100 100 0 0 0 0 100 100 0 0 100 100
2.Coinminer 9.72 12.50 0 0 100 100 0 0 100 100 100 100 100 100 27.78 0
3.Cridex 99.92 99.83 0 0 100 100 51 51.23 100 100 100 94.55 100 100 100 100
4.Cutwail 56.85 33.30 22.22 20 94.75 88.87 1 2.56 64.44 66.67 95.19 69.88 59.75 60 65 65
5.Drstwex. A 100 100 73.33 72.92 100 100 20.70 21.57 100 100 98.04 98.04 100 100 96.08 96.08
6.Foreign 7.41 0 0 0 72.22 83.33 0 0 0 0 100 100 66.67 66.67 0 0
7.Malagent 0 0 0 0 100 73.33 0 0 0 0 100 40 100 100 100 100
8.Onescan 50.20 48.24 0 0 98.17 76.47 0 0 100 100 100 76.47 44.71 44.71 100 98.82
9.Qakbot-AE 41.71 41.54 0 0 100 95.38 0 0 100 98.46 100 95.38 99.66 100 100 100
10.Ramnit 59.26 66.67 100 100 99.07 91.67 0 0 100 100 73.15 70.83 33.33 33.33 58.33 58.33
11.Simda 5 8.33 0 0 96.85 8.33 3.33 5 100 100 100 0 63.70 63.33 100 100
12.Spybot.bfr 54.94 55.56 50 50 100 100 50 50 100 100 100 100 100 100 100 100
13.Spyeye 0 0 0 0 95.96 66.19 1.52 0 98.30 73.86 95.62 79.17 76.33 78.69 24.35 14.39
14.Suspectcrc 68.46 67.71 0 0 97.22 79.17 0.75 0 37.73 35.94 100 64.06 84.84 83.85 99.48 98.96
15.Waledace.C 0 0 0 0 82.54 64.29 0 0 0 0 100 78.57 45.24 50 0 0
16.Waledace.R 2.68 3.45 0 0 93.10 79.31 0 0 0 0 100 62.07 69.73 72.41 100 62.07
17.Webprotection 19.61 23.53 0 0 100 100 0 0 0 0 100 100 0 0 70.59 70.59
18. Winwebsec 99.98 99.88 0 0 99.97 99.35 86.64 86.72 100 99.97 100 99.82 99.91 99.85 100 100
19.Zbot 99.97 99.96 100 100 100 99.99 96.84 96.96 100 100 100 99.57 99.96 99.96 99.83 99.79
20.Zeroaccess 99.77 99.72 49.49 49.49 100 99.88 48.98 98.61 100 100 100 98.93 99.45 99.45 99.33 99.33
Avg.(per Family) 44.27 43.52 17.82 17.71 96.49 85.28 18.04 20.63 65.02 63.75 98.10 81.37 72.16 72.61 77.04 73.17
Avg.(Samples) 99.14 99.19 84.90 84.91 99.96 99.70 94.53 94.53 99.49 99.42 99.99 99.01 99.56 99.55 99.73 99.70

ing Cleaman (1) and Webprotection (17). C-SVM classifier
attained highest training accuracy of 98.10% (per family).

Testing Accuracy. Table 4 shows the testing results for
different malware families. The evolutionary classifier UCS
achieved the best average testing results with an accuracy
of 85.28% (per family). SLAVE had the lowest testing ac-
curacy of 17.71% (per family) and as such was not an ad-
equate algorithm in classifying malware network behaviors.
GAssist-ADI and XCS were also below par and achieved a
low average testing accuracy of 43.52% and 20.63% (per fam-
ily) respectively. The non-evolutionary algorithms, C4.5,
KNN, and NB achieved average testing accuracy of 63.75%,
72.61%, and 73.17% (per family) respectively. C-SVM was
dominant among non-evolutionary classifiers and achieved
testing accuracy of 81.37% (per family). However, C-SVM
was not able to classify a single variant of malware family
Simda (11) using network behavior attributes. In conclu-
sion, the Michigan style UCS emerged as the most accurate
algorithm for classifying different network behaviors of mal-
ware with the prominent accuracy results (99.70% on the
complete dataset and 85.28% per family).

For the current problem, it is impossible to achieve com-
plete coverage of malware families by using a single mal-
ware network behavior. For instance, malware families like
Drstwex.A (5) and Ramnit (10) solely use TCP for malicious
communication. Hence, the reasonable design option was
to utilize both protocol-aware and state-space attributes for
malware family classification. Despite achieving good accu-
racy on complete dataset, majority of the classifiers achieved
low accuracy per family relative to the evolutionary UCS
classifier (like NB achieved average accuracy of 99.70% on
all malware samples and only 73.17% average accuracy per
malware family). This shows that UCS has the ability to
transform multi-dimensional knowledge from different mal-
ware network behaviors into accurate rules.

Training Time. The training time indicates the time
taken by the classifier to build its model on given dataset.
The training time is vital for frequently updating the rule-
base of the classifiers on additional malware samples. Ta-
ble 5 shows the time taken by the classifiers during the
training phase. SLAVE had consumed more time to evolve

Table 5: Average training and testing times.

Algorithm Training Time Testing Time

>

§ GAssist-ADI 34.1min 0.03sec

2 SLAVE >45min 0.02sec

~§ UCs 8.8min 0.02sec

m XCS 3.7min 0.21sec

>

i oC4s 8min 0.001sec
E g C-SVM 27.9min 0.001sec

§ Naive Bayes 24.5sec 0.001sec

m KNN n/a 0.07sec

its rule as compared to other evolutionary algorithms. The
Michigan style LCS (XCS and UCS) spent less time in train-
ing than the Pittsburgh style learning classifier GAssist-
ADI. The lowest training time was attained by NB, which
only took 24.5 seconds to build the model. KNN had no
training time as it performed all computations during the
testing phase.

Testing Time. As for testing time, Table 5 shows that
most of the machine learning algorithms took only a fraction
of a second to classify a malware family. The C4.5, C-SVM,
and NB algorithms had small testing times relative to evo-
lutionary algorithms. The Michigan style XCS had spent
more time in testing as compared to all other classifiers. A
higher testing time for an algorithm might cause delay in
the classification of a malware family.

7. RELATED WORK

While this paper is the first to incorporate evolutionary
algorithms in classification of malware families using differ-
ent network behaviors, there has been an extensive work on
malware classification using different techniques. A related
survey of these techniques can be found in [4].

Techniques proposed for malware classification using evo-
lutionary classifiers are based on rule learning [28], control
flow graph [6], and dependency graph [15] approaches. Re-
cently, the authors of [1] proposed a virus detection clonal
algorithm based on clonal selection and genetic algorithm
to detect malware. Other technique, IMAD [18] operates by

extracting n-grams from the system calls made by an exe-
cutable to detect malware. In contrast to these studies, our
work incorporate different network behaviors (such as HTTP,
SMTP, UDP, TCP) from numerous recent and active malware
families. Also, the goal of our approach is to distinguish
between instances of real-world malware families and not to
distinguish between benign and malware executables.
There is also a wealth of work that does not involve evolu-
tionary algorithms for malware classification. These studies
perform malware classification by incorporating a variety
of attributes such as system calls, system changes, network
traffic, and screenshots [26, 7, 12]. A number of techniques
that involve network-behavior attributes for malware clas-
sification using clustering are proposed in [24, 21, 14]. The
major drawback of clustering methods is that they do not
rely on supervised knowledge to model the information from
data. This can be a hurdle in the automatic classification of
malware and may result in inconsistent performance [26].

8. CONCLUSION

In this paper, we presented an efficient malware family
classification system that models the protocol-aware and
state-space features from different malware network behav-
iors as potential input attributes for the various classification
algorithms. We performed a comprehensive study of four
evolutionary and four non-evolutionary classification algo-
rithms. A side contribution of this paper is also the col-
lection and analysis of network behaviors exhibited by real-
world malware samples. To our knowledge, this is the first
investigative study of evolutionary and non-evolutionary al-
gorithms to efficiently classify malware families using differ-
ent network behaviors. The focus of our future work will
be to study the classification of benign executables against
known malware families using network behaviors.

Acknowledgements.

The authors would like to thank the anonymous review-
ers for their insightful comments. This research is partially
funded by the Research Fund KU Leuven and by the EU
FP7 project NESSoS with the financial support from the
Prevention of and Fight against Crime Programme of the
European Union (B-CCENTRE). Opinions expressed in this
material do not necessarily reflect the views of the sponsors.

9. REFERENCES

[1] S. Afaneh et al. Virus detection using clonal selection algorithm
with genetic algorithm (vdc algorithm). Applied Soft
Computing, 13(1):239 — 246, 2013.

[2] J. Alcala-Fdez et al. KEEL: A Software Tool to Assess
Evolutionary Algorithms for Data Mining Problems. Soft
Comput., 13(3):307-318, 2008.

[3] J. Bacardit. Analysis of the Initialization Stage of a Pittsburgh
Approach Learning Classifier System. In Proceedings of the 7th
Annual Conference on Genetic and Evolutionary
Computation, pages 1843—-1850. ACM, 2005.

[4] Z. Bazrafshan et al. A survey on heuristic malware detection
techniques. In Proceedings of the 5th Conference on
Information and Knowledge Technology (IKT), pages
113-120. IEEE, 2013.

[5] E. Bernadé-Mansilla and J. M. Garrell-Guiu. Accuracy-based
Learning Classifier Systems: Models, Analysis and Applications
to Classification Tasks. Evol. Comput., 11(3):209-238, 2003.

[6] D. Bruschi et al. Detecting Self-mutating Malware Using
Control-flow Graph Matching. In Proceedings of the Detection
of Intrusions and Malware & Vulnerability Assessment, pages
129-143. Springer, 2006.

(7]

8]
9]
(10]

(11]

(12]

(13]

(14]

(15]

[16]

[17)
18]

(19]

[20]

[21]

(22]

(23]

(24]

(28]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

J. Caballero et al. Measuring Pay-per-Install: The
Commoditization of Malware Distribution. In USENIX
Security Symposium, 2011.

T. Cover and P. Hart. Nearest neighbor pattern classification.
IEEE Trans. on Information Theory, 13(1):21-27, 1967.

T. Cover and J. A. Thomas. Elements of information theory,
volume 306. Wiley Online, 1991.

Why spam is annoying but malware is frightening.
http://blog.emsisoft.com/2013/11/13/annoying-spam/.

A. Gonzalez and R. Pérez. Slave: A genetic learning system
based on an iterative approach. IEEE Trans. on Fuzzy
Systems, 7(2):176-191, 1999.

C. Grier et al. Manufacturing Compromise: The Emergence of
Exploit-as-a-service. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 821-832.
ACM, 2012.

T. Hill and P. Lewicki. Statistics: methods and applications.
StatSoft, 2006.

J. Jang et al. BitShred: Feature Hashing Malware for Scalable
Triage and Semantic Analysis. In Proceedings of the 18th ACM
Conference on Computer and Communications Security,
pages 309-320. ACM, 2011.

K. Kim and B.-R. Moon. Malware Detection Based on
Dependency Graph Using Hybrid Genetic Algorithm. In
Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, pages 1211-1218. ACM, 2010.
Mcafee threats report: First quarter 2013. http://www.mcafee.
com/au/resources/reports/rp-quarterly-threat-q1-2013.pdf.
Malware Domain List. http://malwaredomainlist.com/.

S. B. Mehdi et al. IMAD: In-execution Malware Analysis and
Detection. In Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, pages 1553—-1560.
ACM, 2009.

A. Mohaisen and O. Alrawi. Unveiling Zeus: Automated
Classification of Malware Samples. In Proceedings of the 22nd
International Conference on World Wide Web, pages
829-832, 2013.

A. Nappa et al. Driving in the Cloud: An Analysis of Drive-by
Download Operations and Abuse Reporting. In Detection of
Intrusions and Malware, and Vulnerability Assessment,
volume 7967, pages 1-20. Springer, 2013.

R. Perdisci et al. Behavioral Clustering of HTTP-based
Malware and Signature Generation Using Malicious Network
Traces. In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, pages 26-26.
USENIX Association, 2010.

J. R. Quinlan. Improved use of continuous attributes in C4.5.
Journal of Art. Int. Res., 4:77-90, 1996.

M. Z. Rafique and M. Abulaish. xMiner: Nip the Zero Day
Exploits in the Bud. In Proceedings of the 10th International
Symposium on Network Computing and Applications, pages
99-106. IEEE Computer Society, 2011.

M. Z. Rafique and J. Caballero. Firma: Malware clustering and
network signature generation with mixed network behaviors. In
Proceedings of the 16th International Symposium on Research
in Attacks, Intrusions and Defenses, pages 144-163. 2013.

M. Z. Rafique et al. Application of Evolutionary Algorithms in
Detecting SMS Spam at Access Layer. In Proceedings of the
13th Annual Conference on Genetic and Evolutionary
Computation, pages 1787-1794. ACM, 2011.

K. Rieck et al. Learning and Classification of Malware
Behavior. In Proceedings of the 5th International Conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 108-125. Springer-Verlag, 2008.

I. Rish. An empirical study of the naive Bayes classifier. In
Workshop on Empirical Methods in Artificial Intelligence,
pages 41-46, 2001.

M. Z. Shafiq et al. On the appropriateness of evolutionary rule
learning algorithms for malware detection. In Proceedings of
the 11th Annual Conference on Genetic and Evolutionary
Computation Conference, pages 2609-2616. ACM, 2009.
Sophos report. http://www.sophos.com/en-us/medialibrary/
PDFs/other/sophos-security-threat-report-2014.pdf.

S. Wilson. Generalization in the XCS classifier system. In
AGPC, pages 665-674. Morgan Kaufmann, 1998.

J. Wyke. The zeroaccess botnet: Mining and fraud for massive
financial gain. http://www.sophos.com/en-us/why-sophos/
our-people/technical-papers/zeroaccess-botnet.aspx.

Zeus tracker. https://zeustracker.abuse.ch/index.php.

